-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
361 lines (284 loc) · 18.6 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 31 00:17:16 2019
@author: Mosharaf
"""
import pickle
import pandas as pd
from collections import Counter
import argparse
class data_structure():
def __init__(self, line, indx_sent1, indx_sent2, indx_label):
tokens = line.split("\t")
self.sentence1 = tokens[indx_sent1]
self.sentence2 = tokens[indx_sent2]
self.label = tokens[indx_label][0:-1]
class data_preparation():
def data_load(self, file, indx_sent1, indx_sent2, indx_label, file_type = "text"):
reader = open(file, "r", encoding="utf8")
obj_list = []
isFirstLine = True # set isFirstLine = True if need to ignore the first line, because first line might contain column name.
for line in reader:
if not isFirstLine: # not reading the first line. becuase this line reads the column names.
if file_type == "text":
obj = data_structure(line, indx_sent1, indx_sent2, indx_label)
obj_list.append(obj)
else:
isFirstLine = False
reader.close()
return obj_list
def write_data(self, file_name, inst_list, indices):
file_obj = open(file_name, "w", encoding="utf-8")
line = ''
delim = "\t"
for i in indices:
line = inst_list[i].sentence1 + delim + inst_list[i].sentence2 + delim +inst_list[i].label
file_obj.write(line)
file_obj.write("\n")
file_obj.close()
print("File is created at {}".format(file_name))
class negation_cues():
def isCuePresent(self, sent):
for token in sent:
if token == "PAD":
return False
if token not in ( "N_C", "PAD"):
return True
return False
def get_cue_indices(self, cues_dict):
sent1_pred = cues_dict["pred_sent1"]
sent2_pred = cues_dict["pred_sent2"]
cues_only_sent1 = []
cues_only_sent2 = []
cues_both_sent = []
size = len(sent1_pred)
for i in range(size):
if self.isCuePresent(sent1_pred[i]) and self.isCuePresent(sent2_pred[i]):
cues_both_sent.append(i)
elif self.isCuePresent(sent1_pred[i]):
cues_only_sent1.append(i)
elif self.isCuePresent(sent2_pred[i]):
cues_only_sent2.append(i)
cues_all = sorted( list(set(cues_only_sent1+cues_only_sent2+cues_both_sent)) ) #instances with any cues in any sentences.
no_cues = sorted( list( set(list(range(size)))-set(cues_all) ) ) # instances with no cues in any sentence
return cues_only_sent1, cues_only_sent2, cues_both_sent, cues_all, no_cues
class evaluation():
def accuracy(self, actual_df, pred_df, indicies):
size = len(indicies)
correct = 0
for idx in indicies:
if actual_df.iloc[idx,0] == pred_df.iloc[idx,0]:
correct += 1
return correct*100.0/size if size>0 else -1
def majority_baseline(self, actual_df, indicies):
size = len(indicies)
if size == 0:
return -1, -1
orig_labels = []
for idx in indicies:
orig_labels.append(actual_df.iloc[idx,0])
label_dist = Counter(orig_labels)
max_val = float("-inf")
for key, val in label_dist.items():
if val > max_val:
max_val = val
majority_bl = round( (max_val*100.0)/size,2)
return majority_bl, label_dist
def accuracy_org_corpus(self, model_name, actual_file, pred_file, cues_indices_dict):
cues_only_sent1 = cues_indices_dict["cues_only_sent1"]
cues_only_sent2 = cues_indices_dict["cues_only_sent2"]
cues_both_sent = cues_indices_dict["cues_both_sent"]
cues_all = cues_indices_dict["cues_all"]
no_cues = cues_indices_dict["no_cues"]
#print("cues_only_sent1:{}, cues_only_sent2: {}, cues_both_sent: {} cues_all: {}".format(len(cues_only_sent1), len(cues_only_sent2), len(cues_both_sent), len(cues_all), len(no_cues) ))
print("Accuracy by " + model_name + "______________")
actual_df = pd.read_csv(actual_file, header = None)
pred_df = pd.read_csv(pred_file, header = None)
accuracy = self.accuracy(actual_df, pred_df, list(range(pred_df.size)))
majority_bl, label_dist = self.majority_baseline(actual_df, list(range(pred_df.size)))
print("Accuracy on Dev: {}".format( accuracy ))
print("Majority baseline: {}\n".format(majority_bl))
accuracy_sent1 = self.accuracy(actual_df, pred_df, cues_only_sent1)
