|
| 1 | +import numpy as np |
| 2 | +import pytest |
| 3 | +import xarray as xr |
| 4 | + |
| 5 | +from movement.plot import vector |
| 6 | + |
| 7 | + |
| 8 | +@pytest.fixture |
| 9 | +def sample_data(): |
| 10 | + """Sample data for plot testing. |
| 11 | +
|
| 12 | + Data has three keypoints (left, centre, right) for one |
| 13 | + individual that moves in a straight line along the y-axis with a |
| 14 | + constant x-coordinate. |
| 15 | +
|
| 16 | + """ |
| 17 | + time_steps = 4 |
| 18 | + individuals = ["individual_0"] |
| 19 | + keypoints = ["left", "centre", "right"] |
| 20 | + space = ["x", "y"] |
| 21 | + positions = { |
| 22 | + "left": {"x": -1, "y": np.arange(time_steps)}, |
| 23 | + "centre": {"x": 0, "y": np.arange(time_steps)}, |
| 24 | + "right": {"x": 1, "y": np.arange(time_steps)}, |
| 25 | + } |
| 26 | + |
| 27 | + time = np.arange(time_steps) |
| 28 | + position_data = np.zeros( |
| 29 | + (time_steps, len(space), len(keypoints), len(individuals)) |
| 30 | + ) |
| 31 | + |
| 32 | + # Create x and y coordinates arrays |
| 33 | + x_coords = np.array([positions[key]["x"] for key in keypoints]) |
| 34 | + y_coords = np.array([positions[key]["y"] for key in keypoints]) |
| 35 | + |
| 36 | + for i, _ in enumerate(keypoints): |
| 37 | + position_data[:, 0, i, 0] = x_coords[i] # x-coordinates |
| 38 | + position_data[:, 1, i, 0] = y_coords[i] # y-coordinates |
| 39 | + |
| 40 | + confidence_data = np.full( |
| 41 | + (time_steps, len(keypoints), len(individuals)), 0.90 |
| 42 | + ) |
| 43 | + |
| 44 | + ds = xr.Dataset( |
| 45 | + { |
| 46 | + "position": ( |
| 47 | + ["time", "space", "keypoints", "individuals"], |
| 48 | + position_data, |
| 49 | + ), |
| 50 | + "confidence": ( |
| 51 | + ["time", "keypoints", "individuals"], |
| 52 | + confidence_data, |
| 53 | + ), |
| 54 | + }, |
| 55 | + coords={ |
| 56 | + "time": time, |
| 57 | + "space": space, |
| 58 | + "keypoints": keypoints, |
| 59 | + "individuals": individuals, |
| 60 | + }, |
| 61 | + ) |
| 62 | + return ds |
| 63 | + |
| 64 | + |
| 65 | +@pytest.fixture |
| 66 | +def sample_data_quiver1(): |
| 67 | + """Sample data for plot testing. |
| 68 | +
|
| 69 | + Data has three keypoints (left, centre, right) for one |
| 70 | + individual that moves in a straight line along the y-axis with a |
| 71 | + constant x-coordinate. |
| 72 | +
|
| 73 | + """ |
| 74 | + time_steps = 4 |
| 75 | + individuals = ["individual_0"] |
| 76 | + keypoints = ["left", "centre", "right"] |
| 77 | + space = ["x", "y"] |
| 78 | + positions = { |
| 79 | + "left": {"x": -1, "y": np.arange(time_steps)}, |
| 80 | + "centre": {"x": 0, "y": np.arange(time_steps) + 1}, |
| 81 | + "right": {"x": 1, "y": np.arange(time_steps)}, |
| 82 | + } |
| 83 | + |
| 84 | + time = np.arange(time_steps) |
| 85 | + position_data = np.zeros( |
| 86 | + (time_steps, len(space), len(keypoints), len(individuals)) |
| 87 | + ) |
| 88 | + |
| 89 | + # Create x and y coordinates arrays |
