|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +import multiprocessing as multiproc |
| 4 | +import warnings |
| 5 | +from string import ascii_uppercase |
| 6 | +from time import time |
| 7 | +from typing import TYPE_CHECKING |
| 8 | + |
| 9 | +from pymatgen.command_line.mcsqs_caller import Sqs |
| 10 | +from pymatgen.core import Structure |
| 11 | +from pymatgen.io.ase import AseAtomsAdaptor |
| 12 | + |
| 13 | +try: |
| 14 | + from icet import ClusterSpace |
| 15 | + from icet.tools import enumerate_structures |
| 16 | + from icet.tools.structure_generation import _get_sqs_cluster_vector, _validate_concentrations, generate_sqs |
| 17 | + from mchammer.calculators import compare_cluster_vectors |
| 18 | +except ImportError: |
| 19 | + ClusterSpace = None |
| 20 | + |
| 21 | + |
| 22 | +if TYPE_CHECKING: |
| 23 | + from typing import Any |
| 24 | + |
| 25 | + from _icet import _ClusterSpace |
| 26 | + from ase import Atoms |
| 27 | + |
| 28 | + |
| 29 | +class IcetSQS: |
| 30 | + """Interface to the Icet library of SQS structure generation tools. |
| 31 | +
|
| 32 | + https://icet.materialsmodeling.org |
| 33 | + """ |
| 34 | + |
| 35 | + sqs_kwarg_names: dict[str, tuple[str, ...]] = { |
| 36 | + "monte_carlo": ( |
| 37 | + "include_smaller_cells", |
| 38 | + "pbc", |
| 39 | + "T_start", |
| 40 | + "T_stop", |
| 41 | + "n_steps", |
| 42 | + "optimality_weight", |
| 43 | + "random_seed", |
| 44 | + "tol", |
| 45 | + ), |
| 46 | + "enumeration": ("include_smaller_cells", "pbc", "optimality_weight", "tol"), |
| 47 | + } |
| 48 | + _sqs_kwarg_defaults: dict[str, Any] = { |
| 49 | + "optimality_weight": None, |
| 50 | + "tol": 1.0e-5, |
| 51 | + "include_smaller_cells": False, # for consistency with ATAT |
| 52 | + "pbc": (True, True, True), |
| 53 | + } |
| 54 | + sqs_methods: tuple[str, ...] = ("enumeration", "monte_carlo") |
| 55 | + |
| 56 | + def __init__( |
| 57 | + self, |
| 58 | + structure: Structure, |
| 59 | + scaling: int, |
| 60 | + instances: int | None, |
| 61 | + cluster_cutoffs: dict[int, float], |
| 62 | + sqs_method: str | None = None, |
| 63 | + sqs_kwargs: dict | None = None, |
| 64 | + ) -> None: |
| 65 | + """ |
| 66 | + Instantiate an IcetSQS interface. |
| 67 | +
|
| 68 | + Args: |
| 69 | + structure (Structure): disordered structure to compute SQS |
| 70 | + scaling (int): SQS supercell contains scaling * len(structure) sites |
| 71 | + instances (int): number of parallel SQS jobs to run |
| 72 | + cluster_cutoffs (dict): dict of cluster size (pairs, triplets, ...) and |
| 73 | + the size of the cluster |
| 74 | + Kwargs: |
| 75 | + sqs_method (str or None): if a str, one of ("enumeration", "monte_carlo") |
| 76 | + If None, default to "enumeration" for a supercell of < 24 sites, and |
| 77 | + "monte carlo" otherwise. |
| 78 | + sqs_kwargs (dict): kwargs to pass to the icet SQS generators. |
| 79 | + See self.sqs_kwarg_names for possible options. |
| 80 | +
|
| 81 | + Returns: |
| 82 | + None |
| 83 | + """ |
| 84 | + if ClusterSpace is None: |
| 85 | + raise ImportError("IcetSQS requires the icet package. Use `pip install icet`") |
| 86 | + |
| 87 | + self._structure = structure |
| 88 | + self.scaling = scaling |
| 89 | + self.instances = instances or multiproc.cpu_count() |
| 90 | + |
| 91 | + self._get_site_composition() |
| 92 | + |
| 93 | + # The peculiar way that icet works requires a copy of the |
| 94 | + # disordered structure, but without any fractionally-occupied sites |
| 95 | + # Essentially the host structure |
