-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions_metabodirect.py
302 lines (188 loc) · 8.6 KB
/
functions_metabodirect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#
# Nathalia Graf Grachet
# Functions for processing of raw output from Formularity
#
import os
import datetime
import pandas as pd
import numpy as np
from statsmodels.stats.weightstats import DescrStatsW
# --------------------------------------------------------------
def filter_C13(df):
""" Filter predicted formulas with 13C.
Returns filtered df and n excluded """
shape_i = df.shape[0]
df = df[df['C13'] == 0]
df = df.reset_index(drop=True)
shape_f = df.shape[0]
n_excluded = shape_i - shape_f
return df, n_excluded
# --------------------------------------------------------------
def filter_mz(df, to_filter=True, min_mz=None, max_mz=None):
""" Optional filtering. Filter between a range of m/z """
if to_filter:
min_mz, max_mz = 200, 900
df = df[df['Mass'].between(min_mz, max_mz)]
df = df.reset_index(drop=True)
return df
# --------------------------------------------------------------
def filter_error_ppm(df, err_range = 0.5):
""" Filter based on error range of - err_range to + err_range """
df = df[df['Error_ppm'].between(-err_range, err_range)]
return df
# --------------------------------------------------------------
def calculate_ratios(df):
""" Calculate ratios of O:C and H:C and indices of NOSC, GFE, DBE, AI, et al. """
df[['C', 'H', 'O', 'N', 'S', 'P']] = df[['C', 'H', 'O', 'N', 'S',
'P']].replace(np.nan, 0)
df[['C', 'H', 'O', 'N', 'S', 'P']] = df[['C', 'H', 'O', 'N', 'S',
'P']].astype(float)
df['OC'] = df['O'] / df['C']
df['HC'] = df['H'] / df['C']
# Thermodynamics
df['NOSC'] = -((4 * df['C'] + df['H'] - 3 * df['N'] - 2 * df['O'] +
5 * df['P'] - 2 * df['S']) / (df['C'])) + 4
df['GFE'] = -(28.5 * df['NOSC']) + 60.3
# Koch, B. P. and Dittmar, T. doi:10.1002/rcm.2386, 2006.
df['DBE'] = 1 + 0.5 * (2 * df['C'] - df['H'] + df['N'] + df['P'])
df['DBE_O'] = (1 + 0.5 *
(2 * df['C'] - df['H'] + df['N'] + df['P'])) - df['O']
df['AI'] = (1 + df['C'] - df['O'] - df['S'] -
((df['H'] + df['P'] + df['N']) * 0.5)) / (
df['C'] - df['O'] - df['S'] - df['N'] - df['P'])
df['AI_mod'] = (1 + df['C'] - (df['O'] * 0.5) - df['S'] - (
(df['H'] + df['P'] + df['N']) * 0.5)) / (df['C'] - (df['O'] * 0.5) -
df['S'] - df['N'] - df['P'])
df['DBE_AI'] = 1 + df['C'] - df['O'] - df['S'] - (
0.5 * (df['H'] + df['N'] + df['P']))
list_new_columns = [
'OC', 'HC', 'NOSC', 'GFE', 'DBE', 'DBE_O', 'AI', 'AI_mod', 'DBE_AI'
]
df[list_new_columns] = df[list_new_columns].replace([-np.inf, +np.inf],
[0, 0])
list_DBEs = ['DBE', 'DBE_O', 'DBE_AI']
df[list_DBEs] = df[list_DBEs].replace(1, np.nan)
df = molecular_formula(df)
return df
# --------------------------------------------------------------
def calculate_classes(df):
""" Calculate compound classes based on M. Tfaily boundaries """
boundaries = [
(df['OC'].between(0, 0.3)) & (df['HC'].between(1.5, 2.5)),
(df['OC'].between(0, 0.125)) & (df['HC'].between(0.8, 1.5)),
(df['OC'].between(0, 0.95)) & (df['HC'].between(0.2, 0.8)),
(df['OC'].between(0.3, 0.55)) & (df['HC'].between(1.5, 2.3)),
(df['OC'].between(0.55, 0.7)) & (df['HC'].between(1.5, 2.2)),
(df['OC'].between(0.7, 1.5)) & (df['HC'].between(1.5, 2.5)),
(df['OC'].between(0.125, 0.65)) & (df['HC'].between(0.8, 1.5)),
(df['OC'].between(0.65, 1.1)) & (df['HC'].between(0.8, 1.5))
]
choices = [
'Lipid', 'Unsaturated hydrocarbon', 'Condensed hydrocarbon', 'Protein',
'Amino sugar', 'Carbohydrate', 'Lignin', 'Tannin'
]
df['Class'] = np.select(boundaries, choices, default='Other')
df = reorder_columns(df)
return df
# --------------------------------------------------------------
def get_list_samples(df):
""" Returns a list of sample names and a list of Formularity columns """
from_Formularity = [
'Mass', 'C', 'H', 'O', 'N', 'C13', 'S', 'P', 'Na', 'El_comp', 'Class',
'NeutralMass', 'Error_ppm', 'Candidates'
