-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetAnn.cpp
678 lines (608 loc) · 20.9 KB
/
netAnn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
/* Network analyser
Sketch to turn the arduino into a simple network analyser
Todos
* Make sure to integrate over full cycles only
* Either put cycle counter in adc loop, or try to do something cleverer with saving samples in a circular buffer
* Change number of points used for the wave-form on the fly
* Add a command setNsenor
* Don't allow frequencies that are too high be attempted (to avoid crashed)
* Compensate for ADC/DAC frequency response
* Allow low frequencies to be used by increasing number of points OR setting DAC auto-refresh flag`
* Probably when requesting frequencies below 10 kHz
Features to add:
* Calibration
* Of the output vs frequency.
* Of the internal resistance
(* Of the ADC/DAC voltages)
(* Of clock)
* LCR meter
* Given a known resistor (or potentially just the internal resistance), calculate the value of an
* unknown component connected in parallel or in series
* More advanced component anslysis
* Perform LCR metering with more complex circuits
* Optimised detection of changes based on simple models
*/
#include <PID_v1.h>
#include <SerialCommand.h>
#include "netAnn.h"
#include "comms.h"
#include "handler.h"
int floorDiv(int num, int denom){
int res=num/denom;
if( (num<0 && denom>=0) || (num>0 && denom<=0)){
res-=1;
}
return res;
}
SerialCommand sCmd;
float calcR(float sigR, float sigI, float Rref, float sig0) {
float sR = sigR / sig0;
float sI = sigI / sig0;
float num = Rref * (-sI * sI - sR * sR + sR);
float denom = sI * sI + sR * sR - 2. * sR + 1.;
return num / denom;
}
float calcWC(float sigR, float sigI, float Rref, float sig0) {
float sR = sigR / sig0;
float sI = sigI / sig0;
float denom = Rref * -sI;
float num = sI * sI + sR * sR - 2. * sR + 1.;
return num/denom;
}
namespace HW{
void setup_pio_TIOA0 () // Configure Ard pin 2 as output from TC0 channel A (copy of trigger event)
{
PIOB->PIO_PDR = PIO_PB25B_TIOA0 ; // disable PIO control
PIOB->PIO_IDR = PIO_PB25B_TIOA0 ; // disable PIO interrupts
PIOB->PIO_ABSR |= PIO_PB25B_TIOA0 ; // switch to B peripheral
}
void clock_setup(unsigned int NCyc, unsigned int NCycUp){
//Set up a clock to do essentially just pwm
pmc_enable_periph_clk (TC_INTERFACE_ID + 0*3+0) ; // clock the counter-timer channel 0 (TC0)
TcChannel * t = &(TC0->TC_CHANNEL)[0] ; // t is a pointer to TC0 registers for its channel 0
t->TC_CCR = TC_CCR_CLKDIS ; // disable internal clocking while we play with it's registers
t->TC_IDR = 0xFFFFFFFF ; // disable all interrupts
t->TC_SR ; // read int status reg to clear the pending event
t->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 | // use TCLK1. I think the clock divisor is 2, so it should be 42MHz
TC_CMR_WAVE | // waveform mode
TC_CMR_WAVSEL_UP_RC | // We'll use count-up PWM using RC as threshold
TC_CMR_EEVT_XC0 | // Set external events from XC0 (this setup TIOB as output)
TC_CMR_ACPA_CLEAR | TC_CMR_ACPC_CLEAR |
TC_CMR_BCPB_CLEAR | TC_CMR_BCPC_CLEAR ;
t->TC_RC = NCyc ; // counter resets on RC, so this sets period of PWM (each cycle is ~23 ns)
t->TC_RA = NCycUp ; // Cycles to stay up. Make it roughly square wave
t->TC_CMR = (t->TC_CMR & 0xFFF0FFFF) | TC_CMR_ACPA_CLEAR | TC_CMR_ACPC_SET ; // set clear and set from RA and RC compares
t->TC_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG ; // re-enable local clocking and switch to hardware trigger source.