| 96 | + _ordered_structure = structure.copy() |
| 97 | + |
| 98 | + original_composition = _ordered_structure.composition.as_dict() |
| 99 | + dummy_comp = next(iter(_ordered_structure.composition)) |
| 100 | + _ordered_structure.replace_species( |
| 101 | + {species: dummy_comp for species in original_composition if species != dummy_comp} |
| 102 | + ) |
| 103 | + self._ordered_atoms = AseAtomsAdaptor.get_atoms(_ordered_structure) |
| 104 | + |
| 105 | + self.cutoffs_list = [] |
| 106 | + for i in range(2, max(cluster_cutoffs.keys()) + 1): |
| 107 | + if i not in cluster_cutoffs: |
| 108 | + # pad missing non-sequential values |
| 109 | + cluster_cutoffs[i] = 0.0 |
| 110 | + self.cutoffs_list.append(cluster_cutoffs[i]) |
| 111 | + |
| 112 | + # For safety, enumeration works well on 1 core for ~< 24 sites/cell |
| 113 | + # The bottleneck is **generation** of the structures via enumeration, |
| 114 | + # less checking their SQS objective. |
| 115 | + # Beyond ~24 sites/cell, monte carlo is more efficient |
| 116 | + sqs_method = sqs_method or ("enumeration" if self.scaling * len(self._structure) < 24 else "monte_carlo") |
| 117 | + |
| 118 | + # Default sqs_kwargs |
| 119 | + self.sqs_kwargs = self._sqs_kwarg_defaults.copy() |
| 120 | + self.sqs_kwargs.update(sqs_kwargs or {}) |
| 121 | + |
| 122 | + unrecognized_kwargs = {key for key in self.sqs_kwargs if key not in self.sqs_kwarg_names[sqs_method]} |
| 123 | + if len(unrecognized_kwargs) > 0: |
| 124 | + warnings.warn(f"Ignoring unrecognized icet {sqs_method} kwargs: {', '.join(unrecognized_kwargs)}") |
| 125 | + |
| 126 | + self.sqs_kwargs = { |
| 127 | + key: value for key, value in self.sqs_kwargs.items() if key in self.sqs_kwarg_names[sqs_method] |
| 128 | + } |
| 129 | + |
| 130 | + if sqs_method == "monte_carlo": |
| 131 | + self.sqs_getter = self.monte_carlo_sqs_structures |
| 132 | + if self.sqs_kwargs.get("random_seed") is None: |
| 133 | + self.sqs_kwargs["random_seed"] = int(1e6 * time()) |
| 134 | + |
| 135 | + elif sqs_method == "enumeration": |
| 136 | + self.sqs_getter = self.enumerate_sqs_structures |
| 137 | + |
| 138 | + else: |
| 139 | + raise ValueError(f"Unknown {sqs_method=}! Must be one of {self.sqs_methods}") |
| 140 | + |
| 141 | + self._sqs_obj_kwargs = {} |
| 142 | + for key in ("optimality_weight", "tol"): |
| 143 | + if value := self.sqs_kwargs.get(key, self._sqs_kwarg_defaults[key]): |
| 144 | + self._sqs_obj_kwargs[key] = value |
| 145 | + |
| 146 | + cluster_space = self._get_cluster_space() |
| 147 | + self.target_concentrations = _validate_concentrations( |
| 148 | + concentrations=self.composition, cluster_space=cluster_space |
| 149 | + ) |
| 150 | + self.sqs_vector = _get_sqs_cluster_vector( |
| 151 | + cluster_space=cluster_space, target_concentrations=self.target_concentrations |
| 152 | + ) |
| 153 | + |
| 154 | + def run(self) -> Sqs: |
| 155 | + """ |
| 156 | + Run the SQS search with icet. |
| 157 | +
|
| 158 | + Returns: |
| 159 | + pymatgen Sqs object |
| 160 | + """ |
| 161 | + |
| 162 | + sqs_structures = self.sqs_getter() |
| 163 | + for idx in range(len(sqs_structures)): |
| 164 | + sqs_structures[idx]["structure"] = AseAtomsAdaptor.get_structure(sqs_structures[idx]["structure"]) |
| 165 | + sqs_structures = sorted(sqs_structures, key=lambda entry: entry["objective_function"]) |
| 166 | + |
| 167 | + return Sqs( |
| 168 | + bestsqs=sqs_structures[0]["structure"], |
| 169 | + objective_function=sqs_structures[0]["objective_function"], |
