-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtracker.py
232 lines (201 loc) · 6.54 KB
/
tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python
#-*- coding: utf-8 -*-
"""
Robust realtime gesture recognition.
====================================
The goal of this work is to achive robust real-time capable detection
of a user’s hand movement from webcam-captured live video by
building a pipeline of detector algorithms.
(C) 2013 Matthias Endler
Code adapted from Yeison Cardona ([email protected]) (C) 2012
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
"""
# External libraries
import cv, cv2
import time, threading, operator, math, datetime, errno
from os import listdir
import colorsys
from collections import namedtuple
import numpy as np
from numpy import sqrt, arccos, rad2deg
import logging
# Own modules
from filters import Filters
from detector import Detector
from gesture import Gesture
from hand import Hand
import rectangle
from keyboard import mac_keyboard
import geom
import draw
from kb import KB
from action import Action, Actions
from output import Output
class Tracker(object):
"""
This is the main program which gives a high-level view
of all the running subsystems. It connects camera input with
output in form of "actions" (such as keyboard shortcuts on the users behalf).
This is done by locating a hand in an image and detecting features,
like the number of fingers, and trying to match that data with a
known gesture.
"""
def __init__(self):
"""
Configuration
"""
# Camera settings
self.FRAME_WIDTH = 341
self.FRAME_HEIGHT = 256
self.flip_camera = True # Mirror image
self.camera = cv2.VideoCapture(1)
# ...you can also use a test video for input
#video = "/Users/matthiasendler/Code/snippets/python/tracker/final/assets/test_video/10.mov"
#self.camera = cv2.VideoCapture(video)
#self.skip_input(400) # Skip to an interesting part of the video
if not self.camera.isOpened():
print "couldn't load webcam"
return
#self.camera.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, self.FRAME_WIDTH)
#self.camera.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, self.FRAME_HEIGHT)
self.filters_dir = "filters/" # Filter settings in trackbar
self.filters_file = "filters_default"
# Load filter settings
current_config = self.filters_dir + self.filters_file
self.filters = Filters(current_config)
# No actions will be triggered in test mode
# (can be used to adjust settings at runtime)
self.test_mode = False
# Create a hand detector
# In fact, this is a wrapper for many detectors
# to increase detection confidence
self.detector = Detector(self.filters.config)
# Knowledge base for all detectors
self.kb = KB()
# Create gesture recognizer.
# A gesture consists of a motion and a hand state.
self.gesture = Gesture()
# The action module executes keyboard and mouse commands
self.action = Action()
# Show output of detectors
self.output = Output()
self.run()
def run(self):
"""
In each step: Read the input image and keys,
process it and react on it (e.g. with an action).
"""
while True:
img = self.get_input()
hand = self.process(img)
ref = self.action.get_reference_point()
self.output.show(img, hand, ref)
def process(self, img):
"""
Process input
"""
# Run detection
hand = self.detector.detect(img)
# Store result in knowledge base
self.kb.update(hand)
if not self.test_mode:
# Try to interprete as gesture
self.interprete(hand)
return hand
def interprete(self, hand):
"""
Try to interprete the input as a gesture
"""
self.gesture.add_hand(hand)
operation = self.gesture.detect_gesture()
self.action.execute(operation)
def get_input(self):
"""
Get input from camera and keyboard
"""
self.get_key()
_, img = self.camera.read()
img = cv2.resize(img, (self.FRAME_WIDTH, self.FRAME_HEIGHT))
if self.flip_camera:
img = cv2.flip(img, 1)
return img
def get_key(self):
"""
Read keyboard input
"""
key = cv2.waitKey(self.filters.config["wait_between_frames"])
if key == ord('+'):
# Reduce program speed
self.filters.config["wait_between_frames"] += 500
if key == ord('-'):
# Increase program speed
if self.filters.config["wait_between_frames"] >= 500:
self.filters.config["wait_between_frames"] -= 500
#if key == ord('s'):
# Save config
# self.filters.save()
if key == ord('r'):
# Reset all detectors
self.detector.reset()
self.action.reset()
if key == ord('d'):
# Make a screenshot
self.output.make_screenshot()
if key == ord('p') or key == ord(' '):
# Pause
cv2.waitKey()
if key == ord('t'):
# Test mode
self.test_mode = not self.test_mode
if key == ord('1'):
self.output.toggle_estimate()
if key == ord('2'):
self.output.toggle_detectors()
if key == ord('3'):
self.output.toggle_skin()
if key == ord('f'):
self.toggle_filters()
if key == 63235: # Right arrow
self.skip_input(20)
if key == 27 or key == ord('q'):
# Abort program on ESC, q or space
exit()
def toggle_filters(self):
"""
Load the next filter settings
"""
self.filters_file = self.next_filters_file()
current_config = self.filters_dir + self.filters_file
self.filters.set_config(current_config)
def next_filters_file(self):
"""
Get the next filter settings
"""
filters = listdir(self.filters_dir)
for i, f in enumerate(filters):
if f == self.filters_file:
return filters[(i+1) % len(filters)]
def skip_input(self, x=1):
"""
Skip to a different part of a video sequence.
"""
for i in range(0,x):
self.camera.grab()
if __name__=='__main__':
"""
Start program with a logger
"""
logging.basicConfig(#filename = 'confidence.log',
format = '%(message)s',
level = logging.INFO)
Tracker()