-
-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathAxp192.cs
1044 lines (923 loc) · 36.6 KB
/
Axp192.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System;
using System.Device.Gpio;
using System.Device.I2c;
using UnitsNet;
using UnitsNet.Units;
namespace Iot.Device.Axp192
{
/// <summary>
/// Class for handling Axp192 device.
/// </summary>
public class Axp192
{
private const byte DcD3SetBit = 1 << 1;
private const byte Ldo2SetBit = 1 << 2;
private const byte Ldo3SetBit = 1 << 3;
private const byte ExtEnSetBit = 1 << 6;
/// <summary>
/// Default address of I2C Axp192 device.
/// </summary>
public const int I2cDefaultAddress = 0x34;
private I2cDevice _i2c;
private byte[] _writeBuffer = new byte[2];
/// <summary>
/// Initializes a new instance of the <see cref="Axp192" /> class.
/// </summary>
/// <param name="i2c">I2C device.</param>
/// <exception cref="ArgumentNullException">When i2c device is null.</exception>
public Axp192(I2cDevice i2c)
{
_i2c = i2c ?? throw new ArgumentNullException();
}
/// <summary>
/// Gets or sets LDO2 output voltage.
/// </summary>
/// <remarks>Range is from 1.8 to 3.3V, steps of 100 mV.</remarks>
public ElectricPotential LDO2OutputVoltage
{
get
{
byte buf = I2cRead(Register.VoltageSettingLdo2_3);
return ElectricPotential.FromVolts(((buf >> 4) / 10.0) + 1.8);
}
set
{
ElectricPotential volt = GetProperVoltValue(value, 1.8, 3.3);
byte output = (byte)((volt.Volts - 1.8) * 10.0);
byte buf = I2cRead(Register.VoltageSettingLdo2_3);
I2cWrite(Register.VoltageSettingLdo2_3, (byte)((buf & 0x0f) | (output << 4)));
}
}
/// <summary>
/// Gets or sets LDO3 output voltage.
/// </summary>
/// <remarks>Range is from 1.8 to 3.3V, steps of 100 mV.</remarks>
public ElectricPotential LDO3OutputVoltage
{
get
{
byte buf = I2cRead(Register.VoltageSettingLdo2_3);
return ElectricPotential.FromVolts(((buf & 0x0f) / 10.0) + 1.8);
}
set
{
ElectricPotential volt = GetProperVoltValue(value, 1.8, 3.3);
byte output = (byte)((volt.Volts - 1.8) * 10.0);
byte buf = I2cRead(Register.VoltageSettingLdo2_3);
I2cWrite(Register.VoltageSettingLdo2_3, (byte)((buf & 0xF0) | output));
}
}
/// <summary>
/// Gets or sets DC-DC2 voltage.
/// </summary>
/// <remarks>Range is from 0.7 to 2.275V, steps of 25 mV.</remarks>
public ElectricPotential DcDc2Voltage
{
get
{
byte buf = I2cRead(Register.VoltageSettingDcDc2);
return ElectricPotential.FromVolts((buf * 0.025) + 0.7);
}
set
{
ElectricPotential volt = GetProperVoltValue(value, 0.7, 2.275);
byte output = (byte)((volt.Volts - 0.7) / 0.025);
I2cWrite(Register.VoltageSettingDcDc2, output);
}
}
/// <summary>
/// Gets or sets DC-DC1 voltage.
/// </summary>
/// <remarks>Range is from 0.7 to 3.5V, steps of 25 mV.</remarks>
public ElectricPotential DcDc1Voltage
{
get
{
byte buf = I2cRead(Register.VoltageSettingDcDc1);
return ElectricPotential.FromVolts((buf * 0.025) + 0.7);
}
set
{
ElectricPotential volt = GetProperVoltValue(value, 0.7, 3.5);
byte output = (byte)((volt.Volts - 0.7) / 0.025);
I2cWrite(Register.VoltageSettingDcDc1, output);
}
}
/// <summary>
/// Gets or sets DC-DC3 voltage.
