-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp-x.py
254 lines (204 loc) · 9.89 KB
/
app-x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import gradio as gr
import cv2
import glob
from horus import video_processing
from horus import project_manager
from horus import util
from horus import inference
from horus import plot_annotation
from horus import ua_train
video_path_ = ""
value_x = 0
value_y = 0
value_w = 0
value_h = 0
def update_db_select(input):
db = project_manager.get_projects_db()
vpath = os.path.join(db[input]["project_path"], db[input]["timelaps_video_name"])
create_date = db[input]["create_date"]
project_name = db[input]["project_name"]
frame = plot_annotation.plot_base_annotation(input)
return gr.Video(value=vpath), gr.update(value=create_date), gr.update(value=project_name), gr.Image(value=frame)
def update_db_select_ml(input):
frame = plot_annotation.plot_base_annotation(input)
return gr.Image(value=frame)
def update_reload_prj_list():
return gr.update(choices=project_manager.get_projects_str()), update_db_select(project_manager.get_projects_str()[0])[0]
def update_reload_prj_list_vinf():
return gr.update(choices=project_manager.get_projects_str())
def update_reload_prj_list_ml():
return gr.update(choices=project_manager.get_projects_str())
def remove_project_ui(input):
project_manager.remove_project(input)
db = project_manager.get_projects_db()
first_key = list(db.keys())[0]
vpath = os.path.join(db[first_key]["project_path"], db[first_key]["timelaps_video_name"])
create_date = db[first_key]["create_date"]
project_name = db[first_key]["project_name"]
return gr.update(choices=project_manager.get_projects_str()), gr.Video(value=vpath), gr.update(value=create_date), gr.update(value=project_name)
def update_input_x(value):
global video_path_, value_x, value_y, value_w, value_h
value_x = value
return update_target_frame(video_path_, value_x, value_y, value_w, value_h)
def update_input_y(value):
global video_path_, value_x, value_y, value_w, value_h
value_y = value
return update_target_frame(video_path_, value_x, value_y, value_w, value_h)
def update_input_w(value):
global video_path_, value_x, value_y, value_w, value_h
value_w = value
return update_target_frame(video_path_, value_x, value_y, value_w, value_h)
def update_input_h(value):
global video_path_, value_x, value_y, value_w, value_h
value_h = value
return update_target_frame(video_path_, value_x, value_y, value_w, value_h)
def update_target_frame(video_path, x, y, w, h):
frame = util.get_image_from_video(video_path, 0)
start_point = (int(x), int(y))
end_point = (int(x + w), int(y + h))
color = (255, 0, 0)
thickness = 5
cv2.rectangle(frame, start_point, end_point, color, thickness)
return gr.Image(value=frame)
def update_input_video(input: str):
global video_path_
db = project_manager.get_projects_db()
video_path_ = os.path.join(db[input]["project_path"], db[input]["timelaps_video_name"])
cap = cv2.VideoCapture(video_path_)
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
frame = update_target_frame(video_path_, 0, 0, 0, 0)
return gr.update(maximum=width), gr.update(maximum=height), gr.update(maximum=width), gr.update(maximum=height), frame
def upload_video_and_make_project(project_name: str):
project_manager.make_project(project_name)
file_list = glob.glob("/workspace/horus_inference_server/INPUT_VIDEOS_COPY_TO_HERE/*")
file_list = util.natural_sort(file_list)
_, timelaps= video_processing.video_processing_master(file_list, project_name)
return timelaps
with gr.Blocks() as main_ui:
with gr.Tab("Upload Video to Database"):
with gr.Row():
with gr.Column():
input_project_name = gr.Text(label="Project Name")
reload_button = gr.Button("Reload Video List")
upload_button = gr.Button("Start Upload", variant="primary")
with gr.Column():
output_preview_video = gr.Video(label="Status")
output_video_list = gr.Dataframe(
label="Status",
headers=["File Name"])
upload_button.click(
upload_video_and_make_project,
inputs=[input_project_name],
outputs=[output_preview_video])
reload_button.click(
util.search_input_videos,
inputs=[],
outputs=[output_video_list])
