Skip to content

Commit d65ff5c

Browse files
committed
add demo video
1 parent 7c4ffa1 commit d65ff5c

File tree

4 files changed

+22
-21
lines changed

4 files changed

+22
-21
lines changed

README.md

+9-8
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
# InstructIR ✏️🖼️
2-
## [High-Quality Image Restoration Following Human Instructions](https://mv-lab.github.io/InstructIR/)
2+
## [High-Quality Image Restoration Following Human Instructions](https://arxiv.org/abs/2401.16468)
33

44
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2401.16468)
55
<a href="https://colab.research.google.com/drive/1OrTvS-i6uLM2Y8kIkq8ZZRwEQxQFchfq?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
@@ -8,11 +8,15 @@
88
[![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-sm.svg)](https://huggingface.co/papers/2401.16468)
99

1010

11-
[Marcos V. Conde](https://scholar.google.com/citations?user=NtB1kjYAAAAJ&hl=en), [Gregor Geigle](https://scholar.google.com/citations?user=uIlyqRwAAAAJ&hl=en), [Radu Timofte](https://scholar.google.com/citations?user=u3MwH5kAAAAJ&hl=en)
11+
[Marcos V. Conde](https://mv-lab.github.io/), [Gregor Geigle](https://scholar.google.com/citations?user=uIlyqRwAAAAJ&hl=en), [Radu Timofte](https://scholar.google.com/citations?user=u3MwH5kAAAAJ&hl=en)
1212

1313
Computer Vision Lab, University of Wuerzburg | Sony PlayStation, FTG
1414

15-
<a href="https://mv-lab.github.io/InstructIR/"><img src="images/instructir_teaser.png" alt="InstructIR" width=100%></a>
15+
16+
<a href="https://mv-lab.github.io/InstructIR/"><img src="images/instructir.gif" alt="InstructIR" width=100%></a>
17+
18+
Video courtesy of Gradio ([see their post about InstructIR](https://twitter.com/Gradio/status/1752776176811041049)). Also shoutout to AK -- [see his tweet](https://twitter.com/_akhaliq/status/1752551364566126798).
19+
1620

1721
### TL;DR: quickstart
1822
InstructIR takes as input an image and a human-written instruction for how to improve that image. The neural model performs all-in-one image restoration. InstructIR achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement.
@@ -45,12 +49,9 @@ Image restoration is a fundamental problem that involves recovering a high-quali
4549
🚀 You can start with the [demo tutorial](demo.ipynb). We also host the same tutorial on [google colab](https://colab.research.google.com/drive/1OrTvS-i6uLM2Y8kIkq8ZZRwEQxQFchfq?usp=sharing) so you can run it using free GPUs!.
4650

4751

48-
| | |
49-
|----------|:-------------:
50-
| <a href="https://mv-lab.github.io/InstructIR/"><img src="images/instructir_teaser.gif" alt="InstructIR App"></a> | <a href="https://mv-lab.github.io/InstructIR/"><img src="static/replicate.png" alt="InstructIR App"></a> |
51-
52+
<a href="https://mv-lab.github.io/InstructIR/"><img src="images/instructir_teaser.png" alt="InstructIR" width=100%></a>
5253

53-
### Gradio Demo
54+
### Gradio Demo <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>
5455
We made a simple [Gradio demo](app.py) you can run (locally) on your machine [here](app.py). You need Python>=3.9 and [these requirements](requirements_gradio.txt) for it: `pip install -r requirements_gradio.txt`
5556

5657
```

images/instructir.gif

6.31 MB
Loading

images/instructir.mp4

2.75 MB
Binary file not shown.

index.html

+13-13
Original file line numberDiff line numberDiff line change
@@ -117,7 +117,7 @@ <h1 class="title is-1 publication-title">InstructIR: High-Quality Image Restorat
117117
<br>
118118
<div class="is-size-4 publication-authors">
119119
<span class="author-block">
120-
<a href="https://scholar.google.com/citations?user=NtB1kjYAAAAJ" style="color:#f68946;font-weight:normal;">Marcos V. Conde<sup>1,2</sup></a>,
120+
<a href="https://mv-lab.github.io/" style="color:#f68946;font-weight:normal;">Marcos V. Conde<sup>1,2</sup></a>,
121121
</span>
122122
<span class="author-block">
123123
<a href="https://scholar.google.com/citations?user=uIlyqRwAAAAJ&hl=en" style="color:#008AD7;font-weight:normal;">Gregor Geigle<sup>1</sup></a>,
@@ -195,7 +195,7 @@ <h1 class="title is-1 publication-title">InstructIR: High-Quality Image Restorat
195195
<!-- Abstract. -->
196196
<div class="columns is-centered has-text-centered">
197197
<div class="column is-six-fifths">
198-
<h2 class="title is-3">TL;DR & Abstract </h2>
198+
<h2 class="title is-3">TL;DR</h2>
199199

200200
<div class="content has-text-justified">
201201

@@ -211,16 +211,6 @@ <h2 class="title is-3">TL;DR & Abstract </h2>
211211
<br>
212212
<br>
213213

214-
<center>
215-
<details>
216-
<summary> <h3> Abstract</h4> (click me to read)</summary>
217-
<p align="justify">
218-
Image restoration is a fundamental problem that involves recovering a high-quality clean image from its degraded observation. All-In-One image restoration models can effectively restore images from various types and levels of degradation using degradation-specific information as prompts to guide the restoration model. In this work, we present the first approach that uses human-written instructions to guide the image restoration model. Given natural language prompts, our model can recover high-quality images from their degraded counterparts, considering multiple degradation types. Our method, InstructIR, achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement. InstructIR improves +1dB over previous all-in-one restoration methods. Moreover, our dataset and results represent a novel benchmark for new research on text-guided image restoration and enhancement.
219-
</p>
220-
</details>
221-
</center>
222-
223-
224214
</div>
225215

226216
</div>
@@ -236,7 +226,17 @@ <h2 class="title is-3">TL;DR & Abstract </h2>
236226
<div class="columns is-centered has-text-centered">
237227
<div class="column is-six-fifths">
238228
<h2 class="title is-3"> Examples of InstructIR</h2>
239-
<img src="images/instructir_teaser.png" width="50%">
229+
230+
<video width="860" height="640" autoplay loop controls>
231+
<source src="images/instructir.mp4" type="video/mp4">
232+
Your browser does not support the video tag.
233+
</video>
234+
235+
<!--
236+
<img src="images/instructir_teaser.png" width="50%">
237+
-->
238+
239+
240240
</div>
241241
</div>
242242

0 commit comments

Comments
 (0)