-
Notifications
You must be signed in to change notification settings - Fork 260
/
Copy pathparrec2nii.py
340 lines (313 loc) · 14.2 KB
/
parrec2nii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
"""Code for PAR/REC to NIfTI converter command
"""
from __future__ import division, print_function, absolute_import
from optparse import OptionParser, Option
import numpy as np
import numpy.linalg as npl
import sys
import os
import csv
import nibabel
import nibabel.parrec as pr
import nibabel.xmlrec as xr
from nibabel.parrec import one_line
from nibabel.mriutils import calculate_dwell_time, MRIError
import nibabel.nifti1 as nifti1
from nibabel.filename_parser import splitext_addext
from nibabel.volumeutils import fname_ext_ul_case
from nibabel.orientations import (io_orientation, inv_ornt_aff,
apply_orientation)
from nibabel.affines import apply_affine, from_matvec, to_matvec
def get_opt_parser():
# use module docstring for help output
p = OptionParser(
usage="%s [OPTIONS] <PAR files>\n\n" % sys.argv[0] + __doc__,
version="%prog " + nibabel.__version__)
p.add_option(
Option("-v", "--verbose", action="store_true", dest="verbose",
default=False,
help="""Make some noise."""))
p.add_option(
Option("-o", "--output-dir", action="store", type="string",
dest="outdir", default=None,
help=one_line("""Destination directory for NIfTI files.
Default: current directory.""")))
p.add_option(
Option("-c", "--compressed", action="store_true",
dest="compressed", default=False,
help="Whether to write compressed NIfTI files or not."))
p.add_option(
Option("-p", "--permit-truncated", action="store_true",
dest="permit_truncated", default=False,
help=one_line(
"""Permit conversion of truncated recordings. Support for
this is experimental, and results *must* be checked
afterward for validity.""")))
p.add_option(
Option("-b", "--bvs", action="store_true", dest="bvs", default=False,
help=one_line(
"""Output bvals/bvecs files in addition to NIFTI
image.""")))
p.add_option(
Option("-d", "--dwell-time", action="store_true", default=False,
dest="dwell_time",
help=one_line(
"""Calculate the scan dwell time. If supplied, the magnetic
field strength should also be supplied using
--field-strength (default 3). The field strength must be
supplied because it is not encoded in the PAR/REC
format.""")))
p.add_option(
Option("--field-strength", action="store", type="float",
dest="field_strength",
help=one_line(
"""The magnetic field strength of the recording, only needed
for --dwell-time. The field strength must be supplied
because it is not encoded in the PAR/REC format.""")))
p.add_option(
Option("-i", "--volume-info", action="store_true", dest="vol_info",
default=False,
help=one_line(
"""Export .PAR volume labels corresponding to the fourth
dimension of the data. The dimension info will be stored in
CSV format with the first row containing dimension labels
and the subsequent rows (one per volume), the corresponding
indices. Only labels that vary along the 4th dimension are
exported (e.g. for a single volume structural scan there
are no dynamic labels and no output file will be created).
""")))
p.add_option(
Option("--origin", action="store", dest="origin", default="scanner",
help=one_line(
"""Reference point of the q-form transformation of the NIfTI
image. If 'scanner' the (0,0,0) coordinates will refer to
the scanner's iso center. If 'fov', this coordinate will be
the center of the recorded volume (field of view). Default:
'scanner'.""")))
p.add_option(
Option("--minmax", action="store", nargs=2, dest="minmax",
help=one_line(
"""Mininum and maximum settings to be stored in the NIfTI
header. If any of them is set to 'parse', the scaled data is
scanned for the actual minimum and maximum. To bypass this
potentially slow and memory intensive step (the data has to
be scaled and fully loaded into memory), fixed values can be
provided as space-separated pair, e.g. '5.4 120.4'. It is
possible to set a fixed minimum as scan for the actual
maximum (and vice versa). Default: 'parse parse'.""")))