with gr.Tab("Edit Database"):
with gr.Row():
with gr.Column():
reload_prj_list = gr.Button("Reload Project List")
select_project = gr.Radio(
choices=project_manager.get_projects_str(),
label="Projects")
output_project_name = gr.Text(label="Project Name")
output_create_date = gr.Text(label="Create Date")
remove_project = gr.Button("Remove Project", variant="stop")
with gr.Column():
preview_video = gr.Video(label="Preview Video")
preview_annotation = gr.Image(label="Preview Base Annotation")
select_project.change(
update_db_select,
inputs=select_project,
outputs=[preview_video, output_create_date, output_project_name, preview_annotation])
reload_prj_list.click(update_reload_prj_list, inputs=[], outputs=[select_project, preview_video])
remove_project.click(remove_project_ui, inputs=[select_project], outputs=[select_project, preview_video, output_create_date, output_project_name])
with gr.Tab("Create Base Dataset"):
with gr.Row():
with gr.Column():
reload_prj_list_vinf = gr.Button("Reload Project List")
select_project_vinf = gr.Radio(
choices=project_manager.get_projects_str(),
label="Projects")
input_object_name = gr.Text(label="Object Name")
output_image = gr.Image(type="numpy", label="result image")
input_x = gr.Slider(
minimum=0,
maximum=100,
value=0,
label="Input X",
step=1,
)
input_y = gr.Slider(
minimum=0,
maximum=100,
value=0,
label="Input Y",
step=1,
)
input_w = gr.Slider(
minimum=0,
maximum=100,
value=0,
label="Input W",
step=1,
)
input_h = gr.Slider(
minimum=0,
maximum=100,
value=0,
label="Input H",
step=1,
)
submit_button = gr.Button("Start Inference", variant="primary")
with gr.Column():
output_video = gr.Video()
select_project_vinf.change(
update_input_video,
inputs=select_project_vinf,
outputs=[input_x, input_y, input_w, input_h, output_image]
)
reload_prj_list.click(update_reload_prj_list_vinf, inputs=[], outputs=[select_project_vinf])
input_x.change(update_input_x, inputs=input_x, outputs=[output_image])
input_y.change(update_input_y, inputs=input_y, outputs=[output_image])
input_w.change(update_input_w, inputs=input_w, outputs=[output_image])
input_h.change(update_input_h, inputs=input_h, outputs=[output_image])
submit_button.click(
inference.main_inference,
inputs=[select_project_vinf, input_object_name, input_x, input_y, input_w, input_h],
outputs=[output_video])
with gr.Tab("Build Base ML Model"):
with gr.Row():
with gr.Column():
reload_prj_list_ml = gr.Button("Reload Project List")
select_project_ml = gr.Radio(
choices=project_manager.get_projects_str(),
label="Projects")
buidl_base_ml_model = gr.Button("Build Base ML Model", variant="primary")
with gr.Column():
output_ml_status = gr.Text(label="Output ML Status")
preview_annotation_ml = gr.Image(label="Preview Base Annotation")
reload_prj_list_ml.click(update_reload_prj_list_ml, inputs=[], outputs=[select_project_ml])
select_project_ml.change(update_db_select_ml, inputs=select_project_ml, outputs=[preview_annotation_ml])
buidl_base_ml_model.click(ua_train.ui_build_base_ml_model, inputs=[select_project_ml], outputs=[output_ml_status])
with gr.Tab("Analyze Video"):
with gr.Row():
with gr.Column():
reload_prj_list_anlyze = gr.Button("Reload Project List")
select_project_anlyze = gr.Radio(
choices=project_manager.get_projects_str(),
label="Projects")
create_predicted_timelaps_video = gr.Button("Create Predicted Timelaps Video", variant="primary")
analyze_video = gr.Button("Analyze Video", variant="primary")
with gr.Column():
preview_annotation_anlyze = gr.Image(label="Preview Base Annotation")
output_video = gr.Video()
output_text = gr.Text()
reload_prj_list_anlyze.click(update_reload_prj_list_ml, inputs=[], outputs=[select_project_anlyze])
select_project_anlyze.change(update_db_select_ml, inputs=select_project_anlyze, outputs=[preview_annotation_anlyze])
create_predicted_timelaps_video.click(inference.create_inference_timelaps_video, inputs=[select_project_anlyze], outputs=[output_video])
analyze_video.click(inference.mlanalyze_video, inputs=[select_project_anlyze], outputs=[output_text])
if __name__ == "__main__":
main_ui.queue().launch(server_name="0.0.0.0", server_port=7861)