Skip to content

Commit 5d7c62d

Browse files
committed
Anonymize the repo
1 parent 28dbed3 commit 5d7c62d

File tree

3 files changed

+7
-7
lines changed

3 files changed

+7
-7
lines changed

README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Meta-learning Tree-structured Parzen Estimator
22

3-
This package was used for the experiments of the paper `Multi-objective Tree-structured Parzen Estimator Meets Meta-learning`.
3+
This package was used for the experiments of the paper `Speeding up Multi-objective Hyperparameter Optimization by Task Similarity-Based Meta-Learning for the Tree-structured Parzen Estimator`.
44

55
## Setup
66

viz/ablation_study.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -193,12 +193,12 @@ def plot_hv_for_hpolib(subplots_kwargs, legend_kwargs, hv_mode: bool) -> None:
193193
if PLOT_CHECK_MODE:
194194
plt.show()
195195
else:
196-
plt.savefig("figs/hv2d-hpolib-ablation.png", bbox_inches='tight')
196+
plt.savefig("figs/hv2d-hpolib-ablation.pdf", bbox_inches='tight')
197197
else:
198198
if PLOT_CHECK_MODE:
199199
plt.show()
200200
else:
201-
plt.savefig("figs/eaf-hpolib-ablation.png", bbox_inches='tight')
201+
plt.savefig("figs/eaf-hpolib-ablation.pdf", bbox_inches='tight')
202202

203203

204204
def plot_hv_for_nmt(subplots_kwargs, legend_kwargs, hv_mode: bool) -> None:
@@ -222,12 +222,12 @@ def plot_hv_for_nmt(subplots_kwargs, legend_kwargs, hv_mode: bool) -> None:
222222
if PLOT_CHECK_MODE:
223223
plt.show()
224224
else:
225-
plt.savefig("figs/hv2d-nmt-ablation.png", bbox_inches='tight')
225+
plt.savefig("figs/hv2d-nmt-ablation.pdf", bbox_inches='tight')
226226
else:
227227
if PLOT_CHECK_MODE:
228228
plt.show()
229229
else:
230-
plt.savefig("figs/eaf-nmt-ablation.png", bbox_inches='tight')
230+
plt.savefig("figs/eaf-nmt-ablation.pdf", bbox_inches='tight')
231231

232232

233233
if __name__ == "__main__":

viz/viz_dataset_dist.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -52,12 +52,12 @@ def plot_cum(ax: plt.Axes, nd_rank: Dict[str, np.ndarray], percentile: int, set_
5252
dataset_name = " to ".join([lang[s] for s in k.split("_")])
5353
ax.plot(np.arange(n_configs), np.cumsum(cnt), label=dataset_name, color=colors[i])
5454

55-
title = f"Cumulated count of Top-{percentile}% configuration"
55+
title = f"Cumulative count of Top-{percentile}% configuration"
5656
ax.set_title(title)
5757
ax.set_xlabel("Config indices")
5858

5959
if set_ylabel:
60-
ax.set_ylabel("Cumulated count")
60+
ax.set_ylabel("Cumulative count")
6161

6262
ax.legend()
6363
ax.grid()

0 commit comments

Comments
 (0)