-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_iql.py
173 lines (143 loc) · 5.54 KB
/
train_iql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import gym
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from copy import deepcopy
from torch.optim.lr_scheduler import CosineAnnealingLR
from buffer import ReplayBuffer, get_offline_dataset
from utils import set_randomness, soft_update
from models.iql import MLPTwinQFunction, MLPValueFunction, MLPGaussianActor
def asymmetric_l2_loss(u, tau):
return torch.mean(torch.abs(tau - (u < 0).float()) * u**2)
def iql(
env_fn,
actor=MLPGaussianActor,
qcritic=MLPTwinQFunction,
vcritic=MLPValueFunction,
hidden_sizes=[256, 256],
activation=nn.ReLU,
seed=0,
max_timesteps=1000000,
replay_size=200000,
discount=0.99,
beta=3.0,
EXP_ADV_MAX=100.0,
iql_tau=0.7,
tau=0.005,
soft_update_tau=5e-3,
actor_lr=3e-4,
qf_lr=3e-4,
vf_lr=3e-4,
batch_size=256,
):
env = env_fn()
obs_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]
act_limit = env.action_space.high[0]
replay_buffer = ReplayBuffer(obs_dim, act_dim, replay_size, device)
# dataset = get_offline_dataset(env, file_name="expert_dataset.pkl")
dataset = get_offline_dataset(env)
replay_buffer.load_dataset(dataset)
data_mean, data_std = replay_buffer.normalize_states()
q_network = MLPTwinQFunction(obs_dim, act_dim, hidden_sizes, activation).to(device)
q_target = deepcopy(q_network).requires_grad_(False).to(device)
v_network = MLPValueFunction(obs_dim, hidden_sizes, activation).to(device)
actor = MLPGaussianActor(obs_dim, act_dim, hidden_sizes, activation).to(device)
v_optimizer = torch.optim.Adam(v_network.parameters(), lr=vf_lr)
q_optimizer = torch.optim.Adam(q_network.parameters(), lr=qf_lr)
actor_optimizer = torch.optim.Adam(actor.parameters(), lr=actor_lr)
actor_lr_schedule = CosineAnnealingLR(actor_optimizer, max_timesteps)
for t in range(max_timesteps):
batch = replay_buffer.sample(batch_size)
batch = [b.to(device) for b in batch]
observations, actions, rewards, next_observations, dones = batch
with torch.no_grad():
target_q = q_target(observations, actions)
v = v_network(observations)
adv = target_q - v
v_loss = asymmetric_l2_loss(adv, iql_tau)
v_optimizer.zero_grad()
v_loss.backward()
v_optimizer.step()
with torch.no_grad():
next_v = v_network(next_observations)
targets = rewards + (1.0 - dones.float()) * discount * next_v.detach()
qs = q_network.both(observations, actions)
q_loss = sum(F.mse_loss(q, targets) for q in qs) / len(qs)
q_optimizer.zero_grad()
q_loss.backward()
q_optimizer.step()
# Update target Q network
soft_update(q_target, q_network, tau)
exp_adv = torch.exp(beta * adv.detach()).clamp(max=EXP_ADV_MAX)
policy_out = actor(observations)
bc_losses = -policy_out.log_prob(actions).sum(-1, keepdim=True)
policy_loss = torch.mean(exp_adv * bc_losses)
actor_optimizer.zero_grad()
policy_loss.backward()
actor_optimizer.step()
actor_lr_schedule.step()
if (t % 5000) == 0:
log_dict = dict(q_loss=q_loss.item(), v_loss=v_loss.item(), policy_loss=policy_loss.item())
for keys, values in log_dict.items():
print(f"{keys}:{values:8.2f}", end=", ")
avg_ret = []
for _ in range(10):
obs = env.reset()
ret = 0
for t in range(1000):
obs = (obs - data_mean) / data_std
with torch.no_grad():
action = actor.act(obs, device)
obs, reward, terminated, info = env.step(action)
ret += reward
avg_ret.append(ret)
print(f"Test Return:{np.mean(avg_ret):8.2f}")
if __name__ == "__main__":
set_randomness()
os.makedirs("outputs", exist_ok=True)
env = gym.make("HalfCheetah-v4")
obs_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]
act_limit = env.action_space.high[0]
device = torch.device("cuda")
replay_buffer = ReplayBuffer(obs_dim, act_dim, 2000000, device)
# dataset = get_offline_dataset(env, file_name="expert_dataset.pkl")
# replay_buffer.load_dataset(dataset)
hidden_sizes = [256, 256, 256]
activation = nn.ReLU
vf_lr = 3e-4
qf_lr = 3e-4
actor_lr = 3e-4
max_timesteps = 1000000
q_network = MLPTwinQFunction(obs_dim, act_dim, hidden_sizes, activation).to(device)
q_target = deepcopy(q_network).requires_grad_(False).to(device)
v_network = MLPValueFunction(obs_dim, hidden_sizes, activation).to(device)
actor = MLPGaussianActor(obs_dim, act_dim, hidden_sizes, activation).to(device)
v_optimizer = torch.optim.Adam(v_network.parameters(), lr=vf_lr)
q_optimizer = torch.optim.Adam(q_network.parameters(), lr=qf_lr)
actor_optimizer = torch.optim.Adam(actor.parameters(), lr=actor_lr)
actor_lr_schedule = CosineAnnealingLR(actor_optimizer, max_timesteps)
iql(
lambda: env,
actor=actor,
qcritic=q_network,
vcritic=v_network,
hidden_sizes=hidden_sizes,
activation=activation,
seed=0,
max_timesteps=max_timesteps,
replay_size=200000,
discount=0.99,
beta=3.0,
EXP_ADV_MAX=100.0,
iql_tau=0.7,
tau=0.005,
soft_update_tau=5e-3,
actor_lr=3e-4,
qf_lr=3e-4,
vf_lr=3e-4,
batch_size=256,
)