p.set_defaults(minmax=('parse', 'parse'))
p.add_option(
Option("--store-header", action="store_true", dest="store_header",
default=False,
help=one_line(
"""If set, all information from the PAR header is stored in
an extension ofthe NIfTI file header. Default: off""")))
p.add_option(
Option("--scaling", action="store", dest="scaling", default='dv',
help=one_line(
"""Choose data scaling setting. The PAR header defines two
different data scaling settings: 'dv' (values displayed on
console) and 'fp' (floating point values). Either one can be
chosen, or scaling can be disabled completely ('off'). Note
that neither method will actually scale the data, but just
store the corresponding settings in the NIfTI header, unless
non-uniform scaling is used, in which case the data is
stored in the file in scaled form. Default: 'dv'""")))
p.add_option(
Option('--keep-trace', action="store_true", dest='keep_trace',
default=False,
help=one_line("""Do not discard the diagnostic Philips DTI
trace volume, if it exists in the data.""")))
p.add_option(
Option("--overwrite", action="store_true", dest="overwrite",
default=False,
help=one_line("""Overwrite file if it exists. Default:
False""")))
p.add_option(
Option("--strict-sort", action="store_true", dest="strict_sort",
default=False,
help=one_line("""Use additional keys in determining the order
to sort the slices within the .REC file. This may be necessary
for more complicated scans with multiple echos,
cardiac phases, ASL label states, etc.""")))
return p
def verbose(msg, indent=0):
if verbose.switch:
print("%s%s" % (' ' * indent, msg))
def error(msg, exit_code):
sys.stderr.write(msg + '\n')
sys.exit(exit_code)
def proc_file(infile, opts):
# figure out the output filename, and see if it exists
basefilename, ext = splitext_addext(os.path.basename(infile))[:2]
ext = ext.lower()
if (ext == '.xml' or
(ext == '.rec' and os.path.exists(basefilename + '.xml'))):
pr_module = xr
else:
pr_module = pr
if opts.outdir is not None:
# set output path
basefilename = os.path.join(opts.outdir, basefilename)
# prep a file
if opts.compressed:
verbose('Using gzip compression')
outfilename = basefilename + '.nii.gz'
else:
outfilename = basefilename + '.nii'
if os.path.isfile(outfilename) and not opts.overwrite:
raise IOError('Output file "%s" exists, use --overwrite to '
'overwrite it' % outfilename)
# load the PAR header and data
scaling = 'dv' if opts.scaling == 'off' else opts.scaling
infile = fname_ext_ul_case(infile)
pr_img = pr_module.load(infile,
permit_truncated=opts.permit_truncated,
scaling=scaling,
strict_sort=opts.strict_sort)
pr_hdr = pr_img.header
affine = pr_hdr.get_affine(origin=opts.origin)
slope, intercept = pr_hdr.get_data_scaling(scaling)
if opts.scaling != 'off':
verbose('Using data scaling "%s"' % opts.scaling)
# get original scaling, and decide if we scale in-place or not
if opts.scaling == 'off':
slope = np.array([1.])
intercept = np.array([0.])
in_data = pr_img.dataobj.get_unscaled()
out_dtype = pr_hdr.get_data_dtype()
elif not np.any(np.diff(slope)) and not np.any(np.diff(intercept)):
# Single scalefactor case
slope = slope.ravel()[0]
intercept = intercept.ravel()[0]
in_data = pr_img.dataobj.get_unscaled()
out_dtype = pr_hdr.get_data_dtype()
else:
# Multi scalefactor case
slope = np.array([1.])
intercept = np.array([0.])