setup_pio_TIOA0 () ; // Makes ard pin 2 an output channel for our setup TC0
}
void dac_setup ()
{
pmc_enable_periph_clk (DACC_INTERFACE_ID) ; // start clocking DAC
DACC->DACC_CR = DACC_CR_SWRST ; // reset DAC
DACC->DACC_MR = // Set DAC mode-register
//DACC_MR_TRGEN_EN | DACC_MR_TRGSEL (1) | // trigger 1 = TIO output of TC0
DACC_MR_REFRESH (0x08) | // Refresh shouldn't be needed if we're writing at high speed
DACC_MR_TAG | // We use TAG and word mode to output two samples to the 2 channels at once (sort of)
DACC_MR_WORD;
DACC->DACC_IDR = 0xFFFFFFFF ; // no interrupts
#ifdef FLAG_TWO_OUTPUTS
DACC->DACC_CHER = DACC_CHER_CH0 | DACC_CHER_CH1 ; // enable ch0 and ch1
#else
DACC->DACC_CHER = DACC_CHER_CH1; // enable ch0 and ch1
#endif
}
//For writing to the DAC sample buffer (writing to the right data bits and tag bits)
void adc_setup ()
{
NVIC_EnableIRQ (ADC_IRQn) ; // enable ADC interrupt vector
ADC->ADC_IDR = 0xFFFFFFFF ; // disable interrupts
ADC->ADC_IER = 1 << 1; // enable AD1 (2^(7-PIN_NUM)) End-Of-Conv interrupt (Arduino pin A6)
ADC->ADC_CHDR = 0xFFFF ; // disable all channels
ADC->ADC_CHER = 1 << 1 ; // enable just A6. 2^(7-PIN_NUM)
ADC->ADC_CGR = 0x15555555 ; // All gains set to x1
//ADC->ADC_COR = 0x00010000 ; // All offsets off, ch0 in differential mode (thus all) (not used anymore)
ADC->ADC_COR = 0x00000000;
//ADC->ADC_COR = ADC->ADC_COR | ((1 << 0) << 16 );
ADC->ADC_MR = (ADC->ADC_MR & 0xFFFFFFF0) | (1 << 1) | ADC_MR_TRGEN ; // 1 = trig source TIO from TC0
}
} //namespace HW
NetworkAnalyser::NetworkAnalyser(): b_send_data (true),
start_freq (1.0),
stop_freq (2.0),
freq_step (0.1),
_sens_phase (0),
_sens_amplitude_dig (200),
current_target_freq (0.1),
_current_freq(current_target_freq),
integration_time(100000),
_sample_period(1000),
_read_lag_pts(0),
cal_per_volt(1365.),
bSingleFreq(false),
bScanning(false),
ACQ_cycles_to_integrate(10),
ACQ_cycle_count(0),
bRepeatPointsInWaveform(false),
cur_N_SENS_WV(2),
cur_N_SENS_WV2(2)
{
writeReferenceWave();
}
// Stuff to run when callibrating for frequency response (and maybe internal resistance)
// Proposed interface: call with the DAC connected straight to the ADC.