majority_bl, label_dist = self.majority_baseline(actual_df, cues_only_sent1)
#print("Accuracy-premise is neagated: {}. Number of instances: {}".format( accuracy_sent1, len(cues_only_sent1)))
#print("Majority b: {}, label dist. {}".format(majority_bl, label_dist))
accuracy_sent2 = self.accuracy(actual_df, pred_df, cues_only_sent2)
majority_bl, label_dist = self.majority_baseline(actual_df, cues_only_sent2)
#print("Accuracy-hypothesis is neagated: {}. Number of instances: {}".format( accuracy_sent2, len(cues_only_sent2)))
#print("Majority b: {}, label dist. {}".format(majority_bl, label_dist))
accuracy_both = self.accuracy(actual_df, pred_df, cues_both_sent)
majority_bl, label_dist = self.majority_baseline(actual_df, cues_both_sent)
#print("Accuracy-both neagated: {}. Number of instances: {}".format( accuracy_both, len(cues_both_sent)))
#print("Majority b: {}, label dist. {}".format(majority_bl, label_dist))
accuracy_all_cues = self.accuracy(actual_df, pred_df, cues_all)
majority_bl, label_dist = self.majority_baseline(actual_df, cues_all)
print("Accuracy on Dev (negations): {}".format( accuracy_all_cues))
print("Majority baseline: {}\n".format(majority_bl))
accuracy_no_cues = self.accuracy(actual_df, pred_df, no_cues)
majority_bl, label_dist = self.majority_baseline(actual_df, no_cues)
#print("Accuracy-with no negation: {}. Number of instances: {}".format( accuracy_no_cues, len(no_cues)))
#print("Majority b: {}, label dist. {}".format(majority_bl, label_dist))
def accuracy_new_corpus(self, model_name, actual_file, pred_file, neg_cues_dict):
sent1_negated_indices = neg_cues_dict["sent1_negated_indices"]
sent2_negated_indices = neg_cues_dict["sent2_negated_indices"]
both_negated_indices = neg_cues_dict["both_negated_indices"]
print("Accuracy by " + model_name +"______________")
actual_df = pd.read_csv(actual_file, header = None)
pred_df = pd.read_csv(pred_file, header = None)
accuracy_all = self.accuracy(actual_df, pred_df, list(range(pred_df.size)))
majority_bl_all, label_dist = self.majority_baseline(actual_df, list(range(pred_df.size)))
accuracy_sent1 = self.accuracy(actual_df, pred_df, sent1_negated_indices)
majority_bl, label_dist = self.majority_baseline(actual_df, sent1_negated_indices)
print("Accuracy on Tneg-H pairs: {}".format( accuracy_sent1))
print("Majority baseline: {}\n".format(majority_bl))
accuracy_sent2 = self.accuracy(actual_df, pred_df, sent2_negated_indices)
majority_bl, label_dist = self.majority_baseline(actual_df, sent2_negated_indices)
print("Accuracy on T-Heng pairs: {}".format( accuracy_sent2))
print("Majority baseline: {}\n".format(majority_bl))
accuracy_both = self.accuracy(actual_df, pred_df, both_negated_indices)
majority_bl, label_dist = self.majority_baseline(actual_df, both_negated_indices)
print("Accuracy on Tneg-Hneg pairs: {}".format( accuracy_both))
print("Majority baseline: {}\n".format(majority_bl))
print("Accuracy on all new pairs: {}".format( accuracy_all ))
print("Majority baseline: {}\n".format(majority_bl_all))
if __name__ == "__main__":
#python evaluate.py --corpus rte
argParser = argparse.ArgumentParser()
argParser.add_argument("--corpus", help="Name of the corpus to show results (e.g., rte, snli, mnli)", required=True)
args = argParser.parse_args()
corpus = args.corpus
if corpus == "rte":
#Read negation in original dev split
file_path = "./data/resources/RTE/negation_indices.pkl"
with open(file_path, "rb") as file_obj:
dev_cues = pickle.load(file_obj)
cues_only_sent1, cues_only_sent2, cues_both_sent, cues_all, no_cues = negation_cues().get_cue_indices(dev_cues)
cues_indices_dict = {"cues_only_sent1":cues_only_sent1, "cues_only_sent2":cues_only_sent2, "cues_both_sent":cues_both_sent, "cues_all":cues_all, "no_cues":no_cues}
print("\nStarted: Evaluation on original dev split----------------------------------------------------------")
# RoBERTa
model_name = "RoBERTa"
