-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcssd.m
408 lines (353 loc) · 15.4 KB
/
cssd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
function output = cssd(x,y,p,gamma,xx,delta,varargin)
%CSSD Cubic smoothing spline with discontinuities
%
% cssd(x, y, p, gamma, xx, delta) computes a cubic smoothing spline with discontinuities for the
% given data (x,y). The data values may be scalars or vectors. Data points with the
% same site are replaced by their (weighted) average as in the builtin csaps
% function.
%
% Input
% x: vector of data sites
%
% y: vector of same lenght as x or matrix where y(:,i) is a data vector at site x(i)
%
% p: parameter between 0 and 1 that weights the rougness penalty
% (high values result in smoother curves). Use CSSD_CV for automatic
% selection.
%
% gamma: parameter between 0 and Infinity that weights the discontiuity
% penalty (high values result in less discontinuities, gamma = Inf returns
% a classical smoothing spline). Use CSSD_CV for automatic
% selection.
%
% xx: (optional) evaluation points for the result
%
% delta: (optional) weights of the data sites. delta may be thought of as the
% standard deviation of the at site x_i. Should have the same size as x.
% - Note: The Matlab built in spline function csaps uses a different weight
% convention (w). delta is related to Matlab's w by w = 1./delta.^2
% - Note for vector-valued data: Weights are assumed to be identical over
% vector-components. (Componentwise weights might be supported in a future version.)
%
% Output
% output = cssd(...)
% output.pp: ppform of a smoothing spline with discontinuities; if xx is specified,
% the evaluation of the result at the points xx is returned
% output.discont: locations of detected discontinuities, the locations are a
% subset of the midpoints of the data sites x
% output.interval_cell: a list of discrete indices between two discontinuities
% output.pp_cell: a list of the cubic splines corresponding to the indices in interval_cell
%
% See also CSAPS, CSSD_CV
%%% BEGIN CHECK ARGUMENTS
if nargin<5, xx = []; end
if nargin<6, delta = []; end
if isempty(delta), delta = ones(size(x)); end
assert( (0 <= p) && (p <= 1), 'The p parameter must fulfill 0 <= p <= 1')
assert( 0 <= gamma, 'The gamma parameter must fulfill 0 < gamma')
[xi, yi, wi, deltai] = chkxydelta(x, y, delta);
% Note: from now on we use the xi, yi, wi, deltai versions
%%% END CHECK ARGUMENTS
[N,D] = size(yi);
% rolling cv score
rcv_score = 0;
% counts the number of times an input data point is visited
% (for determination of computational complexity)
complexity_counter = 0;
parser = inputParser;
addOptional(parser, 'pruning', 'PELT');
parse(parser, varargin{:});
pruning = parser.Results.pruning;
% if gamma == Inf (discontinuity has infinite penalty), we may directly
% compute a classical smoothing spline
% also, if p == 1, we may straight compute an interpolating spline, no
% matter how large gamma is (smoothness costs are equal to 0)
if (gamma == Inf) || (p == 1)
pp = csaps(xi,yi',p,[],wi);
discont = [];
interval_cell = {1:N};
pp_cell = {fnxtr(pp,2)};
complexity_counter = N;
else
% F stores Bellmann values
F = zeros(N, 1);
% partition: stores the optimal partition
partition = zeros(N, 1);
%%% BEGIN PIECEWISE LINEAR CASE
if p == 0 % the piecewise linear case
B = [ones(N,1), xi]./deltai(:);
rhs = yi./deltai(:);
% precompute eps_1r for r=1,...,N
A = [B, rhs];
G = planerot(A(1:2,1));
A(1:2, :) = G*A(1:2, :);
eps_1r = 0;
% loop starts from index three because eps_11 and eps_12 are zero
for r=3:N
G = planerot(A([1,r],1));
A([1,r],:) = G * A([1,r],:);
G = planerot(A([2,r],2));
A([2,r],2:end) = G * A([2,r],2:end);
eps_1r = eps_1r + sum(A(r, 3:end).^2);
% store the eps_1r as the initial Bellman value corresponding to a
% solution without discontinuities
F(r) = eps_1r;
end
complexity_counter = N;
%%% BEGIN MAIN LOOP
for rb=2:N
% best left bound (blb) initialized with 1 corresponding to interval 1:rb
% corresponding Bellman value has been set in the precomputation
blb = 1;
A = [B(1:rb,:), rhs(1:rb,:)];
eps_lr = 0;
% the loop is performed in reverse order so that we may use pruning
for lb = rb-1:-1:2
complexity_counter = complexity_counter + 1;
if lb == rb-1
G = planerot(A([end,end-1],1));
A([end,end-1], :) = G*A([end,end-1], :);
else
G = planerot(A([end, lb],1));
A([end,lb], :) = G * A([end,lb], :);
