-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocessor.py
85 lines (66 loc) · 2.93 KB
/
preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import cv2
import numpy as np
import matplotlib.pyplot as plt
class Preprocessor:
def __init__(self, drone_img, pcl_img, mask_image):
self.drone_img = drone_img
self.pcl_img = pcl_img
self.mask_image = mask_image
self.processed_drone_img = None
self.processed_pcl_img = None
self.processed_drone_mask = None
self.processed_pcl_mask = None
self.masked_drone_img = None
self.masked_pcl_img = None
def preprocessing(self):
self.processed_drone_img = self._drone_img_preprocessing()
self.processed_pcl_img = self._pcl_img_preprocessing()
self.processed_drone_mask = self._process_drone_mask()
self.processed_pcl_mask = self._process_pcl_mask()
self.masked_drone_img = self._get_masked_img(
self.processed_drone_img, self.processed_drone_mask)
self.masked_pcl_img = self._get_masked_img(
self.processed_pcl_img, self.processed_pcl_mask)
def _get_masked_img(self, img, mask):
print(img.shape)
print(mask.shape)
masked_img = cv2.bitwise_and(img, mask, None)
return masked_img
def _drone_img_preprocessing(self):
return cv2.cvtColor(self.drone_img, cv2.COLOR_BGR2GRAY)
def _process_drone_mask(self):
#mask = cv2.imread('/media/visionnoob/dataset/Sample Data (2)/ex3/3/mask.png', cv2.IMREAD_GRAYSCALE)
#mask = mask * 255
#ret, mask = cv2.threshold(mask, 100, 255, cv2.THRESH_BINARY)
return cv2.cvtColor(self.mask_image, cv2.COLOR_BGR2GRAY)
def _process_pcl_mask(self):
plc_img = self.processed_pcl_img
plc_img[plc_img == 224] = 0
ret, mask = cv2.threshold(plc_img, 1, 255, cv2.THRESH_BINARY)
kernel = np.ones((5, 5), np.uint8)
mask_ero = cv2.erode(mask, kernel, iterations=7)
contours = cv2.findContours(
mask_ero, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
max_idx = 0
max_len = 0
for i in range(len(contours[1])):
c = contours[1][i]
if(max_len < len(c)):
max_len = len(c)
max_idx = i
selected_contour = contours[1][max_idx].reshape(1, -1, 2)
mask2 = np.zeros(mask_ero.shape, np.uint8)
mask2 = cv2.fillPoly(mask2, selected_contour, color=[255])
mask3 = cv2.dilate(mask2, kernel, iterations=5)
return mask3
def _pcl_img_preprocessing(self):
gray_img = cv2.cvtColor(self.pcl_img, cv2.COLOR_BGR2GRAY)
return cv2.medianBlur(gray_img, 3)
def get_processed_imgs(self):
return {'processed_drone_img': self.processed_drone_img,
'processed_pcl_img': self.processed_pcl_img,
'processed_drone_mask': self.processed_drone_mask,
'processed_pcl_mask': self.processed_pcl_mask,
'masked_drone_img': self.masked_drone_img,
'masked_pcl_img': self.masked_pcl_img
}