|
| 1 | +#include <opencv2/opencv.hpp> |
| 2 | +#include "opencv2/xfeatures2d.hpp" |
| 3 | +#include "opencv2/features2d.hpp" |
| 4 | + |
| 5 | +using namespace std; |
| 6 | +using namespace cv; |
| 7 | +using namespace cv::xfeatures2d; |
| 8 | + |
| 9 | +const int MAX_MATCHES = 500; |
| 10 | +const float GOOD_MATCH_PERCENT = 0.15f; |
| 11 | + |
| 12 | + |
| 13 | +void alignImages(Mat &im1, Mat &im2, Mat &im1Reg, Mat &h) |
| 14 | + |
| 15 | +{ |
| 16 | + |
| 17 | + // Convert images to grayscale |
| 18 | + Mat im1Gray, im2Gray; |
| 19 | + cvtColor(im1, im1Gray, CV_BGR2GRAY); |
| 20 | + cvtColor(im2, im2Gray, CV_BGR2GRAY); |
| 21 | + |
| 22 | + // Variables to store keypoints and descriptors |
| 23 | + std::vector<KeyPoint> keypoints1, keypoints2; |
| 24 | + Mat descriptors1, descriptors2; |
| 25 | + |
| 26 | + // Detect ORB features and compute descriptors. |
| 27 | + Ptr<Feature2D> orb = ORB::create(MAX_MATCHES); |
| 28 | + orb->detectAndCompute(im1Gray, Mat(), keypoints1, descriptors1); |
| 29 | + orb->detectAndCompute(im2Gray, Mat(), keypoints2, descriptors2); |
| 30 | + |
| 31 | + // Match features. |
| 32 | + std::vector<DMatch> matches; |
| 33 | + Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); |
| 34 | + matcher->match(descriptors1, descriptors2, matches, Mat()); |
| 35 | + |
| 36 | + // Sort matches by score |
| 37 | + std::sort(matches.begin(), matches.end()); |
| 38 | + |
| 39 | + // Remove not so good matches |
| 40 | + const int numGoodMatches = matches.size() * GOOD_MATCH_PERCENT; |
| 41 | + matches.erase(matches.begin()+numGoodMatches, matches.end()); |
| 42 | + |
| 43 | + |
| 44 | + // Draw top matches |
| 45 | + Mat imMatches; |
| 46 | + drawMatches(im1, keypoints1, im2, keypoints2, matches, imMatches); |
| 47 | + imwrite("matches.jpg", imMatches); |
| 48 | + |
| 49 | + |
| 50 | + // Extract location of good matches |
| 51 | + std::vector<Point2f> points1; |
| 52 | + std::vector<Point2f> points2; |
| 53 | + |
| 54 | + for( size_t i = 0; i < matches.size(); i++ ) |
| 55 | + { |
| 56 | + points1.push_back( keypoints1[ matches[i].queryIdx ].pt ); |
| 57 | + points2.push_back( keypoints2[ matches[i].trainIdx ].pt ); |
| 58 | + } |
| 59 | + |
| 60 | + // Find homography |
| 61 | + h = findHomography( points1, points2, RANSAC ); |
| 62 | + |
| 63 | + // Use homography |
| 64 | + warpPerspective(im1, im1Reg, h, im2.size()); |
| 65 | + |
| 66 | +} |
| 67 | + |
| 68 | + |
| 69 | +int main(int argc, char **argv) |
| 70 | +{ |
| 71 | + Mat imReference = imread("form.jpg"); |
| 72 | + Mat im = imread("scanned-form.jpg"); |
| 73 | + Mat imReg, h; |
| 74 | + |
| 75 | + alignImages(im, imReference, imReg, h); |
| 76 | + imwrite("aligned.jpg", imReg); |
| 77 | + |
| 78 | +} |
0 commit comments