@@ -91,9 +91,9 @@ _UCC_COMMIT=20eae37090a4ce1b32bcce6144ccad0b49943e0b
91
91
# configuration, so we hardcode everything here rather than do it
92
92
# from scratch
93
93
case " $image " in
94
- pytorch-linux-focal-cuda12.4-cudnn8 -py3-gcc9)
94
+ pytorch-linux-focal-cuda12.4-cudnn9 -py3-gcc9)
95
95
CUDA_VERSION=12.4.0
96
- CUDNN_VERSION=8
96
+ CUDNN_VERSION=9
97
97
ANACONDA_PYTHON_VERSION=3.10
98
98
GCC_VERSION=9
99
99
PROTOBUF=yes
@@ -105,9 +105,9 @@ case "$image" in
105
105
CONDA_CMAKE=yes
106
106
TRITON=yes
107
107
;;
108
- pytorch-linux-focal-cuda12.1-cudnn8 -py3-gcc9)
108
+ pytorch-linux-focal-cuda12.1-cudnn9 -py3-gcc9)
109
109
CUDA_VERSION=12.1.1
110
- CUDNN_VERSION=8
110
+ CUDNN_VERSION=9
111
111
ANACONDA_PYTHON_VERSION=3.10
112
112
GCC_VERSION=9
113
113
PROTOBUF=yes
@@ -119,9 +119,9 @@ case "$image" in
119
119
CONDA_CMAKE=yes
120
120
TRITON=yes
121
121
;;
122
- pytorch-linux-focal-cuda12.4-cudnn8 -py3-gcc9-inductor-benchmarks)
122
+ pytorch-linux-focal-cuda12.4-cudnn9 -py3-gcc9-inductor-benchmarks)
123
123
CUDA_VERSION=12.4.0
124
- CUDNN_VERSION=8
124
+ CUDNN_VERSION=9
125
125
ANACONDA_PYTHON_VERSION=3.10
126
126
GCC_VERSION=9
127
127
PROTOBUF=yes
@@ -134,9 +134,9 @@ case "$image" in
134
134
TRITON=yes
135
135
INDUCTOR_BENCHMARKS=yes
136
136
;;
137
- pytorch-linux-focal-cuda12.1-cudnn8 -py3-gcc9-inductor-benchmarks)
137
+ pytorch-linux-focal-cuda12.1-cudnn9 -py3-gcc9-inductor-benchmarks)
138
138
CUDA_VERSION=12.1.1
139
- CUDNN_VERSION=8
139
+ CUDNN_VERSION=9
140
140
ANACONDA_PYTHON_VERSION=3.10
141
141
GCC_VERSION=9
142
142
PROTOBUF=yes
@@ -149,9 +149,9 @@ case "$image" in
149
149
TRITON=yes
150
150
INDUCTOR_BENCHMARKS=yes
151
151
;;
152
- pytorch-linux-focal-cuda12.1-cudnn8 -py3.12-gcc9-inductor-benchmarks)
152
+ pytorch-linux-focal-cuda12.1-cudnn9 -py3.12-gcc9-inductor-benchmarks)
153
153
CUDA_VERSION=12.1.1
154
- CUDNN_VERSION=8
154
+ CUDNN_VERSION=9
155
155
ANACONDA_PYTHON_VERSION=3.12
156
156
GCC_VERSION=9
157
157
PROTOBUF=yes
@@ -164,9 +164,9 @@ case "$image" in
164
164
TRITON=yes
165
165
INDUCTOR_BENCHMARKS=yes
166
166
;;
167
- pytorch-linux-focal-cuda12.4-cudnn8 -py3.12-gcc9-inductor-benchmarks)
167
+ pytorch-linux-focal-cuda12.4-cudnn9 -py3.12-gcc9-inductor-benchmarks)
168
168
CUDA_VERSION=12.4.0
169
- CUDNN_VERSION=8
169
+ CUDNN_VERSION=9
170
170
ANACONDA_PYTHON_VERSION=3.12
171
171
GCC_VERSION=9
172
172
PROTOBUF=yes
@@ -179,9 +179,9 @@ case "$image" in
179
179
TRITON=yes
180
180
INDUCTOR_BENCHMARKS=yes
181
181
;;
182
- pytorch-linux-focal-cuda11.8-cudnn8 -py3-gcc9)
182
+ pytorch-linux-focal-cuda11.8-cudnn9 -py3-gcc9)
183
183
CUDA_VERSION=11.8.0
184
- CUDNN_VERSION=8
184
+ CUDNN_VERSION=9
185
185
ANACONDA_PYTHON_VERSION=3.10
186
186
GCC_VERSION=9
187