| 90 | + x_coords = np.array([positions[key]["x"] for key in keypoints]) |
| 91 | + y_coords = np.array([positions[key]["y"] for key in keypoints]) |
| 92 | + |
| 93 | + for i, _ in enumerate(keypoints): |
| 94 | + position_data[:, 0, i, 0] = x_coords[i] # x-coordinates |
| 95 | + position_data[:, 1, i, 0] = y_coords[i] # y-coordinates |
| 96 | + |
| 97 | + confidence_data = np.full( |
| 98 | + (time_steps, len(keypoints), len(individuals)), 0.90 |
| 99 | + ) |
| 100 | + |
| 101 | + ds = xr.Dataset( |
| 102 | + { |
| 103 | + "position": ( |
| 104 | + ["time", "space", "keypoints", "individuals"], |
| 105 | + position_data, |
| 106 | + ), |
| 107 | + "confidence": ( |
| 108 | + ["time", "keypoints", "individuals"], |
| 109 | + confidence_data, |
| 110 | + ), |
| 111 | + }, |
| 112 | + coords={ |
| 113 | + "time": time, |
| 114 | + "space": space, |
| 115 | + "keypoints": keypoints, |
| 116 | + "individuals": individuals, |
| 117 | + }, |
| 118 | + ) |
| 119 | + return ds |
| 120 | + |
| 121 | + |
| 122 | +@pytest.fixture |
| 123 | +def sample_data_quiver2(): |
| 124 | + """Sample data for plot testing. |
| 125 | +
|
| 126 | + Data has three keypoints (left, centre, right) for one |
| 127 | + individual that moves in a straight line along the y-axis with a |
| 128 | + constant x-coordinate. |
| 129 | +
|
| 130 | + """ |
| 131 | + time_steps = 4 |
| 132 | + individuals = ["individual_0"] |
| 133 | + keypoints = ["left1", "right1", "left2", "right2"] |
| 134 | + space = ["x", "y"] |
| 135 | + positions = { |
| 136 | + "left1": {"x": -1, "y": np.arange(time_steps)}, |
| 137 | + "right1": {"x": 1, "y": np.arange(time_steps)}, |
| 138 | + "left2": {"x": -1, "y": np.arange(time_steps)}, |
| 139 | + "right2": {"x": 1, "y": np.arange(time_steps)}, |
| 140 | + } |
| 141 | + |
| 142 | + time = np.arange(time_steps) |
| 143 | + position_data = np.zeros( |
| 144 | + (time_steps, len(space), len(keypoints), len(individuals)) |
| 145 | + ) |
| 146 | + |
| 147 | + # Create x and y coordinates arrays |
| 148 | + x_coords = np.array([positions[key]["x"] for key in keypoints]) |
| 149 | + y_coords = np.array([positions[key]["y"] for key in keypoints]) |
| 150 | + |
| 151 | + for i, _ in enumerate(keypoints): |
| 152 | + position_data[:, 0, i, 0] = x_coords[i] # x-coordinates |
| 153 | + position_data[:, 1, i, 0] = y_coords[i] # y-coordinates |
| 154 | + |
| 155 | + confidence_data = np.full( |
| 156 | + (time_steps, len(keypoints), len(individuals)), 0.90 |
| 157 | + ) |
| 158 | + |
| 159 | + ds = xr.Dataset( |
| 160 | + { |
| 161 | + "position": ( |
| 162 | + ["time", "space", "keypoints", "individuals"], |
| 163 | + position_data, |
| 164 | + ), |
| 165 | + "confidence": ( |
| 166 | + ["time", "keypoints", "individuals"], |
| 167 | + confidence_data, |
| 168 | + ), |
| 169 | + }, |
| 170 | + coords={ |
| 171 | + "time": time, |
| 172 | + "space": space, |
| 173 | + "keypoints": keypoints, |
| 174 | + "individuals": individuals, |
