-
-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathBmp180.cs
258 lines (229 loc) · 8.88 KB
/
Bmp180.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// Ported from https://github.com/adafruit/Adafruit_Python_BMP/blob/master/Adafruit_BMP/BMP085.py
// Formulas and code examples can also be found in the datasheet https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
using System;
using System.Buffers.Binary;
using System.Device.I2c;
using System.Device.Model;
using System.Threading;
using Iot.Device.Common;
using UnitsNet;
namespace Iot.Device.Bmp180
{
/// <summary>
/// BMP180 - barometer, altitude and temperature sensor.
/// </summary>
[Interface("BMP180 - barometer, altitude and temperature sensor")]
public class Bmp180 : IDisposable
{
private readonly CalibrationData _calibrationData;
private I2cDevice _i2cDevice;
private Sampling _mode;
/// <summary>
/// Default I2C address.
/// </summary>
public const byte DefaultI2cAddress = 0x77;
/// <summary>
/// Initializes a new instance of the<see cref="Bmp180" /> class.
/// </summary>
/// <param name="i2cDevice">I2C device used to communicate with the device.</param>
public Bmp180(I2cDevice i2cDevice)
{
_i2cDevice = i2cDevice ?? throw new ArgumentNullException(nameof(i2cDevice));
_calibrationData = new CalibrationData();
// Read the coefficients table
_calibrationData.ReadFromDevice(this);
SetSampling(Sampling.Standard);
}
/// <summary>
/// Sets sampling to the given value.
/// </summary>
/// <param name="mode">Sampling Mode.</param>
public void SetSampling(Sampling mode) => _mode = mode;
/// <summary>
/// Reads the temperature from the sensor.
/// </summary>
/// <returns>
/// Temperature in degrees celsius.
/// </returns>
[Telemetry("Temperature")]
public Temperature ReadTemperature() => Temperature.FromDegreesCelsius((CalculateTrueTemperature() + 8) / 160.0);
/// <summary>
/// Reads the pressure from the sensor.
/// </summary>
/// <returns>
/// Atmospheric pressure.
/// </returns>
[Telemetry("Pressure")]
public Pressure ReadPressure()
{
// Pressure Calculations
int b6 = CalculateTrueTemperature() - 4000;
int b62 = (b6 * b6) / 4096;
int x3 = (((short)_calibrationData.B2 * b62) + ((short)_calibrationData.AC2 * b6)) / 2048;
int b3 = (((((short)_calibrationData.AC1 * 4) + x3) << (short)Sampling.Standard) + 2) / 4;
int x1 = ((short)_calibrationData.AC3 * b6) / 8192;
int x2 = ((short)_calibrationData.B1 * b62) / 65536;
x3 = ((x1 + x2) + 2) / 4;
int b4 = _calibrationData.AC4 * (x3 + 32768) / 32768;
uint b7 = (uint)(ReadRawPressure() - b3) * (uint)(50000 >> (short)Sampling.Standard);
int p = (b7 < 0x80000000) ? (int)((b7 * 2) / b4) : (int)((b7 / b4) * 2);
x1 = (((p * p) / 65536) * 3038) / 65536;
return Pressure.FromPascals(p + ((((((p * p) / 65536) * 3038) / 65536) + ((-7357 * p) / 65536) + 3791) / 8));
}
/// <summary>
/// Calculates the altitude in meters from the specified sea-level pressure.
/// </summary>
/// <param name="seaLevelPressure">
/// Sea-level pressure.
/// </param>
/// <returns>
/// Height above sea level.
/// </returns>
public Length ReadAltitude(Pressure seaLevelPressure) => WeatherHelper.CalculateAltitude(ReadPressure(), seaLevelPressure, ReadTemperature());
/// <summary>
/// Calculates the altitude in meters from the mean sea-level pressure.
/// </summary>
/// <returns>
/// Height in meters above sea level.
/// </returns>
public Length ReadAltitude() => ReadAltitude(WeatherHelper.MeanSeaLevel);
/// <summary>
/// Calculates the pressure at sea level when given a known altitude.
/// </summary>
/// <param name="altitude" >
/// Altitude in meters.
/// </param>
/// <returns>
/// Pressure.