G = planerot(A([end-1, lb],2));
A([end-1,lb], 2:end) = G*A([end-1,lb], 2:end);
eps_lr = eps_lr + sum(A(lb,3:end).^2);
end
% check if setting a discontinuity between lb-1 and lb gives a
% better energy
candidate_value = F(lb-1) + gamma + eps_lr;
if candidate_value < F(rb)
F(rb ) = candidate_value;
blb = lb;
end
% store the best left bound corresponding to the right bound rb
partition( rb ) = blb-1;
end
end
%%% END MAIN LOOP
%%% END PIECEWISE LINEAR CASE
%%% BEGIN CSSD CASE
else % this is the standard case: gamma > 0 and 0 < p < 1
%%% BEGIN PRECOMPUTATIONS
beta = sqrt(1-p);
alpha = sqrt(p)./deltai;
d = diff(xi); % xi is sorted ascendingly
% precompute eps_1r for r=1,...,N
[eps_1r, R, z] = startEpsLR(yi(1:2,:), d(1), alpha(1:2), beta);
% loop starts from index three because eps_11 and eps_12 are zero
for r=3:N
[eps_1r, R, z] = updateEpsLR(eps_1r, R, yi(r,:), d(r-1), z, alpha(r), beta);
% store the eps_1r as the initial Bellman value corresponding to a
% solution without discontinuities
F(r) = eps_1r;
end
complexity_counter = N;
%%% END PRECOMPUTATIONS
% if gamma is hihger than the energy of the zero jump solution, we
% dont need to go into the main loop
if gamma >= F(end)
pruning = 'FULL_SKIP';
end
%%% BEGIN MAIN LOOP
switch pruning % two different pruning strategies are supported
case 'FULL_SKIP'
partition( end ) = 0;
%%% BEGIN PELT Pruning
case 'PELT'
active_arrlist = 0:N-1; % pointers to previous index
%active_list = java.util.LinkedList();
state_cell = cell(N, 3);
for rb=2:N-1
% generates the initial states
[eps_lr, R, z] = startEpsLR(yi(rb:rb+1,:), d(rb), alpha(rb:rb+1), beta);
state_cell{rb, 1} = eps_lr;
state_cell{rb, 2} = R;
state_cell{rb, 3} = z;
stored_R = R;
stored_z = z;
end
%active_list.add(2)
active_arrlist_endidx = 2;
for rb=3:N
% best left bound (blb) initialized with 1 corresponding to interval 1:rb
% corresponding Bellman value has been set in the precomputation
blb = 1;
%listIterator = active_list.listIterator(active_list.size());
%while (listIterator.hasPrevious())
iter = active_arrlist_endidx;
while active_arrlist(iter) > 1
lb = active_arrlist(iter);
eps_lr = state_cell{lb, 1};
R = state_cell{lb, 2};
z = state_cell{lb, 3};
if rb - lb > 1
[eps_lr, R, z] = updateEpsLR(eps_lr, R, yi(rb,:), d(rb-1), z, alpha(rb), beta);
state_cell{lb, 1} = eps_lr;
state_cell{lb, 2} = R;
state_cell{lb, 3} = z;
complexity_counter = complexity_counter + 1;
end
% check if setting a discontinuity between lb-1 and lb gives a
% better energy
candidate_value = F(lb-1) + gamma + eps_lr;
if candidate_value < F(rb)
F(rb ) = candidate_value;
blb = lb;
stored_R = R;
stored_z = z;
end
iter = lb;
end
% store the best left bound corresponding to the right bound rb
partition( rb ) = blb-1;
%active_list.add(rb);
active_arrlist_endidx = active_arrlist_endidx + 1;
% PELT pruning
%listIterator = active_list.listIterator();
% while (listIterator.hasNext())
% lb = listIterator.next();
% if F(lb-1) + state_cell{lb, 1} > F(rb)
% listIterator.remove();
% end
% end
iter = active_arrlist_endidx;
while active_arrlist(iter) > 1
lb = active_arrlist(iter);
if F(lb-1) + state_cell{lb, 1} > F(rb)
active_arrlist(iter) = active_arrlist(lb);
end
iter = lb;
end
if rb < N
% compute estimated point and slope at end
aux_ps = stored_R\stored_z;
a_end = aux_ps(end-1, :);
b_end = aux_ps(end, :);
% compute rolling cv_score (for a future use)
rcv_score = rcv_score + sum( (a_end + b_end * (xi(rb+1) - xi(rb)) - yi(rb+1,:)).^2 );
end
end
%%% END PELT PRUNING
%%% BEGIN FPVI PRUNING
otherwise
for rb=3:N
% best left bound (blb) initialized with 1 corresponding to interval 1:rb
% corresponding Bellman value has been set in the precomputation
blb = 1;
% the loop is performed in reverse order so that we may use FPVVI-pruning
for lb = rb-1:-1:2
if lb == rb-1
complexity_counter = complexity_counter + 2;
% get start configuration and store start state in R, z
[eps_lr, R, z] = startEpsLR(yi([rb,rb-1],:), d(rb-1), alpha([rb,rb-1]), beta);
stored_R = R;
stored_z = z;
else
complexity_counter = complexity_counter + 1;
% perform fast energy update and store current state in R, z
[eps_lr, R, z] = updateEpsLR(eps_lr, R, yi(lb,:), d(lb), z, alpha(lb), beta);
end
% pruning to skip unreachable configurations
% (if this condition is met the following if-condition cannot never
% be fulfilled because eps_lr is monote increasing and F >= 0.)
