-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrent_cycles.py
129 lines (88 loc) · 3.71 KB
/
trent_cycles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import random as rnd
import matplotlib.pyplot as plt
import numpy as np
import pickle
N = 1000 # number of agents
msc_all = 500 # number of Monte Carlo steps
q_a = 8 # number of agents we choose if chosen agent is anticonformist
q_c = 2 # number of agents we choose if chosen agent is conformist
p = 0.2 # propability that the agent is always anticonformist
c = 0.1 # initial concentration of agents with a positive opinion
beta = 0.3 #The probability of rewiring each edge
k = [30, 50, 80, 120] #k nearest neighbors
def opinions (k, beta):
with open('opinions.txt', 'r') as file_op:
opinions = [int(line.strip()) for line in file_op]
with open('behaviours.txt', 'r') as file_beh:
behaviours = [int(line.strip()) for line in file_beh]
time = 0
ones_total = list()
minus_total = list()
G = pickle.load(open(f'graph{k}.pickle', 'rb'))
while time <= msc_all:
ones = list()
minus = list()
for t in range(N):
i = rnd.randint(0, N-1)
rnd_agent_bh = behaviours[i]
neighbours = list(G.neighbors(i))
if rnd_agent_bh == -1:
rnd_neigh = rnd.sample(neighbours, q_a)
neigh_ops = list()
for l in range(len(rnd_neigh)):
neigh_ops.append(opinions[rnd_neigh[l]])
if len(set(neigh_ops)) == 1:
if neigh_ops[0] == 1:
opinions[i] = -1
elif neigh_ops[0] == -1:
opinions[i] = 1
count_ones = opinions.count(1)
count_minus_ones = opinions.count(-1)
ones.append(count_ones)
minus.append(count_minus_ones)
else:
count_ones = opinions.count(1)
count_minus_ones = opinions.count(-1)
ones.append(count_ones)
minus.append(count_minus_ones)
if rnd_agent_bh == 1:
rnd_neigh = rnd.sample(neighbours, q_c)
neigh_ops = list()
for l in range(len(rnd_neigh)):
neigh_ops.append(opinions[rnd_neigh[l]])
if len(set(neigh_ops)) == 1:
if neigh_ops[0] == 1:
opinions[i] = 1
else:
opinions[i] = -1
count_ones = opinions.count(1)
count_minus_ones = opinions.count(-1)
ones.append(count_ones)
minus.append(count_minus_ones)
else:
count_ones = opinions.count(1)
count_minus_ones = opinions.count(-1)
ones.append(count_ones)
minus.append(count_minus_ones)
ones_total.append(np.mean(ones))
minus_total.append(np.mean(minus))
time = time +1
times = list(range(1, len(ones_total)+1))
positive_conc = list()
for i in ones_total:
positive_conc.append(i/N)
negative_conc = list()
for i in minus_total:
negative_conc.append(i/N)
plt.figure(figsize=(10, 7))
plt.plot(times, positive_conc, negative_conc)
plt.xlabel('MCS Steps')
plt.ylabel('c(t)')
plt.legend(["Positive", "Negative"])
plt.suptitle("Concentrations of positive and negative opinions")
plt.title(f'Watts-Strogatz - Graph parameters - K = {k}, beta = {beta}, N = {N}\n '
f'Algorithm parameters - Q_A = {q_a}, Q_C = {q_c}, p = {p}, c = {c}')
plt.show()
for amt in k:
for i in range(6):
opinions(amt, beta)