-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtfceMex.c
217 lines (186 loc) · 6.39 KB
/
tfceMex.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*
* Christian Gaser
* $Id: tfceMex.c 57 2012-07-25 08:51:09Z gaser $
*
*/
#include "math.h"
#include "mex.h"
#include <stdlib.h>
#ifdef _OPENMP
#include "omp.h"
#endif
#ifndef MAX
#define MAX(A,B) ((A) > (B) ? (A) : (B))
#endif
#ifndef MIN
#define MIN(A,B) ((A) > (B) ? (B) : (A))
#endif
void tfce_thread(double *inData, double *outData, double thresh, double delta, const int *dims)
{
double valToAdd;
double E = 0.5, H = 2.0;
int i, j, k, ti, tj, tk, maxi, maxj, maxk, mini, minj, mink, temp, growingInd, growingCur;
int numVoxels = dims[0] * dims[1] * dims[2];
char* flagUsed;
short* growing;
flagUsed = (char*)malloc(numVoxels*sizeof(char));
growing = (short*)malloc(numVoxels*3*sizeof(short));
for (temp = 0; temp < numVoxels; ++temp) flagUsed[temp] = 0;
for (k = 0; k < dims[2]; ++k)
{
for (j = 0; j < dims[1]; ++j)
{
for (i = 0; i < dims[0]; ++i)
{
temp = k*(dims[0]*dims[1])+(j*dims[0])+i;
/* estimate positive tfce values */
if (!flagUsed[temp] && inData[temp] >= thresh)
{
flagUsed[temp] = 1;
growingInd = 3;
growingCur = 0;
growing[0] = i;
growing[1] = j;
growing[2] = k;
while (growingCur < growingInd)
{
maxi = MIN(dims[0], growing[growingCur ] + 2);
maxj = MIN(dims[1], growing[growingCur + 1] + 2);
maxk = MIN(dims[2], growing[growingCur + 2] + 2);
mini = MAX(0, growing[growingCur ] - 1);
minj = MAX(0, growing[growingCur + 1] - 1);
mink = MAX(0, growing[growingCur + 2] - 1);
for (tk = mink; tk < maxk; ++tk)
{
for (tj = minj; tj < maxj; ++tj)
{
for (ti = mini; ti < maxi; ++ti)
{
temp = tk*(dims[0]*dims[1])+(tj*dims[0])+ti;
if (!flagUsed[temp] && inData[temp] >= thresh)
{
flagUsed[temp] = 1;
growing[growingInd ] = ti;
growing[growingInd + 1] = tj;
growing[growingInd + 2] = tk;
growingInd += 3;
}
}
}
}
growingCur += 3;
}
growingCur = 0;
valToAdd = pow(growingInd / 3.0, E) * pow(thresh, H) * delta;
while (growingCur < growingInd)
{
outData[growing[growingCur + 2]*(dims[0]*dims[1])+(growing[growingCur + 1]*dims[0])+growing[growingCur]] += valToAdd;
growingCur += 3;
}
}
/* estimate negative tfce values */
if (!flagUsed[temp] && -inData[temp] >= thresh)
{
flagUsed[temp] = 1;
growingInd = 3;
growingCur = 0;
growing[0] = i;
growing[1] = j;
growing[2] = k;
while (growingCur < growingInd)
{
maxi = MIN(dims[0], growing[growingCur ] + 2);
maxj = MIN(dims[1], growing[growingCur + 1] + 2);
maxk = MIN(dims[2], growing[growingCur + 2] + 2);
mini = MAX(0, growing[growingCur ] - 1);
minj = MAX(0, growing[growingCur + 1] - 1);
mink = MAX(0, growing[growingCur + 2] - 1);
for (tk = mink; tk < maxk; ++tk)
{
for (tj = minj; tj < maxj; ++tj)
{
for (ti = mini; ti < maxi; ++ti)
{
temp = tk*(dims[0]*dims[1])+(tj*dims[0])+ti;
if (!flagUsed[temp] && -inData[temp] >= thresh)
{
flagUsed[temp] = 1;
growing[growingInd ] = ti;
growing[growingInd + 1] = tj;
growing[growingInd + 2] = tk;
growingInd += 3;
}
}
}
}
growingCur += 3;
}
growingCur = 0;
valToAdd = pow(growingInd / 3.0, E) * pow(thresh, H) * delta;
while (growingCur < growingInd)
{
outData[growing[growingCur + 2]*(dims[0]*dims[1])+(growing[growingCur + 1]*dims[0])+growing[growingCur]] -= valToAdd;
growingCur += 3;
}
}
}
}
}
free(flagUsed);
free(growing);
}
void tfce(double *inData, double *outData, int numSteps, const int *dims)
{
double fmax = 0.0, thresh0, thresh, delta;
int i;
int numVoxels = dims[0] * dims[1] * dims[2];
for (i = 0; i < numVoxels; ++i)
{
if (inData[i] > fmax) fmax = inData[i];
outData[i] = 0.0;
}
delta = fmax/numSteps;
thresh0 = delta/2.0;
#ifdef _OPENMP
/* this is faster than the default setting to the # of processors */
omp_set_num_threads(2*omp_get_num_procs());
# pragma omp parallel for default(shared) private(i,thresh)
#endif
for (i = 0; i < numSteps; i++)
{
thresh = thresh0 + (double)i*delta;
tfce_thread(inData, outData, thresh, delta, dims);
}
}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
/* Declarations */
double *inData, *outData;
int numSteps, ndim;
const int *dims;
/* check inputs */
if (nrhs<2)
mexErrMsgTxt("2 inputs required.");
else if (nlhs>2)
mexErrMsgTxt("Too many output arguments.");
if (!mxIsDouble(prhs[0]))
mexErrMsgTxt("First argument must be double.");
/* get input inDatage */
inData = (double*)mxGetPr(prhs[0]);
ndim = mxGetNumberOfDimensions(prhs[0]);
if (ndim!=3)
mexErrMsgTxt("Images does not have 3 dimensions.");
dims = mxGetDimensions(prhs[0]);
/* get parameters */
numSteps = (int)(mxGetScalar(prhs[1]));
#ifdef _OPENMP
omp_set_dynamic(0);
if (nrhs>2) printf("%d processors found\n",omp_get_num_procs());
#endif
/*Allocate memory and assign output pointer*/
plhs[0] = mxCreateNumericArray(ndim,dims,mxDOUBLE_CLASS, mxREAL);
/*Get a pointer to the data space in our newly allocated memory*/
outData = mxGetPr(plhs[0]);
tfce(inData, outData, numSteps, dims);
return;
}