-
Notifications
You must be signed in to change notification settings - Fork 260
/
Copy pathmake_coord_examples.py
208 lines (170 loc) · 6.64 KB
/
make_coord_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python
""" Make graphics and example image for coordinate tutorial
Expects MNI nonlinear template t1 and t2 images in directory of script -
specifically these files:
* mni_icbm152_t1_tal_nlin_asym_09a.nii
* mni_icbm152_t2_tal_nlin_asym_09a.nii
Requires nipy and matplotlib.
Executing this script generates the following files in the current directory:
* localizer.png (pretend localizer sagittal image)
* someones_epi.nii.gz (pretend single EPI volume)
* someones_anatomy.nii.gz (pretend single subject structural)
"""
import math
import numpy as np
import numpy.linalg as npl
import nibabel.eulerangles as euler
import nipy
import nipy.core.api as nca
import nipy.algorithms.resample as rsm
import matplotlib.pyplot as plt
T1_IMG = 'mni_icbm152_t1_tal_nlin_asym_09a.nii'
T2_IMG = 'mni_icbm152_t2_tal_nlin_asym_09a.nii'
imgs = []
for img_fname in (T1_IMG, T2_IMG):
img = nipy.load_image(img_fname)
# Set affine as for FOV, not AC
RZS = img.affine[:3, :3]
vox_fov_center = -(np.array(img.shape) - 1) / 2.
T = RZS.dot(vox_fov_center)
img.affine[:3, 3] = T
# Take stuff off the top of the full image, to emphasize FOV
img_z_shave = 10
# Take stuff off left and right to save disk space
img_x_shave = 20
img = img[img_x_shave:-img_x_shave, :, :-img_z_shave]
imgs.append(img)
t1_img, t2_img = imgs
# Make fake localizer
data = t1_img.get_fdata()
n_x, n_y, n_z = img.shape
mid_x = round(n_x / 2)
sagittal = data[mid_x, :, :].T
# EPI bounding box
# 3 points on a not-completely-rectangular box. The box is to give a by-eye
# estimate, then we work out the box side lengths and make a rectangular box
# from those, using the origin point
epi_bl = np.array((20, 15)) * 2
epi_br = np.array((92, 70)) * 2
epi_tl = np.array((7, 63)) * 2
# Find lengths of sides
epi_y_len = np.sqrt((np.subtract(epi_bl, epi_tl)**2).sum())
epi_x_len = np.sqrt((np.subtract(epi_bl, epi_br)**2).sum())
x, y = 0, 1
# Make a rectangular box with these sides
def make_ortho_box(bl, x_len, y_len):
""" Make a box with sides parallel to the axes
"""
return np.array((bl,
[bl[x] + x_len, bl[y]],
[bl[x], bl[y] + y_len],
[bl[x] + x_len, bl[y] + y_len]))
orth_epi_box = make_ortho_box(epi_bl, epi_x_len, epi_y_len)
# Structural bounding box
anat_bl = (25, 3)
anat_x_len = 185
anat_y_len = 155
anat_box = make_ortho_box(anat_bl, anat_x_len, anat_y_len)
def plot_line(pt1, pt2, fmt='r-', label=None):
plt.plot([pt1[0], pt2[0]], [pt1[1], pt2[1]], fmt,
label=label)
def plot_box(box_def, fmt='r-', label=None):
bl, br, tl, tr = box_def
plot_line(bl, br, fmt, label=label)
plot_line(bl, tl, fmt)
plot_line(br, tr, fmt)
plot_line(tl, tr, fmt)
def rotate_box(box_def, angle, origin):
origin = np.atleast_2d(origin)
box_def_zeroed = box_def - origin
cost = math.cos(angle)
sint = math.sin(angle)
rot_array = np.array([[cost, -sint],
[sint, cost]])
box_def_zeroed = np.dot(rot_array, box_def_zeroed.T).T
return box_def_zeroed + origin
def labeled_point(pt, marker, text, markersize=10, color='k'):
plt.plot(pt[0], pt[1], marker, markersize=markersize)
plt.text(pt[0] + markersize / 2,
pt[1] - markersize / 2,
text,
color=color)
def plot_localizer():
plt.imshow(sagittal, cmap="gray", origin='lower', extent=sag_extents)
plt.xlabel('mm from isocenter')
plt.ylabel('mm from isocenter')
def save_plot():
# Plot using global variables
plot_localizer()
def vx2mm(pts):
return pts - iso_center
plot_box(vx2mm(rot_box), label='EPI bounding box')
plot_box(vx2mm(anat_box), 'b-', label='Structural bounding box')
labeled_point(vx2mm(epi_center), 'ro', 'EPI FOV center')
labeled_point(vx2mm(anat_center), 'bo', 'Structural FOV center')
labeled_point(vx2mm(iso_center), 'g^', 'Magnet isocenter')
plt.axis('tight')
plt.legend(loc='lower right')
plt.title('Scanner localizer image')
plt.savefig('localizer.png')
angle = 0.3
rot_box = rotate_box(orth_epi_box, angle, orth_epi_box[0])
epi_center = np.mean(rot_box, axis=0)
anat_center = np.mean(anat_box, axis=0)
# y axis on the plot is first axis of image
sag_y, sag_x = sagittal.shape
iso_center = (np.array([sag_x, sag_y]) - 1) / 2.
