-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
266 lines (223 loc) · 12 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import datetime
import os
import time
import math
#from tqdm.auto import tqdm
import torch
import torch.utils.data
from torch import nn
import timm
from torchinfo import summary
from data.datasets import *
from models.build_model import build_model
from models.rexnetv1 import ReXNetV1
def get_lr(optimizer):
"""Get the current learning rate from optimizer.
"""
for param_group in optimizer.param_groups:
return param_group['lr']
def train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, cur_epoch, val_dataloader, classes, args):
epoch_start = time.time()
running_loss = 0.0
running_corrects = 0
epoch_data_len = len(data_loader.dataset)
batch_num = len(data_loader)
print('Train data num: {}'.format(epoch_data_len))
print('Train batch num: {}'.format(batch_num))
for batch_idx, (image, target, _) in enumerate(data_loader):
batch_start = time.time()
image = image.cuda()
target = target.cuda()
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(output, 1)
loss_ = loss.item() * image.size(0) # this batch loss
correct_ = torch.sum(preds == target.data) # this batch correct number
running_loss += loss_
running_corrects += correct_
batch_end = time.time()
if batch_idx % args.print_freq == 0 and batch_idx != 0:
lr = get_lr(optimizer)
print('[TRAIN] Epoch: {}/{}, Batch: {}/{}, lr:{}, BatchAcc: {:.4f}, BatchAvgLoss: {:.4f}, BatchTime: {:.4f}'.format(
cur_epoch, args.epochs, batch_idx, batch_num, lr,
correct_.double()/image.size(0), loss_/image.size(0), batch_end-batch_start))
# if this result is the best, save it
# show the best model in validation
if (batch_idx+1) % args.eval_freq == 0 and batch_idx != 0:
val_acc = evaluate(model, criterion, val_dataloader, cur_epoch, batch_idx, args)
model.train()
# the first or best will save
if len(g_val_accs) == 0 or val_acc > g_val_accs.get(max(g_val_accs, key=g_val_accs.get), 0.0):
print('*** GET BETTER RESULT READY SAVE ***')
if args.save_path:
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'lr_scheduler_state_dict': lr_scheduler.state_dict(),
'epoch': cur_epoch,
'batch_id': batch_idx,
'classes': classes},
os.path.join(args.save_path, '{}@epoch{}_{}_{}.pth'.format(args.net, cur_epoch, batch_idx, lr)))
print('*** SAVE.DONE. VAL_BEST_INDEX: {}_{}, VAL_BEST_ACC: {} ***'.format(cur_epoch, batch_idx, val_acc))
g_val_accs[str(cur_epoch)+'_'+str(batch_idx)] = val_acc
k = max(g_val_accs, key=g_val_accs.get)
print('val_best_index: [ {} ], val_best_acc: [ {} ]'.format(k, g_val_accs[k]))
lr = get_lr(optimizer)
epoch_loss = running_loss / epoch_data_len
epoch_acc = running_corrects.double() / epoch_data_len
epoch_end = time.time()
print()
print('[Train@] Epoch: {}/{}, EpochAcc: {:.4f}, EpochLoss: {:.4f}, EpochTime: {:.4f}, lr: {}'.format(cur_epoch,
args.epochs, epoch_acc, epoch_loss, epoch_end-epoch_start, lr))
print()
print()
def evaluate(model, criterion, data_loader, epoch, step, args):
epoch_start = time.time()
model.eval()
running_loss = 0.0
running_corrects = 0
epoch_data_len = len(data_loader.dataset)
print('Val data num: {}'.format(epoch_data_len))
with torch.no_grad():
for batch_idx, (image, target, _) in enumerate(data_loader):
batch_start = time.time()
image, target = image.cuda(), target.cuda()
output = model(image)
loss = criterion(output, target)
_, preds = torch.max(output, 1)
loss_ = loss.item() * image.size(0) # this batch loss
correct_ = torch.sum(preds == target) # this batch correct number, tensor(1)
running_loss += loss_
running_corrects += correct_
batch_end = time.time()
if batch_idx % args.print_freq == 0:
print('[VAL] Epoch: {}/{}/{}, Batch: {}/{}, BatchAcc: {:.4f}, BatchLoss: {:.4f}, BatchTime: {:.4f}'.format(step,
epoch, args.epochs, batch_idx, math.ceil(epoch_data_len/args.batch_size), correct_.double()/image.size(0),
loss_/image.size(0), batch_end-batch_start))
epoch_loss = running_loss / epoch_data_len
epoch_acc = running_corrects.double() / epoch_data_len
epoch_end = time.time()
print('[Val@] Epoch: {}/{}, EpochAcc: {:.4f}, EpochLoss: {:.4f}, EpochTime: {:.4f}'.format(epoch,
args.epochs, epoch_acc, epoch_loss, epoch_end-epoch_start))
print()
return epoch_acc
def load_ckpt(checkpoint_fpath, model, optimizer, lr_scheduler):
checkpoint = torch.load(checkpoint_fpath)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
return model, optimizer, lr_scheduler, checkpoint['epoch']+1
def main(args):
print("Loading data")
print("Creating data loaders")
train_loader, val_loader = build_loader(args.data_dir, args.input_size, args.batch_size, args.num_workers)
# show all classes
classes = train_loader.dataset.classes
#print(classes)
if args.hub == 'tv':
model = build_model(args.net, pretrained=True, fine_tune=True, weights=args.weight, num_classes=len(classes))
elif args.hub == 'timm':
#print(timm.list_models(pretrained=True))
model = timm.create_model(args.net, pretrained=args.pretrain, num_classes=len(classes))
elif args.hub == 'local':
# The follow two lines need change to corresponding model name and model file name
model = ReXNetV1(width_mult=1.0)
param = torch.load('./models/pretrained/rexnetv1_1.0.pth', map_location=torch.device('cuda:0'))
model.load_state_dict(param)
model.output[1] = nn.Conv2d(in_channels=model.output[1].in_channels, out_channels=len(classes), kernel_size=1, bias=True)
else:
raise NameError('Model hub only support tv, timm or local')
summary(model, input_size=(args.batch_size, 3, args.input_size, args.input_size))
# support muti gpu
model = nn.DataParallel(model, device_ids=args.device)
model.cuda()
total_params = sum(p.numel() for p in model.parameters())
print(f"{total_params:,} total parameters.")
