-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathaudio_data_analysis_ANN.py
279 lines (247 loc) · 10.1 KB
/
audio_data_analysis_ANN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#pip install librosa
#How to handle audio data
import librosa
audio_data = '/Users/nageshsinghchauhan/Downloads/ML/music_classification/gruesome.wav'
x , sr = librosa.load(audio_data)
print(type(x), type(sr))
print(x.shape, sr)
#Visualize an audio file
%matplotlib inline
import matplotlib.pyplot as plt
import librosa.display
plt.figure(figsize=(14, 5))
librosa.display.waveplot(x, sr=sr)
#Spectogram
X = librosa.stft(x)
Xdb = librosa.amplitude_to_db(abs(X))
plt.figure(figsize=(14, 5))
librosa.display.specshow(Xdb, sr=sr, x_axis='time', y_axis='hz')
plt.colorbar()
librosa.display.specshow(Xdb, sr=sr, x_axis='time', y_axis='log')
plt.colorbar()
#audio widget
import IPython.display as ipd
ipd.Audio(audio_data)
#creating an Audio signal
import numpy as np
sr = 22050 # sample rate
T = 5.0 # seconds
t = np.linspace(0, T, int(T*sr), endpoint=False) # time variable
x = 0.5*np.sin(2*np.pi*220*t)# pure sine wave at 220 Hz
Playing the audio
ipd.Audio(x, rate=sr) # load a NumPy array
Saving the audio
librosa.output.write_wav('tone_220.wav', x, sr)
#Feature extraction
# 1.Zero Crossing Rate : The zero crossing rate is the rate of sign-changes along a signal, i.e., the rate at which the signal changes from positive to negative or back.
# Load the signal
x, sr = librosa.load('/Users/nageshsinghchauhan/Downloads/ML/music_classification/gruesome.wav')
#Plot the signal:
plt.figure(figsize=(14, 5))
librosa.display.waveplot(x, sr=sr)
# Zooming in
n0 = 9000
n1 = 9100
plt.figure(figsize=(14, 5))
plt.plot(x[n0:n1])
plt.grid()
#2. Spectral Centroid: It indicates where the ”centre of mass” for a sound is located and is calculated as the weighted mean of the frequencies present in the sound.
import sklearn
spectral_centroids = librosa.feature.spectral_centroid(x, sr=sr)[0]
spectral_centroids.shape
(775,)
# Computing the time variable for visualization
frames = range(len(spectral_centroids))
t = librosa.frames_to_time(frames)
# Normalising the spectral centroid for visualisation
plt.figure(figsize=(14, 5))
def normalize(x, axis=0):
return sklearn.preprocessing.minmax_scale(x, axis=axis)
#Plotting the Spectral Centroid along the waveform
librosa.display.waveplot(x, sr=sr, alpha=0.4)
plt.plot(t, normalize(spectral_centroids), color='r')
#3. Spectral Rolloff
#It is a measure of the shape of the signal. It represents the frequency below which a specified percentage of the total spectral energy.
spectral_rolloff = librosa.feature.spectral_rolloff(x+0.01, sr=sr)[0]
librosa.display.waveplot(x, sr=sr, alpha=0.4)
plt.plot(t, normalize(spectral_rolloff), color='r')
#4. Spectral Bandwidth
spectral_bandwidth_2 = librosa.feature.spectral_bandwidth(x+0.01, sr=sr)[0]
spectral_bandwidth_3 = librosa.feature.spectral_bandwidth(x+0.01, sr=sr, p=3)[0]
spectral_bandwidth_4 = librosa.feature.spectral_bandwidth(x+0.01, sr=sr, p=4)[0]
plt.figure(figsize=(15, 9))
librosa.display.waveplot(x, sr=sr, alpha=0.4)
plt.plot(t, normalize(spectral_bandwidth_2), color='r')
plt.plot(t, normalize(spectral_bandwidth_3), color='g')
plt.plot(t, normalize(spectral_bandwidth_4), color='y')
plt.legend(('p = 2', 'p = 3', 'p = 4'))
#4. Mel-Frequency Cepstral Coefficients : The Mel frequency cepstral coefficients (MFCCs) of a signal are a small set of features (usually about 10–20) which concisely describe the overall shape of a spectral envelope.
x, fs = librosa.load('/Users/nageshsinghchauhan/Downloads/ML/music_classification/gruesome.wav')
librosa.display.waveplot(x, sr=sr)
mfccs = librosa.feature.mfcc(x, sr=fs)
print mfccs.shape
(20, 97)
#Displaying the MFCCs:
librosa.display.specshow(mfccs, sr=sr, x_axis='time')
#5. Chroma Frequencies : Chroma features are an interesting and powerful representation for music audio in which the entire spectrum is projected onto 12 bins representing the 12 distinct semitones (or chroma) of the musical octave.
# Loadign the file
x, sr = librosa.load('/Users/nageshsinghchauhan/Downloads/ML/music_classification/gruesome.wav')
hop_length = 512
chromagram = librosa.feature.chroma_stft(x, sr=sr, hop_length=hop_length)
plt.figure(figsize=(15, 5))
librosa.display.specshow(chromagram, x_axis='time', y_axis='chroma', hop_length=hop_length, cmap='coolwarm')
"""
In his section, we will model a classifier to classify songs into different genres. Let us assume a scenario in which, for some reason, we find a bunch of randomly named MP3 files on our hard disk, which are assumed to contain music. Our task is to sort them according to the music genre into different folders such as jazz, classical, country, pop, rock, and metal.
