-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdl_classifier.py
172 lines (122 loc) · 5.84 KB
/
dl_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# This python file contains all functions for creating, training and testing the model. It also contains set and get checkpoints functions
import torch
from torch import nn, optim
from torchvision import models
import torch.nn.functional as F
# Class deep learning network
class DLNetwork(nn.Module):
def __init__(self, input_size, output_size, hidden_layers):
super().__init__()
first_layer = [nn.Linear(input_size, hidden_layers[0])]
self.hidden_layers = nn.ModuleList(first_layer)
layer_sizes = zip(hidden_layers[:-1], hidden_layers[1:])
self.hidden_layers.extend([nn.Linear(l1, l2) for l1, l2 in layer_sizes])
self.output = nn.Linear(hidden_layers[-1], output_size)
self.dropout = nn.Dropout(p = 0.4)
def forward(self, x):
# Using relu activation function and dropout regularization in the hidden layers
for layer in self.hidden_layers:
x = F.relu(layer(x))
x = self.dropout(x)
x = self.output(x)
log = F.log_softmax(x, dim=1)
return log
# Creating the deep learning model
def model_arch(arch, output_size, hidden_layers):
if arch == 'vgg16':
model = models.vgg16(pretrained=True)
# fix the parameters of the pretrained model
for param in model.parameters():
param.requires_grad = False
model.classifier = DLNetwork(model.classifier[0].in_features, output_size, hidden_layers)
elif arch == 'vgg19':
model = models.vgg19(pretrained=True)
# fix the parameters of the pretrained model
for param in model.parameters():
param.requires_grad = False
model.classifier = DLNetwork(model.classifier[0].in_features, output_size, hidden_layers)
else:
print ("The application does not use {} model. Please select vgg16 or vgg19.".format(arch))
return model
def model_training(model, dataloader, device, criterion, optimizer, epochs):
print("Model Training..")
model = model.to(device)
# Set model to train mode
model.train()
for epoch in range(epochs):
running_loss = 0
# Model traiining
for inputs, labels in dataloader['train']:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
log_ps = model.forward(inputs)
loss = criterion(log_ps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
else:
valid_loss = 0
accuracy = 0
# Turn off gradients for validation, saves memory and computations
with torch.no_grad():
#Set to evaluation mode
model.eval()
for inputs, labels in dataloader['validate']:
inputs, labels = inputs.to(device), labels.to(device)
log_ps = model.forward(inputs)
valid_loss += criterion(log_ps, labels)
ps = torch.exp(log_ps)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor))
#Set to train mode
model.train()
print("Epoch: {}/{}.. ".format(epoch + 1, epochs),
"Training Loss = {:.3f}".format(running_loss/len(dataloader['train'])),
"Validation Loss = {:.3f}".format(valid_loss/len(dataloader['validate'])),
"Validation Accuracy = {:.3f}".format(accuracy/len(dataloader['validate'])))
print('The training is done!')
def model_testing(model, dataloader, device, criterion):
print('Model Testing.....')
test_loss = 0
accuracy = 0
# Turn off gradients for validation, saves memory and computations
with torch.no_grad():
#Set to evaluation mode
model.eval()
for images, labels in dataloader['test']:
images, labels = images.to(device), labels.to(device)
log_ps = model.forward(images)
test_loss += criterion(log_ps, labels)
ps = torch.exp(log_ps)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor))
#Set to train mode
model.train()
accuracy = accuracy/len(dataloader['test'])
loss = test_loss/len(dataloader['test'])
print("Testing Accuracy = {:.3f}".format(accuracy))
print("Testing Loss = {:.3f}".format(loss))
def set_checkpoint(model, arch, output_size, optimizer, epoch, file_path):
hidden_layers = []
for layer in model.classifier.hidden_layers:
hidden_layers.append(layer.out_features)
checkpoint_data = {
'class_to_idx': model.class_to_idx,
'idx_to_class': model.idx_to_class,
'state_dict': model.state_dict(),
'arch': arch,
'output_size': output_size,
'hidden_layers': hidden_layers,
'optimizer': optimizer.state_dict,
'epoch': epoch
}
torch.save(checkpoint_data, file_path)
def get_checkpoint(filepath):
checkpoint_data = torch.load(filepath)
model = model_arch(checkpoint_data['arch'], checkpoint_data['output_size'], checkpoint_data['hidden_layers'])
model.class_to_idx = checkpoint_data['class_to_idx']
model.idx_to_class = checkpoint_data['idx_to_class']
model.load_state_dict(checkpoint_data['state_dict'])
return model