/// </summary>
/// <remarks>Range is from 0.7 to 2.275V, steps of 25 mV.</remarks>
public ElectricPotential DcDc3Voltage
{
get
{
byte buf = I2cRead(Register.VoltageSettingDcDc3);
return ElectricPotential.FromVolts((buf * 0.025) + 0.7);
}
set
{
ElectricPotential volt = GetProperVoltValue(value, 0.7, 3.5);
byte output = (byte)((volt.Volts - 0.7) / 0.025);
I2cWrite(Register.VoltageSettingDcDc3, output);
}
}
private ElectricPotential GetProperVoltValue(ElectricPotential value, double minVal, double maxVal)
{
ElectricPotential volt;
if (value.Volts > maxVal)
{
volt = ElectricPotential.FromVolts(maxVal);
}
else if (value.Volts < minVal)
{
volt = ElectricPotential.FromVolts(minVal);
}
else
{
volt = value;
}
return volt;
}
/*
* Coulomb calculation method: C - 65536 - current LSB ( charging coulomb meter value - discharge coulomb meter value) / 3600 / ADC sample rate.
* Where: the ADC sample rate refers to the setting of REG84H, the current LSB is 0.5mA, and the calculation is in mAh.
*/
/// <summary>
/// Enable Coulomb counter.
/// </summary>
public void EnableCoulombCounter() => I2cWrite(Register.CoulombCounter, 0x80);
/// <summary>
/// Disable Coulomb counter.
/// </summary>
public void DisableCoulombCounter() => I2cWrite(Register.CoulombCounter, 0x00);
/// <summary>
/// Stops Coulomb counter.
/// </summary>
public void StopCoulombCounter() => I2cWrite(Register.CoulombCounter, 0xC0);
/// <summary>
/// Clear Coulomb counter.
/// </summary>
public void ClearCoulombCounter() => I2cWrite(Register.CoulombCounter, 0xA0);
/// <summary>
/// Checks if the battery is connected.
/// </summary>
/// <returns>True if connected.</returns>
public bool IsBatteryConnected() => (GetBatteryChargingStatus() & BatteryStatus.BatteryConnected) == BatteryStatus.BatteryConnected;
/// <summary>
/// Gets the power status.
/// </summary>
/// <returns>The power status.</returns>
public PowerStatus GetInputPowerStatus() => (PowerStatus)I2cRead(Register.PowerStatus);
/// <summary>
/// Gets battery charging status.
/// </summary>
/// <returns>The battery status.</returns>
public BatteryStatus GetBatteryChargingStatus() => (BatteryStatus)I2cRead(Register.PowerModeChargingStatus);
private uint GetCoulombCharge() => I2cRead32(Register.CoulombCounterChargingData1);
private uint GetCoulombDischarge() => I2cRead32(Register.CoulombCounterDischargingData1);
/// <summary>
/// Gets Coulomb.
/// </summary>
/// <returns>The mA per hour.</returns>
public double GetCoulomb()
{
uint coin = GetCoulombCharge();
uint coout = GetCoulombDischarge();
uint valueDifferent = 0;
bool bIsNegative = false;
if (coin > coout)
{
// Expected, in always more then out
valueDifferent = coin - coout;
}
else
{
// Warning: Out is more than In, the battery is not started at 0%
// just Flip the output sign later
bIsNegative = true;
valueDifferent = coout - coin;
}
// c = 65536 * current_LSB * (coin - coout) / 3600 / ADC rate
// Adc rate can be read from 84H, change this variable if you change the ADC reate
double ccc = (65536 * 0.5 * valueDifferent) / 3600.0 / 200.0; // Note the ADC has defaulted to be 200 Hz
if (bIsNegative)
{
ccc = 0.0 - ccc; // Flip it back to negative
}
// TODO: migrate the Energy UnitsNet to nanoFramework
return ccc;
}
/*
* For all the Voltage and Current:
* Channel 000H STEP FFFH
* Battery Voltage 0mV 1.1mV 4.5045V
* Bat discharge current 0mA 0.5mA 4.095A
* Bat charge current 0mA 0.5mA 4.095A
* ACIN volatge 0mV 1.7mV 6.9615V
* ACIN current 0mA 0.625mA 2.5594A
* VBUS voltage 0mV 1.7mV 6.9615V
* VBUS current 0mA 0.375mA 1.5356A
* Internal temperature -144.7℃ 0.1℃ 264.8℃
* APS voltage 0mV 1.4mV 5.733V
* TS pin input 0mV 0.8mV 3.276V
* GPIO0 0/0.7V 0.5mV 2.0475/2.7475V
* GPIO1 0/0.7V 0.5mV 2.0475/2.7475V
* GPIO2 0/0.7V 0.5mV 2.0475/2.7475V
* GPIO3 0/0.7V 0.5mV 2.0475/2.7475V
*/
/// <summary>
/// Gets the battery voltage.