Dataset
"""
import pandas as pd
import numpy as np
from numpy import argmax
import matplotlib.pyplot as plt
%matplotlib inline
import librosa
import librosa.display
import IPython.display
import pandas as pd
import random
import warnings
import os
from PIL import Image
import pathlib
import csv
# Preprocessing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
#Keras
import keras
import warnings
warnings.filterwarnings('ignore')
from keras import layers
from keras.layers import Activation, Dense, Dropout, Conv1D, Conv2D, Flatten, BatchNormalization, ZeroPadding2D, MaxPooling2D, GlobalMaxPooling2D, GlobalAveragePooling1D, AveragePooling2D, Input, Add
from keras.models import Sequential
from keras import regularizers
from keras.optimizers import SGD
import keras.backend as K
from keras.models import load_model
from keras.callbacks import EarlyStopping
"""
Extracting music and features
Dataset
We use GTZAN genre collection dataset for classification.
The dataset consists of 10 genres i.e
Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock
Each genre contains 100 songs. Total dataset: 1000 songs
"""
""" Extracting the Spectrogram for every Audio """
cmap = plt.get_cmap('inferno')
plt.figure(figsize=(8,8))
genres = 'blues classical country disco hiphop jazz metal pop reggae rock'.split()
for g in genres:
pathlib.Path(f'img_data/{g}').mkdir(parents=True, exist_ok=True)
for filename in os.listdir(f'./drive/My Drive/genres/{g}'):
songname = f'./drive/My Drive/genres/{g}/{filename}'
y, sr = librosa.load(songname, mono=True, duration=5)
print(y.shape)
plt.specgram(y, NFFT=2048, Fs=2, Fc=0, noverlap=128, cmap=cmap, sides='default', mode='default', scale='dB');
plt.axis('off');
plt.savefig(f'img_data/{g}/{filename[:-3].replace(".", "")}.png')
plt.clf()
"""
All the audio files get converted into their respective spectrograms .WE can noe easily extract features from them.
"""
"""
Extracting features from Spectrogram and they are:
Mel-frequency cepstral coefficients (MFCC)(20 in number)
Spectral Centroid,
Zero Crossing Rate
Chroma Frequencies
Spectral Roll-off.
"""
header = 'filename chroma_stft rmse spectral_centroid spectral_bandwidth rolloff zero_crossing_rate'
for i in range(1, 21):
header += f' mfcc{i}'
header += ' label'
header = header.split()
#We write the data to a csv file
file = open('dataset.csv', 'w', newline='')
with file:
writer = csv.writer(file)
writer.writerow(header)
genres = 'blues classical country disco hiphop jazz metal pop reggae rock'.split()
for g in genres:
for filename in os.listdir(f'./drive/My Drive/genres/{g}'):
songname = f'./drive/My Drive/genres/{g}/{filename}'
y, sr = librosa.load(songname, mono=True, duration=30)
rmse = librosa.feature.rmse(y=y)
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
spec_cent = librosa.feature.spectral_centroid(y=y, sr=sr)
spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
zcr = librosa.feature.zero_crossing_rate(y)
mfcc = librosa.feature.mfcc(y=y, sr=sr)
to_append = f'{filename} {np.mean(chroma_stft)} {np.mean(rmse)} {np.mean(spec_cent)} {np.mean(spec_bw)} {np.mean(rolloff)} {np.mean(zcr)}'
for e in mfcc:
to_append += f' {np.mean(e)}'
to_append += f' {g}'
file = open('dataset.csv', 'a', newline='')
with file:
writer = csv.writer(file)
writer.writerow(to_append.split())
#Analysing the Data in Pandas¶
data = pd.read_csv('dataset.csv')
data.head()
# Dropping unneccesary columns
data = data.drop(['filename'],axis=1)
#Encoding the Labels¶
genre_list = data.iloc[:, -1]
encoder = LabelEncoder()
y = encoder.fit_transform(genre_list)
#Scaling the Feature columns¶
scaler = StandardScaler()
X = scaler.fit_transform(np.array(data.iloc[:, :-1], dtype = float))
#Dividing data into training and Testing set¶
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
#ANN implementation
from keras import layers
from keras import layers
import keras
from keras.models import Sequential
model = Sequential()
model.add(layers.Dense(256, activation='relu', input_shape=(X_train.shape[1],)))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
classifier = model.fit(X_train,
y_train,
epochs=100,
batch_size=128)
test_loss, test_acc = model.evaluate(X_test,y_test)
print('test_acc: ',test_acc)
#Validating our approach¶
x_val = X_train[:200]
partial_x_train = X_train[200:]
y_val = y_train[:200]
partial_y_train = y_train[200:]
model = Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(X_train.shape[1],)))
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(partial_x_train,
partial_y_train,
epochs=30,
batch_size=512,
validation_data=(x_val, y_val))
results = model.evaluate(X_test, y_test)
Predictions on Test Data¶
predictions = model.predict(X_test)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, predictions)