actual_file = "./outputs/predictions/RTE/RoBERTa/original_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/RTE/RoBERTa/original_dev/rte_prediction.csv"
evaluation().accuracy_org_corpus(model_name, actual_file, pred_file, cues_indices_dict)
# XLNet
model_name = "XLNet"
actual_file = "./outputs/predictions/RTE/XLNet/original_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/RTE/XLNet/original_dev/rte_prediction.csv"
evaluation().accuracy_org_corpus(model_name, actual_file, pred_file, cues_indices_dict)
# BERT
model_name = "BERT"
actual_file = "./outputs/predictions/RTE/BERT/original_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/RTE/BERT/original_dev/rte_prediction.csv"
evaluation().accuracy_org_corpus(model_name, actual_file, pred_file, cues_indices_dict)
print("Ended: Evaluation on original dev split----------------------------------------------------------")
print("\n\nStarted: Evaluation on new pairs containing negation----------------------------------------------------------")
#____________________________________SNLI(Generated Data)___________________________________________________________________________
file_path = "./data/new_benchmarks/resources/RTE/negated_indices.pkl"
with open(file_path, "rb") as file_obj:
neg_cues_dict = pickle.load(file_obj) #keys: tr_pred_scope,te_pred_scope
# RoBERTa
model_name = "RoBERTa"
actual_file = "./outputs/predictions/RTE/RoBERTa/new_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/RTE/RoBERTa/new_dev/rte_prediction.csv"
evaluation().accuracy_new_corpus(model_name, actual_file, pred_file, neg_cues_dict)
# XLNet
model_name = "XLNet"
actual_file = "./outputs/predictions/RTE/XLNet/new_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/RTE/XLNet/new_dev/rte_prediction.csv"
evaluation().accuracy_new_corpus(model_name, actual_file, pred_file, neg_cues_dict)
# BERT
model_name = "BERT"
actual_file = "./outputs/predictions/RTE/BERT/new_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/RTE/BERT/new_dev/rte_prediction.csv"
evaluation().accuracy_new_corpus(model_name, actual_file, pred_file, neg_cues_dict)
print("Ended: Evaluation on new pairs containing negation----------------------------------------------------------")
elif corpus == "snli":
#Read negation in original dev split
file_path = "./data/resources/SNLI/negation_indices.pkl"
with open(file_path, "rb") as file_obj:
dev_cues = pickle.load(file_obj)
cues_only_sent1, cues_only_sent2, cues_both_sent, cues_all, no_cues = negation_cues().get_cue_indices(dev_cues)
cues_indices_dict = {"cues_only_sent1":cues_only_sent1, "cues_only_sent2":cues_only_sent2, "cues_both_sent":cues_both_sent, "cues_all":cues_all, "no_cues":no_cues}
print("\nStarted: Evaluation on original dev split----------------------------------------------------------")
# RoBERTa
model_name = "RoBERTa"
actual_file = "./outputs/predictions/SNLI/RoBERTa/original_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/SNLI/RoBERTa/original_dev/rte_prediction.csv"
evaluation().accuracy_org_corpus(model_name, actual_file, pred_file, cues_indices_dict)
# XLNet
model_name = "XLNet"
actual_file = "./outputs/predictions/SNLI/XLNet/original_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/SNLI/XLNet/original_dev/rte_prediction.csv"
evaluation().accuracy_org_corpus(model_name, actual_file, pred_file, cues_indices_dict)
# BERT
model_name = "BERT"
actual_file = "./outputs/predictions/SNLI/BERT/original_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/SNLI/BERT/original_dev/rte_prediction.csv"
evaluation().accuracy_org_corpus(model_name, actual_file, pred_file, cues_indices_dict)
print("Ended: Evaluation on original dev split----------------------------------------------------------")
print("\n\nStarted: Evaluation on new pairs containing negation----------------------------------------------------------")
#____________________________________SNLI(Generated Data)___________________________________________________________________________
