@@ -420,13 +420,6 @@ void MatrixGetColumn( const matrix3x4_t& in, int column, Vector &out )
420
420
out.z = in[2 ][column];
421
421
}
422
422
423
- void MatrixSetColumn ( const Vector &in, int column, matrix3x4_t & out )
424
- {
425
- out[0 ][column] = in.x ;
426
- out[1 ][column] = in.y ;
427
- out[2 ][column] = in.z ;
428
- }
429
-
430
423
void MatrixScaleBy ( const float flScale, matrix3x4_t &out )
431
424
{
432
425
out[0 ][0 ] *= flScale;
@@ -1092,57 +1085,6 @@ void SetScaleMatrix( float x, float y, float z, matrix3x4_t &dst )
1092
1085
dst[2 ][0 ] = 0 .0f ; dst[2 ][1 ] = 0 .0f ; dst[2 ][2 ] = z; dst[2 ][3 ] = 0 .0f ;
1093
1086
}
1094
1087
1095
-
1096
- // -----------------------------------------------------------------------------
1097
- // Purpose: Builds the matrix for a counterclockwise rotation about an arbitrary axis.
1098
- //
1099
- // | ax2 + (1 - ax2)cosQ axay(1 - cosQ) - azsinQ azax(1 - cosQ) + aysinQ |
1100
- // Ra(Q) = | axay(1 - cosQ) + azsinQ ay2 + (1 - ay2)cosQ ayaz(1 - cosQ) - axsinQ |
1101
- // | azax(1 - cosQ) - aysinQ ayaz(1 - cosQ) + axsinQ az2 + (1 - az2)cosQ |
1102
- //
1103
- // Input : mat -
1104
- // vAxisOrRot -
1105
- // angle -
1106
- // -----------------------------------------------------------------------------
1107
- void MatrixBuildRotationAboutAxis ( const Vector &vAxisOfRot, float angleDegrees, matrix3x4_t &dst )
1108
- {
1109
- float radians;
1110
- float axisXSquared;
1111
- float axisYSquared;
1112
- float axisZSquared;
1113
- float fSin ;
1114
- float fCos ;
1115
-
1116
- radians = angleDegrees * ( M_PI / 180.0 );
1117
- fSin = sin ( radians );
1118
- fCos = cos ( radians );
1119
-
1120
- axisXSquared = vAxisOfRot[0 ] * vAxisOfRot[0 ];
1121
- axisYSquared = vAxisOfRot[1 ] * vAxisOfRot[1 ];
1122
- axisZSquared = vAxisOfRot[2 ] * vAxisOfRot[2 ];
1123
-
1124
- // Column 0:
1125
- dst[0 ][0 ] = axisXSquared + (1 - axisXSquared) * fCos ;
1126
- dst[1 ][0 ] = vAxisOfRot[0 ] * vAxisOfRot[1 ] * (1 - fCos ) + vAxisOfRot[2 ] * fSin ;
1127
- dst[2 ][0 ] = vAxisOfRot[2 ] * vAxisOfRot[0 ] * (1 - fCos ) - vAxisOfRot[1 ] * fSin ;
1128
-
1129
- // Column 1:
1130
- dst[0 ][1 ] = vAxisOfRot[0 ] * vAxisOfRot[1 ] * (1 - fCos ) - vAxisOfRot[2 ] * fSin ;
1131
- dst[1 ][1 ] = axisYSquared + (1 - axisYSquared) * fCos ;
1132
- dst[2 ][1 ] = vAxisOfRot[1 ] * vAxisOfRot[2 ] * (1 - fCos ) + vAxisOfRot[0 ] * fSin ;
1133
-
1134
- // Column 2:
1135
- dst[0 ][2 ] = vAxisOfRot[2 ] * vAxisOfRot[0 ] * (1 - fCos ) + vAxisOfRot[1 ] * fSin ;
1136
- dst[1 ][2 ] = vAxisOfRot[1 ] * vAxisOfRot[2 ] * (1 - fCos ) - vAxisOfRot[0 ] * fSin ;
1137
- dst[2 ][2 ] = axisZSquared + (1 - axisZSquared) * fCos ;
1138
-
1139
- // Column 3:
1140
- dst[0 ][3 ] = 0 ;
1141
- dst[1 ][3 ] = 0 ;
1142
- dst[2 ][3 ] = 0 ;
1143
- }
1144
-
1145
-
1146
1088
// -----------------------------------------------------------------------------
1147
1089
// Computes the transpose
1148
1090
// -----------------------------------------------------------------------------
@@ -1450,33 +1392,6 @@ void VectorYawRotate( const Vector &in, float flYaw, Vector &out)
1450
1392
out.z = in.z ;
1451
1393
}
1452
1394
1453
-
1454
-
1455
- float Bias ( float x, float biasAmt )
1456
- {
1457
- // WARNING: not thread safe
1458
- static float lastAmt = -1 ;
1459
- static float lastExponent = 0 ;
1460
- if ( lastAmt != biasAmt )
1461
- {
1462
- lastExponent = log ( biasAmt ) * -1 .4427f ; // (-1.4427 = 1 / log(0.5))
1463
- }
1464
- float fRet = pow ( x, lastExponent );
1465
- Assert ( !IS_NAN ( fRet ) );
1466
- return fRet ;
1467
- }
1468
-
1469
-
1470
- float Gain ( float x, float biasAmt )
1471
- {
1472
- // WARNING: not thread safe
1473
- if ( x < 0.5 )
1474
- return 0 .5f * Bias ( 2 *x, 1 -biasAmt );
1475
- else
1476
- return 1 - 0 .5f * Bias ( 2 - 2 *x, 1 -biasAmt );
1477
- }
1478
-
1479
-
1480
1395
float SmoothCurve ( float x )
1481
1396
{
1482
1397
// Actual smooth curve. Visualization:
0 commit comments