187
PROTOBUF=yes
@@ -193,9 +193,9 @@ case "$image" in
193
193
CONDA_CMAKE=yes
194
194
TRITON=yes
195
195
;;
196
- pytorch-linux-focal-cuda12.4-cudnn8 -py3-gcc9)
196
+ pytorch-linux-focal-cuda12.4-cudnn9 -py3-gcc9)
197
197
CUDA_VERSION=12.4.0
198
- CUDNN_VERSION=8
198
+ CUDNN_VERSION=9
199
199
ANACONDA_PYTHON_VERSION=3.10
200
200
GCC_VERSION=9
201
201
PROTOBUF=yes
@@ -207,9 +207,9 @@ case "$image" in
207
207
CONDA_CMAKE=yes
208
208
TRITON=yes
209
209
;;
210
- pytorch-linux-focal-cuda12.1-cudnn8 -py3-gcc9)
210
+ pytorch-linux-focal-cuda12.1-cudnn9 -py3-gcc9)
211
211
CUDA_VERSION=12.1.1
212
- CUDNN_VERSION=8
212
+ CUDNN_VERSION=9
213
213
ANACONDA_PYTHON_VERSION=3.10
214
214
GCC_VERSION=9
215
215
PROTOBUF=yes
@@ -221,9 +221,9 @@ case "$image" in
221
221
CONDA_CMAKE=yes
222
222
TRITON=yes
223
223
;;
224
- pytorch-linux-focal-cuda12.4-cudnn8 -py3-gcc9)
224
+ pytorch-linux-focal-cuda12.4-cudnn9 -py3-gcc9)
225
225
CUDA_VERSION=12.4.0
226
- CUDNN_VERSION=8
226
+ CUDNN_VERSION=9
227
227
ANACONDA_PYTHON_VERSION=3.10
228
228
GCC_VERSION=9
229
229
PROTOBUF=yes
@@ -330,10 +330,10 @@ case "$image" in
330
330
DOCS=yes
331
331
INDUCTOR_BENCHMARKS=yes
332
332
;;
333
- pytorch-linux-jammy-cuda11.8-cudnn8 -py3.8-clang12)
333
+ pytorch-linux-jammy-cuda11.8-cudnn9 -py3.8-clang12)
334
334
ANACONDA_PYTHON_VERSION=3.8
335
335
CUDA_VERSION=11.8
336
- CUDNN_VERSION=8
336
+ CUDNN_VERSION=9
337
337
CLANG_VERSION=12
338
338
PROTOBUF=yes
339
339
DB=yes
@@ -380,7 +380,7 @@ case "$image" in
380
380
ANACONDA_PYTHON_VERSION=3.9
381
381
CONDA_CMAKE=yes
382
382
;;
383
- pytorch-linux-jammy-cuda11.8-cudnn8 -py3.9-linter)
383
+ pytorch-linux-jammy-cuda11.8-cudnn9 -py3.9-linter)
384
384
ANACONDA_PYTHON_VERSION=3.9
385
385
CUDA_VERSION=11.8
386
386
CONDA_CMAKE=yes
@@ -447,7 +447,7 @@ tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
447
447
# when using cudnn version 8 install it separately from cuda
448
448
if [[ " $image " == * cuda* && ${OS} == " ubuntu" ]]; then
449
449
IMAGE_NAME=" nvidia/cuda:${CUDA_VERSION} -cudnn${CUDNN_VERSION} -devel-ubuntu${UBUNTU_VERSION} "
450
- if [[ ${CUDNN_VERSION} == 8 ]]; then
450
+ if [[ ${CUDNN_VERSION} == 9 ]]; then
451
451
IMAGE_NAME=" nvidia/cuda:${CUDA_VERSION} -devel-ubuntu${UBUNTU_VERSION} "
452
452
fi
453
453
fi
@@ -499,7 +499,7 @@ docker build \
499
499
" $@ " \
500
500
.
501
501
502
- # NVIDIA dockers for RC releases use tag names like `11.0-cudnn8 -devel-ubuntu18.04-rc`,
502
+ # NVIDIA dockers for RC releases use tag names like `11.0-cudnn9 -devel-ubuntu18.04-rc`,
503
503
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
504
504
# find the correct image. As a result, here we have to replace the
505
505
# "$UBUNTU_VERSION" == "18.04-rc"
0 commit comments