// This function should trigger a frequency scan which will be used to callibrate 3 things:
// the DAC and ADC against each other, (float calDACvsADC)
// The lag between reading and writing (float writeReadLag)
// Ideally also internal resistance, capacitance -> frequency response
// We'll start with just the first two
void NetworkAnalyser::calibrate(){
float f2=20.;
QuadratureSample q1=freqSampleAndWait(0.01, 100000), q2=freqSampleAndWait(f2, 100000);
PRINT_VAR(this->getSensAmplitudeDig());
PRINT_VAR(q1.R());
this->calDACvsADC=q1.R()/this->getSensAmplitudeDig();
this->calWriteReadLag=q2.phi()/TWOPI/ f2;
PRINT_VAR(calWriteReadLag);
PRINT_VAR(calDACvsADC);
return;
}
void NetworkAnalyser::startFreqSample(float target_freq){
float current_actual_freq=_setCurrentFreq(target_freq); //Set the new frequency to scan
//this->do_first_sample();
//delay(1);
ACQ_cycles_to_integrate=(int)(integration_time*current_actual_freq/1000. + 0.5); // +0.5 is to give rounding behaviour
sig0_long=0;
sig90_long=0;
ACQ_cycle_count=0;
ACQ_sample_count=0;
}
bool NetworkAnalyser::freqSampleDone(){
bool bDone=ACQ_cycle_count >= ACQ_cycles_to_integrate;
if(!bDone){ //check for rollover
const unsigned int ROLL_OVER=100000000;
//int comp_val= //(unsigned int)abs(ACQ_sig0_cum);
int sig0_cum_temp;
int sig90_cum_temp;
sig0_cum_temp= ACQ_sig0_cum; // make tempoaries (as the actual numbers could theoretically get
sig90_cum_temp= ACQ_sig90_cum;// updated while we're here)
if( (abs(sig0_cum_temp)>ROLL_OVER) | (abs(sig90_cum_temp)>ROLL_OVER ) ){
Serial.print("Rollover. Old 0 vals: ");
Serial.print(ACQ_sig0_cum);
Serial.print(", ");
Serial.println(ACQ_sig90_cum);
sig0_long+= sig0_cum_temp;
sig90_long+= sig90_cum_temp;
ACQ_sig0_cum-= sig0_cum_temp;
ACQ_sig90_cum-=sig90_cum_temp;
}
}
return bDone;
}
QuadratureSample NetworkAnalyser::calibrateSample(QuadratureSample q, float freq){
int sensAmp=getSensAmplitudeDig();
q.sig0/=calDACvsADC*sensAmp;
q.sig90/=calDACvsADC*sensAmp;
q=q.rotated(-freq*calWriteReadLag*TWOPI);
return q;
}
QuadratureSample NetworkAnalyser::sample(){
int sig0_cum_temp;
int sig90_cum_temp;
sig0_cum_temp=ACQ_sig0_cum; // make temporaries (as the actual numbers could theoretically get
sig90_cum_temp=ACQ_sig90_cum;// updated while we're here)
int sample_count_temp=ACQ_sample_count;
ACQ_sig0_cum=0; //Reset the accumulated signal to zero
ACQ_sig90_cum=0;
ACQ_cycle_count=0;
ACQ_sample_count=0;
sig0_cum_temp=0;
sig90_cum_temp=0;
float sig0 = ((float)(sig0_cum_temp + sig0_long)/sample_count_temp);
float sig90 = ((float)(sig90_cum_temp + sig90_long)/sample_count_temp);
sig0_long=0;
sig90_long=0;
return QuadratureSample(sig0, sig90); // Should maybe return a pair
}
QuadratureSample NetworkAnalyser::freqSampleResult(){
while(!freqSampleDone()){
delay(5);
}
return sample();
}
QuadratureSample NetworkAnalyser::freqSampleAndWait(float freq, float integration_time){
if (integration_time==-1){
integration_time=this->integration_time;
}
float old_integration_time =this->integration_time;
this->integration_time=integration_time;
startFreqSample(freq);
QuadratureSample result=freqSampleResult();
this->integration_time=old_integration_time;
return result;
}
void NetworkAnalyser::readSerial(){
sCmd.readSerial();
}
void NetworkAnalyser::scanUpdate(){
readSerial();
if (freqSampleDone()){
QuadratureSample result= freqSampleResult();
if (this->b_send_data){
sendData(this->getCurrentFreq(), result.sig0, result.sig90);
}
if(bScanning){
current_target_freq+=freq_step;
if (current_target_freq > stop_freq){
current_target_freq=start_freq;
};
startFreqSample(current_target_freq);
}
}
}
/*write_wave_form
Make a down-sampled sine wave based on lookup. Uses a pre-allocated array ("ref_wv_fm")
containing values for a full revolution of sine with amplitude between -2^31 and 2^31.
