1
- import logging
2
1
from pathlib import Path
3
2
4
3
import numpy as np
5
- import requests
6
4
from ase .build import bulk , make_supercell
7
5
8
6
import psiflow
9
7
from psiflow .committee import Committee
10
- from psiflow .data import Dataset , FlowAtoms
11
- from psiflow .learning import CommitteeLearning , SequentialLearning , load_learning
8
+ from psiflow .data import Dataset
9
+ from psiflow .learning import CommitteeLearning , SequentialLearning
12
10
from psiflow .metrics import Metrics
13
11
from psiflow .models import MACEConfig , MACEModel
14
12
from psiflow .reference import EMTReference
15
- from psiflow .state import load_state
16
- from psiflow .walkers import DynamicWalker , PlumedBias
13
+ from psiflow .walkers import DynamicWalker
17
14
18
15
19
16
def main (path_output ):
@@ -22,7 +19,7 @@ def main(path_output):
22
19
path_committee = path_output / "learn_committee"
23
20
path_committee .mkdir (parents = True )
24
21
25
- reference = EMTReference () # CP2K; PBE-D3(BJ); TZVP
22
+ reference = EMTReference ()
26
23
atoms = make_supercell (bulk ("Cu" , "fcc" , a = 3.6 , cubic = True ), 3 * np .eye (3 ))
27
24
28
25
config = MACEConfig ()
@@ -56,7 +53,7 @@ def main(path_output):
56
53
step = 40 ,
57
54
start = 0 ,
58
55
temperature = 100 ,
59
- temperature_threshold = 300 , # reset if T > T_0 + 300 K
56
+ max_excess_temperature = 300 , # reset if T > T_0 + 300 K
60
57
pressure = 0 ,
61
58
)
62
59
data = learning .run (
@@ -90,3 +87,4 @@ def main(path_output):
90
87
psiflow .load ()
91
88
path_output = Path .cwd () / "output" # stores learning results
92
89
main (path_output )
90
+ psiflow .wait ()
0 commit comments