/// </summary>
/// <returns>The battery voltage.</returns>
public ElectricPotential GetBatteryVoltage()
{
byte[] buf = new byte[2];
I2cRead(Register.BatteryVoltage8bitsHigh, buf);
ushort volt = (ushort)((buf[0] << 4) + buf[1]);
return new ElectricPotential(volt * 1.1, ElectricPotentialUnit.Millivolt);
}
/// <summary>
/// Gets the input voltage.
/// </summary>
/// <returns>The input voltage.</returns>
public ElectricPotential GetInputVoltage()
{
byte[] buf = new byte[2];
I2cRead(Register.InputVoltageAdc8bitsHigh, buf);
ushort vin = (ushort)((buf[0] << 4) + buf[1]);
return new ElectricPotential(vin * 1.7, ElectricPotentialUnit.Millivolt);
}
/// <summary>
/// Gets the input current.
/// </summary>
/// <returns>The input current.</returns>
public ElectricCurrent GetInputCurrent()
{
ushort iin = 0;
byte[] buf = new byte[2];
I2cRead(Register.InputCurrentAdc8bitsHigh, buf);
iin = (ushort)((buf[0] << 4) + buf[1]);
return new ElectricCurrent(iin * 0.625, ElectricCurrentUnit.Milliampere);
}
/// <summary>
/// Gets the USB voltage input.
/// </summary>
/// <returns>The USB voltage input.</returns>
public ElectricPotential GetUsbVoltageInput()
{
ushort vin = 0;
byte[] buf = new byte[2];
I2cRead(Register.UsbVoltageAdc8bitsHigh, buf);
vin = (ushort)((buf[0] << 4) + buf[1]);
return new ElectricPotential(vin * 1.7, ElectricPotentialUnit.Millivolt);
}
/// <summary>
/// Gets the USB current.
/// </summary>
/// <returns>The USB current.</returns>
public ElectricCurrent GetUsbCurrentInput()
{
byte[] buf = new byte[2];
I2cRead(Register.UsbCurrentAdc8bitsHigh, buf);
ushort iin = (ushort)((buf[0] << 4) + buf[1]);
return new ElectricCurrent(iin * 0.375, ElectricCurrentUnit.Milliampere);
}
/// <summary>
/// Gets the battery charge Current.
/// </summary>
/// <returns>The battery charge Current.</returns>
public ElectricCurrent GetBatteryChargeCurrent()
{
ushort icharge = 0;
byte[] buf = new byte[2];
I2cRead(Register.BatteryChargeCurrent8bitsHigh, buf);
icharge = (ushort)((buf[0] << 5) + buf[1]);
return new ElectricCurrent(icharge * 0.5, ElectricCurrentUnit.Milliampere);
}
/// <summary>
/// Gets the battery discharge current.
/// </summary>
/// <returns>The battery discharge current.</returns>
public ElectricCurrent GetBatteryDischargeCurrent()
{
ushort idischarge = 0;
byte[] buf = new byte[2];
I2cRead(Register.BatteryDischargeCurrent8bitsHigh, buf);
idischarge = (ushort)((buf[0] << 5) + buf[1]);
return new ElectricCurrent(idischarge * 0.5, ElectricCurrentUnit.Milliampere);
}
/// <summary>
/// Gets internal temperature.
/// </summary>
/// <returns>The temperature.</returns>
public Temperature GetInternalTemperature()
{
byte[] buf = new byte[2];
I2cRead(Register.Axp192InternalTemperatureAdc8bitsHigh, buf);
ushort temp = (ushort)((buf[0] << 4) + buf[1]);
return new Temperature((temp * 0.1) - 144.7, TemperatureUnit.DegreeCelsius);
}
/// <summary>
/// Gets the battery instantaneous consumption.
/// </summary>
/// <returns>The power consumption.</returns>
public Power GetBatteryInstantaneousPower()
{
uint power = 0;
byte[] buf = new byte[3];
I2cRead(Register.BatteryInstantaneousPower1, buf);
power = (ushort)((buf[0] << 16) | (buf[1] << 8) | buf[2]);
return new Power(power, PowerUnit.Milliwatt);
}
/// <summary>
/// Gets the APS voltage.