if (eps_lr + gamma) >= F(rb)
break
end
% check if setting a discontinuity between lb-1 and lb gives a
% better energy
candidate_value = F(lb-1) + gamma + eps_lr;
if candidate_value < F(rb)
F(rb ) = candidate_value;
blb = lb;
stored_R = R;
stored_z = z;
end
end
% store the best left bound corresponding to the right bound rb
partition( rb ) = blb-1;
% print for debugging
%fprintf(['rb:' num2str(rb) ', rb -lb:' num2str(rb - lb) '\n'])
if rb < N
% compute estimated point and slope at end
aux_ps = stored_R\stored_z;
a_end = aux_ps(end-1, :);
b_end = aux_ps(end, :);
% compute rolling cv_score
rcv_score = rcv_score + sum( (a_end + b_end * (xi(rb+1) - xi(rb)) - yi(rb+1,:)).^2 );
end
end
%%% END FPVVI PRUNING
end
%%% END MAIN LOOP
end
%%% END CSSD CASE
%%% BEGIN RECONSTRUCTION
% the discontinuity locations are coded in the array 'partition'. The
% vector [partition(rb)+1:rb] gives the indices of between two
% discontinuity locations. We start from behind with [partition(N)+1:N] and
% successively compute the preceding intervals.
rb = N;
pp_cell = {};
interval_cell = {};
discont = [];
upper_discont = xi(end) + 1;
while rb > 0
% partition(rb) stores corresponding optimal left bound lb
lb = partition(rb);
if lb == 0
lower_discont = xi(1) - 1;
else
lower_discont = (xi(lb+1) + xi(lb)) /2;
end
interval = (lb+1) : rb;
interval_cell{end+1} = interval; %#ok<AGROW> (runtime not critical in this part of the algorithm)
if length(interval) == 1 % this case should happen rarely but may happen e.g. for data of uneven length and low gamma parameter
ymtx = zeros(4,D);
ymtx(end,:) = yi(interval, :);
pp = ppmak([lower_discont, upper_discont], ymtx', D);
else
pp = csaps(xi(interval),yi(interval, :)', p, [], wi(interval));
pp = linext_pp(pp, lower_discont, upper_discont);
pp = embed_pptocubic(pp);
end
pp_cell{end+1} = pp; %#ok<AGROW> (runtime not critical in this part of the algorithm)
% continue with next right bound
rb = lb;
upper_discont = lower_discont;
discont(end+1) = lower_discont; %#ok<AGROW> (runtime not critical in this part of the algorithm)
end
%%% END RECONSTRUCTION
%%% BEGIN MAKE PP FORM
pp_cell = flip(pp_cell); % the pp's were computed in reverse order which is fixed here
interval_cell = flip(interval_cell);
pp = merge_ppcell(pp_cell);
%%% END MAKE PP FORM
discont = flip(discont(1:end-1))'; % the discontinuities were computed in reverse order which is fixed here
end
%%% BEGIN SET OUTPUT
output.pp = pp;
output.discont = discont;
output.interval_cell = interval_cell;
output.pp_cell = pp_cell;
output.discont_idx = zeros(numel(interval_cell)-1, 1);
for i = 1:numel(output.discont_idx)
output.discont_idx(i) = output.interval_cell{i}(end);
end
output.rcv_score = rcv_score/(N-2); % prediction is from point 3 to point N
if isempty(xx)
output.yy = [];
else
output.yy = ppval(pp, xx);
end
output.xx = xx;
output.x = xi;
output.y = yi;
fun_cell = cell(numel(pp_cell),1);
for i=1:numel(pp_cell)
fun_cell{i} = @(xx) ppval(pp_cell{i}, xx);
end
output.pcw_fun = PcwFunReal([-Inf; discont(:); Inf], fun_cell);
output.complexity_counter = complexity_counter;
%%% END SET OUTPUT
end