/// </returns>
public Pressure ReadSeaLevelPressure(Length altitude) => WeatherHelper.CalculateSeaLevelPressure(ReadPressure(), altitude, ReadTemperature());
/// <summary>
/// Calculates the pressure at sea level, when the current altitude is 0.
/// </summary>
/// <returns>
/// Pressure.
/// </returns>
public Pressure ReadSeaLevelPressure() => ReadSeaLevelPressure(Length.Zero);
/// <summary>
/// Calculate true temperature.
/// </summary>
/// <returns>
/// Coefficient B5.
/// </returns>
private int CalculateTrueTemperature()
{
// Calculations below are taken straight from section 3.5 of the datasheet.
int x1 = (ReadRawTemperature() - _calibrationData.AC6) * _calibrationData.AC5 / 32768;
int x2 = _calibrationData.MC * 2048 / (x1 + _calibrationData.MD);
return x1 + x2;
}
/// <summary>
/// Reads raw temperatue from the sensor.
/// </summary>
/// <returns>
/// Raw temperature.
/// </returns>
private short ReadRawTemperature()
{
// Reads the raw (uncompensated) temperature from the sensor
SpanByte command = new byte[]
{
(byte)Register.CONTROL, (byte)Register.READTEMPCMD
};
_i2cDevice.Write(command);
// Wait 5ms, taken straight from section 3.3 of the datasheet.
Thread.Sleep(5);
return (short)Read16BitsFromRegisterBE((byte)Register.TEMPDATA);
}
/// <summary>
/// Reads raw pressure from the sensor
/// Taken from datasheet, Section 3.3.1
/// Standard - 8ms
/// UltraLowPower - 5ms
/// HighResolution - 14ms
/// UltraHighResolution - 26ms.
/// </summary>
/// <returns>
/// Raw pressure.
/// </returns>
private int ReadRawPressure()
{
// Reads the raw (uncompensated) pressure level from the sensor.
_i2cDevice.Write(new[]
{
(byte)Register.CONTROL, (byte)(Register.READPRESSURECMD + ((byte)Sampling.Standard << 6))
});
if (_mode.Equals(Sampling.UltraLowPower))
{
Thread.Sleep(5);
}
else if (_mode.Equals(Sampling.HighResolution))
{
Thread.Sleep(14);
}
else if (_mode.Equals(Sampling.UltraHighResolution))
{
Thread.Sleep(26);
}
else
{
Thread.Sleep(8);
}
int msb = Read8BitsFromRegister((byte)Register.PRESSUREDATA);
int lsb = Read8BitsFromRegister((byte)Register.PRESSUREDATA + 1);
int xlsb = Read8BitsFromRegister((byte)Register.PRESSUREDATA + 2);
return ((msb << 16) + (lsb << 8) + xlsb) >> (8 - (byte)Sampling.Standard);
}
/// <summary>
/// Reads an 8 bit value from a register.
/// </summary>
/// <param name="register">
/// Register to read from.
/// </param>
/// <returns>
/// Value from register.
/// </returns>
internal byte Read8BitsFromRegister(byte register)
{
_i2cDevice.WriteByte(register);
byte value = _i2cDevice.ReadByte();
return value;
}
/// <summary>
/// Reads a 16 bit value over I2C.
/// </summary>
/// <param name="register">
/// Register to read from.
/// </param>
/// <returns>
/// Value from register.
/// </returns>
internal ushort Read16BitsFromRegister(byte register)
{
SpanByte bytes = new byte[2];
_i2cDevice.WriteByte(register);
_i2cDevice.Read(bytes);
return BinaryPrimitives.ReadUInt16LittleEndian(bytes);
}
/// <summary>
/// Reads a 16 bit value over I2C.
/// </summary>
/// <param name="register">Register to read from.</param>
/// <returns> Value (BigEndian) from register.</returns>
internal ushort Read16BitsFromRegisterBE(byte register)
{
SpanByte bytes = new byte[2];
_i2cDevice.WriteByte(register);
_i2cDevice.Read(bytes);
return BinaryPrimitives.ReadUInt16BigEndian(bytes);
}
/// <inheritdoc/>
public void Dispose()
{
_i2cDevice?.Dispose();
_i2cDevice = null;
}
}
}