-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy path0909-snakes-and-ladders.cpp
63 lines (57 loc) · 2.43 KB
/
0909-snakes-and-ladders.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class Solution {
public:
// Function to get the row and column index of a position on the board
std::pair<int, int> get_indexes_of(int pos, std::vector<std::vector<int>>& grid)
{
int grid_w = grid.front().size();
int grid_h = grid.size();
int r = (pos - 1) / grid_w;
int c = (pos - 1) % grid_w;
// Adjust column index for alternating rows
c = r % 2 == 0 ? c : grid_w - (c + 1);
// Adjust row index to start from the bottom of the grid
r = grid_h - (r + 1);
return std::make_pair(r, c);
}
// Function to find the minimum number of moves to reach the last cell in Snakes and Ladders
// using BFS (Breadth-First Search).
// BFS lets us find the shortest path in an unweighted graph.
int snakesAndLadders(std::vector<std::vector<int>>& board)
{
int board_h = board.size();
int board_w = board.front().size();
std::vector<bool> visited((board_h * board_w) + 1, false);
std::vector<int> dist((board_h * board_w) + 1, -1);
std::deque<int> q;
q.push_back(1);
visited[1] = true;
dist[1] = 0;
while (!q.empty())
{
int curr_pos = q.front();
q.pop_front();
// If we reach the last cell, return the distance
if (curr_pos == board_h * board_w) return dist[board_h * board_w];
// Check the next 6 possible moves
for (size_t i = 1; i <= 6; ++i)
{
int next_pos = curr_pos + i;
if (next_pos > board_h * board_w) continue;
std::pair<int, int> next_idx = get_indexes_of(next_pos, board);
// If there's a snake or ladder, move to the destination cell
if (board[next_idx.first][next_idx.second] != -1)
next_pos = board[next_idx.first][next_idx.second];
// If the next position is not visited, mark it and update the distance
if (!visited[next_pos])
{
visited[next_pos] = true;
q.push_back(next_pos);
// dist[next_pos] indicates the number of minimum moves to reach the next position
dist[next_pos] = dist[curr_pos] + 1;
}
}
}
// If we can't reach the last cell, return -1
return -1;
}
};