-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path52_Fusion_bayes.py
307 lines (253 loc) · 11.8 KB
/
52_Fusion_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import pandas as pd
import cupy as cp
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout, BatchNormalization, Bidirectional
from tensorflow.keras.regularizers import l2
from tensorflow.keras.losses import Huber
from tensorflow.keras.mixed_precision import Policy
from tensorflow.keras.callbacks import Callback
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler, PowerTransformer
from sklearn.model_selection import train_test_split
from dotenv import load_dotenv
import json
import datetime
import time
import sys
import optuna
import matplotlib.pyplot as plt
from scipy.stats import skew, zscore
print(tf.__version__)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow INFO and WARNING logs
# Enable mixed precision
policy = Policy('mixed_float16')
tf.keras.mixed_precision.set_global_policy(policy)
# Import libraries for logging and visualization
import structlog
from rich.progress import Progress
from rich.console import Console
# Load environment variables
load_dotenv()
PATIENCE = int(os.getenv("PATIENCE", 25))
MAX_EPOCHS = int(os.getenv("MAX_EPOCHS", 50000))
LEARNING_RATE_STEP = float(os.getenv("LEARNING_RATE_STEP", 0.0000001))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32)) # Default value for BATCH_SIZE if not set in .env
CHART_LIVE = os.getenv("CHART_LIVE", "true").lower() in ("true", "1", "t")
# Logging setup
log = structlog.get_logger()
console = Console()
# Helper functions
def save_json(filepath, content):
with open(filepath, "w") as f:
json.dump(content, f, indent=4)
def timestamp_filename(base_filename):
timestamp = datetime.datetime.now().strftime("%y%m%d%H%M%S")
return f"{base_filename}_{timestamp}"
def create_sequences(data, sequence_length):
X, y = [], []
for i in range(len(data) - sequence_length):
X.append(data[i:i + sequence_length])
y.append(data[i + sequence_length])
return cp.array(X), cp.array(y)
def save_results(config, metrics, filepath):
with open(filepath, "a") as f:
f.write(f"# Config: {config}\n")
for k, v in metrics.items():
f.write(f"{k}: {v}\n")
f.write("\n")
# Custom callback to log metrics at the end of each epoch
class LogEpochMetrics(Callback):
def __init__(self, validation_data, results_path, ax, r2_line, background, fig, config):
super().__init__()
self.validation_data = validation_data
self.results_path = results_path
self.ax = ax
self.r2_line = r2_line
self.background = background
self.fig = fig
self.config = config
def on_epoch_end(self, epoch, logs=None):
X_val, y_val = self.validation_data
y_pred = self.model.predict(X_val)
mse = mean_squared_error(y_val, y_pred)
mae = mean_absolute_error(y_val, y_pred)
r2 = r2_score(y_val, y_pred)
metrics = {
"Epoch": epoch + 1,
"MSE": mse,
"MAE": mae,
"R2": r2
}
log.msg("Metrics", **metrics)
save_results(self.results_path, metrics, self.results_path)
# Update plot
self.fig.canvas.restore_region(self.background)
self.r2_line.set_xdata(np.append(self.r2_line.get_xdata(), epoch + 1))
self.r2_line.set_ydata(np.append(self.r2_line.get_ydata(), r2))
self.ax.relim()
self.ax.autoscale_view()
self.ax.draw_artist(self.r2_line)
self.fig.canvas.blit(self.ax.bbox)
self.fig.canvas.flush_events()
# Model builder
def build_model(trial, input_shape):
model_type = trial.suggest_int('model_type', 1, 3)
first_layer = trial.suggest_int('first_layer', 16, 320)
second_layer = trial.suggest_int('second_layer', 16, 320)
dense_layer = trial.suggest_int('dense_layer', 16, 320)
lr = trial.suggest_float('lr', 1e-8, 1e-1, log=True)
model = Sequential()
if model_type == 1: # Basic
model.add(LSTM(first_layer, input_shape=input_shape, return_sequences=True))
elif model_type == 2: # Semi-Advanced
model.add(LSTM(first_layer, input_shape=input_shape, return_sequences=True, kernel_regularizer=l2(0.001)))
model.add(BatchNormalization())
else: # Advanced
model.add(Bidirectional(LSTM(first_layer, input_shape=input_shape, return_sequences=True, kernel_regularizer=l2(0.001))))
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(LSTM(second_layer))
if model_type > 1:
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(Dense(dense_layer, activation='relu'))
model.add(Dense(input_shape[-1], activation='linear'))
model.compile(loss=Huber(), optimizer=tf.keras.optimizers.Nadam(learning_rate=lr))
return model
# Training function
def train_model(model, train_dataset, val_dataset, validation_data, config, results_path, ax, r2_line, background, fig, min_epochs=1000):
early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=PATIENCE, restore_best_weights=True)
log_metrics = LogEpochMetrics(validation_data, results_path, ax, r2_line, background, fig, config)
start_time = time.time()
history = model.fit(train_dataset, epochs=MAX_EPOCHS, validation_data=val_dataset, callbacks=[early_stop, log_metrics], verbose=0)
end_time = time.time()
metrics = {
"Training Time": round(end_time - start_time, 2)
}
log.msg("Metrics", **metrics)
save_results(config, metrics, results_path)
return history, r2_line.get_ydata()[-1] # Return the final R2 score
# Objective function for Optuna
def objective(trial):
model_type = trial.suggest_int('model_type', 1, 3)
first_layer = trial.suggest_int('first_layer', 32, 256)
second_layer = trial.suggest_int('second_layer', 32, 256)
