-
-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathTsl256x.cs
364 lines (329 loc) · 12.4 KB
/
Tsl256x.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System;
using System.Buffers.Binary;
using System.Device.I2c;
using System.Device.Model;
using System.Threading;
using UnitsNet;
using UnitsNet.Units;
namespace Iot.Device.Tsl256x
{
/// <summary>
/// Light to Digital Converter TSL2560 and TSL2561.
/// </summary>
[Interface("Light to Digital Converter TSL2560 and TSL2561")]
public class Tsl256x : IDisposable
{
// All information from datasheet https://cdn-shop.adafruit.com/datasheets/TSL2561.pdf
private I2cDevice _i2cDevice;
private IntegrationTime _integrationTime;
private Gain _gain;
private InterruptControl _interruptControl;
private InterruptPersistence _interruptPersistence;
private PackageType _packageType;
/// <summary>
/// When the address select pin if float.
/// </summary>
public const int DefaultI2cAddress = 0x39;
/// <summary>
/// When the address select pin is to ground.
/// </summary>
public const int SecondI2cAddress = 0x29;
/// <summary>
/// When the select pin is to VDD.
/// </summary>
public const int ThirdI2cAddress = 0x49;
/// <summary>
/// Initializes a new instance of the <see cref="Tsl256x"/> class.
/// </summary>
/// <param name="i2cDevice">And I2C Device.</param>
/// <param name="packageType">The type of package to have a proper illuminance calculation.</param>
public Tsl256x(I2cDevice i2cDevice, PackageType packageType = PackageType.Other)
{
_i2cDevice = i2cDevice ?? throw new ArgumentNullException($"I2C Device can't be null");
_packageType = packageType;
IntegrationTime = IntegrationTime.Integration402Milliseconds;
Gain = Gain.Normal;
}
/// <summary>
/// Gets or sets a value indicating whether power is On or Off.
/// </summary>
[Property]
public bool Enabled
{
// 0x03 is power on, see doc page 14
get => (ReadByte(Register.CONTROL) & 0x03) == 0x03;
set => WriteByte(Register.CONTROL, value ? (byte)0x03 : (byte)0x00);
}
/// <summary>
/// Gets the version 0 for major for TSL2560 and 1 for TSL2561, minor is devision number.
/// </summary>
/// <returns>The version.</returns>
[Property]
public Version Version
{
get
{
var ver = ReadByte(Register.ID);
return new Version(ver >> 4, ver & 0b0000_1111);
}
}
/// <summary>
/// Gets or sets the integration time.
/// </summary>
[Property]
public IntegrationTime IntegrationTime
{
// should be the same as _integrationTime
get => (IntegrationTime)(ReadByte(Register.TIMING) & (byte)IntegrationTime.Manual);
set
{
_integrationTime = value;
WriteByte(Register.TIMING, (byte)((byte)_integrationTime | (byte)_gain));
}
}
/// <summary>
/// Gets or sets the gain.
/// </summary>
[Property]
public Gain Gain
{
// should be the same as _gain
get => (Gain)(ReadByte(Register.TIMING) & (byte)Gain.High);
set
{
_gain = value;
WriteByte(Register.TIMING, (byte)((byte)_integrationTime | (byte)_gain));
}
}
/// <summary>
/// Start the manual integration.
/// </summary>
public void StartManualIntegration()
{
// We need to make sure we're on otherwise the sensor won't measure anything
Enabled = true;
_integrationTime = IntegrationTime.Manual;
WriteByte(Register.TIMING, (byte)((byte)_integrationTime | (byte)_gain | 0b0000_1000));
}
/// <summary>
/// Stop the manual integration.
/// </summary>
public void StopManualIntegration()
{
WriteByte(Register.TIMING, (byte)((byte)_integrationTime | (byte)_gain));
}
/// <summary>
/// This will set the threshold and enable the interrupt.
/// </summary>
/// <param name="low">The low threshold.</param>
/// <param name="high">The high threshold.</param>
public void SetThreshold(ushort low, ushort high)
{
WriteByte(Register.THRESHLOWLOW, (byte)(low & 0xFF));
WriteByte(Register.THRESHLOWHIGH, (byte)((low >> 8) & 0xFF));
WriteByte(Register.THRESHHIGHLOW, (byte)(high & 0xFF));
WriteByte(Register.THRESHHIGHHIGH, (byte)((high >> 8) & 0xFF));
}
/// <summary>
/// Gets or sets the interrupt Control Select.
/// </summary>
/// <remarks>Interrupts are only on Channel 0.</remarks>
public InterruptControl InterruptControl
{
get => _interruptControl;
set
{
_interruptControl = value;
WriteByte(Register.INTERRUPT, (byte)((byte)_interruptControl | (byte)_interruptPersistence));
}
}
/// <summary>
/// Gets or sets the interrupt Persistence Select.
/// </summary>
/// <remarks>Interrupts are only on Channel 0.</remarks>
public InterruptPersistence InterruptPersistence
{
get => _interruptPersistence;
set
{
_interruptPersistence = value;
WriteByte(Register.INTERRUPT, (byte)((byte)_interruptControl | (byte)_interruptPersistence));
}
}
/// <summary>
/// Get the raw data from both channels.
