-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsensitivity_tools.py
40 lines (28 loc) · 1.3 KB
/
sensitivity_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 23 11:21:25 2020
@author: fmglang
"""
import numpy as np
import torch
import scipy.io as sio
import cv2
def load_external_coil_sensitivities(path, NCoils, sz):
loaded = sio.loadmat(path)
B1minus = loaded['B1minus']
B1minus_rescaled = torch.zeros((NCoils, *sz), dtype=torch.complex64)
for i in range(NCoils):
re = cv2.resize(np.real(B1minus[i,:,:]), dsize=(sz[0],sz[1]), interpolation=cv2.INTER_CUBIC)
im = cv2.resize(np.imag(B1minus[i,:,:]), dsize=(sz[0],sz[1]), interpolation=cv2.INTER_CUBIC)
B1minus_rescaled[i,:,:] = torch.tensor(re) + 1j * torch.tensor(im)
return B1minus_rescaled
def load_external_coil_sensitivities3D(path, NCoils, sz):
loaded = sio.loadmat(path)
B1minus = loaded['B1minus']
B1minus_rescaled = torch.zeros((NCoils, *sz), dtype=torch.complex64)
for i in range(NCoils):
for j in range(B1minus_rescaled.shape[-1]):
re = cv2.resize(np.real(B1minus[i,:,:,j]), dsize=(sz[0],sz[1]), interpolation=cv2.INTER_CUBIC)
im = cv2.resize(np.imag(B1minus[i,:,:,j]), dsize=(sz[0],sz[1]), interpolation=cv2.INTER_CUBIC)
B1minus_rescaled[i,:,:,j] = torch.tensor(re) + 1j * torch.tensor(im)
return B1minus_rescaled