| 170 | + allsqs=sqs_structures, |
| 171 | + directory="./", |
| 172 | + clusters=str(self._get_cluster_space()), |
| 173 | + ) |
| 174 | + |
| 175 | + def _get_site_composition(self) -> None: |
| 176 | + """ |
| 177 | + Get Icet-format composition from structure. |
| 178 | +
|
| 179 | + Returns: |
| 180 | + Dict with sublattice compositions specified by uppercase letters, |
| 181 | + e.g., In_x Ga_1-x As becomes: |
| 182 | + { |
| 183 | + "A": {"In": x, "Ga": 1 - x}, |
| 184 | + "B": {"As": 1} |
| 185 | + } |
| 186 | + """ |
| 187 | + uppercase_letters = list(ascii_uppercase) |
| 188 | + idx = 0 |
| 189 | + self.composition: dict[str, dict] = {} |
| 190 | + for idx, site in enumerate(self._structure): |
| 191 | + site_comp = site.species.as_dict() |
| 192 | + if site_comp not in self.composition.values(): |
| 193 | + self.composition[uppercase_letters[idx]] = site_comp |
| 194 | + idx += 1 |
| 195 | + |
| 196 | + def _get_cluster_space(self) -> ClusterSpace: |
| 197 | + """Generate the ClusterSpace object for icet.""" |
| 198 | + chemical_symbols = [list(site.species.as_dict()) for site in self._structure] |
| 199 | + return ClusterSpace(structure=self._ordered_atoms, cutoffs=self.cutoffs_list, chemical_symbols=chemical_symbols) |
| 200 | + |
| 201 | + def get_icet_sqs_obj(self, material: Atoms | Structure, cluster_space: _ClusterSpace | None = None) -> float: |
| 202 | + """ |
| 203 | + Get the SQS objective function. |
| 204 | +
|
| 205 | + Args: |
| 206 | + material (ase Atoms or pymatgen Structure) : structure to |
| 207 | + compute SQS objective function. |
| 208 | + Kwargs: |
| 209 | + cluster_space (ClusterSpace) : ClusterSpace of the SQS search. |
| 210 | +
|
| 211 | + Returns: |
| 212 | + float : the SQS objective function |
| 213 | + """ |
| 214 | + if isinstance(material, Structure): |
| 215 | + material = AseAtomsAdaptor.get_atoms(material) |
| 216 | + |
| 217 | + cluster_space = cluster_space or self._get_cluster_space() |
| 218 | + return compare_cluster_vectors( |
| 219 | + cv_1=cluster_space.get_cluster_vector(material), |
| 220 | + cv_2=self.sqs_vector, |
| 221 | + orbit_data=cluster_space.orbit_data, |
| 222 | + **self._sqs_obj_kwargs, |
| 223 | + ) |
| 224 | + |
| 225 | + def enumerate_sqs_structures(self, cluster_space: _ClusterSpace | None = None) -> list: |
| 226 | + """ |
| 227 | + Generate an SQS by enumeration of all possible arrangements. |
| 228 | +
|
| 229 | + Adapted from icet.tools.structure_generation.generate_sqs_by_enumeration |
| 230 | + to accommodate multiprocessing. |
| 231 | +
|
| 232 | + Kwargs: |
| 233 | + cluster_space (ClusterSpace) : ClusterSpace of the SQS search. |
| 234 | +
|
| 235 | + Returns: |
| 236 | + list : a list of dicts of the form: { |
| 237 | + "structure": SQS structure, |
| 238 | + "objective_function": SQS objective function, |
| 239 | + } |
| 240 | + """ |
| 241 | + |
| 242 | + # Translate concentrations to the format required for concentration |
| 243 | + # restricted enumeration |
| 244 | + cr: dict[str, tuple] = {} |
| 245 | + cluster_space = cluster_space or self._get_cluster_space() |
| 246 | + sub_lattices = cluster_space.get_sublattices(cluster_space.primitive_structure) |
| 247 | + for sl in sub_lattices: |
| 248 | + mult_factor = len(sl.indices) / len(cluster_space.primitive_structure) |
| 249 | + if sl.symbol in self.target_concentrations: |
| 250 | + sl_conc = self.target_concentrations[sl.symbol] |
| 251 | + else: |
| 252 | + sl_conc = {sl.chemical_symbols[0]: 1.0} |