/// </summary>
/// <returns>The APS voltage.</returns>
public ElectricPotential GetApsVoltage()
{
byte[] buf = new byte[2];
I2cRead(Register.ApsVoltage8bitsHigh, buf);
ushort vaps = (ushort)((buf[0] << 4) + buf[1]);
return new ElectricPotential(vaps * 1.4, ElectricPotentialUnit.Millivolt);
}
/// <summary>
/// Sets the sleep mode.
/// </summary>
public void SetSleep()
{
I2cWrite(Register.VoltageSettingOff, (byte)(I2cRead(Register.VoltageSettingOff) | (1 << 3))); // Turn on short press to wake up
I2cWrite(Register.ControlGpio0, (byte)(I2cRead(Register.ControlGpio0) | 0x07)); // GPIO0 floating
I2cWrite(Register.AdcPin1, 0x00); // Disable ADCs
I2cWrite(Register.SwitchControleDcDC1_3LDO2_3, (byte)(I2cRead(Register.SwitchControleDcDC1_3LDO2_3) & 0xA1)); // Disable all outputs but DCDC1
}
/// <summary>
/// Is the temperature in warning.
/// </summary>
/// <returns>True if internal temperature too high.</returns>
public bool IsTemperatureWarning() => (I2cRead(Register.IrqStatus4) & 0x01) == 0x01;
/// <summary>
/// Get button status.
/// </summary>
/// <returns>The state of a button.</returns>
public ButtonPressed GetButtonStatus()
{
// IRQ 3 status.
byte state = I2cRead(Register.IrqStatus3);
if (state != 0)
{
// Write 1 back to clear IRQ
I2cWrite(Register.IrqStatus3, 0x03);
}
return (ButtonPressed)(state & 0x03);
}
/// <summary>
/// Sets the button default behavior.
/// </summary>
/// <param name="longPress">The long press timing.</param>
/// <param name="shortPress">The short press timing.</param>
/// <param name="automaticShutdownAtOvertime">True if automatic shutdown should be processed when over shutdown time.</param>
/// <param name="signalDelay">The PWROK signal delay after power start-up.</param>
/// <param name="shutdownTiming">The shutdown timing.</param>
public void SetButtonBehavior(LongPressTiming longPress, ShortPressTiming shortPress, bool automaticShutdownAtOvertime, SignalDelayAfterPowerUp signalDelay, ShutdownTiming shutdownTiming)
{
byte buf = (byte)(automaticShutdownAtOvertime ? 0b0000_1000 : 0b0000_0000);
buf |= (byte)((byte)longPress | (byte)shortPress | (byte)signalDelay | (byte)shutdownTiming);
I2cWrite(Register.ParameterSetting, buf);
}
/// <summary>
/// Sets the state of LDO2.
/// </summary>
/// <remarks>On M5Stack, can turn LCD Backlight OFF for power saving.</remarks>
/// <param name="state">True for on/high/1, false for off/low/O.</param>
public void EnableLDO2(bool state)
{
byte buf = I2cRead(Register.SwitchControleDcDC1_3LDO2_3);
if (state == true)
{
buf = (byte)(Ldo2SetBit | buf);
}
else
{
buf = (byte)(~Ldo2SetBit & buf);
}
I2cWrite(Register.SwitchControleDcDC1_3LDO2_3, buf);
}
/// <summary>
/// Sets the state of LDO3.
/// </summary>
/// <param name="state">True to enable LDO3.</param>
public void EnableLDO3(bool state)
{
byte buf = I2cRead(Register.SwitchControleDcDC1_3LDO2_3);
if (state == true)
{
buf = (byte)(Ldo3SetBit | buf);
}
else
{
buf = (byte)(~Ldo3SetBit & buf);
}
I2cWrite(Register.SwitchControleDcDC1_3LDO2_3, buf);
}
/// <summary>
/// Sets the state of DC-DC3.
/// </summary>
/// <param name="state">True to enable DC-DC3.</param>
public void EnableDCDC3(bool state)
{
byte buf = I2cRead(Register.SwitchControleDcDC1_3LDO2_3);
if (state == true)
{
buf = (byte)(DcD3SetBit | buf);
}
else
{
buf = (byte)(~DcD3SetBit & buf);
}
I2cWrite(Register.SwitchControleDcDC1_3LDO2_3, buf);
}
/// <summary>
/// Sets the state of DC-DC1.