| 175 | + }, |
| 176 | + ) |
| 177 | + return ds |
| 178 | + |
| 179 | + |
| 180 | +def test_vector_no_quiver(sample_data): |
| 181 | + """Test midpoint between left and right keypoints.""" |
| 182 | + vector_fig = vector( |
| 183 | + sample_data, |
| 184 | + reference_points=["left", "right"], |
| 185 | + vector_point="centre", |
| 186 | + ) |
| 187 | + |
| 188 | + quiver = vector_fig.axes[0].collections[-1] |
| 189 | + |
| 190 | + # Extract the X, Y, U, V data |
| 191 | + x = quiver.X |
| 192 | + y = quiver.Y |
| 193 | + u = quiver.U |
| 194 | + v = quiver.V |
| 195 | + |
| 196 | + expected_x = np.array([0.0, 0.0, 0.0, 0.0]) |
| 197 | + expected_y = np.array([0.0, 1.0, 2.0, 3.0]) |
| 198 | + expected_u = np.array([0.0, 0.0, 0.0, 0.0]) |
| 199 | + expected_v = np.array([0.0, 0.0, 0.0, 0.0]) |
| 200 | + |
| 201 | + assert np.allclose(x, expected_x) |
| 202 | + assert np.allclose(y, expected_y) |
| 203 | + assert np.allclose(u, expected_u) |
| 204 | + assert np.allclose(v, expected_v) |
| 205 | + |
| 206 | + |
| 207 | +def test_vector_quiver2(sample_data_quiver2): |
| 208 | + """Test midpoint between left and right keypoints.""" |
| 209 | + vector_fig = vector( |
| 210 | + sample_data_quiver2, |
| 211 | + reference_points=["left1", "right1"], |
| 212 | + vector_point="right2", |
| 213 | + ) |
| 214 | + |
| 215 | + quiver = vector_fig.axes[0].collections[-1] |
| 216 | + |
| 217 | + # Extract the X, Y, U, V data |
| 218 | + x = quiver.X |
| 219 | + y = quiver.Y |
| 220 | + u = quiver.U |
| 221 | + v = quiver.V |
| 222 | + |
| 223 | + expected_x = np.array([0.0, 0.0, 0.0, 0.0]) |
| 224 | + expected_y = np.array([0.0, 1.0, 2.0, 3.0]) |
| 225 | + expected_u = np.array([1.0, 1.0, 1.0, 1.0]) |
| 226 | + expected_v = np.array([0.0, 0.0, 0.0, 0.0]) |
| 227 | + |
| 228 | + assert np.allclose(x, expected_x) |
| 229 | + assert np.allclose(y, expected_y) |
| 230 | + assert np.allclose(u, expected_u) |
| 231 | + assert np.allclose(v, expected_v) |
| 232 | + |
| 233 | + |
| 234 | +def test_vector_quiver1(sample_data_quiver1): |
| 235 | + """Test midpoint between left and right keypoints.""" |
| 236 | + vector_fig = vector( |
| 237 | + sample_data_quiver1, |
| 238 | + reference_points=["left", "right"], |
| 239 | + vector_point="centre", |
| 240 | + ) |
| 241 | + |
| 242 | + quiver = vector_fig.axes[0].collections[-1] |
| 243 | + |
| 244 | + # Extract the X, Y, U, V data |
| 245 | + x = quiver.X |
| 246 | + y = quiver.Y |
| 247 | + u = quiver.U |
| 248 | + v = quiver.V |
| 249 | + |
| 250 | + expected_x = np.array([0.0, 0.0, 0.0, 0.0]) |
| 251 | + expected_y = np.array([0.0, 1.0, 2.0, 3.0]) |
| 252 | + expected_u = np.array([0.0, 0.0, 0.0, 0.0]) |
| 253 | + expected_v = np.array([1.0, 1.0, 1.0, 1.0]) |
| 254 | + |
| 255 | + assert np.allclose(x, expected_x) |
| 256 | + assert np.allclose(y, expected_y) |
| 257 | + assert np.allclose(u, expected_u) |
| 258 | + assert np.allclose(v, expected_v) |
0 commit comments