The number of points in this array is an integer multiple of the number of points in the
DAC wave-form, so that down sampling can be done simply by skipping an integer multiple
of points, and amplitude scaling is simply an integer division of the reference amplitude.
TODO:
This should probably really only take a phase, not a 'shift_points'
*/
const int CH0_MARK= (0 << 12);
const int CH1_MARK= (1 << 12);
const int TAG_MASK = (1 << 28);
void NetworkAnalyser::writeWaveForm(int wv_fm[], unsigned int Npts, unsigned int Ncyc, int amplitude, float phase, int nReps, int shift_pts){
if(0){
Serial.println("writeWaveForm:");
PRINT_VAR(Npts);
PRINT_VAR(Ncyc);
PRINT_VAR(amplitude);
PRINT_VAR(phase);
PRINT_VAR(nReps);
PRINT_VAR(shift_pts);
}
while(phase > TWOPI){ //Phase should be within 0, 2pi already, but lets make sure
phase-=TWOPI;
}
while(phase < 0){
phase+= TWOPI;
}
int N_ref_step= N_REF_WV*nReps*Ncyc/Npts;
int div_fact = IMAX/amplitude;
int phase_ref_offs= phase*N_REF_WV_ON_2PI; // /2/PI*N_REF_WV;
int k_ref=phase_ref_offs;
if(k_ref< 0){
k_ref+=N_REF_WV;
}
//Serial.println("Starting loop");
//PRINT_VAR(k);
for(int k=0+shift_pts; k<(int)Npts+shift_pts; k++){
//Serial.println("looping");
if(k_ref>= N_REF_WV){
k_ref-=N_REF_WV;
}
//deal with shift_pts
int k3= k-shift_pts;
if(k3>= Npts){
k3-=Npts;
}
else if(k3<0){
k3+=Npts;
}
wv_fm[k3]=this->ref_wv_fm[k_ref]/div_fact;
unsigned int k2=floorDiv(k,nReps);
//PRINT_VAR(k);
//PRINT_VAR(k3);
//PRINT_VAR(k2);
if((k2+1)*nReps==k+1){
k_ref+=N_ref_step;//N_REF_ON_N_WV;
}
//PRINT_VAR(k_ref);
}
}
void NetworkAnalyser::do_first_sample(){
#if FLAG_TWO_OUTPUTS
dac_write_both(this->sens_wv_fm[cur_N_SENS_WV-1], this->sens_wv_fm2[0]);
#else
dac_write_1(this->sens_wv_fm[cur_N_SENS_WV-1]);
#endif
delayMicroseconds(2*_sample_period);
}
int NetworkAnalyser::on_interrupt(int input) {
// Check if it's a new cycle
static int out_A=0;
int i_sens=ACQ_i_sens/(nPointRepetitions);
if (i_sens>=cur_N_SENS_WV){
this->ACQ_i_sens=0;
this->ACQ_cycle_count++;
i_sens=0;
}
//int i_sens2=ACQ_i_sens/(nPointRepetitions2);
if (ACQ_cycle_count < ACQ_cycles_to_integrate || bSingleFreq){
int val = input - AI_ZERO; // get conversion result
//int val = *(ADC->ADC_CDR+1) - AI_ZERO; // get conversion result
int val0 = val*read_quad0_wv_fm[i_sens];
int val90 = val*read_quad90_wv_fm[i_sens];
ACQ_sig0_cum += val0;
ACQ_sig90_cum += val90;
ACQ_sample_count++; //increment number of samples since last read
ACQ_i_sens++;
out_A=this->sens_wv_fm[i_sens];
}
else{
this->ACQ_i_sens=0; //maybe unecessary?