dense_layer = trial.suggest_int('dense_layer', 32, 256)
lr = trial.suggest_float('lr', 1e-7, 1e-1, log=True)
batch_size = trial.suggest_int('batch_size', 16, 128)
config = (model_type, first_layer, second_layer, dense_layer, lr, batch_size)
log.msg("Training Configuration", config=config)
train_dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(buffer_size=1024).batch(batch_size).prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
val_dataset = tf.data.Dataset.from_tensor_slices((X_val, y_val)).batch(batch_size).prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
if CHART_LIVE:
ax.cla()
ax.set_xlabel('Epoch')
ax.set_ylabel('R2 Score')
ax.set_title(f'R2 Score Over Epochs\nConfig: {config}')
ax.set_xlim(0, 50)
ax.set_ylim(-1, 1)
r2_line, = ax.plot([], [], label='R2 Score')
ax.legend()
background = fig.canvas.copy_from_bbox(ax.bbox)
model = build_model(trial, X_train.shape[1:])
if CHART_LIVE:
history, final_r2 = train_model(model, train_dataset, val_dataset, (X_val, y_val), config, results_file, ax, r2_line, background, fig)
else:
history, final_r2 = train_model(model, train_dataset, val_dataset, (X_val, y_val), config, results_file, None, None, None, None)
if final_r2 < 0:
console.print(f"[red]Early Termination: R2 < 0 for config {config}[/red]")
return final_r2
# Function to plot optimization history using Matplotlib
def plot_optimization_history_matplotlib(study):
plt.figure()
plt.plot([t.number for t in study.trials], [t.value for t in study.trials], 'o-')
plt.xlabel('Trial number')
plt.ylabel('Objective value')
plt.title('Optimization history')
plt.show()
# Function to plot parameter importances using Matplotlib
def plot_param_importances_matplotlib(study):
plt.figure()
optuna.visualization.plot_param_importances(study).show()
# Function to save top N results to a file
def save_top_n_results(study, n, filepath):
sorted_trials = sorted(study.trials, key=lambda t: t.value, reverse=True)
top_n_trials = sorted_trials[:n]
# Extract the required parameters for each trial
top_n_params = []
for trial in top_n_trials:
params = {
"first_layer": trial.params.get("first_layer"),
"second_layer": trial.params.get("second_layer"),
"dense_layer": trial.params.get("dense_layer"),
"learning_rate": trial.params.get("lr")
}
top_n_params.append(params)
# Save the top N results in the required JSON format
with open(filepath, "w") as f:
json.dump(top_n_params, f, indent=4)
# Add a separator at the end of the file
with open(filepath, "a") as f:
f.write("\n----\n")
# Main function
def main():
console.print("[bold green]Loading configuration and data...[/bold green]")
data = pd.read_csv("05_DATA.csv")
if 'Date' in data.columns:
data['Date'] = pd.to_datetime(data['Date'], dayfirst=True) # Specify dayfirst to avoid warnings
data['Hour'] = data['Date'].dt.hour
data['Day'] = data['Date'].dt.day
data['Weekday'] = data['Date'].dt.weekday
data = data.drop(columns=['Date'])
# Check for skewness and apply appropriate transformations
if skew(data).mean() > 1:
transformer = PowerTransformer(method='yeo-johnson')
data_scaled = transformer.fit_transform(data)
else:
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data)
# Detect and handle outliers using z-score
z_scores = zscore(data_scaled)
abs_z_scores = np.abs(z_scores)
# Filter rows where ALL features have z-scores less than 3
filtered_entries = (abs_z_scores < 3).all(axis=1)
# Fallback mechanism: If no data remains after filtering, skip filtering
if filtered_entries.sum() == 0:
console.print("[yellow]Warning: All data was filtered out. Proceeding with the original dataset.[/yellow]")
filtered_entries = np.ones(len(data_scaled), dtype=bool) # Use all data
data_scaled = data_scaled[filtered_entries]
X, y = create_sequences(cp.array(data_scaled), sequence_length=7)
global X_train, X_val, y_train, y_val, train_dataset, val_dataset, results_file, fig, ax
X_train, X_val, y_train, y_val = train_test_split(cp.asnumpy(X), cp.asnumpy(y), test_size=0.2)
train_dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(buffer_size=1024).batch(BATCH_SIZE).prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
val_dataset = tf.data.Dataset.from_tensor_slices((X_val, y_val)).batch(BATCH_SIZE).prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
results_file = "xResults.txt"
if CHART_LIVE:
plt.ion()
fig, ax = plt.subplots()
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=10000, timeout=18000)
console.print("[bold green]Optimization Completed. Results saved.[/bold green]")
best_trial = study.best_trial
console.print(f"[bold blue]Best Trial:[/bold blue] Trial {best_trial.number}, Value: {best_trial.value}, Params: {best_trial.params}")
sorted_trials = sorted(study.trials, key=lambda t: t.value, reverse=True)
top_10_trials = sorted_trials[:10]
console.print("[bold blue]Top 10 Trials:[/bold blue]")
for i, trial in enumerate(top_10_trials):
console.print(f"Top {i+1}: Trial {trial.number}, Value: {trial.value}, Params: {trial.params}")
save_top_n_results(study, 10, "top_10_results.txt")
if CHART_LIVE:
plot_optimization_history_matplotlib(study)
plot_param_importances_matplotlib(study)
if CHART_LIVE:
chart_filename = timestamp_filename("final_r2_chart") + ".png"
#fig.savefig(chart_filename)
console.print(f"[green]Final chart saved as {chart_filename}[/green]")
if CHART_LIVE:
plt.ioff()
plt.show()
if __name__ == "__main__":
main()