-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
33 lines (27 loc) · 931 Bytes
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import json
import numpy as np
import pickle
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
# Import and normalize data
X_digits, y_digits = datasets.load_digits(return_X_y=True)
X_digits = X_digits / X_digits.max()
n_samples = len(X_digits)
# Split data into training and test sets
X_train = X_digits[: int(0.9 * n_samples)]
y_train = y_digits[: int(0.9 * n_samples)]
X_test = X_digits[int(0.9 * n_samples) :]
y_test = y_digits[int(0.9 * n_samples) :]
# Train Model
logistic = LogisticRegression(max_iter=1000)
print(
"LogisticRegression mean accuracy score: %f"
% logistic.fit(X_train, y_train).score(X_test, y_test)
)
# save trained model
with open("weights/model_latest.pkl", "wb") as file:
pickle.dump(logistic, file)
# Save small sample input to use for testing later
sample = X_test[:5].tolist()
with open("data/digits_sample.json", 'w') as out:
json.dump(sample, out)