/// </summary>
/// <param name="state">True to enable DC-DC1.</param>
public void EnableDCDC1(bool state)
{
byte buf = I2cRead(Register.SwitchControleDcDC1_3LDO2_3);
if (state == true)
{
buf = (byte)(1 | buf);
}
else
{
buf = (byte)(~1 & buf);
}
I2cWrite(Register.SwitchControleDcDC1_3LDO2_3, buf);
}
/// <summary>
/// Gets or sets a value indicating whether the state of EXTEN switch control.
/// </summary>
/// <value>
/// <see langword="true"/> if EXTEN switch is enabled, <see langword="false"/> otherwise.
/// </value>
public bool EXTENEnable
{
get => (I2cRead(Register.SwitchControleDcDC1_3LDO2_3) & ExtEnSetBit) == ExtEnSetBit;
set
{
byte buf = I2cRead(Register.SwitchControleDcDC1_3LDO2_3);
if (value)
{
buf |= ExtEnSetBit;
}
else
{
buf &= unchecked((byte)~ExtEnSetBit);
}
I2cWrite(Register.SwitchControleDcDC1_3LDO2_3, buf);
}
}
/// <summary>
/// Gets or sets LDO and DC pins.
/// </summary>
public LdoDcPinsEnabled LdoDcPinsEnabled
{
get => (LdoDcPinsEnabled)(I2cRead(Register.SwitchControleDcDC1_3LDO2_3) & 0b0000_1111);
set
{
byte buf = I2cRead(Register.SwitchControleDcDC1_3LDO2_3);
buf &= 0b1111_0000;
buf |= (byte)value;
I2cWrite(Register.SwitchControleDcDC1_3LDO2_3, buf);
}
}
/// <summary>
/// Gets or sets the GPIO0 behavior.
/// </summary>
public Gpio0Behavior Gpio0Behavior
{
get => (Gpio0Behavior)I2cRead(Register.ControlGpio0);
set => I2cWrite(Register.ControlGpio0, (byte)value);
}
/// <summary>
/// Gets or sets the GPIO1 behavior.
/// </summary>
public Gpio12Behavior Gpio1Behavior
{
get => (Gpio12Behavior)I2cRead(Register.ControlGpio1);
set => I2cWrite(Register.ControlGpio1, (byte)value);
}
/// <summary>
/// Gets or sets the GPIO2 behavior.
/// </summary>
public Gpio12Behavior Gpio2Behavior
{
get => (Gpio12Behavior)I2cRead(Register.ControlGpio2);
set => I2cWrite(Register.ControlGpio2, (byte)value);
}
/// <summary>
/// Gets or sets the GPIO3 behavior.
/// </summary>
public Gpio3Behavior Gpio3Behavior
{
get => (Gpio3Behavior)(I2cRead(Register.ControlGpio34) & 0b0000_0011);
set => I2cWrite(Register.ControlGpio34, (byte)((I2cRead(Register.ControlGpio34) & 0b1111_1100) | (byte)value | 0b1000_0000));
}
/// <summary>
/// Gets or sets the GPIO4 behavior.
/// </summary>
public Gpio4Behavior Gpio4Behavior
{
get => (Gpio4Behavior)(I2cRead(Register.ControlGpio34) & 0b0000_1100);
set => I2cWrite(Register.ControlGpio34, (byte)((I2cRead(Register.ControlGpio34) & 0b1111_0011) | (byte)value | 0b1000_0000));
}
/// <summary>
/// Gets or sets the pin value for GPIO0.
/// </summary>
public PinValue Gpio0Value
{
get => (I2cRead(Register.GpioState012) & 0b0001_0000) == 0b0001_0000 ? PinValue.High : PinValue.Low;
set => I2cWrite(Register.GpioState012, (byte)(I2cRead(Register.GpioState012) & 0b0000_0110 | (value == PinValue.High ? 0b0000_0001 : 0)));
}
/// <summary>
/// Gets or sets the pin value for GPIO1.
/// </summary>
public PinValue Gpio1Value
{
get => (I2cRead(Register.GpioState012) & 0b0010_0000) == 0b0010_0000 ? PinValue.High : PinValue.Low;
set => I2cWrite(Register.GpioState012, (byte)(I2cRead(Register.GpioState012) & 0b0000_0101 | (value == PinValue.High ? 0b0000_0010 : 0)));
}
/// <summary>
/// Gets or sets the pin value for GPIO2.
