-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
190 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
from __future__ import annotations | ||
|
||
import nipype.interfaces.utility as niu | ||
import nipype.pipeline.engine as pe | ||
from fmriprep.interfaces.resampling import DistortionParameters, ResampleSeries | ||
from niworkflows.interfaces.nibabel import GenerateSamplingReference | ||
from niworkflows.interfaces.utility import KeySelect | ||
|
||
|
||
def init_bold_volumetric_resample_wf( | ||
*, | ||
metadata: dict, | ||
mem_gb: dict[str, float], | ||
jacobian: bool, | ||
fieldmap_id: str | None = None, | ||
omp_nthreads: int = 1, | ||
name: str = 'bold_volumetric_resample_wf', | ||
) -> pe.Workflow: | ||
"""Resample a BOLD series to a volumetric target space. | ||
This workflow collates a sequence of transforms to resample a BOLD series | ||
in a single shot, including motion correction and fieldmap correction, if | ||
requested. | ||
.. workflow:: | ||
from fmripost_aroma.workflows.bold.resampling import init_bold_volumetric_resample_wf | ||
wf = init_bold_volumetric_resample_wf( | ||
metadata={ | ||
'RepetitionTime': 2.0, | ||
'PhaseEncodingDirection': 'j-', | ||
'TotalReadoutTime': 0.03 | ||
}, | ||
mem_gb={'resampled': 1}, | ||
jacobian=True, | ||
fieldmap_id='my_fieldmap', | ||
) | ||
Parameters | ||
---------- | ||
metadata | ||
BIDS metadata for BOLD file. | ||
fieldmap_id | ||
Fieldmap identifier, if fieldmap correction is to be applied. | ||
omp_nthreads | ||
Maximum number of threads an individual process may use. | ||
name | ||
Name of workflow (default: ``bold_volumetric_resample_wf``) | ||
Inputs | ||
------ | ||
bold_file | ||
BOLD series to resample. | ||
bold_ref_file | ||
Reference image to which BOLD series is aligned. | ||
target_ref_file | ||
Reference image defining the target space. | ||
target_mask | ||
Brain mask corresponding to ``target_ref_file``. | ||
This is used to define the field of view for the resampled BOLD series. | ||
motion_xfm | ||
List of affine transforms aligning each volume to ``bold_ref_file``. | ||
If undefined, no motion correction is performed. | ||
fmap | ||
Fieldmap image. | ||
fmap_id | ||
Fieldmap identifier, to select correct fieldmap in case there are multiple. | ||
boldref2anat_xfm | ||
Affine transform from ``bold_ref_file`` to the anatomical reference image. | ||
anat2std_xfm | ||
Affine transform from the anatomical reference image to standard space. | ||
Leave undefined to resample to anatomical reference space. | ||
Outputs | ||
------- | ||
bold_file | ||
The ``bold_file`` input, resampled to ``target_ref_file`` space. | ||
resampling_reference | ||
An empty reference image with the correct affine and header for resampling | ||
further images into the BOLD series' space. | ||
""" | ||
workflow = pe.Workflow(name=name) | ||
|
||
inputnode = pe.Node( | ||
niu.IdentityInterface( | ||
fields=[ | ||
'bold_file', | ||
'bold_ref_file', | ||
'target_ref_file', | ||
'target_mask', | ||
# HMC | ||
'motion_xfm', | ||
# SDC | ||
'fmap', | ||
'fmap_id', | ||
# Anatomical | ||
'boldref2anat_xfm', | ||
# Template | ||
'anat2std_xfm', | ||
# Entity for selecting target resolution | ||
'resolution', | ||
], | ||
), | ||
name='inputnode', | ||
) | ||
|
||
outputnode = pe.Node( | ||
niu.IdentityInterface(fields=['bold_file', 'resampling_reference']), | ||
name='outputnode', | ||
) | ||
|
||
gen_ref = pe.Node(GenerateSamplingReference(), name='gen_ref', mem_gb=0.3) | ||
|
||
boldref2target = pe.Node(niu.Merge(2), name='boldref2target', run_without_submitting=True) | ||
bold2target = pe.Node(niu.Merge(2), name='bold2target', run_without_submitting=True) | ||
resample = pe.Node( | ||
ResampleSeries(jacobian=jacobian), | ||
name='resample', | ||
n_procs=omp_nthreads, | ||
mem_gb=mem_gb['resampled'], | ||
) | ||
|
||
workflow.connect([ | ||
(inputnode, gen_ref, [ | ||
('bold_ref_file', 'moving_image'), | ||
('target_ref_file', 'fixed_image'), | ||
('target_mask', 'fov_mask'), | ||
(('resolution', _is_native), 'keep_native'), | ||
]), | ||
(inputnode, boldref2target, [ | ||
('boldref2anat_xfm', 'in1'), | ||
('anat2std_xfm', 'in2'), | ||
]), | ||
(inputnode, bold2target, [('motion_xfm', 'in1')]), | ||
(inputnode, resample, [('bold_file', 'in_file')]), | ||
(gen_ref, resample, [('out_file', 'ref_file')]), | ||
(boldref2target, bold2target, [('out', 'in2')]), | ||
(bold2target, resample, [('out', 'transforms')]), | ||
(gen_ref, outputnode, [('out_file', 'resampling_reference')]), | ||
(resample, outputnode, [('out_file', 'bold_file')]), | ||
]) # fmt:skip | ||
|
||
if not fieldmap_id: | ||
return workflow | ||
|
||
fmap_select = pe.Node( | ||
KeySelect(fields=['fmap'], key=fieldmap_id), | ||
name='fmap_select', | ||
run_without_submitting=True, | ||
) | ||
distortion_params = pe.Node( | ||
DistortionParameters(metadata=metadata), | ||
name='distortion_params', | ||
run_without_submitting=True, | ||
) | ||
workflow.connect([ | ||
(inputnode, fmap_select, [ | ||
('fmap', 'fmap_ref'), | ||
('fmap_id', 'keys'), | ||
]), | ||
(inputnode, distortion_params, [('bold_file', 'in_file')]), | ||
# Inject fieldmap correction into resample node | ||
(fmap_select, resample, [('fmap', 'fieldmap')]), | ||
(distortion_params, resample, [ | ||
('readout_time', 'ro_time'), | ||
('pe_direction', 'pe_dir'), | ||
]), | ||
]) # fmt:skip | ||
|
||
return workflow | ||
|
||
|
||
def _gen_inverses(inlist: list) -> list[bool]: | ||
"""Create a list indicating the first transform should be inverted. | ||
The input list is the collection of transforms that follow the | ||
inverted one. | ||
""" | ||
from niworkflows.utils.connections import listify | ||
|
||
if not inlist: | ||
return [True] | ||
return [True] + [False] * len(listify(inlist)) | ||
|
||
|
||
def _is_native(value): | ||
return value == 'native' |