-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mopo.py
268 lines (222 loc) · 11.1 KB
/
train_mopo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import gym
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from copy import deepcopy
from models.layers.actor import SquashedGaussianMLPActor
from models.layers.critic import MLPQFunction
from models.mopo import EnsembleModel
from utils import soft_update
from buffer import get_offline_dataset, ReplayBuffer
def mopo(
env_fn,
max_iterations4dynamic_model=10000,
max_total_steps=50000,
buffer_size=1000000,
dynamics_lr=1e-3,
batch_size=256,
hidden_sizes=[256, 256, 256],
activation=nn.ReLU,
soft_update_tau=5e-3,
policy_lr=1e-4,
qf_lr=3e-4,
rollout_freq=2,
rollout_batch_size=1000,
rollout_length=5,
mixing_ratio=0.1,
discount=0.99,
device=torch.device("cpu"),
):
env = env_fn()
dataset = get_offline_dataset(env, file_name="expert_dataset.pkl")
obs_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]
act_limit = env.action_space.high[0]
hidden_sizes = [256, 256, 256] # 네트워크 레이어 차원과 수
activation = nn.ReLU # 활성화 함수
soft_update_tau = 5e-3 # 타겟 Q Net의 update ratio
policy_lr = 1e-4 # Policy Net의 Learning Rate
qf_lr = 3e-4 # Q Net의 Learning Rate
target_entropy = -act_dim # SAC의 Policy 엔트로피 제어 파라미터
# 네트워크 정의
qf1 = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation).to(device)
qf2 = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation).to(device)
target_qf1 = deepcopy(qf1).to(device)
target_qf2 = deepcopy(qf2).to(device)
policy = SquashedGaussianMLPActor(obs_dim, act_dim, hidden_sizes, activation, act_limit).to(device)
log_alpha = torch.zeros(1, requires_grad=True, device=device)
alpha_optimizer = torch.optim.Adam([log_alpha], lr=policy_lr)
policy_optimizer = torch.optim.Adam(policy.parameters(), lr=policy_lr)
qf1_optimizer = torch.optim.Adam(qf1.parameters(), lr=qf_lr)
qf2_optimizer = torch.optim.Adam(qf2.parameters(), lr=qf_lr)
replay_buffer = ReplayBuffer(obs_dim, act_dim, buffer_size, device)
replay_buffer.load_dataset(dataset)
data_mean, data_std = replay_buffer.normalize_states()
model_buffer = ReplayBuffer(obs_dim, act_dim, buffer_size, device)
ensemble_dynamic_model = EnsembleModel(
obs_dim=obs_dim,
act_dim=act_dim,
hidden_sizes=[200, 200, 200, 200],
).to(device)
ensemble_dynamic_model_optimizer = torch.optim.Adam(ensemble_dynamic_model.parameters(), dynamics_lr)
best_snapshot_losses = np.full((ensemble_dynamic_model.ensemble_size,), 1e10)
model_best_snapshots = [
deepcopy(ensemble_dynamic_model.ensemble_models[idx].state_dict())
for idx in range(ensemble_dynamic_model.ensemble_size)
]
for t in range(max_iterations4dynamic_model):
batch = replay_buffer.sample(batch_size)
batch = [b.to(device) for b in batch]
observations, actions, rewards, next_observations, dones = batch
delta_observations = next_observations - observations
groundtruths = torch.cat((delta_observations, rewards), dim=-1)
model_input = torch.cat([observations, actions], dim=-1).to(device)
predictions = ensemble_dynamic_model.predict(model_input)
pred_means, pred_logvars = predictions
train_mse_losses = torch.mean(torch.pow(pred_means - groundtruths, 2), dim=(1, 2))
train_mse_loss = torch.sum(train_mse_losses)
train_transition_loss = train_mse_loss
train_transition_loss += 0.01 * torch.sum(ensemble_dynamic_model.max_logvar) - 0.01 * torch.sum(
ensemble_dynamic_model.min_logvar
)
ensemble_dynamic_model_optimizer.zero_grad()
train_transition_loss.backward()
ensemble_dynamic_model_optimizer.step()
if (t % 5000) == 0:
eval_mse_total_losses = np.zeros((ensemble_dynamic_model.ensemble_size,))
for eval_batch in replay_buffer.sample_all(batch_size):
eval_batch = [b.to(device) for b in eval_batch]
eval_observations, eval_actions, eval_rewards, eval_next_observations, eval_dones = eval_batch
eval_delta_observations = eval_next_observations - eval_observations
eval_groundtruths = torch.cat((eval_delta_observations, eval_rewards), dim=-1)
eval_model_input = torch.cat([eval_observations, eval_actions], dim=-1).to(device)
eval_predictions = ensemble_dynamic_model.predict(eval_model_input)
eval_pred_means, eval_pred_logvars = eval_predictions
eval_mse_losses = (
torch.mean(torch.pow(eval_pred_means - eval_groundtruths, 2), dim=(1, 2)).to("cpu").detach().numpy()
)
eval_mse_total_losses += eval_mse_losses
updated = False
for i in range(len(eval_mse_total_losses)):
current_loss = eval_mse_total_losses[i]
best_loss = best_snapshot_losses[i]
improvement = (best_loss - current_loss) / best_loss
if improvement > 0.01:
best_snapshot_losses[i] = current_loss
model_best_snapshots[i] = deepcopy(ensemble_dynamic_model.ensemble_models[i].state_dict())
updated = True
print(f"{i}th model is updated!")
