-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage-compressor.py
180 lines (135 loc) · 4.4 KB
/
image-compressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Linear Recirculation Network Model With Adaptive Learning Step and Normalized Weights
# done by: Холупко А.А, Жирко М. С.
# st. of gr.: 821701
# Холупко А.А.
import math
import random
import numpy as np
import matplotlib.pylab as plt
from PIL import Image
# def normalize_matrix counts adaptive learning step
def adaptive_learning_step(matrix):
tmp = np.dot(matrix, np.transpose(matrix))
return 1.0 / (tmp * 10)
# def normalize_matrix normalizes given matrix
def normalize_matrix(matrix):
for i_f in range(len(matrix[0])):
s = 0
for j_f in range(len(matrix)):
s += matrix[j_f][i_f] * matrix[j_f][i_f]
s = math.sqrt(s)
for j_f in range(len(matrix)):
matrix[j_f][i_f] = matrix[j_f][i_f] / s
# Мария Жирко
# loading image
image = Image.open("goya.jpg")
image.show()
pix = image.load()
H = image.height
W = image.width
print("Result for finally.jpg {}x{}".format(H, W))
# setting image parameters
S = 3
c_max = 255
n = m = 4
N = n * m * S
L = int(H / n * W / m)
Xq = []
# divide on squares
for h in range(0, H, n):
for w in range(0, W, m):
Xqhw = np.empty(N)
# implementation of one square
for j in range(n):
for k in range(m):
for i in range(S): # rgb
Xqhw[i + S * (j + k * n)] = 2 * pix[j + h, k + w][i] / c_max - 1
Xq.append(Xqhw)
# setting variables
p = N // 2
print((N * L) / ((N + L) * p + 2))
# Холупко Александр
# initialize matrices
W_first = np.empty((N, p))
W_second = np.empty((p, N))
X_out = np.empty((L, N))
X_delta = np.empty((L, N))
# adding axis to array (for easier matrix transposing)
Xq = np.expand_dims(Xq, axis=1)
X_out = np.expand_dims(X_out, axis=1)
X_delta = np.expand_dims(X_delta, axis=1)
# fielding weight matrices with random values
random.seed()
for i in range(N):
W_first[i] = np.random.uniform(-1, 1, p)
W_second = np.transpose(W_first)
iteration_counter = 0
E = 10000000
while E > 0:
E = 0
for k in range(L):
# counting Y
Y = np.dot(Xq[k], W_first)
# Counting X'
X_out[k] = np.dot(Y, W_second)
# Counting delta X
X_delta[k] = X_out[k] - Xq[k]
# Counting W
alpha_first = adaptive_learning_step(Xq[k])
# print(alpha_first)
W_first = W_first - alpha_first * np.dot(np.dot(np.transpose(Xq[k]), X_delta[k]), np.transpose(W_second))
# Counting W'
alpha_second = adaptive_learning_step(Y)
# print(alpha_second)
W_second = W_second - alpha_second * np.dot(np.transpose(Y), X_delta[k])
# normalizing matrices
normalize_matrix(W_first)
normalize_matrix(W_second)
for k in range(L):
# counting Y
Y = np.dot(Xq[k], W_first)
# Counting X'
X_out[k] = np.dot(Y, W_second)
# Counting delta X
X_delta[k] = X_out[k] - Xq[k]
for i in range(N):
E += X_delta[k][0][i] * X_delta[k][0][i]
# increasing iteration counter
iteration_counter += 1
print("Iteration number: {}, error {}".format(iteration_counter, E))
print("Final iteration count: {}, final error {}".format(iteration_counter, E))
# Compressing and restoring image on counted weights
# Мария Жирко
for k in range(L):
Y = np.dot(Xq[k], W_first)
X_out[k] = np.dot(Y, W_second)
# Initializing image matrices
image_restored = np.empty((H, W, S))
image_origin = np.empty((H, W, S))
# removing unnecessary axis from arrays
Xq = np.squeeze(Xq, axis=1)
X_out = np.squeeze(X_out, axis=1)
# Creating image matrix from X_out
le = H / n
for h in range(0, H, n):
for w in range(0, W, m):
xq = Xq[int((h / n) * le + (w / m))]
x_out = X_out[int((h / n) * le + (w / m))]
for j in range(n):
for k in range(m):
for i in range(S): # rgb
image_restored[j + h, k + w, i] = (x_out [i + S * (j + k * n)] + 1) * c_max / 2
image_origin[j + h, k + w, i] = (xq[i + S * (j + k * n)] + 1) * c_max / 2
# compression ratio
Z = (N * L) / ((N + L) * p + 2)
print("Compression ratio".format(Z))
# showing original image
fig = plt.figure()
fig.add_subplot(1, 2, 1)
plt.title("Original Image")
plt.imshow(image_origin.astype(np.int32))
# showing restored image
fig.add_subplot(1, 2, 2)
plt.title("Reconstructed Image")
plt.imshow(image_restored.astype(np.int32))
plt.show()