total_trainable_params = sum(
p.numel() for p in model.parameters() if p.requires_grad)
print(f"{total_trainable_params:,} training parameters.")
param_name = [name for name,_ in model.named_parameters()] # All parameters name
layer_name = [name for name,_ in model.named_modules()] # All layers name
print(f'param_name: {param_name}')
print(f'layer_name: {layer_name}')
#print("Model's state_dict:")
#for param_tensor in model.state_dict():
# print(param_tensor, "\t", model.state_dict()[param_tensor].size())
if args.optim == 'sgd':
optimizer = torch.optim.SGD((param for param in model.parameters() if param.requires_grad),
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
elif args.optim == 'adam':
optimizer = torch.optim.Adam((param for param in model.parameters() if param.requires_grad),
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
elif args.optim =='adamW':
optimizer = torch.optim.AdamW((param for param in model.parameters() if param.requires_grad),
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
criterion = nn.CrossEntropyLoss(label_smoothing=args.label_smoothing).cuda(args.device)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.lr_gamma)
start_epoch = 0
if args.resume:
assert(args.checkpoint), "You need to give a checkpoint model!"
print("Resuming from checkpoint")
model, optimizer, lr_scheduler, start_epoch = load_ckpt(args.checkpoint, model, optimizer, lr_scheduler)
#if args.test_only:
# evaluate(model, criterion, val_loader)
# return
print("Start training")
start_time = time.time()
model.train()
for epoch in range(start_epoch, args.epochs):
train_one_epoch(model, criterion, optimizer, lr_scheduler, train_loader, epoch, val_loader, classes, args)
lr_scheduler.step()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='PyTorch Classification Finetune Training')
parser.add_argument('--data-dir', default='/ssd/nsfw', help='dataset')
parser.add_argument('--hub', default='tv', choices=['tv', 'timm', 'local'],
help='model hub, from torchvision(tv), timm or local')
parser.add_argument('--net', default='resnet50', help='model name, available when hub is tv or timm')
parser.add_argument('--weight', default='IMAGENET1K_V2',
help='the weight of pretrained model, available only when hub is tv')
parser.add_argument('--device', default=[0], help='device')
parser.add_argument('--pretrain', default=True, help='use pretrained weights or train from scratch')
parser.add_argument('-b', '--batch-size', default=512, type=int)
parser.add_argument('--epochs', default=30, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--step', default='10,20,25', type=str,
help='steps for MultiStepLR, the last num should less then the num of epochs')
parser.add_argument('-j', '--num_workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('--optim', default='sgd', help='optimization method')
parser.add_argument('--lr', default=0.0001, type=float,
help='initial learning rate,0.0001 for vit, 0.01 for resnet and efficientnet')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
parser.add_argument('-ls', '--label_smoothing', type=float, default=0.0,
help='label smoothing rate in cross entropy loss')
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
parser.add_argument('--eval-freq', default=50, type=int, help='validation frequency of batchs')
parser.add_argument('--save_path', default='./exps', help='path where to save')
parser.add_argument('--resume', default=False, help='resume from checkpoint')
parser.add_argument('--checkpoint', help='the resume checkpoint, need --resume to be True')
parser.add_argument('--input-size', default=224, type=int, help='size of input')
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
args = parser.parse_args()
args.milestones = [int(num) for num in args.step.split(',')]
os.makedirs(args.save_path) if not os.path.exists(args.save_path) else None
g_val_accs = {}
print(args)
main(args)