/// </summary>
public PinValue Gpio2Value
{
get => (I2cRead(Register.GpioState012) & 0b0100_0000) == 0b0100_0000 ? PinValue.High : PinValue.Low;
set => I2cWrite(Register.GpioState012, (byte)(I2cRead(Register.GpioState012) & 0b0000_0011 | (value == PinValue.High ? 0b0000_0100 : 0)));
}
/// <summary>
/// Gets or sets the pin value for GPIO3.
/// </summary>
public PinValue Gpio3Value
{
get => (I2cRead(Register.GpioState34) & 0b0001_0000) == 0b0001_0000 ? PinValue.High : PinValue.Low;
set => I2cWrite(Register.GpioState34, (byte)(I2cRead(Register.GpioState34) & 0b0000_0010 | (value == PinValue.High ? 0b0000_0001 : 0)));
}
/// <summary>
/// Gets or sets the pin value for GPIO4.
/// </summary>
public PinValue Gpio4Value
{
get => (I2cRead(Register.GpioState34) & 0b0010_0000) == 0b0010_0000 ? PinValue.High : PinValue.Low;
set => I2cWrite(Register.GpioState34, (byte)(I2cRead(Register.GpioState34) & 0b0000_0001 | (value == PinValue.High ? 0b0000_0010 : 0)));
}
/// <summary>
/// Sets the high temperature threshold for the battery.
/// </summary>
/// <param name="potential">From 0 to 3.264V. Anything higher will be caped to the maximum.</param>
public void SetBatteryHighTemperatureThreshold(ElectricPotential potential)
{
// Docs says Battery high temperature threshold setting when charging, N
// N * 10H
// When N-1FH,
// corresponding to 0.397V;
// The voltage can be 0V to 3.264V
byte voltage = (byte)(potential.Volts / 0.0128);
I2cWrite(Register.HigTemperatureAlarm, voltage);
}
/// <summary>
/// Sets the backup battery charging control.
/// </summary>
/// <param name="enabled">Is enabled.</param>
/// <param name="voltage">Battery charging voltage.</param>
/// <param name="current">Battery charging current.</param>
public void SetBackupBatteryChargingControl(bool enabled, BackupBatteryCharingVoltage voltage, BackupBatteryChargingCurrent current)
{
byte buf = (byte)(enabled ? 0b1000_0000 : 0);
buf |= (byte)voltage;
buf |= (byte)current;
I2cWrite(Register.BackupBatteryChargingControl, buf);
}
/// <summary>
/// Sets shutdown battery detection control.
/// </summary>
/// <param name="turnOffAxp192">True to shutdown the AXP192.</param>
/// <param name="enabled">True to enable the control.</param>
/// <param name="function">The pin function.</param>
/// <param name="pinControl">True to enable the pin function.</param>
/// <param name="timing">Delay after AXP192 lowered to higher.</param>
public void SetShutdownBatteryDetectionControl(bool turnOffAxp192, bool enabled, ShutdownBatteryPinFunction function, bool pinControl, ShutdownBatteryTiming timing)
{
byte buf = (byte)(turnOffAxp192 ? 0b1000_0000 : 0);
buf |= (byte)(enabled ? 0b0100_0000 : 0);
buf |= (byte)function;
buf |= (byte)(pinControl ? 0b0000_1000 : 0);
buf |= (byte)timing;
I2cWrite(Register.ShutdownBatteryDetectionControl, buf);
}
/// <summary>
/// Gets or sets the charging voltage.
/// </summary>
public ChargingVoltage ChargingVoltage
{
get => (ChargingVoltage)(I2cRead(Register.ChargeControl1) & 0x60);
set
{
byte buf = I2cRead(Register.ChargeControl1);
buf = (byte)((buf & ~0x60) | ((byte)value & 0x60));
I2cWrite(Register.ChargeControl1, buf);
}
}
/// <summary>
/// Gets or sets the charging current.
/// </summary>
/// <remarks>Not recommend to set charge current > 100mA, since Battery is only 80mAh.
/// more then 1C charge-rate may shorten battery life-span.</remarks>
public ChargingCurrent ChargingCurrent
{
get => (ChargingCurrent)(I2cRead(Register.ChargeControl1) & 0x07);
set
{
byte buf = I2cRead(Register.ChargeControl1);
buf = (byte)((buf & 0xf0) | (byte)value);
I2cWrite(Register.ChargeControl1, buf);
}
}
/// <summary>
/// Gets or sets charging threshold when battery should stop charging.
