-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path10-08_integer_division_by_constant_unsigned.go
88 lines (77 loc) · 1.93 KB
/
10-08_integer_division_by_constant_unsigned.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
package hd
func DivModUnsignedPowTwo(n uint32, k int) (q, r uint32) { return n >> k, n - (n >> k << k) }
func DivModUnsignedThree(n uint32) (q, r uint32) {
const M uint32 = 0xAAAA_AAAB // Magic (2 ** 33 + 3) / 3
q = MultiplyHighOrder32(M, n) // mulhu
q >>= 1
return q, n - (q * 3)
}
func DivModUnsignedSeven(n uint32) (q, r uint32) {
const M uint32 = 0x2492_4925 // Magic (2 ** 35 + 3) / 7 - 2 ** 32
q = MultiplyHighOrder32(M, n) // mulhu
t := n - q
t >>= 1
t += q
q = t >> 2
return q, n - (q * 7)
}
func DivModConstUnsigned(n, d uint32) (q, r uint32) {
if d == 1 {
return n, 0
}
M, a, s := DivModConstUnsignedMagic(d) // compile time
q = MultiplyHighOrder32(M, n) // mulhu
// following branches are computed at compile time based on compile time constants d, M, a, s
switch a {
case 0:
if s > 0 {
q >>= s
}
case 1:
t := n - q
t >>= 1
t += q
if (s - 1) > 0 {
q = t >> (s - 1)
}
}
return q, n - (q * d)
}
// DivModConstUnsignedMagic computes magic for unsigned constant multiplication.
// This values can be computed at compile time.
// Code using big numbers can be simplified, such as in the case of Python or math.Big, it is no listed here.
func DivModConstUnsignedMagic(d uint32) (M uint32, a, s int32) {
var nc uint32 = 0xFFFF_FFFF - ((-d) % d) // Unsigned arithmetic here. -1 changed to 0xFFFF_FFFF for unsigned arithmetic.
var p int32 = 31
q1 := 0x8000_0000 / nc
r1 := 0x8000_0000 - (q1 * nc)
q2 := 0x7FFF_FFFF / d
r2 := 0x7FFF_FFFF - (q2 * d)
for {
p++
if r1 >= (nc - r1) {
q1 = (2 * q1) + 1
r1 = (2 * r1) - nc
} else {
q1 *= 2
r1 *= 2
}
if (r2 + 1) >= (d - r2) {
if q2 >= 0x7FFF_FFFF {
a = 1
}
q2 = (2 * q2) + 1
r2 = (2 * r2) + 1 - d
} else {
if q2 >= 0x8000_0000 {
a = 1
}
q2 *= 2
r2 = (2 * r2) + 1
}
if delta := d - 1 - r2; !((p < 64) && (q1 < delta || ((q1 == delta) && (r1 == 0)))) {
break
}
}
return q2 + 1, a, p - 32
}