|
| 1 | +## 1. Sorting |
| 2 | + |
| 3 | +::tabs-start |
| 4 | + |
| 5 | +```python |
| 6 | +class Solution: |
| 7 | + def eliminateMaximum(self, dist: List[int], speed: List[int]) -> int: |
| 8 | + minReach = [math.ceil(d / s) for d, s in zip(dist, speed)] |
| 9 | + minReach.sort() |
| 10 | + |
| 11 | + res = 0 |
| 12 | + for minute in range(len(minReach)): |
| 13 | + if minute >= minReach[minute]: |
| 14 | + return res |
| 15 | + res += 1 |
| 16 | + |
| 17 | + return res |
| 18 | +``` |
| 19 | + |
| 20 | +```java |
| 21 | +public class Solution { |
| 22 | + public int eliminateMaximum(int[] dist, int[] speed) { |
| 23 | + int n = dist.length; |
| 24 | + int[] minReach = new int[n]; |
| 25 | + |
| 26 | + for (int i = 0; i < n; i++) { |
| 27 | + minReach[i] = (int) Math.ceil((double) dist[i] / speed[i]); |
| 28 | + } |
| 29 | + |
| 30 | + Arrays.sort(minReach); |
| 31 | + |
| 32 | + int res = 0; |
| 33 | + for (int minute = 0; minute < n; minute++) { |
| 34 | + if (minute >= minReach[minute]) { |
| 35 | + return res; |
| 36 | + } |
| 37 | + res++; |
| 38 | + } |
| 39 | + |
| 40 | + return res; |
| 41 | + } |
| 42 | +} |
| 43 | +``` |
| 44 | + |
| 45 | +```cpp |
| 46 | +class Solution { |
| 47 | +public: |
| 48 | + int eliminateMaximum(vector<int>& dist, vector<int>& speed) { |
| 49 | + int n = dist.size(); |
| 50 | + vector<int> minReach(n); |
| 51 | + |
| 52 | + for (int i = 0; i < n; i++) { |
| 53 | + minReach[i] = ceil((double)dist[i] / speed[i]); |
| 54 | + } |
| 55 | + |
| 56 | + sort(minReach.begin(), minReach.end()); |
| 57 | + |
| 58 | + int res = 0; |
| 59 | + for (int minute = 0; minute < n; minute++) { |
| 60 | + if (minute >= minReach[minute]) { |
| 61 | + return res; |
| 62 | + } |
| 63 | + res++; |
| 64 | + } |
| 65 | + |
| 66 | + return res; |
| 67 | + } |
| 68 | +}; |
| 69 | +``` |
| 70 | +
|
| 71 | +```javascript |
| 72 | +class Solution { |
| 73 | + /** |
| 74 | + * @param {number[]} dist |
| 75 | + * @param {number[]} speed |
| 76 | + * @return {number} |
| 77 | + */ |
| 78 | + eliminateMaximum(dist, speed) { |
| 79 | + let n = dist.length; |
| 80 | + let minReach = new Array(n); |
| 81 | +
|
| 82 | + for (let i = 0; i < n; i++) { |
| 83 | + minReach[i] = Math.ceil(dist[i] / speed[i]); |
| 84 | + } |
| 85 | +
|
| 86 | + minReach.sort((a, b) => a - b); |
| 87 | +
|
| 88 | + let res = 0; |
| 89 | + for (let minute = 0; minute < n; minute++) { |
| 90 | + if (minute >= minReach[minute]) { |
| 91 | + return res; |
| 92 | + } |
| 93 | + res++; |
| 94 | + } |
| 95 | +
|
| 96 | + return res; |
| 97 | + } |
| 98 | +} |
| 99 | +``` |
| 100 | + |
| 101 | +::tabs-end |
| 102 | + |
| 103 | +### Time & Space Complexity |
| 104 | + |
| 105 | +* Time complexity: $O(n \log n)$ |
| 106 | +* Space complexity: $O(n)$ |
| 107 | + |
| 108 | +--- |
| 109 | + |
| 110 | +## 2. Sorting (Overwrting Input Array) |
| 111 | + |
| 112 | +::tabs-start |
| 113 | + |
| 114 | +```python |
| 115 | +class Solution: |
| 116 | + def eliminateMaximum(self, dist: List[int], speed: List[int]) -> int: |
| 117 | + for i in range(len(dist)): |
| 118 | + dist[i] = math.ceil(dist[i] / speed[i]) |
| 119 | + |
| 120 | + dist.sort() |
| 121 | + for minute in range(len(dist)): |
| 122 | + if minute >= dist[minute]: |
| 123 | + return minute |
| 124 | + |
| 125 | + return len(dist) |
| 126 | +``` |
| 127 | + |
| 128 | +```java |
| 129 | +public class Solution { |
| 130 | + public int eliminateMaximum(int[] dist, int[] speed) { |
| 131 | + int n = dist.length; |
| 132 | + for (int i = 0; i < n; i++) { |
| 133 | + dist[i] = (int) Math.ceil((double) dist[i] / speed[i]); |
| 134 | + } |
| 135 | + |
| 136 | + Arrays.sort(dist); |
| 137 | + for (int minute = 0; minute < n; minute++) { |
| 138 | + if (minute >= dist[minute]) { |
| 139 | + return minute; |
| 140 | + } |
| 141 | + } |
| 142 | + |
| 143 | + return n; |
| 144 | + } |
| 145 | +} |
| 146 | +``` |
| 147 | + |
| 148 | +```cpp |
| 149 | +class Solution { |
| 150 | +public: |
| 151 | + int eliminateMaximum(vector<int>& dist, vector<int>& speed) { |