file_path = "./data/new_benchmarks/resources/SNLI/negated_indices.pkl"
with open(file_path, "rb") as file_obj:
neg_cues_dict = pickle.load(file_obj) #keys: tr_pred_scope,te_pred_scope
# RoBERTa
model_name = "RoBERTa"
actual_file = "./outputs/predictions/SNLI/RoBERTa/new_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/SNLI/RoBERTa/new_dev/rte_prediction.csv"
evaluation().accuracy_new_corpus(model_name, actual_file, pred_file, neg_cues_dict)
# XLNet
model_name = "XLNet"
actual_file = "./outputs/predictions/SNLI/XLNet/new_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/SNLI/XLNet/new_dev/rte_prediction.csv"
evaluation().accuracy_new_corpus(model_name, actual_file, pred_file, neg_cues_dict)
# BERT
model_name = "BERT"
actual_file = "./outputs/predictions/SNLI/BERT/new_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/SNLI/BERT/new_dev/rte_prediction.csv"
evaluation().accuracy_new_corpus(model_name, actual_file, pred_file, neg_cues_dict)
print("Ended: Evaluation on new pairs containing negation----------------------------------------------------------")
elif corpus == "mnli":
#Read negation in original dev split
file_path = "./data/resources/MNLI/negation_indices.pkl"
with open(file_path, "rb") as file_obj:
dev_cues = pickle.load(file_obj)
cues_only_sent1, cues_only_sent2, cues_both_sent, cues_all, no_cues = negation_cues().get_cue_indices(dev_cues)
cues_indices_dict = {"cues_only_sent1":cues_only_sent1, "cues_only_sent2":cues_only_sent2, "cues_both_sent":cues_both_sent, "cues_all":cues_all, "no_cues":no_cues}
print("\nStarted: Evaluation on original dev split----------------------------------------------------------")
# RoBERTa
model_name = "RoBERTa"
actual_file = "./outputs/predictions/MNLI/RoBERTa/original_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/MNLI/RoBERTa/original_dev/rte_prediction.csv"
evaluation().accuracy_org_corpus(model_name, actual_file, pred_file, cues_indices_dict)
# XLNet
model_name = "XLNet"
actual_file = "./outputs/predictions/MNLI/XLNet/original_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/MNLI/XLNet/original_dev/rte_prediction.csv"
evaluation().accuracy_org_corpus(model_name, actual_file, pred_file, cues_indices_dict)
# BERT
model_name = "BERT"
actual_file = "./outputs/predictions/MNLI/BERT/original_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/MNLI/BERT/original_dev/rte_prediction.csv"
evaluation().accuracy_org_corpus(model_name, actual_file, pred_file, cues_indices_dict)
print("Ended: Evaluation on original dev split----------------------------------------------------------")
print("\n\nStarted: Evaluation on new pairs containing negation----------------------------------------------------------")
#____________________________________SNLI(Generated Data)___________________________________________________________________________
file_path = "./data/new_benchmarks/resources/MNLI/negated_indices.pkl"
with open(file_path, "rb") as file_obj:
neg_cues_dict = pickle.load(file_obj) #keys: tr_pred_scope,te_pred_scope
# RoBERTa
model_name = "RoBERTa"
actual_file = "./outputs/predictions/MNLI/RoBERTa/new_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/MNLI/RoBERTa/new_dev/rte_prediction.csv"
evaluation().accuracy_new_corpus(model_name, actual_file, pred_file, neg_cues_dict)
# XLNet
model_name = "XLNet"
actual_file = "./outputs/predictions/MNLI/XLNet/new_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/MNLI/XLNet/new_dev/rte_prediction.csv"
evaluation().accuracy_new_corpus(model_name, actual_file, pred_file, neg_cues_dict)
# BERT
model_name = "BERT"
actual_file = "./outputs/predictions/MNLI/BERT/new_dev/rte_actuals.csv"
pred_file = "./outputs/predictions/MNLI/BERT/new_dev/rte_prediction.csv"
evaluation().accuracy_new_corpus(model_name, actual_file, pred_file, neg_cues_dict)
print("Ended: Evaluation on new pairs containing negation----------------------------------------------------------")