-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCadn.py
123 lines (111 loc) · 2.87 KB
/
Cadn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import random as rd
import math, scipy.constants as sc
import matplotlib.pyplot as plt
def conformation(n:int):
theta = []
for i in range(n):
theta.append((2*rd.random()-1)*math.pi)
return theta
def conformation_init(n:int):
return n*[0]
def allongement(theta,l):
a = 0
for t in theta:
a += math.cos(t)
return l*a
def nouvelle_conformation(theta,k:int):
n = len(theta)
#theta configuration de longueur n
theta_n = []
for t in theta:
theta_n.append(t)
#i indice aléatoire à partir duquel k modif
#i + k <= n => i < n - k +1
i = rd.randrange(n-k + 1)
for j in range(i , i + k):
theta_n[i] = (2*rd.random()-1)*math.pi
return theta_n
def selection_conformation(thetaA, thetaB,
F: float, l:float, T:float):
coeff = 1/(K_B * T)
zA = allongement(thetaA,l)
EA = - zA*F
zB = allongement(thetaB,l)
EB = - zB*F
theta = thetaB
if EA <= EB:
P = math.exp(coeff*(EA - EB))
alea = rd.random()
if rd.random() > P:
theta = thetaA
return theta
def plot_conformation(theta):
x = []
y = []
for t in theta:
x.append(math.cos(t))
y.append(math.sin(t))
plt.clf()
plt.plot(x,y)
plt.show()
# Initialisation
def init(n:int, l:float):
theta = conformation(n)
al = allongement(theta,l)
print("allongement initial:",al)
#initialisation de L, m1, m2
#L file des 500 derniers allongements
#m1 moyenne des allongements
#m2 moyenne des carrés des allongements
L = [al]
for i in range(499):
theta_n = nouvelle_conformation(theta,k)
theta = selection_conformation(theta,
theta_n,F,l,T)
L.append(allongement(theta,l))
m1 = sum(L)/500
m2 = 0
for a in L:
m2 += a**2
m2 = m2/500
V = m2 - m1**2
return [theta,L,m1,m2]
def monte_carlo(F:float, n:int, l:float,
k:int, epsilon:float):
i = 500
data = init(n,l)
[theta, L, m1, m2] = data
V = m2 - m1**2
while V > epsilon:
theta_n = nouvelle_conformation(theta,k)
theta = selection_conformation(theta,
theta_n,F,l,T)
a_debut = L.pop(0)
a_fin = allongement(theta,l)
L.append(a_fin)
delta_m1 = (a_fin - a_debut)/500
m1 += delta_m1
m2 += delta_m1*(a_fin + a_debut)
V = m2 - m1**2
i += 1
plot_conformation(theta)
print("nb itérations :",i)
return m1
# Paramètres
#constante de Boltzman
K_B = sc.Boltzmann
K_B = 1.
#nb de monomères
n = 40
#longueur d'un monomère
l = 1
#nb de monomères modifiés
k = 10
#force
F = 10.
#température
T = 1.
#test d'arrêt variance
eps = 1.0e-1
z = monte_carlo(F,n,l,k,eps)
print("allongement final :",z)