-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdetector.py
280 lines (245 loc) · 8.8 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from collections import namedtuple
from itertools import combinations
import logging
from face import Face
from hand import Hand
from hand_pos import Outline, HandPos
import rectangle
import predict
import draw # TODO: REMOVE
import cv2 # TODO: REMOVE
# Detectors
from detector_haar import DetectorHaar
from detector_camshift import DetectorCamshift
from detector_shape import DetectorShape
from detector_skin import DetectorSkin
from detector_bgadaptive import DetectorAdaptive
class DetectorType(object):
"""
There are two types of detectors:
One detects the hand position, the other detects hand features (like the
shape)
"""
POS = 1
HAND = 2
class Detector:
"""
Detector is a cascade of detectors (image filters) which can extract
a hand position and its features (such as the number of fingers) from an
input image. The system is adapting to the input and gets better over time.
The cascade consists of two different kinds of detectors, position and
feature detectors.
Each position detector calculates an estimated hand position and a probability
that the estimation is correct.
The combination (weighted by the probability) of all estimated hand positions
gets used to predict a more accurate hand position.
Afterwards the properties of a hand object will be determined by the feature
detectors.
"""
def __init__(self, config):
self.config = config
# Face detector
self.remove_faces = False
self.face = Face(self.config)
"""
Detectors for hand and hand position.
use: Each detector can be enabled and disabled with this flag
constructor: Constructor which will be called to create the detector instance
deps: Detectors depend on other detectors.
All dependencies must be satisfied in order to start a detector
instance: Holds the instance after the constructor was called
"""
# Name { Parameters }
self.detectors = {
# Position detectors
"haar": {"type": DetectorType.POS,
"use": True,
"constructor": "DetectorHaar",
"deps" : [],
"instance": None},
"camshift": {"type": DetectorType.POS,
"use": False,
"constructor": "DetectorCamshift",
"deps" : ["haar"],
"instance": None},
"shape": {"type": DetectorType.POS,
"use": True,
"constructor": "DetectorShape",
"deps" : ["haar"],
"instance": None},
# Hand detectors
"skin": {"type": DetectorType.HAND,
"use": True,
"constructor": "DetectorSkin",
"deps" : ["haar"],
"instance": None},
"bg": {"type": DetectorType.HAND,
"use": False,
"constructor": "DetectorAdaptive",
"deps" : ["haar"],
"instance": None}
}
# Bootsrapping a detector is only allowed when the
# detectors it depends on has a high detection probability
self.min_bootstrap_prob = 0.9
# There is no initial prediction for the hand position
# since the detectors didn't run yet.
self.positions = {"estimate": HandPos()}
def detect(self, img):
"""
Detects state of hand (position and fingers).
"""
# Work on a copy of the original image
# to prevent the user from seeing temporary image modifications
# (i.e. face removal)
self.current_img = img.copy()
self.preprocess()
self.positions = self.get_hand_pos()
hand = self.get_hand()
return hand
def get_hand_pos(self):
"""
Returns a hand position hypothesis and the confidence that it is correct.
If training of detector is not yet completed, return a confidence of 0.
Returns none if no hand position was found.
"""
positions = self.run_detectors(DetectorType.POS)
positions["estimate"] = self.predict(positions)
return positions
def get_hand(self):
"""
Returns the properties of a hand at the given position.
This will only work, if the position for the hand is correct.
"""
hands = self.run_detectors(DetectorType.HAND)
if hands:
hand = hands["skin"]
else:
hand = Hand()
hand.pos = self.positions
return hand
def run_detectors(self, detector_type):
"""
Run all detectors of a certain type
"""
results = {}
for detector_name, parameters in self.detectors.iteritems():
# Check if detector is of the correct type and should be used
if parameters["use"] and parameters["type"] == detector_type:
try:
result = self.run_detector(detector_name, parameters)
if result:
results[detector_name] = result
except Exception, e:
logging.exception("Detector: Problem running detector")
return results
def predict(self, positions):
"""
Predict the correct hand position from all detector inputs.
"""
# Check if overlapping
overlapping = predict.positions_overlap(positions)
if len(overlapping) > 1:
# Calculate a weighted average rectangle over all
# overlapping rectangles
h = predict.average_weighted(overlapping)
if h.prob > 0.5:
return h
# Not overlapping.
# Fall back to rect with highest probability
return predict.max_prob(positions)
def run_detector(self, detector_name, parameters):
"""
Runs a single detector
"""
if self.detector_running(detector_name):
detector = parameters["instance"]
# Check detector type and pass all necessary parameters
if parameters["type"] == DetectorType.POS:
return detector.detect(self.current_img, self.face_positions)
else:
# Contrary to position detectors, hand detectors
# need a region of interest to detect hand features
return detector.detect(self.current_img, self.positions["estimate"].pos)
# Detector not running yet. Can we start?
if parameters["use"] and self.deps_satisfied(detector_name):
logging.info("Bootstrapping %s", detector_name)
self.bootstrap_detector(parameters)
return None
def train(self, img):
"""
Train the detector with a special test image. This improves the following
detection results.
The test image is certain to contain a hand with the following properties:
- All five fingers are visible
- The hand is upright and directly in front of the camera
- If the user is right-handed, the hand will probably be on the right side.
- If the user is left-handed, the hand will probably be on the left side.
Adjust the parameters of the detector to find the hand in the given image
and return a confidence that the position is correct.
"""
pass
def preprocess(self):
"""
Remove all faces from image for better hand detection
"""
if self.remove_faces:
self.face_positions = self.face.positions(self.current_img)
for f in self.face_positions:
x1, y1, x2, y2 = f
#width = x2-x1
#x1 = int(x1 + width/4)
#x2 = int(x2 - width/4)
self.current_img[y1:y2,x1:x2] = 0
else:
self.face_positions = None
def deps_satisfied(self, detector_name):
"""
Check if all dependencies are satisfied to bootstrap the detector
"""
parameters = self.detectors[detector_name]
for dep_name in parameters["deps"]:
if not self.detector_running(dep_name) or \
not self.detector_stable(dep_name):
return False
return True
def detector_stable(self, detector_name):
"""
Check if a detector delivers satisfying results to bootstrap
other detectors with its current output.
"""
parameters = self.positions.get(detector_name, None)
if parameters and parameters.prob > self.min_bootstrap_prob:
return True
return False
def detector_running(self, detector_name):
"""
Check if the detector is currently running.
"""
parameters = self.detectors[detector_name]
return parameters["instance"] != None
def bootstrap_detector(self, parameters):
"""
Start a detector with input data (hand position)
from other detectors.
"""
detector_name = parameters["constructor"]
detector = globals()[detector_name]
pos = self.positions["estimate"].pos
# Store instance of detector for later calls
parameters["instance"] = detector(self.config, self.current_img, pos)
def set_config(config):
"""
New settings have been loaded.
Adjust the settings for each detector at runtime.
"""
for detector_name, parameters in self.detectors.iteritems():
detector = parameters["instance"]
detector.set_config(config)
def reset(self):
"""
Something went very wrong. Remove all detector instances and start anew.
This also clears the history.
"""
for detector_name, parameters in self.detectors.iteritems():
parameters["instance"] = None