-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
56 lines (42 loc) · 2.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
from utils import batch_generator
physical_devices = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
data_df = pd.read_csv('data/driving_log.csv',
names=['center', 'left', 'right', 'steering', 'throttle', 'reverse', 'speed'])
data_df['center'] = data_df['center'].apply(lambda x: 'data/IMG/' + x.split('\\')[-1])
data_df['left'] = data_df['left'].apply(lambda x: 'data/IMG/' + x.split('\\')[-1])
data_df['right'] = data_df['right'].apply(lambda x: 'data/IMG/' + x.split('\\')[-1])
X = data_df[['center', 'left', 'right']].values
y = data_df['steering'].values
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=0)
def createModel():
net = tf.keras.modelsSequential()
net.add(tf.keras.layers.Lambda(lambda x: x / 127.5 - 1.0, input_shape=(66, 200, 3)))
net.add(tf.keras.layers.Conv2D(24, (5, 5), (2, 2), activation='elu'))
net.add(tf.keras.layers.Conv2D(36, (5, 5), (2, 2), activation='elu'))
net.add(tf.keras.layers.Conv2D(48, (5, 5), (2, 2), activation='elu'))
net.add(tf.keras.layers.Conv2D(64, (3, 3), activation='elu'))
net.add(tf.keras.layers.Conv2D(64, (3, 3), activation='elu'))
net.add(tf.keras.layers.Flatten())
net.add(tf.keras.layers.Dense(100, activation='elu'))
net.add(tf.keras.layers.Dense(50, activation='elu'))
net.add(tf.keras.layers.Dense(10, activation='elu'))
net.add(tf.keras.layers.Dense(1, activation='tanh'))
net.compile(tf.keras.optimizers.Adam(lr=1.0e-4), loss='mse')
return net
checkpoint = tf.keras.callbacks.ModelCheckpoint('model-{epoch:02d}.h5',
monitor='val_loss',
verbose=0,
save_best_only=True,
mode='auto')
model = createModel()
model.fit_generator(batch_generator(X_train, y_train, 40, True),
steps_per_epoch=2000,
validation_data=batch_generator(X_valid, y_valid, 40, False),
validation_steps=10,
epochs=50,
callbacks=[checkpoint]
)