/// </summary>
public ChargingStopThreshold ChargingStopThreshold
{
get => (ChargingStopThreshold)(I2cRead(Register.ChargeControl1) & 0b0001_0000);
set
{
byte buf = I2cRead(Register.ChargeControl1);
buf = (byte)((buf & 0b0001_0000) | (byte)((byte)value & 0b0001_0000));
I2cWrite(Register.ChargeControl1, buf);
}
}
/// <summary>
/// Set the charging functions.
/// </summary>
/// <param name="includeExternal">True to include the external.</param>
/// <param name="chargingVoltage">Charging voltage.</param>
/// <param name="chargingCurrent">Charging current.</param>
/// <param name="stopThreshold">Stop threshold.</param>
public void SetChargingFunctions(bool includeExternal, ChargingVoltage chargingVoltage, ChargingCurrent chargingCurrent, ChargingStopThreshold stopThreshold)
{
byte buf = (byte)(includeExternal ? 0b1000_0000 : 0);
buf |= (byte)chargingVoltage;
buf |= (byte)chargingCurrent;
buf |= (byte)stopThreshold;
I2cWrite(Register.ChargeControl1, buf);
}
/// <summary>
/// Gets or sets the global pin output voltage.
/// </summary>
public PinOutputVoltage PinOutputVoltage
{
get => (PinOutputVoltage)(I2cRead(Register.VoltageOutputSettingGpio0Ldo) & 0b1111_0000);
set
{
byte buf = I2cRead(Register.VoltageOutputSettingGpio0Ldo);
buf = (byte)((buf & 0b1111_0000) | (byte)((byte)value & 0b1111_0000));
I2cWrite(Register.VoltageOutputSettingGpio0Ldo, buf);
}
}
/// <summary>
/// Sets the VBUS settings.
/// </summary>
/// <param name="vbusIpsOut">The VBUS-IPSOUT path selects the control signal when VBUS is available.</param>
/// <param name="vbusLimit">True to limit VBUS VHOLD control.</param>
/// <param name="vholdVoltage">VHOLD Voltage.</param>
/// <param name="currentLimitEnable">True to limit VBUS current.</param>
/// <param name="vbusCurrent">VBUS Current limit.</param>
public void SetVbusSettings(bool vbusIpsOut, bool vbusLimit, VholdVoltage vholdVoltage, bool currentLimitEnable, VbusCurrentLimit vbusCurrent)
{
byte buf = (byte)(vbusIpsOut ? 0b1000_0000 : 0);
buf |= (byte)(vbusLimit ? 0b0100_0000 : 0);
buf |= (byte)vholdVoltage;
buf |= (byte)(currentLimitEnable ? 0b0000_0010 : 0);
buf |= (byte)vbusCurrent;
I2cWrite(Register.PathSettingVbus, buf);
}
/// <summary>
/// Gets or sets the ADC pin enabled.
/// </summary>
public AdcPinEnabled AdcPinEnabled
{
get => (AdcPinEnabled)I2cRead(Register.AdcPin1);
set
{
I2cWrite(Register.AdcPin1, (byte)value);
}
}
/// <summary>
/// Gets or sets power off voltage.
/// </summary>
public VoffVoltage VoffVoltage
{
get => (VoffVoltage)(I2cRead(Register.VoltageSettingOff) & 0xf8);
set => I2cWrite(Register.VoltageSettingOff, (byte)((I2cRead(Register.VoltageSettingOff) & 0xf8) | (byte)value));
}
/// <summary>
/// Cut all power, except for LDO1 (RTC).
/// </summary>
public void PowerOff()
{
I2cWrite(Register.ShutdownBatteryDetectionControl, (byte)(I2cRead(Register.ShutdownBatteryDetectionControl) | 0x80)); // MSB for Power Off
}
/// <summary>
/// Sets the ADC state.
/// </summary>
/// <param name="state">True to enable, false to disable.</param>
public void SetAdcState(bool state)
{
I2cWrite(Register.AdcPin1, (byte)(state ? 0xff : 0x00)); // Enable / Disable all ADCs
}
/// <summary>
/// Disable all Irq.
/// </summary>
public void DisableAllIRQ()
{
I2cWrite(Register.IrqEnable1, 0x00);
I2cWrite(Register.IrqEnable2, 0x00);
I2cWrite(Register.IrqEnable3, 0x00);
I2cWrite(Register.IrqEnable4, 0x00);
I2cWrite(Register.IrqEnable5, 0x00);
}
/// <summary>
/// Enable the button to be pressed and raise IRQ events.