sag_extents = [-iso_center[0], iso_center[0], -iso_center[1], iso_center[1]]
# Back to image coordinates
br_img = np.array([0, rot_box[0, 0], rot_box[0, 1]])
epi_trans = np.eye(4)
epi_trans[:3, 3] = -br_img
rot = np.eye(4)
rot[:3, :3] = euler.euler2mat(0, 0, -angle)
# downsample to make smaller output image
downsamp = 1/3
epi_scale = np.diag([downsamp, downsamp, downsamp, 1])
# template voxels to epi box image voxels
vox2epi_vox = epi_scale.dot(rot.dot(epi_trans))
# epi image voxels to mm
epi_vox2mm = t2_img.affine.dot(npl.inv(vox2epi_vox))
# downsampled image shape
epi_vox_shape = np.array([data.shape[0], epi_x_len, epi_y_len]) * downsamp
# Make sure dimensions are odd by rounding up or down
# This makes the voxel center an integer index, which is convenient
epi_vox_shape = [np.floor(d) if np.floor(d) % 2 else np.ceil(d)
for d in epi_vox_shape]
# resample, preserving affine
epi_cmap = nca.vox2mni(epi_vox2mm)
epi = rsm.resample(t2_img, epi_cmap, np.eye(4), epi_vox_shape)
epi_data = epi.get_fdata()
# Do the same kind of thing for the anatomical scan
anat_vox_sizes = [2.75, 2.75, 2.75]
anat_scale = npl.inv(np.diag(anat_vox_sizes + [1]))
anat_trans = np.eye(4)
anat_trans[:3, 3] = -np.array([0, anat_box[0, 0], anat_box[0, 1]])
vox2anat_vox = anat_scale.dot(anat_trans)
anat_vox2mm = t1_img.affine.dot(npl.inv(vox2anat_vox))
anat_vox_shape = np.round(np.divide(
[data.shape[0], anat_x_len, anat_y_len], anat_vox_sizes))
anat_cmap = nca.vox2mni(anat_vox2mm)
anat = rsm.resample(t1_img, anat_cmap, np.eye(4), anat_vox_shape)
anat_data = anat.get_fdata()
save_plot()
nipy.save_image(epi, 'someones_epi.nii.gz', dtype_from='uint8')
nipy.save_image(anat, 'someones_anatomy.nii.gz', dtype_from='uint8')
# Do progressive transforms
epi2_vox = make_ortho_box((0, 0), epi_vox_shape[1], epi_vox_shape[2])
epi_vox_sizes = np.sqrt(np.sum(epi_vox2mm[:3, :3] ** 2, axis=0))
epi2_scaled = np.diag(epi_vox_sizes[1:]).dot(epi2_vox.T).T
epi2_rotted = rotate_box(epi2_scaled, angle, (0, 0))
epi2_pulled = epi2_rotted + epi_vox2mm[1:3, 3]
plt.figure()
plot_localizer()
plot_box(epi2_vox, 'k', label='voxels')
plot_box(epi2_scaled, 'g', label='scaled')
plot_box(epi2_rotted, 'y', label='scaled, rotated')
plot_box(epi2_pulled, 'r', label='scaled, rotated, translated')
plt.legend(loc='upper left')
plt.title('Anatomy of an affine transform')
plt.savefig('illustrating_affine.png')