|
| 1 | +import os |
| 2 | +from typing import Optional |
| 3 | + |
| 4 | +import safetensors.torch |
| 5 | +import torch |
| 6 | +from transformers import Trainer |
| 7 | + |
| 8 | +from swift.plugin import Tuner, extra_tuners, optimizers_map |
| 9 | +from swift.tuners import LoraConfig, Swift |
| 10 | + |
| 11 | + |
| 12 | +class CustomTuner(Tuner): |
| 13 | + |
| 14 | + @staticmethod |
| 15 | + def from_pretrained(model: torch.nn.Module, model_id: str, **kwargs) -> torch.nn.Module: |
| 16 | + model = Swift.from_pretrained(model, model_id, **kwargs) |
| 17 | + state_dict = safetensors.torch.load_file(os.path.join(model_id, 'vit.safetensors')) |
| 18 | + model.load_state_dict(state_dict, strict=False) |
| 19 | + return model |
| 20 | + |
| 21 | + @staticmethod |
| 22 | + def save_pretrained( |
| 23 | + model: torch.nn.Module, |
| 24 | + save_directory: str, |
| 25 | + state_dict: Optional[dict] = None, |
| 26 | + safe_serialization: bool = True, |
| 27 | + **kwargs, |
| 28 | + ) -> None: |
| 29 | + if state_dict is None: |
| 30 | + state_dict = {} |
| 31 | + for n, p in model.named_parameters(): |
| 32 | + if p.requires_grad: |
| 33 | + state_dict[n] = p.detach().cpu() |
| 34 | + model.save_pretrained(save_directory, state_dict=state_dict, safe_serialization=safe_serialization, **kwargs) |
| 35 | + # vit |
| 36 | + state_dict = {k: v for k, v in state_dict.items() if '.visual.' in k} |
| 37 | + safetensors.torch.save_file( |
| 38 | + state_dict, os.path.join(save_directory, 'vit.safetensors'), metadata={'format': 'pt'}) |
| 39 | + |
| 40 | + @staticmethod |
| 41 | + def prepare_model(args: 'TrainArguments', model: torch.nn.Module) -> torch.nn.Module: |
| 42 | + target_regex = r'^model.layers.*' |
| 43 | + lora_config = LoraConfig( |
| 44 | + task_type='CAUSAL_LM', r=args.lora_rank, lora_alpha=args.lora_alpha, target_modules=target_regex) |
| 45 | + model = Swift.prepare_model(model, lora_config) |
| 46 | + model.visual.requires_grad_(True) # vit & merger |
| 47 | + return model |
| 48 | + |
| 49 | + |
| 50 | +def create_custom_optimizer(args, model, dataset): |
| 51 | + decay_parameters = set(Trainer.get_decay_parameter_names(None, model)) |
| 52 | + vit_parameters = [(n, p) for n, p in model.named_parameters() if '.visual.' in n and p.requires_grad] |
| 53 | + llm_parameters = [(n, p) for n, p in model.named_parameters() if '.visual.' not in n and p.requires_grad] |
| 54 | + optimizer_grouped_parameters = [ |
| 55 | + # vit & merger |
| 56 | + { |
| 57 | + 'params': [p for n, p in vit_parameters if n in decay_parameters], |
| 58 | + 'weight_decay': args.weight_decay, |
| 59 | + 'lr': 0.1 * args.learning_rate, # 1e-5 |
| 60 | + }, |
| 61 | + { |
| 62 | + 'params': [p for n, p in vit_parameters if n not in decay_parameters], |
| 63 | + 'weight_decay': 0.0, |
| 64 | + 'lr': 0.1 * args.learning_rate, |
| 65 | + }, |
| 66 | + # llm |
| 67 | + { |
| 68 | + 'params': [p for n, p in llm_parameters if n in decay_parameters], |
| 69 | + 'weight_decay': args.weight_decay, |
| 70 | + }, |
| 71 | + { |
| 72 | + 'params': [p for n, p in llm_parameters if n not in decay_parameters], |
| 73 | + 'weight_decay': 0.0, |
| 74 | + }, |
| 75 | + ] |
| 76 | + optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(args, model) |
| 77 | + return optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs), None |
| 78 | + |
| 79 | + |
| 80 | +extra_tuners['custom'] = CustomTuner |
| 81 | +optimizers_map['custom'] = create_custom_optimizer |
0 commit comments