}
#if FLAG_TWO_OUTPUTS
int i_sens2=ACQ_i_sens2/(nPointRepetitions2);
if (i_sens2>=cur_N_SENS_WV2){
this->ACQ_i_sens2=0;
this->ACQ_cycle_count2++;
i_sens2=0;
}
if (ACQ_cycle_count2 <= ACQ_cycles_to_integrate2 || bSingleFreq){
ACQ_i_sens2++;
ACQ_sample_count2++; //increment number of samples since last read
}
else{
this->ACQ_i_sens2=0; //maybe unecessary?
}
int out_B=this->sens_wv_fm2[i_sens2];
return ( (out_A +2048) | ((out_B +2048) << 16) );
#else
return (out_A+2048 | CH1_MARK);
#endif
// Save data in a circular buffer so we can inspect it for debugging purposes
//samples2[sptr]= val90;
//samples2[0]= 0;
//sptr = (sptr+1) & BUFMASK ; // move pointer
//samples[sptr] = val; // stick it in circular buffer.
//Load the DAC write register with the next values to write
//Serial.print("i_sens:");
//Serial.println(i_sens);
//Serial.print("val:"); Serial.println(this->sens_wv_fm[i_sens]);
// return this->sens_wv_fm[i_sens];
//dac_write_both(0, this->sens_wv_fm[ACQ_i_sens]);
}
void NetworkAnalyser::writeReferenceWave(){
for(int k=0; k<N_REF_WV; k++){
ref_wv_fm[k]=(int)IMAX*cos(TWOPI*(float)k/N_REF_WV);
//Serial.print("k= "); Serial.print(k); Serial.print(", GLB_ref_wv_fm="); Serial.println(GLB_ref_wv_fm[k]);
}
}
//To be run in the setup loop
void NetworkAnalyser::setup(){
//Register the serial communications functions
connectCommands();
///Make the reference wave form from which all other wave-forms will be calculated
//This stuff could probably just be done in the constructor
//=======================================================================
//--------------HARDWARE------------------------------------------------------------------
HW::adc_setup(); // setup ADC
setSamplePeriod(10000);
HW::dac_setup(); // sets-up up DAC to be auto-triggered by the clock
_setCurrentFreq(this->_current_freq); //Assign a start frequency
updateSensWvfm();
#if FLAG_TWO_OUTPUTS
updateSensWvfm2();
#endif
updateReadWvfms();
return;
}
void NetworkAnalyser::startScan(float startFreq, float stopFreq, int Nsteps, float integTime){
start_freq=startFreq;
stop_freq=stopFreq;
integration_time=integTime;
freq_step=(stopFreq-startFreq)/Nsteps;
startFreqSample(startFreq);
this->continueScanning();
scanUpdate();
//while(ACQ_cycle_count>0){ // Wait until an interrupt has happened and everything has reset
// delayMicroseconds(10);
//}
return;
}
void NetworkAnalyser::stopScan(){
bScanning=false;
return;
}
void NetworkAnalyser::continueScanning() {
bScanning=true;
}
void NetworkAnalyser::toggleDataSending(){
b_send_data=false;
return;
}
unsigned int NetworkAnalyser::setSamplePeriod(unsigned int period){
//unsigned int NcycUp=period/2.;
this->_sample_period=period;
HW::clock_setup(period, period/2);
return this->_sample_period;
}
unsigned int NetworkAnalyser::getSamplePeriod(){
return this->_sample_period;
}