in_data = np.array(pr_img.dataobj)
out_dtype = np.float64
# Reorient data block to LAS+ if necessary
ornt = io_orientation(np.diag([-1, 1, 1, 1]).dot(affine))
if np.all(ornt == [[0, 1],
[1, 1],
[2, 1]]): # already in LAS+
t_aff = np.eye(4)
else: # Not in LAS+
t_aff = inv_ornt_aff(ornt, pr_img.shape)
affine = np.dot(affine, t_aff)
in_data = apply_orientation(in_data, ornt)
bvals, bvecs = pr_hdr.get_bvals_bvecs()
if not opts.keep_trace: # discard Philips DTI trace if present
if bvecs is not None:
bad_mask = np.logical_and(bvals != 0, (bvecs == 0).all(axis=1))
if bad_mask.sum() > 0:
pl = 's' if bad_mask.sum() != 1 else ''
verbose('Removing %s DTI trace volume%s'
% (bad_mask.sum(), pl))
good_mask = ~bad_mask
in_data = in_data[..., good_mask]
bvals = bvals[good_mask]
bvecs = bvecs[good_mask]
# Make corresponding NIfTI image
nimg = nifti1.Nifti1Image(in_data, affine, pr_hdr)
nhdr = nimg.header
nhdr.set_data_dtype(out_dtype)
nhdr.set_slope_inter(slope, intercept)
nhdr.set_sform(affine, code=1)
nhdr.set_qform(affine, code=1)
if 'parse' in opts.minmax:
# need to get the scaled data
verbose('Loading (and scaling) the data to determine value range')
if opts.minmax[0] == 'parse':
nhdr['cal_min'] = in_data.min() * slope + intercept
else:
nhdr['cal_min'] = float(opts.minmax[0])
if opts.minmax[1] == 'parse':
nhdr['cal_max'] = in_data.max() * slope + intercept
else:
nhdr['cal_max'] = float(opts.minmax[1])
# container for potential NIfTI1 header extensions
if opts.store_header:
# dump the full PAR header content into an extension
with open(infile, 'rb') as fobj: # contents must be bytes
hdr_dump = fobj.read()
dump_ext = nifti1.Nifti1Extension('comment', hdr_dump)
nhdr.extensions.append(dump_ext)
verbose('Writing %s' % outfilename)
nibabel.save(nimg, outfilename)
# write out bvals/bvecs if requested
if opts.bvs:
if bvals is None and bvecs is None:
verbose('No DTI volumes detected, bvals and bvecs not written')
elif bvecs is None:
verbose('DTI volumes detected, but no diffusion direction info was'
'found. Writing .bvals file only.')
with open(basefilename + '.bvals', 'w') as fid:
# np.savetxt could do this, but it's just a loop anyway
for val in bvals:
fid.write('%s ' % val)
fid.write('\n')
else:
verbose('Writing .bvals and .bvecs files')
# Transform bvecs with reorientation affine
orig2new = npl.inv(t_aff)
bv_reorient = from_matvec(to_matvec(orig2new)[0], [0, 0, 0])
bvecs = apply_affine(bv_reorient, bvecs)
with open(basefilename + '.bvals', 'w') as fid:
# np.savetxt could do this, but it's just a loop anyway
for val in bvals:
fid.write('%s ' % val)
fid.write('\n')
with open(basefilename + '.bvecs', 'w') as fid:
for row in bvecs.T:
for val in row:
fid.write('%s ' % val)
fid.write('\n')
# export data labels varying along the 4th dimensions if requested
if opts.vol_info:
labels = pr_img.header.get_volume_labels()
if len(labels) > 0:
vol_keys = list(labels.keys())
with open(basefilename + '.ordering.csv', 'w') as csvfile:
csvwriter = csv.writer(csvfile, delimiter=',')
csvwriter.writerow(vol_keys)
for vals in zip(*[labels[k] for k in vol_keys]):
csvwriter.writerow(vals)
# write out dwell time if requested
if opts.dwell_time:
try:
dwell_time = calculate_dwell_time(
pr_hdr.get_water_fat_shift(),
pr_hdr.get_echo_train_length(),
opts.field_strength)
except MRIError:
verbose('No EPI factors, dwell time not written')
else:
verbose('Writing dwell time (%r sec) calculated assuming %sT '
'magnet' % (dwell_time, opts.field_strength))
with open(basefilename + '.dwell_time', 'w') as fid:
fid.write('%r\n' % dwell_time)
# done
def main():
parser = get_opt_parser()
(opts, infiles) = parser.parse_args()
verbose.switch = opts.verbose
if opts.origin not in ['scanner', 'fov']:
error("Unrecognized value for --origin: '%s'." % opts.origin, 1)
if opts.dwell_time and opts.field_strength is None:
error('Need --field-strength for dwell time calculation', 1)
# store any exceptions
errs = []
for infile in infiles:
verbose('Processing %s' % infile)
try:
proc_file(infile, opts)
except Exception as e:
errs.append('%s: %s' % (infile, e))
if len(errs):
error('Caught %i exceptions. Dump follows:\n\n %s'
% (len(errs), '\n'.join(errs)), 1)
else:
verbose('Done')