-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDWT.cpp
220 lines (197 loc) · 6.1 KB
/
DWT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#include "stdafx.h"
#include "DWT.h"
// Filter type
#define NONE 0 // no filter
#define HARD 1 // hard shrinkage
#define SOFT 2 // soft shrinkage
#define GARROT 3 // garrot filter
//--------------------------------
// signum : 부호함수
//--------------------------------
float sgn(float x)
{
float res = 0;
if (x == 0)
{
res = 0;
}
if (x > 0)
{
res = 1;
}
if (x < 0)
{
res = -1;
}
return res;
}
//--------------------------------
// Soft shrinkage : 원만한 선
//--------------------------------
float soft_shrink(float d, float T)
{
float res;
if (fabs(d) > T)
{
res = sgn(d)*(fabs(d) - T); // fabs() : 실수 절대 값 구하는 함수
}
else
{
res = 0;
}
return res;
}
//--------------------------------
// Hard shrinkage : 각진 선
//--------------------------------
float hard_shrink(float d, float T)
{
float res;
if (fabs(d) > T)
{
res = d;
}
else
{
res = 0;
}
return res;
}
//--------------------------------
// Garrot shrinkage
//--------------------------------
float Garrot_shrink(float d, float T)
{
float res;
if (fabs(d) > T)
{
res = d - ((T*T) / d);
}
else
{
res = 0;
}
return res;
}
//--------------------------------
// Wavelet transform
//--------------------------------
static void cvHaarWavelet(Mat &src, Mat &dst, int NIter)
{
float c, dh, dv, dd;
//assert(src.type() == CV_32FC1);
//assert(dst.type() == CV_32FC1);
int width = src.cols; //cout << "width : " << src.cols << endl;
int height = src.rows; //cout << "height : " << src.rows << endl;
for (int k = 0; k < NIter; k++)
{
///cout << "height >> (k+1) : " << (height >> (k + 1)) << endl;
///cout << "width >> (k+1) : " << (width >> (k + 1)) << endl;
for (int y = 0; y < (height >> (k + 1)); y++) // 2^(k+1)로 height를 나눈다.
{
for (int x = 0; x < (width >> (k + 1)); x++)
{
c = (src.at<float>(2 * y, 2 * x) + src.at<float>(2 * y, 2 * x + 1) + src.at<float>(2 * y + 1, 2 * x) + src.at<float>(2 * y + 1, 2 * x + 1))*0.5;
dst.at<float>(y, x) = c;
dh = (src.at<float>(2 * y, 2 * x) + src.at<float>(2 * y + 1, 2 * x) - src.at<float>(2 * y, 2 * x + 1) - src.at<float>(2 * y + 1, 2 * x + 1))*0.5;
dst.at<float>(y, x + (width >> (k + 1))) = dh;
dv = (src.at<float>(2 * y, 2 * x) + src.at<float>(2 * y, 2 * x + 1) - src.at<float>(2 * y + 1, 2 * x) - src.at<float>(2 * y + 1, 2 * x + 1))*0.5;
dst.at<float>(y + (height >> (k + 1)), x) = dv;
dd = (src.at<float>(2 * y, 2 * x) - src.at<float>(2 * y, 2 * x + 1) - src.at<float>(2 * y + 1, 2 * x) + src.at<float>(2 * y + 1, 2 * x + 1))*0.5;
dst.at<float>(y + (height >> (k + 1)), x + (width >> (k + 1))) = dd;
}
}
dst.copyTo(src); // dst -> src
}
}
//--------------------------------
//Inverse wavelet transform
//--------------------------------