float NetworkAnalyser::_setSampleRate(float rate){ // Rate should be in kHz
unsigned int period=CLOCK_RATE/rate; //assuming 42 MHz ADC clock
PRINT_VAR(period);
setSamplePeriod(period);
return CLOCK_RATE/period;
}
float NetworkAnalyser::_getSampleRate(){
return 42000/getSamplePeriod();
}
float NetworkAnalyser::_setCurrentFreq(float freq){
//this->stopScan();
//float sample_period=getSamplePeriod();
//MIN_SAMPLE_PERIOD;
unsigned int pointsPerCycle=(int)(1.0/freq/MIN_SAMPLE_PERIOD)/nSampsPerCycle*nSampsPerCycle;
//delay(500);
//return freq;
int pointReps= pointsPerCycle/this->nSampsPerCycle;
int pointReps2= pointsPerCycle/this->nSampsPerCycle2;
this->bRepeatPointsInWaveform=pointReps<= N_SENS_WV/2 | pointReps <= N_SENS_WV/2;
this->nPointRepetitions=pointReps;
this->nPointRepetitions2=pointReps2;
if (bRepeatPointsInWaveform){
this->cur_N_SENS_WV=pointsPerCycle;
this->cur_N_SENS_WV2=pointsPerCycle;
}
else{
this->cur_N_SENS_WV=nSampsPerCycle;
this->cur_N_SENS_WV2=nSampsPerCycle2;
}
/*
Serial.print("setCurrentFreq:"); Serial.println(freq);
PRINT_VAR(pointsPerCycle);
PRINT_VAR(bRepeatPointsInWaveform);
PRINT_VAR(nPointRepetitions);
PRINT_VAR(cur_N_SENS_WV);
Serial.println();
*/
//cur_N_SENS_WV=2;
//cur_N_SENS_WV2=2;
//delay(500);
//return freq;
updateSensWvfm();
updateReadWvfms();
Serial.println("freq set");
//Serial.println("wvforms updates");
#if FLAG_TWO_OUTPUTS
updateSensWvfm2();
#endif
float rate= (pointsPerCycle * MIN_SAMPLE_PERIOD) * freq * 1/MIN_SAMPLE_PERIOD;
if(rate <=1/MIN_SAMPLE_PERIOD){
rate=_setSampleRate(rate);
_current_freq=rate/pointsPerCycle;
/*
PRINT_VAR(_current_freq);
//Serial.print("current_freq: "); Serial.println(_current_freq);
PRINT_VAR(rate);
*/
//ACQ_cycles_to_integrate=integration_time*rate/N_SENS_WV*NCYC_SENS;
/*
if(rate<10){
// NEED TO SEE IF THIS WORKS!
DACC->DACC_MR |=DACC_MR_REFRESH (0xFF); // Set DAC mode-register
//DACC_MR_TRGEN_EN | DACC_MR_TRGSEL (1) | // trigger 1 = TIO output of TC0
}
else{
DACC->DACC_MR &=DACC_MR_REFRESH (0x00); // Set DAC mode-register
}
*/
}
else{
Serial.print("Trying to set sample rate as "); Serial.print(rate); Serial.println(", which is too high");
}
return _current_freq;
}
unsigned int NetworkAnalyser::setSensAmplitudeDig(unsigned int amp){
this->_sens_amplitude_dig=amp;
updateSensWvfm();
return this->_sens_amplitude_dig;
}
unsigned int NetworkAnalyser::setSensAmplitudeDig2(unsigned int amp){
this->_sens_amplitude_dig2=amp;
updateSensWvfm2();
return this->_sens_amplitude_dig2;
}
int NetworkAnalyser::_setReadLagPts(int pts) {
this->_read_lag_pts=pts;
updateReadWvfms();
return this->_read_lag_pts;
}
int NetworkAnalyser::_getReadLagPts() {
return this->_read_lag_pts;
}
unsigned int NetworkAnalyser::getSensAmplitudeDig2(){
return this->_sens_amplitude_dig2;
}
unsigned int NetworkAnalyser::getSensAmplitudeDig(){
return this->_sens_amplitude_dig;
