-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathship_detector.py
146 lines (126 loc) · 6.08 KB
/
ship_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import tensorflow as tf
import numpy as np
import os
import sys
import time
import cv2
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
# Helper code
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
def gen():
i=1
while i<10:
yield (b'--frame\r\n'b'Content-Type: text/plain\r\n\r\n'+str(i)+b'\r\n')
i+=1
def get_frame():
video = sys.argv[1] # video file path, ex) *.mp4
# video = "rtsp://192.168.0.128:8091/test1.mp4" # To artik710
# video = "rtsp://192.168.0.145:8091/test1.mp4" # To raspberryPi3
cap = cv2.VideoCapture(video)
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# Object detection imports
# Here are the imports from the object detection module.
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# Model preparation
MODEL_NAME = 'object_detection/export_models/inference_graph_rfcn_resnet101_30000'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('object_detection/data', 'object-detection.pbtxt')
NUM_CLASSES = 1
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Detection
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
prevTime = 0 # Frame time variable
i=1
while True:
ret, image_np = cap.read()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
min_score_thresh=.5,
line_thickness=2)
################### Data analysis ###################
final_score = np.squeeze(scores) # scores
r_count = 0 # counting
r_score = [] # temp score, <class 'numpy.ndarray'>
final_category = np.array([category_index.get(i) for i in classes[0]]) # category
r_category = np.array([]) # temp category
for i in range(100):
if scores is None or final_score[i] > 0.5:
r_count = r_count + 1
r_score = np.append(r_score, final_score[i])
r_category = np.append(r_category, final_category[i])
if r_count > 0:
for i in range(len(r_score)): # socre array`s length
data = "Object Num: {} || Category: {} || Score: {}%".format(i + 1, r_category[i]['name'], 100 * r_score[i])
cv2.putText(image_np, data, (5, 60), cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0))
final_boxes = np.squeeze(boxes)[i] # ymin, xmin, ymax, xmax
xmin = final_boxes[1]
ymin = final_boxes[0]
xmax = final_boxes[3]
ymax = final_boxes[2]
location_x = (xmax + xmin) / 2
location_y = (ymax + ymin) / 2
data2 = "Location (x: {}, y: {})".format(location_x, location_y)
cv2.putText(image_np, "Location (x: {}, y: {})".format(location_x, location_y), (5, 80), cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0))
else:
cv2.putText(image_np, "Not Detect", (5, 60), cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0))
#####################################################
# Frame
curTime = time.time()
sec = curTime - prevTime
prevTime = curTime
fps = 1 / (sec)
str = "FPS : %0.1f" % fps
cv2.putText(image_np, str, (5, 40), cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0))
# Trained Model Name
model_name = MODEL_NAME.split('/')[2]
cv2.putText(image_np, model_name, (5, 20), cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0))
imgencode=cv2.imencode('.jpg',image_np)[1]
stringData=imgencode.tostring()
yield (b'--frame\r\n'
b'Content-Type: text/plain\r\n\r\n'+stringData+b'\r\n')
i+=1
del(cap)