static void cvInvHaarWavelet(Mat &src, Mat &dst, int NIter, int SHRINKAGE_TYPE, float SHRINKAGE_T)
{
float c, dh, dv, dd;
//assert(src.type() == CV_32FC1);
//assert(dst.type() == CV_32FC1);
int width = src.cols; // cout << "width : " << src.cols << endl;
int height = src.rows; // cout << "height : " << src.rows << endl;
//--------------------------------
// NIter - number of iterations
//--------------------------------
for (int k = NIter; k > 0; k--)
{
for (int y = 0; y < (height >> k); y++)
{
for (int x = 0; x < (width >> k); x++)
{
c = src.at<float>(y, x);
dh = src.at<float>(y, x + (width >> k));
dv = src.at<float>(y + (height >> k), x);
dd = src.at<float>(y + (height >> k), x + (width >> k));
// (shrinkage)
switch (SHRINKAGE_TYPE)
{
case HARD:
dh = hard_shrink(dh, SHRINKAGE_T);
dv = hard_shrink(dv, SHRINKAGE_T);
dd = hard_shrink(dd, SHRINKAGE_T);
break;
case SOFT:
dh = soft_shrink(dh, SHRINKAGE_T);
dv = soft_shrink(dv, SHRINKAGE_T);
dd = soft_shrink(dd, SHRINKAGE_T);
break;
case GARROT:
dh = Garrot_shrink(dh, SHRINKAGE_T);
dv = Garrot_shrink(dv, SHRINKAGE_T);
dd = Garrot_shrink(dd, SHRINKAGE_T);
break;
}
//-------------------
dst.at<float>(y * 2, x * 2) = 0.5*(c + dh + dv + dd);
dst.at<float>(y * 2, x * 2 + 1) = 0.5*(c - dh + dv - dd);
dst.at<float>(y * 2 + 1, x * 2) = 0.5*(c + dh - dv - dd);
dst.at<float>(y * 2 + 1, x * 2 + 1) = 0.5*(c - dh - dv + dd);
}
}
// 주석처리하면 src에 dst가 저장 안됨
Mat C = src(Rect(0, 0, width >> (k - 1), height >> (k - 1)));
Mat D = dst(Rect(0, 0, width >> (k - 1), height >> (k - 1)));
D.copyTo(C); // C 행렬에 D 행렬의 데이터 복사
}
}
//--------------------------------
//
//--------------------------------
void WT(Mat& img, Mat& dst, int NIter)
{
Mat Ori = Mat(img.rows, img.cols, CV_32FC1);
Mat Src = Mat(img.rows, img.cols, CV_32FC1);
Mat Dst = Mat(img.rows, img.cols, CV_32FC1);
Dst = 0;
img.convertTo(Ori, CV_32FC1);
Ori.copyTo(Src);
cvHaarWavelet(Src, Dst, NIter); // Src를 W-변환하여 Dst에 저장 (NIter : 반복횟수 = 해상도 개수 지정)
Dst.copyTo(dst); // dst -> src
}
void IWT(Mat& dst, Mat& idst, int NIter)
{
Mat IDst_temp = Mat(dst.rows, dst.cols, CV_32FC1);
cvInvHaarWavelet(dst, IDst_temp, NIter, GARROT, 5); // W-변환의 결과인 Temp를 대상으로 역W-변환하여 Filtered에 저장
IDst_temp.copyTo(idst);
}
void process(Mat & frame)
{
int n = 0;
const int NIter = 1;
char filename[200];
Mat Src = Mat(frame.rows, frame.cols, CV_32FC1);
Mat Dst = Mat(frame.rows, frame.cols, CV_32FC1);
Mat Dst_Temp = Mat(frame.rows, frame.cols, CV_32FC1);
Mat Filtered = Mat(frame.rows, frame.cols, CV_32FC1);
Dst = 0;
frame.convertTo(Src, CV_32FC1); // 원본 이미지를 변환하여 Src에 복사
cvHaarWavelet(Src, Dst, NIter); // Src를 W-변환하여 Dst에 저장 (NIter : 반복횟수 = 해상도 개수 지정)
Dst.copyTo(Dst_Temp); // W-변환의 결과인 Dst를 Temp에 복사
imshow("Dst_Temp", Dst_Temp);
cvInvHaarWavelet(Dst_Temp, Filtered, NIter, GARROT, 30); // W-변환의 결과인 Temp를 대상으로 역W-변환하여 Filtered에 저장
}