}
float NetworkAnalyser::setSensAmplitudeV(float ampV){
unsigned int newAmp=ampV*cal_per_volt;
setSensAmplitudeDig(newAmp);
return this->_sens_amplitude_dig/cal_per_volt;
}
float NetworkAnalyser::setSensAmplitudeV2(float ampV){
unsigned int newAmp=ampV*cal_per_volt;
setSensAmplitudeDig2(newAmp);
return this->_sens_amplitude_dig2/cal_per_volt;
}
int NetworkAnalyser::getSensAmplitudeV(){
return this->_sens_amplitude_dig/cal_per_volt;
}
int NetworkAnalyser::getSensAmplitudeV2(){
return this->_sens_amplitude_dig2/cal_per_volt;
}
float NetworkAnalyser::_setSensPhase(float new_phase){
this->_sens_phase=new_phase;
updateSensWvfm();
updateReadWvfms();
return this->_sens_phase;
}
float NetworkAnalyser::_getSensPhase() {
return this->_sens_phase;
}
void NetworkAnalyser::updateSensWvfm(){
Serial.println("updateSensWvfm");
this->writeWaveForm(this->sens_wv_fm, cur_N_SENS_WV, nCycles, this->_sens_amplitude_dig,
this->_sens_phase,
this->bRepeatPointsInWaveform ? this->nPointRepetitions : 1 );
}
#if FLAG_TWO_OUTPUTS
void NetworkAnalyser::updateSensWvfm2(){
int nPointReps=this->bRepeatPointsInWaveform ? this->nPointRepetitions2 : 1;
this->writeWaveForm(this->sens_wv_fm2, cur_N_SENS_WV2, nCycles, this->_sens_amplitude_dig2,
this->_sens_phase2, nPointReps );
}
#endif
void NetworkAnalyser::updateReadWvfms(){
//Serial.println("updateReadWvfms");
int nPointReps=this->bRepeatPointsInWaveform ? this->nPointRepetitions2 : 1;
this->writeWaveForm(read_quad0_wv_fm, cur_N_SENS_WV, nCycles, READ_WVFM_AMP, this->_sens_phase, nPointReps, _read_lag_pts+1);
this->writeWaveForm(read_quad90_wv_fm, cur_N_SENS_WV, nCycles, READ_WVFM_AMP, this->_sens_phase+ PI_ON_2, nPointReps, _read_lag_pts+1);
//printQuadWvmfs();
}
void NetworkAnalyser::printQuadWvmfs(){
//PRINT_VAR(cur_N_SENS_WV);
Serial.print("read_wvfm_0, N:"); Serial.println(cur_N_SENS_WV);
for (int k=0; k<this->cur_N_SENS_WV; k++){
Serial.print(this->read_quad0_wv_fm[k]);
Serial.print(" ");
}
Serial.println();
Serial.print("read_wvfm_90, N:"); Serial.println(cur_N_SENS_WV);
for (int k=0; k<this->cur_N_SENS_WV; k++){
Serial.print(this->read_quad90_wv_fm[k]);
Serial.print(" ");
}
Serial.println();
return;
}
void NetworkAnalyser::printSensWvfm(){
//PRINT_VAR(cur_N_SENS_WV);
Serial.print("sens_wvfm_1, N:"); Serial.println(cur_N_SENS_WV);
for (int k=0; k<this->cur_N_SENS_WV; k++){
Serial.print(this->sens_wv_fm[k]);
Serial.print(" ");
}
Serial.println();
#if FLAG_TWO_OUTPUTS
Serial.println("sens_wvfm_2");
for (int k=0; k<this->cur_N_SENS_WV2; k++){
Serial.print(this->sens_wv_fm2[k]);
Serial.print(" ");
}
Serial.println();
#endif
return;
}
void NetworkAnalyser::printAcqParams(){
PRINT_VAR(ACQ_cycle_count);
PRINT_VAR(ACQ_cycles_to_integrate);
PRINT_VAR(ACQ_i_sens);
PRINT_VAR(ACQ_sig0_cum);
PRINT_VAR(ACQ_sig90_cum);
PRINT_VAR(ACQ_sample_count);
}