| 152 | + int n = dist.size(); |
| 153 | + for (int i = 0; i < n; i++) { |
| 154 | + dist[i] = ceil((double)dist[i] / speed[i]); |
| 155 | + } |
| 156 | + |
| 157 | + sort(dist.begin(), dist.end()); |
| 158 | + for (int minute = 0; minute < n; minute++) { |
| 159 | + if (minute >= dist[minute]) { |
| 160 | + return minute; |
| 161 | + } |
| 162 | + } |
| 163 | + |
| 164 | + return n; |
| 165 | + } |
| 166 | +}; |
| 167 | +``` |
| 168 | + |
| 169 | +```javascript |
| 170 | +class Solution { |
| 171 | + /** |
| 172 | + * @param {number[]} dist |
| 173 | + * @param {number[]} speed |
| 174 | + * @return {number} |
| 175 | + */ |
| 176 | + eliminateMaximum(dist, speed) { |
| 177 | + let n = dist.length; |
| 178 | + for (let i = 0; i < n; i++) { |
| 179 | + dist[i] = Math.ceil(dist[i] / speed[i]); |
| 180 | + } |
| 181 | + |
| 182 | + dist.sort((a, b) => a - b); |
| 183 | + for (let minute = 0; minute < n; minute++) { |
| 184 | + if (minute >= dist[minute]) { |
| 185 | + return minute; |
| 186 | + } |
| 187 | + } |
| 188 | + |
| 189 | + return n; |
| 190 | + } |
| 191 | +} |
| 192 | +``` |
| 193 | + |
| 194 | +::tabs-end |
| 195 | + |
| 196 | +### Time & Space Complexity |
| 197 | + |
| 198 | +* Time complexity: $O(n \log n)$ |
| 199 | +* Space complexity: $O(1)$ or $O(n)$ depending on the sorting algorithm. |
| 200 | + |
| 201 | +--- |
| 202 | + |
| 203 | +## 3. Min-Heap |
| 204 | + |
| 205 | +::tabs-start |
| 206 | + |
| 207 | +```python |
| 208 | +class Solution: |
| 209 | + def eliminateMaximum(self, dist: List[int], speed: List[int]) -> int: |
| 210 | + minHeap = [] |
| 211 | + for i in range(len(dist)): |
| 212 | + heapq.heappush(minHeap, dist[i] / speed[i]) |
| 213 | + |
| 214 | + res = 0 |
| 215 | + while minHeap: |
| 216 | + if res >= heapq.heappop(minHeap): |
| 217 | + return res |
| 218 | + res += 1 |
| 219 | + |
| 220 | + return res |
| 221 | +``` |
| 222 | + |
| 223 | +```java |
| 224 | +public class Solution { |
| 225 | + public int eliminateMaximum(int[] dist, int[] speed) { |
| 226 | + PriorityQueue<Double> minHeap = new PriorityQueue<>(); |
| 227 | + for (int i = 0; i < dist.length; i++) { |
| 228 | + minHeap.add((double) dist[i] / speed[i]); |
| 229 | + } |
| 230 | + |
| 231 | + int res = 0; |
| 232 | + while (!minHeap.isEmpty()) { |
| 233 | + if (res >= minHeap.poll()) { |
| 234 | + return res; |
| 235 | + } |
| 236 | + res++; |
| 237 | + } |
| 238 | + |
| 239 | + return res; |
| 240 | + } |
| 241 | +} |
| 242 | +``` |
| 243 | + |
| 244 | +```cpp |
| 245 | +class Solution { |
| 246 | +public: |
| 247 | + int eliminateMaximum(vector<int>& dist, vector<int>& speed) { |
| 248 | + priority_queue<double, vector<double>, greater<double>> minHeap; |
| 249 | + for (int i = 0; i < dist.size(); i++) { |
| 250 | + minHeap.push((double)dist[i] / speed[i]); |
| 251 | + } |
| 252 | + |
| 253 | + int res = 0; |
| 254 | + while (!minHeap.empty()) { |
| 255 | + if (res >= minHeap.top()) { |
| 256 | + return res; |
| 257 | + } |
| 258 | + minHeap.pop(); |
| 259 | + res++; |
| 260 | + } |
| 261 | + |
| 262 | + return res; |
| 263 | + } |
| 264 | +}; |
| 265 | +``` |
| 266 | + |
| 267 | +```javascript |
| 268 | +class Solution { |
| 269 | + /** |
| 270 | + * @param {number[]} dist |
| 271 | + * @param {number[]} speed |
| 272 | + * @return {number} |
| 273 | + */ |
| 274 | + eliminateMaximum(dist, speed) { |
| 275 | + const minHeap = new MinPriorityQueue(); |
| 276 | + for (let i = 0; i < dist.length; i++) { |
| 277 | + minHeap.enqueue(dist[i] / speed[i]); |
| 278 | + } |
| 279 | + |
| 280 | + let res = 0; |
| 281 | + while (!minHeap.isEmpty()) { |
| 282 | + if (res >= minHeap.dequeue().element) { |
| 283 | + return res; |
| 284 | + } |
| 285 | + res++; |
| 286 | + } |
| 287 | + |
| 288 | + return res; |
| 289 | + } |
| 290 | +} |
| 291 | +``` |
| 292 | + |
| 293 | +::tabs-end |
| 294 | + |
| 295 | +### Time & Space Complexity |
| 296 | + |
| 297 | +* Time complexity: $O(n \log n)$ |
| 298 | +* Space complexity: $O(n)$ |
0 commit comments