if updated:
print(f"[{t}]Dynamic model evaluation: {eval_mse_total_losses}")
for i in range(ensemble_dynamic_model.ensemble_size):
ensemble_dynamic_model.ensemble_models[i].load_state_dict(model_best_snapshots[i])
target_entropy = -act_dim # SAC의 Policy 엔트로피 제어 파라미터
# 네트워크 정의
qf1 = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation).to(device)
qf2 = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation).to(device)
target_qf1 = deepcopy(qf1).to(device)
target_qf2 = deepcopy(qf2).to(device)
policy = SquashedGaussianMLPActor(obs_dim, act_dim, hidden_sizes, activation, act_limit).to(device)
log_alpha = torch.zeros(1, requires_grad=True, device=device)
print("Offline RL start")
replay_batch_size = int(batch_size * (1 - mixing_ratio))
model_batch_size = batch_size - replay_batch_size
for t in range(max_total_steps):
if (t % rollout_freq) == 0:
init_transitions = replay_buffer.sample(rollout_batch_size)
# rollout
observations = init_transitions[0]
for _ in range(rollout_length):
actions, _ = policy(observations)
model_input = torch.cat([observations, actions], dim=-1).to(device)
pred_diff_means, pred_diff_logvars = ensemble_dynamic_model.predict(model_input)
observations = observations.detach().cpu().numpy()
actions = actions.detach().cpu().numpy()
ensemble_model_stds = pred_diff_logvars.exp().sqrt().detach().cpu().numpy()
pred_diff_means = pred_diff_means.detach().cpu().numpy()
pred_diff_means = pred_diff_means + np.random.normal(size=pred_diff_means.shape) * ensemble_model_stds
num_models, batch_size, _ = pred_diff_means.shape
model_idxes = np.random.choice(ensemble_dynamic_model.elite_model_idxes, size=batch_size)
batch_idxes = np.arange(0, batch_size)
pred_diff_samples = pred_diff_means[model_idxes, batch_idxes]
next_observations, rewards = pred_diff_samples[:, :-1] + observations, pred_diff_samples[:, [-1]]
penalty = np.amax(np.linalg.norm(ensemble_model_stds, axis=2), axis=0)
penalty = np.expand_dims(penalty, 1)
rewards = rewards - 5e-1 * penalty
terminals = np.full((batch_size, 1), False)
model_buffer.add_batch(observations, next_observations, actions, rewards, terminals)
observations = torch.tensor(next_observations, dtype=torch.float32, device=device)
replay_batch = replay_buffer.sample(replay_batch_size)
model_batch = model_buffer.sample(model_batch_size)
observations, actions, rewards, next_observations, dones = [
torch.concat([r_b, m_b]) for r_b, m_b in zip(replay_batch, model_batch)
]
new_actions, log_pi = policy(observations)
alpha_loss = -(log_alpha * (log_pi + target_entropy).detach()).mean()
alpha = log_alpha.exp()
q1_predicted = qf1(observations, actions)
q2_predicted = qf2(observations, actions)
new_next_actions, next_log_pi = policy(next_observations)
target_q_values = torch.min(
target_qf1(next_observations, new_next_actions), target_qf2(next_observations, new_next_actions)
)
target_q_values = target_q_values - alpha * next_log_pi
target_q_values = target_q_values.unsqueeze(-1)
td_target = rewards + (1.0 - dones) * discount * target_q_values
td_target = td_target.squeeze(-1)
qf1_loss = F.mse_loss(q1_predicted, td_target.detach())
qf2_loss = F.mse_loss(q2_predicted, td_target.detach())
qf_loss = qf1_loss + qf2_loss
q_new_actions = torch.min(
qf1(observations, new_actions),
qf2(observations, new_actions),
)
policy_loss = (alpha * log_pi - q_new_actions).mean()
alpha_optimizer.zero_grad()
alpha_loss.backward()
alpha_optimizer.step()
policy_optimizer.zero_grad()
policy_loss.backward()
policy_optimizer.step()
qf1_optimizer.zero_grad()
qf2_optimizer.zero_grad()
qf_loss.backward(retain_graph=True)
qf1_optimizer.step()
qf2_optimizer.step()
soft_update(target_qf1, qf1, soft_update_tau)
soft_update(target_qf2, qf2, soft_update_tau)
if (t % 4000) == 0:
log_dict = dict(
qf1_loss=qf1_loss.item(),
qf2_loss=qf2_loss.item(),
alpha_loss=alpha_loss.item(),
policy_loss=policy_loss.item(),
)
for keys, values in log_dict.items():
print(f"{keys}:{values:8.2f}", end=", ")
avg_ret = []
for _ in range(10):
obs = env.reset()
ret = 0
for _t in range(1000):
obs = (obs - data_mean) / data_std
with torch.no_grad():
obs = torch.as_tensor(obs, dtype=torch.float32, device=device)
action, _ = policy(obs, deterministic=True, with_logprob=False)
action = action.to("cpu").detach().numpy()
obs, reward, terminated, info = env.step(action)
ret += reward
avg_ret.append(ret)
print(f"Test Return:{np.mean(avg_ret):8.2f}")
return policy
if __name__ == "__main__":
env = gym.make("HalfCheetah-v4")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda:0")
torch.cuda.empty_cache()
print("Device set to : " + str(torch.cuda.get_device_name(device)))
else:
print("Device set to : cpu")
mopo(lambda: env, device=device)