forked from LongxingTan/Time-series-prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan.py
97 lines (81 loc) · 3.46 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# -*- coding: utf-8 -*-
# @author: Longxing Tan, [email protected]
# @date: 2020-03
# paper:
# other implementations: https://github.com/buriburisuri/timeseries_gan
# https://github.com/numancelik34/TimeSeries-GAN/blob/master/conv1d_gan.py
# https://github.com/proceduralia/pytorch-GAN-timeseries
import tensorflow as tf
from tensorflow.keras.layers import (Input,Dense,Conv2D, Conv2DTranspose, BatchNormalization)
params={
'rnn_size':32,
'dense_size':8,
'num_stacked_layers':1,
'predict_window_sizes':5,
}
class GAN(object):
def __init__(self, custom_model_params):
'''
'''
self.generator=Generator()
self.discriminator=Discriminator()
def __call__(self, inputs_shape,training):
x=Input(inputs_shape)
generator_output=self.generator(x)
decoder_output = self.discriminator(generator_output,x)
return tf.keras.Model(x,decoder_output)
class Generator(tf.keras.Model):
def __init__(self):
super(Generator,self).__init__()
self.upconv1 = Conv2DTranspose(filters=64,
kernel_size=[4,1],
strides=[2,1],
padding='SAME')
self.upconv2 = Conv2DTranspose(filters=32,
kernel_size=[4, 1],
strides=[2, 1],
padding='SAME')
self.upconv3 = Conv2DTranspose(filters=2,
kernel_size=[4,1],
strides=[2,1],
padding='SAME')
self.fc1 = Dense(units=1024)
self.fc2 = Dense(units=4*1*128)
self.bn1 = BatchNormalization()
self.bn2 = BatchNormalization()
self.bn3 = BatchNormalization()
def call(self,z,training=True):
ln1 = tf.nn.relu(self.bn1(self.fc1(z)))
ln2 = tf.nn.relu(self.bn2(self.fc2(ln1)))
ln2 = tf.reshape(ln2, [-1, 4, 1, 128])
print('ln2', ln2.get_shape().as_list())
upconv1 = tf.nn.relu(self.bn3(self.upconv1(ln2)))
print('upconv1', upconv1.get_shape().as_list())
upconv2 = tf.nn.relu(self.upconv2(upconv1))
output = tf.nn.sigmoid(self.upconv3(upconv2))
print('generator output shape', output.get_shape().as_list())
return output
class Discriminator(tf.keras.Model):
def __init__(self):
super(Discriminator,self).__init__()
self.conv1 = Conv2D(filters=64,
kernel_size=[4,4],
strides=[2,2],
padding='SAME')
self.conv2 = Conv2D(filters=128,
kernel_size=[4,4],
strides=[2,2],
padding='SAME')
self.fc1 = Dense(1024)
self.fc2 = Dense(1)
self.bn1 = BatchNormalization()
self.bn2 = BatchNormalization()
def call(self,x,training=True):
x = tf.convert_to_tensor(x) # class Tensor has dtype of float64_ref and class Variable has dtype of float64
conv1 = tf.nn.leaky_relu(self.conv1(x))
conv2 = tf.nn.leaky_relu(self.bn1((conv1)))
conv2 = tf.reshape(conv2, [x.get_shape().as_list()[0], -1])
ln1 = tf.nn.leaky_relu(self.bn2(self.fc1(conv2)))
ln2 = self.fc2(ln1)
output = tf.nn.sigmoid(ln2)
return output