/// </summary>
/// <param name="button">Type of button press event.</param>
public void EnableButtonPressed(ButtonPressed button)
{
byte value = I2cRead(Register.IrqEnable2);
value &= 0xfc;
value |= (byte)button;
I2cWrite(Register.IrqEnable2, value);
}
/// <summary>
/// Clears all Irq.
/// </summary>
public void ClearAllIrq()
{
I2cWrite(Register.IrqStatus1, 0xff);
I2cWrite(Register.IrqStatus2, 0xff);
I2cWrite(Register.IrqStatus3, 0xff);
I2cWrite(Register.IrqStatus4, 0xff);
I2cWrite(Register.IrqStatus5, 0xff);
}
/// <summary>
/// Gets or sets the ADC frequency.
/// </summary>
public AdcFrequency AdcFrequency
{
get => (AdcFrequency)(I2cRead(Register.AdcFrequency) & 0xc0);
set
{
byte buf = I2cRead(Register.AdcFrequency);
buf = (byte)((buf & ~0xc0) | ((byte)value & 0xc0));
I2cWrite(Register.AdcFrequency, buf);
}
}
/// <summary>
/// Gets or sets the ADC Pin output Current.
/// </summary>
public AdcPinCurrent AdcPinCurrent
{
get => (AdcPinCurrent)(I2cRead(Register.AdcFrequency) & 0b0011_0000);
set
{
byte buf = I2cRead(Register.AdcFrequency);
buf = (byte)((buf & ~0b0011_0000) | ((byte)value & 0b0011_0000));
I2cWrite(Register.AdcFrequency, buf);
}
}
/// <summary>
/// Gets or sets a value indicating whether ADC battery temperature monitoring function is enabled.
/// </summary>
public bool BatteryTemperatureMonitoring
{
get => (I2cRead(Register.AdcFrequency) & 0b0000_0100) == 0;
set
{
byte buf = I2cRead(Register.AdcFrequency);
buf = (byte)((buf & ~0b0000_0100) | (value ? 0 : 0b0000_0100));
I2cWrite(Register.AdcFrequency, buf);
}
}
/// <summary>
/// Gets or sets ADC pin current settings.
/// </summary>
public AdcPinCurrentSetting AdcPinCurrentSetting
{
get => (AdcPinCurrentSetting)(I2cRead(Register.AdcFrequency) & 0b0000_0011);
set
{
byte buf = I2cRead(Register.AdcFrequency);
buf = (byte)((buf & ~0b0000_0011) | ((byte)value & 0b0000_0011));
I2cWrite(Register.AdcFrequency, buf);
}
}
/// <summary>
/// Gets or sets PWM1 output frequency.
/// </summary>
/// <remarks>
/// Default is 0x00.
/// </remarks>
public byte Pwm1OutputFrequencySetting
{
get => I2cRead(Register.Pwm1OutputFrequencySetting);
set
{
I2cWrite(Register.Pwm1OutputFrequencySetting, value);
}
}
/// <summary>
/// Gets or sets PWM1 duty cycle setting 1.
/// </summary>
/// <remarks>
/// Default is 0x16.
/// </remarks>
public byte Pwm1DutyCycleSetting1
{
get => I2cRead(Register.Pwm1DutyCycleSetting1);
set
{
I2cWrite(Register.Pwm1DutyCycleSetting1, value);
}
}
/// <summary>
/// Gets or sets PWM1 duty cycle setting 2.
/// </summary>
/// <remarks>
/// Default is 0x0B.
/// </remarks>
public byte Pwm1DutyCycleSetting2
{
get => I2cRead(Register.Pwm1DutyCycleSetting2);
set
{
I2cWrite(Register.Pwm1DutyCycleSetting2, value);
}
}
/// <summary>
/// Reads the 6 bytes from the storage.
/// AXP192 have a 6 byte storage, when the power is still valid, the data will not be lost.
/// </summary>
/// <param name="buffer">A 6 bytes buffer.</param>
public void Read6BytesStorage(SpanByte buffer)
{
if (buffer.Length != 6)
{
throw new ArgumentException();
}
// Address from 0x06 - 0x0B
I2cRead(Register.Storage1, buffer);
}
/// <summary>
/// Stores data in the storage. 6 bytes are available.
/// AXP192 have a 6 byte storage, when the power is still valid, the data will not be lost.
/// </summary>
/// <param name="buffer">A 6 bytes buffer.</param>