| 253 | + for species, value in sl_conc.items(): |
| 254 | + c = value * mult_factor |
| 255 | + if species in cr: |
| 256 | + cr[species] = (cr[species][0] + c, cr[species][1] + c) |
| 257 | + else: |
| 258 | + cr[species] = (c, c) |
| 259 | + |
| 260 | + # Check to be sure... |
| 261 | + c_sum = sum(c[0] for c in cr.values()) |
| 262 | + if abs(c_sum - 1) >= self.sqs_kwargs["tol"]: |
| 263 | + raise ValueError(f"Site occupancies sum to {abs(c_sum - 1)} instead of 1!") |
| 264 | + |
| 265 | + sizes = list(range(1, self.scaling + 1)) if self.sqs_kwargs["include_smaller_cells"] else [self.scaling] |
| 266 | + |
| 267 | + # Prepare primitive structure with the right boundary conditions |
| 268 | + prim = cluster_space.primitive_structure |
| 269 | + prim.set_pbc(self.sqs_kwargs["pbc"]) |
| 270 | + |
| 271 | + structures = enumerate_structures(prim, sizes, cluster_space.chemical_symbols, concentration_restrictions=cr) |
| 272 | + chunks: list[list[Atoms]] = [[] for _ in range(self.instances)] |
| 273 | + proc_idx = 0 |
| 274 | + for structure in structures: |
| 275 | + chunks[proc_idx].append(structure) |
| 276 | + proc_idx = (proc_idx + 1) % self.instances |
| 277 | + |
| 278 | + manager = multiproc.Manager() |
| 279 | + working_list = manager.list() |
| 280 | + processes = [] |
| 281 | + for proc_idx in range(self.instances): |
| 282 | + process = multiproc.Process( |
| 283 | + target=self._get_best_sqs_from_list, |
| 284 | + args=(chunks[proc_idx], working_list), |
| 285 | + ) |
| 286 | + processes.append(process) |
| 287 | + process.start() |
| 288 | + |
| 289 | + for process in processes: |
| 290 | + process.join() |
| 291 | + |
| 292 | + return list(working_list) |
| 293 | + |
| 294 | + def _get_best_sqs_from_list(self, structures: list[Atoms], output_list: list[dict]) -> None: |
| 295 | + """ |
| 296 | + Find best SQS structure from list of SQS structures. |
| 297 | +
|
| 298 | + Args: |
| 299 | + structures (list of ase Atoms) : list of SQS structures |
| 300 | + output_list (list of dicts) : shared list between |
| 301 | + multiprocessing processes to store best SQS objects. |
| 302 | + """ |
| 303 | + best_sqs: dict[str, Any] = {"structure": None, "objective_function": 1.0e20} |
| 304 | + cluster_space = self._get_cluster_space() |
| 305 | + for structure in structures: |
| 306 | + objective = self.get_icet_sqs_obj(structure, cluster_space=cluster_space) |
| 307 | + if objective < best_sqs["objective_function"]: |
| 308 | + best_sqs = {"structure": structure, "objective_function": objective} |
| 309 | + output_list.append(best_sqs) |
| 310 | + |
| 311 | + def _single_monte_carlo_sqs_run(self): |
| 312 | + """Run a single Monte Carlo SQS search with Icet.""" |
| 313 | + cluster_space = self._get_cluster_space() |
| 314 | + sqs_structure = generate_sqs( |
| 315 | + cluster_space=cluster_space, |
| 316 | + max_size=self.scaling, |
| 317 | + target_concentrations=self.target_concentrations, |
| 318 | + **self.sqs_kwargs, |
| 319 | + ) |
| 320 | + return { |
| 321 | + "structure": sqs_structure, |
| 322 | + "objective_function": self.get_icet_sqs_obj(sqs_structure, cluster_space=cluster_space), |
| 323 | + } |
| 324 | + |
| 325 | + def monte_carlo_sqs_structures(self) -> list: |
| 326 | + """Run `self.instances` Monte Carlo SQS search with Icet.""" |
| 327 | + with multiproc.Pool(self.instances) as pool: |
| 328 | + return pool.starmap(self._single_monte_carlo_sqs_run, [() for _ in range(self.instances)]) |
0 commit comments