|
| 1 | +# Complete example |
| 2 | + |
| 3 | +We're going to write a dataframe-agnostic "Standard Scaler". This class will have |
| 4 | +`fit` and `transform` methods (like `scikit-learn` transformers), and will work |
| 5 | +agnosstically for pandas and Polars. |
| 6 | + |
| 7 | +We'll need to write two methods: |
| 8 | + |
| 9 | +- `fit`: find the mean and standard deviation for each column from a given training set; |
| 10 | +- `transform`: scale a given dataset with the mean and standard deviations calculated |
| 11 | + during `fit`. |
| 12 | + |
| 13 | +The `fit` method is a bit complicated, so let's start with `transform`. |
| 14 | +Suppose we've already calculated the mean and standard deviation of each column, and have |
| 15 | +stored them in attributes `self.means` and `self.std_devs`. |
| 16 | + |
| 17 | +## Transform method |
| 18 | + |
| 19 | +The general strategy will be: |
| 20 | + |
| 21 | +1. Initialise a Narwhals DataFrame by passing your dataframe to `nw.DataFrame`. |
| 22 | +2. Express your logic using the subset of the Polars API supported by Narwhals. |
| 23 | +3. If you need to return a dataframe to the user in its original library, call `narwhals.to_native`. |
| 24 | + |
| 25 | +```python |
| 26 | +import narwhals as nw |
| 27 | + |
| 28 | +class StandardScalar: |
| 29 | + def transform(self, df): |
| 30 | + df = nw.DataFrame(df) |
| 31 | + df = df.with_columns( |
| 32 | + (nw.col(col) - self._means[col]) / self._std_devs[col] |
| 33 | + for col in df.columns |
| 34 | + ) |
| 35 | + return nw.to_native(df) |
| 36 | +``` |
| 37 | + |
| 38 | +Note that all the calculations here can stay lazy if the underlying library permits it. |
| 39 | +For Polars, the return value is a `polars.LazyFrame` - it is the caller's responsibility to |
| 40 | +call `.collect()` on the result if they want to materialise its values. |
| 41 | + |
| 42 | +## Fit method |
| 43 | + |
| 44 | +Unlike the `transform` method, `fit` cannot stay lazy, as we need to compute concrete values |
| 45 | +for the means and standard deviations. |
| 46 | + |
| 47 | +To be able to get `Series` out of our `DataFrame`, we'll need the `DataFrame` to be an |
| 48 | +eager one, as Polars doesn't have a concept of lazy `Series`. |
| 49 | +To do that, when we instantiate our `narwhals.DataFrame`, we pass `features=['eager']`, |
| 50 | +which lets us access eager-only features. |
| 51 | + |
| 52 | +```python |
| 53 | +import narwhals as nw |
| 54 | + |
| 55 | +class StandardScalar: |
| 56 | + def fit(self, df): |
| 57 | + df = nw.DataFrame(df, features=['eager']) |
| 58 | + self._means = {df[col].mean() for col in df.columns} |
| 59 | + self._std_devs = {df[col].std() for col in df.columns} |
| 60 | +``` |
| 61 | + |
| 62 | +## Putting it all together |
| 63 | + |
| 64 | +Here is our dataframe-agnostic standard scaler: |
| 65 | +```python exec="1" source="above" session="tute-ex1" |
| 66 | +import narwhals as nw |
| 67 | + |
| 68 | +class StandardScaler: |
| 69 | + def fit(self, df): |
| 70 | + df = nw.DataFrame(df, features=["eager"]) |
| 71 | + self._means = {col: df[col].mean() for col in df.columns} |
| 72 | + self._std_devs = {col: df[col].std() for col in df.columns} |
| 73 | + |
| 74 | + def transform(self, df): |
| 75 | + df = nw.DataFrame(df) |
| 76 | + df = df.with_columns( |
| 77 | + (nw.col(col) - self._means[col]) / self._std_devs[col] |
| 78 | + for col in df.columns |
| 79 | + ) |
| 80 | + return nw.to_native(df) |
| 81 | +``` |
| 82 | + |
| 83 | +Next, let's try running it. Notice how, as `transform` doesn't use |
| 84 | +`features=['lazy']`, we can pass a `polars.LazyFrame` to it without issues! |
| 85 | + |
| 86 | +=== "pandas" |
| 87 | + ```python exec="true" source="material-block" result="python" session="tute-ex1" |
| 88 | + import pandas as pd |
| 89 | + |
| 90 | + df_train = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 7]}) |
| 91 | + df_test = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 7]}) |
| 92 | + scaler = StandardScaler() |
| 93 | + scaler.fit(df_train) |
| 94 | + print(scaler.transform(df_test)) |
| 95 | + ``` |
| 96 | + |
| 97 | +=== "Polars" |
| 98 | + ```python exec="true" source="material-block" result="python" session="tute-ex1" |
| 99 | + import polars as pl |
| 100 | + |
| 101 | + df_train = pl.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 7]}) |
| 102 | + df_test = pl.LazyFrame({'a': [1, 2, 3], 'b': [4, 5, 7]}) |
| 103 | + scaler = StandardScaler() |
| 104 | + scaler.fit(df_train) |
| 105 | + print(scaler.transform(df_test).collect()) |
| 106 | + ``` |
0 commit comments