-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcssd_cv.m
158 lines (131 loc) · 5.09 KB
/
cssd_cv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
function output = cssd_cv(x, y, cv_type, cv_arg, delta, startingPoint, varargin)
%CSSD_CV K-Fold cross validation for cubic smoothing spline with discontinuities
%
% cssd_cv(x, y, cv_type, cv_arg, delta, startingPoint, varargin) automatically determines
% the model parameters p and gamma of a CSSD model based on minimization of
% a K-fold cross validation score.
%
% Note: The minimization process uses standard derivative free
% optimizers (simulated annealing and Nelder-Mead simplex downhill). So it
% is not guaranteed that the result is a global minimum.
% Trying different starting points often helps if the results with the default starting point
% are unsatisfactory.
%
% Input
% x: vector of data sites
%
% y: vector of same lenght as x or matrix where y(:,i) is a data vector at site x(i)
%
% cv_type (optional): 'random', 'equi', or 'custom'
% cv_arg (optional): a cell array of index vectors corresponding to the
% K folds (only relevant for CV-type 'custom')
%
% startingPoint (optional): Starting point startingPoint = [p; gamma] for the optimizer
% (default is [0.5; 1])
%
% delta: (optional) weights of the data sites. delta may be thought of as the
% standard deviation of the at site x_i. Should have the same size as x.
% - Note: The Matlab built in spline function csaps uses a different weight
% convention (w). delta is related to Matlab's w by w = 1./delta.^2
% - Note for vector-valued data: Weights are assumed to be identical over
% vector-components. (Componentwise weights might be supported in a future version.)
%
% Output
% output = cssd_cv(...)
% output.p: % p: parameter between 0 and 1 that weights the rougness penalty
% (high values result in smoother curves)
% output.gamma: parameter between 0 and Infinity that weights the discontiuity
% penalty (high values result in less discontinuities, gamma = Inf corresponds to a classical smoothing spline
% output.cv_score: best cv_score achieved by the optimizer
% output.cv_fun: a function handle to the CV scoring function
%
% See also CSSD
if nargin < 3
cv_type = [];
end
if nargin < 4
cv_arg = [];
end
if nargin < 5
delta = [];
end
if nargin < 6
startingPoint = [];
end
p = inputParser;
addOptional(p,'verbose', 0);
addOptional(p,'maxTime', Inf);
addOptional(p,'pruning', 'FPVI');
parse(p,varargin{:});
verbose = p.Results.verbose;
maxTime = p.Results.maxTime;
pruning_method = p.Results.pruning;
if isempty(delta)
delta = ones(size(x));
end
%check data
[xi, yi, ~, deltai] = chkxydelta(x, y, delta);
[N,D] = size(yi);
% create folds if not given
if isempty(cv_type)
cv_type = 'random';
cv_arg = 5;
end
switch cv_type
case 'random'
folds_cell = kfoldcv_split(N, cv_arg);
case 'equi'
folds_cell = cell(cv_arg, 1);
for i = 1:cv_arg
folds_cell{i} = i:cv_arg:N;
end
case 'custom'
folds_cell = cv_arg;
otherwise
error('This CV method is unknown.')
end
%gamma_tf = @(b) atan(b) * 2/pi;
%gamma_itf = @(a) (tan(a * pi/2));
% parametrize gamma = p * q/(1-q)
gamma_pq = @(p,q) p * (q / (1-q));
% generate cv score function
cv_fun = @(p, gamma) cssd_cvscore(xi, yi, p, gamma, deltai, folds_cell, pruning_method);
%cv_fun_vec = @(z) cv_fun(z(1), gamma_itf(z(2))); % vectorised and transformed version for optimization
cv_fun_vec = @(z) cv_fun(z(1), gamma_pq(z(1), z(2))); % vectorised and transformed version for optimization
% perform optimization
saoptions = {@simulannealbnd,'MaxTime', maxTime};
options = {};
if verbose
saoptions = {saoptions{:}, 'Display','iter','PlotFcns', {@saplotbestx,@saplotbestf,@saplotx,@saplotf}};
options = {options{:}, 'Display','iter', 'PlotFcns', {@optimplotx, @optimplotfunccount, @optimplotfval}};
else
saoptions = {saoptions{:}, 'Display','off'};
options = {options{:}, 'Display','off'};
end
% set starting point of optimizers
if isempty(startingPoint)
%startingPoint = [0.5; 1]; % starting values: p =0.5, gamma = 1
startingPoint_tf = [0.5; 0.5]; % starting values: p =0.5, q = 0.5
else
p = startingPoint(1);
gamma = startingPoint(2);
startingPoint_tf = [p; gamma / (p + gamma)];
end
% transform starting point to lie in the unit square [0,1]^2
%startingPoint_tf = [startingPoint(1); gamma_tf(startingPoint(2))];
%startingPoint_tf = [startingPoint(1); startingPoint(1) * gamma_tf(startingPoint(2))];
% invoke chain of standard derivative-free optimizers on [0,1]^2: simulated
% annealing followed by Nelder-Mead simplex downhill
[improvedPoint_tf, cv_score] = simulannealbnd(cv_fun_vec, startingPoint_tf, [0;0], [1;1], optimoptions(saoptions{:})); % simulated annealing
[improvedPoint_tf, cv_score] = fminsearch(cv_fun_vec, improvedPoint_tf, optimset(options{:})); % refine result of simulated annealing by Nelder Mead downhill
% improved p and gamma
p = improvedPoint_tf(1);
%gamma = gamma_itf(improvedPoint_tf(2)); % transform gamma back to [0, Inf)
%gamma = gamma_itf(improvedPoint_tf(2)/improvedPoint_tf(1)); % transform gamma back to [0, Inf)
gamma = gamma_pq(improvedPoint_tf(1), improvedPoint_tf(2));
% set ouptput
output.p = p;
output.gamma = gamma;
output.cv_score = cv_score;
output.cv_fun = cv_fun;
end