]
calculated_indices = [
'MolecularFormula', 'OC', 'HC', 'NOSC', 'GFE', 'DBE', 'DBE_O', 'AI', 'AI_mod', 'DBE_AI'
]
from_Formularity.extend(calculated_indices)
extended_list = from_Formularity
list_samples = [x for x in df.columns.to_list() if x not in extended_list]
return list_samples
# --------------------------------------------------------------
def reorder_columns(df):
""" Reorder columns so indices are not in the end of the """
from_Formularity = [
'Mass', 'C', 'H', 'O', 'N', 'C13', 'S', 'P', 'Na', 'El_comp', 'Class',
'NeutralMass', 'Error_ppm', 'Candidates'
]
calculated_indices = [
'MolecularFormula', 'OC', 'HC', 'NOSC', 'GFE', 'DBE', 'DBE_O', 'AI', 'AI_mod', 'DBE_AI'
]
from_Formularity.extend(calculated_indices)
samples_list = get_list_samples(df)
correct_order = from_Formularity
correct_order.extend(samples_list)
df = df[correct_order]
return df
# --------------------------------------------------------------
def molecular_formula(df):
""" Get a molecular formula """
elements = df[['C', 'H', 'O', 'N', 'S', 'P']]
elements = elements.applymap(int)
elements = elements.applymap(str)
for col in elements.columns.to_list():
elements[col] = col + elements[col]
for col in elements.columns.to_list():
elements[col] = elements[col].replace(f"{col}1", col)
elements[col] = elements[col].replace(f"{col}0", '')
df['MolecularFormula'] = elements['C'] + elements['H'] + elements[
'O'] + elements['N'] + elements['S'] + elements['P']
return df
# --------------------------------------------------------------
def normalize_intensities(df):
""" Normalize intensities (divide by the max value) """
samples = get_list_samples(df)
for col in samples:
max_value = df[col].max()
df[col] = df[col]/max_value
return df
# --------------------------------------------------------------
def get_summary(df, on = 'Class'):
""" Get summary of class or elemental composition """
samples = get_list_samples(df)
samples.append(on)
t = df[samples]
t = t.melt(id_vars = [on], var_name = 'SampleID', value_name = 'NormIntensity')
t = t[t['NormIntensity']>0].reset_index(drop=True)
comp = t.groupby(['SampleID', on
]).size().reset_index().rename(columns={ 0 : 'Count'})
comp = pd.pivot_table(comp, index = 'SampleID', values='Count', columns=on)
# comp['Total_Peaks_with_Formula'] = comp.sum(axis=1)
comp_p = round(comp.div(comp.sum(axis=1), axis=0)*100,2).reset_index()
# comp_p = comp_p.melt(id_vars = ['SampleID'], var_name = on, value_name = 'Percent')
return comp_p
# --------------------------------------------------------------
def get_summary_indices(df, on='NOSC'):
""" Get the summary stats for the indices: median, mean, std, weighted mean and weighted std """
samples = get_list_samples(df)
samples.append(on)
t = df[samples]
t = t.melt(id_vars = [on], var_name = 'SampleID', value_name = 'NormIntensity')
t = t[t['NormIntensity']>0].reset_index(drop=True)
t_agg = t.groupby(['SampleID']).agg({on : ['median', 'mean', 'std']})
t_agg.columns = t_agg.columns.map('_'.join)
t_agg = t_agg.reset_index()
t_agg[[on+'_w_mean', on+'_w_std']] = ''
for sample in t['SampleID'].unique():
# print(sample)
temp = t[t['SampleID']==sample]
wdf = DescrStatsW(temp[on], weights=temp['NormIntensity'])
t_agg.loc[t_agg['SampleID']==sample , on+'_w_mean'] = wdf.mean
t_agg.loc[t_agg['SampleID']==sample , on+'_w_std'] = wdf.std
return t_agg
# --------------------------------------------------------------
def get_matrix(df):
""" Make a matrix for multivariate analysis like NMDS, PCA.
Matrix based on m/z and not molec formula """
samples = get_list_samples(df)
samples.append('Mass')
t = df[samples].set_index('Mass').rename(columns={'index':'SampleID'})
t = t.replace(0, np.nan)
n_samples = np.ceil((len(samples)-1)/5)
# print(t.shape)
t = t.dropna(axis=0, thresh = n_samples)
# print(t.shape)
t = t.replace(np.nan, 0)
matrix = t.copy()
return matrix
# --------------------------------------------------------------