-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathku_help.html
142 lines (132 loc) · 4.87 KB
/
ku_help.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
<html>
<head>
<title>BioFET-SIM Help</title>
<link rel="stylesheet" href="./bfs_jvs/baker.css" type="text/css">
<link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
<meta name="Keywords" content="BIOFET-SIM, biofet, nano-wire, nano wire, nanowire, Thomas-Fermi, Debye length, propka, simulation, nanobiofet, Jan Jensen, Luca De Vico" />
<meta name="Description" content="Free, BIOFET-SIM, biofet, nano-wire, nano wire, nanowire, Thomas-Fermi, Debye length, propka, simulation, nanobiofet, Jan Jensen, Luca De Vico" />
<meta http-equiv="Content-Type" content="text/html;charset=UTF-16" />
<script type="text/javascript" src="./bfs_jvs/jq.js"></script>
<script type="text/javascript" src="./bfs_jvs/help.js"></script>
</head>
<body>
<h2>The BioFET-SIM Help Page</h2>
<!--
<p>The relationship between Thomas-Fermi length (λ<sub>TF</sub>) and charge carrier density (p<sub>0</sub> in case of p-type semiconductor) is<br />
<img src="l_TF.png" alt="lambda_TF equation" height="100"/>
-->
<h3>Instructions:</h3>
<div>
<ol>
<li>Select semiconductor or define custom material</li>
<li>Adjust carrier concentration or screening length (values are calculated when typing)</li>
<li>Transfer obtained values to interface</li>
<ol>
</div>
<hr>
<div class="material">
<h3>Example material properties</h3>
<table>
<tr>
<td><strong>Material</strong></td>
<td><strong>m<sup>*</sup></strong></td>
<td><strong>ε<sub>1</sub></strong></td>
<td><strong>Ref.</strong></td>
</tr>
<tr>
<td>Silicon n-type</td>
<td id="meff_sin">0.98</td>
<td id="eps_sin">12.0</td>
<td>(1)</td>
</tr>
<tr>
<td>Silicon p-type</td>
<td class="meff_sip">0.54</td>
<td class="eps_sip">12.0</td>
<td>(1)</td>
</tr>
<tr>
<td>Indium oxide intrinsic n-type</td>
<td>0.35</td>
<td>9.0</td>
<td>(2)</td>
</tr>
<tr>
<td>Indium Arsenide in inversion layer n-type</td>
<td>0.026</td>
<td>20.0</td>
<td>(1)</td>
</tr>
</table>
</div>
<hr>
<div class="properties">
<h3>Semiconductor characteristics</h3>
<table>
<tr>
<td>Effective charge carrier mass m<sup>*</sup>:</td>
<td><input type="text" id="meff" name="ms" size=10 value="0.98"></td>
</tr>
<tr>
<td>Semiconductor permittivity ε<sub>1</sub>:</td>
<td><input type="text" id="eps1" name="e1" size=10 value="12.0"></td>
</tr>
<tr>
<td>Thomas-Fermi length[nm]</td>
<td><input type="text" name="ltf" id="ltf" size=10 value="1.00"></td>
</tr>
<tr>
<td>Charge carrier density[m<sup>-3</sup>]
<label class="cite"> (Calculated from above values)</label>
</td>
<td><input type="text" name="np0" id="np0" size=10 value="1.335e+25"></td>
</tr>
</table>
</div>
<hr>
<div class="recommended">
<h3>Recommended device input values</h3>
<table>
<tr>
<td><strong>Property</strong></td>
<td><strong>Recommended value</strong></td>
<td>
<!--
<strong>Range</strong>
-->
</td>
</tr>
<tr>
<td>Nanowire length[nm]</td>
<td>2000.0</td>
<td></td>
</tr>
<tr>
<td>Radius[nm]</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Oxide Layer thickness[nm]</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Charge carrier density[m<sup>-3</sup>]</td>
<td>1.0E24</td>
<td></td>
</tr>
<tr>
<td>Solvent permittivity[ε<sub>0</sub>]</td>
<td>78.0</td>
<td></td>
</tr>
</table>
</div>
<hr>
<div class="cite">
(1) Yacobi, B. G. Semiconductors Materials An Introduction to Basic Principles; Microdevices; Kluver Academic Publisher, New York, 2003; p 54<br />
(2) Kostlin, H.; Jost, R.; Lems, W. Phys. Status Solidi A 1975, 29, 87-93
</div>
</body>
</html>