/// </summary>
/// <param name="channel0">Channel 0.</param>
/// <param name="channel1">Channel 1.</param>
public void GetRawChannels(out ushort channel0, out ushort channel1)
{
channel0 = ReadWord(Register.DATA0LOW | Register.CLEAR);
channel1 = ReadByte(Register.DATA1LOW);
}
/// <summary>
/// Get the raw luminosity for a specific channel.
/// </summary>
/// <param name="channel">The channel to get the luminosity.</param>
/// <returns>The raw luminosity from the ADC.</returns>
public ushort GetRawLuminosity(Channel channel)
{
GetRawChannels(out ushort channel0, out ushort channel1);
switch (channel)
{
case Channel.VisibleInfrared:
return channel0;
case Channel.Infrared:
return channel1;
case Channel.Visible:
return (channel0 > channel1) ? (ushort)(channel0 - channel1) : (ushort)0;
default:
throw new ArgumentException($"Wrong channel");
}
}
/// <summary>
/// Measure the illuminance, will wait for the measurement based on integration time.
/// </summary>
/// <returns>The illuminance.</returns>
[Telemetry("Illuminance")]
public Illuminance MeasureAndGetIlluminance()
{
// We need to make sure we're on otherwise the sensor won't measure anything
Enabled = true;
// We need to write the timing timer to start a measurement
WriteByte(Register.TIMING, (byte)((byte)_integrationTime | (byte)_gain));
switch (_integrationTime)
{
case IntegrationTime.Integration13_7Milliseconds:
Thread.Sleep(14);
break;
case IntegrationTime.Integration101Milliseconds:
Thread.Sleep(101);
break;
case IntegrationTime.Integration402Milliseconds:
Thread.Sleep(402);
break;
case IntegrationTime.Manual:
default:
throw new ArgumentOutOfRangeException($"Only non manual integration time are supported");
}
return GetIlluminance();
}
/// <summary>
/// Get the calculated Illuminance. Default range is Lux.
/// </summary>
/// <returns>The illuminance.</returns>
/// <remarks>If you have used the manual integration, you won't be able to use this formula.</remarks>
public Illuminance GetIlluminance()
{
// See documentation page 23 and following for the constant and the calculation
// Integration time scaling
// scale channel values by 2^10
const int ChannelScale = 1024;
// 322/11 * 2^CH_SCALE
const int ChannelScale13_7 = 0x7517;
// 322/81 * 2^CH_SCALE
const int ChannelScale101 = 0x0fe7;
GetRawChannels(out ushort ch0, out ushort ch1);
if (ch0 == 0)
{
return Illuminance.FromLux(0);
}
double ratio = ch1 / ch0;
// Calculate the integration and scaling
double scale = 0;
switch (_integrationTime)
{
case IntegrationTime.Integration13_7Milliseconds:
scale = ChannelScale13_7;
break;
case IntegrationTime.Integration101Milliseconds:
scale = ChannelScale101;
break;
case IntegrationTime.Integration402Milliseconds:
case IntegrationTime.Manual:
default:
scale = ChannelScale;
break;
}
scale = _gain == Gain.Normal ? scale : scale * 16;
double channel0 = (ch0 * scale) / ChannelScale;
double channel1 = (ch1 * scale) / ChannelScale;
double lux = 0;
if (_packageType == PackageType.PackageCs)
{
if (ratio <= 0.52)
{
lux = (0.0315 * channel0) - (0.0593 * channel0 * Math.Pow(ratio, 1.4));
}
else if ((ratio > 0.52) && (ratio <= 0.65))
{
lux = (0.0229 * channel0) - (0.0291 * channel1);
}
else if ((ratio > 0.65) && (ratio <= 0.80))
{
lux = (0.0157 * channel0) - (0.0180 * channel1);
}
else if ((ratio > 0.80) && (ratio <= 1.30))
{
lux = (0.00338 * channel0) - (0.00260 * channel1);
}
else if (ratio > 1.30)
{
lux = 0;
}
}
else
{
if (ratio <= 0.50)
{
lux = (0.0304 * channel0) - (0.062 * channel0 * Math.Pow(ratio, 1.4));
}
else if ((ratio > 0.50) && (ratio <= 0.61))
{
lux = (0.0224 * channel0) - (0.031 * channel1);
}
else if ((ratio > 0.61) && (ratio <= 0.80))
{
lux = (0.0128 * channel0) - (0.0153 * channel1);
}
else if ((ratio > 0.80) && (ratio <= 1.30))
{
lux = (0.00146 * channel0) - (0.00112 * channel1);
}
else if (ratio > 1.30)
{
lux = 0;
}
}
return Illuminance.FromLux(lux);
}
private byte ReadByte(Register reg)
{
_i2cDevice.WriteByte((byte)(Register.CMD | reg));
return _i2cDevice.ReadByte();
}
private ushort ReadWord(Register reg)
{
SpanByte toRead = new byte[2];
_i2cDevice.WriteByte((byte)(Register.CMD | Register.WORD | reg));
_i2cDevice.Read(toRead);
return BinaryPrimitives.ReadUInt16LittleEndian(toRead);
}
private void WriteByte(Register reg, byte toWrite)
{
SpanByte toSend = new byte[2]
{
(byte)(Register.CMD | reg),
toWrite
};
_i2cDevice.Write(toSend);
}
/// <inheritdoc/>
public void Dispose()
{
_i2cDevice?.Dispose();
}
}
}