1
1
/**
2
- * https://leetcode.com/problems/generate-parentheses
2
+ * DFS
3
3
* Time O(((4^N) / (N * SQRT(N)))) | Space O(((4^N) / (N * SQRT(N))))
4
4
* Time O(2^N) | Space O(2^N)
5
+ * https://leetcode.com/problems/generate-parentheses
5
6
* @param {number } n
6
7
* @return {string[] }
7
8
*/
8
- var generateParenthesis = ( n ) => dfs ( n ) ; /* Time O(2^N) | Space O(2^N) */
9
+ var generateParenthesis = ( n ) => dfs ( n ) ;
9
10
10
11
const dfs = ( n , combos = [ ] , open = 0 , close = 0 , path = [ ] ) => {
11
- const isBaseCase = path . length === ( n * 2 ) ;
12
+ const isBaseCase = ( path . length === ( n * 2 ) ) ;
12
13
if ( isBaseCase ) {
13
14
combos . push ( path . join ( '' ) ) ; /* Space O(N + N) */
14
15
@@ -25,35 +26,36 @@ const dfs = (n, combos = [], open = 0, close = 0, path = []) => {
25
26
}
26
27
27
28
const backTrackOpen = ( n , combos , open , close , path ) => {
28
- path . push ( '(' ) ; /* | Space O(N) */
29
+ path . push ( '(' ) ; /* Space O(N) */
29
30
dfs ( n , combos , ( open + 1 ) , close , path ) ; /* Time O(2^N) | Space O(2^N) */
30
31
path . pop ( ) ;
31
32
}
32
33
33
34
const backTrackClose = ( n , combos , open , close , path ) => {
34
- path . push ( ')' ) ; /* | Space O(N) */
35
+ path . push ( ')' ) ; /* Space O(N) */
35
36
dfs ( n , combos , open , ( close + 1 ) , path ) ; /* Time O(2^N) | Space O(2^N) */
36
37
path . pop ( ) ;
37
38
}
38
39
39
40
/**
40
- * https://leetcode.com/problems/generate-parentheses
41
+ * BFS
41
42
* Time O(((4^N) / (N * SQRT(N)))) | Space O(((4^N) / (N * SQRT(N))))
42
43
* Time O(2^N) | Space O(2^N)
44
+ * https://leetcode.com/problems/generate-parentheses
43
45
* @param {number } n
44
46
* @return {string[] }
45
47
*/
46
- var generateParenthesis = ( n ) => bfs ( n ) ; /* Time O(2^N) | Space O(2^N) */
48
+ var generateParenthesis = ( n ) => bfs ( n ) ;
47
49
48
- const bfs = ( n , queue , combos = [ ] ) => {
50
+ const bfs = ( n , combos = [ ] ) => {
49
51
const queue = new Queue ( [ [ '' , 0 , 0 ] ] ) ;
50
52
51
53
while ( ! queue . isEmpty ( ) ) { /* Time O(2^N) */
52
54
const [ str , open , close ] = queue . dequeue ( ) ;
53
-
54
- const isBaseCase = ( open === n ) && ( close === n ) ;
55
+
56
+ const isBaseCase = ( ( open === n ) && ( close === n ) ) ;
55
57
if ( isBaseCase ) {
56
- combos . push ( str ) ; /* Space O(N) */
58
+ combos . push ( str ) ; /* Space O(N) */
57
59
58
60
continue ;
59
61
}
@@ -69,31 +71,28 @@ const bfs = (n, queue, combos = []) => {
69
71
}
70
72
71
73
/**
72
- * https://leetcode.com/problems/generate-parentheses
74
+ * DFS
73
75
* Time O(((4^N) / (N * SQRT(N)))) | Space O(((4^N) / (N * SQRT(N))))
74
76
* Time O(2^N) | Space O(2^N)
77
+ * https://leetcode.com/problems/generate-parentheses
75
78
* @param {number } n
76
79
* @return {string[] }
77
80
*/
78
81
var generateParenthesis = ( n , combos = [ ] ) => {
79
- const isBaseCase = n === 0 ;
82
+ const isBaseCase = ( n === 0 ) ;
80
83
if ( isBaseCase ) {
81
- combos . push ( '' ) ; /* | Space O(N) */
84
+ combos . push ( '' ) ;
82
85
83
- return combos ;
86
+ return combos
84
87
}
85
88
86
- return closureNumber ( n , combos ) ; /* Time O(2^N) | Space O(2^N) */
87
- }
88
-
89
- const closureNumber = ( n , combos ) => {
90
- for ( let c = 0 ; c < n ; c ++ ) { /* Time O(N) */
91
- for ( const left of generateParenthesis ( c ) ) { /* Time O(2^N) | Space O(2^N) */
92
- for ( const right of generateParenthesis ( ( ( n - 1 ) - c ) ) ) { /* Time O(2^N) | Space O(2^N) */
93
- combos . push ( `(${ left } )${ right } ` ) ; /* | Space O(N) */
89
+ for ( let c = 0 ; ( c < n ) ; c ++ ) {
90
+ for ( const left of generateParenthesis ( c ) ) {
91
+ for ( const right of generateParenthesis ( ( ( n - 1 ) - c ) ) ) {
92
+ combos . push ( `(${ left } )${ right } ` ) ;
94
93
}
95
94
}
96
95
}
97
96
98
97
return combos
99
- }
98
+ }
0 commit comments