From b7817ef95fe5fbda1d171c4ab1378397070cb65e Mon Sep 17 00:00:00 2001 From: Fred Thomas Date: Fri, 5 Jan 2024 18:00:57 +0000 Subject: [PATCH 1/5] Add rules to calculate return periods for people affected by storms --- config/config.yaml | 5 + workflow/Snakefile | 14 ++ .../exposure/electricity_grid/disruption.smk | 198 ++++++++++++++++++ 3 files changed, 217 insertions(+) diff --git a/config/config.yaml b/config/config.yaml index f3864472..f11d1213 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -122,6 +122,11 @@ wind_grid_resolution_deg: 0.1 # approx 11km latitude # Failure thresholds m/s. These values are the thresholds at which the network assets # are expected to fail based on available literature. transmission_windspeed_failure: [20., 22.5, 25., 27.5, 30., 32.5, 35., 37.5, 40., 42.5, 45., 47.5, 50., 52.5, 55.] +# when plotting, mark this threshold as the central value +best_estimate_windspeed_failure_threshold: 32.5 + +# return periods at which to report +return_period_years: [2, 5, 10, 20, 50, 100, 200, 500, 1000] # whether to plot maximum wind fields and storm track animations for each storm plot_wind: diff --git a/workflow/Snakefile b/workflow/Snakefile index 2e7497f8..5c6c5b88 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -14,6 +14,7 @@ import math import os.path from glob import glob +import numpy as np import requests from open_gira.assets import Assets @@ -60,6 +61,19 @@ else: # will raise ValueError in case of mismatch Assets.valid_selection(requested_asset_damage_types) +# check tropical cyclone / grid workflow return period array is valid +TC_RPs = np.array(config["return_period_years"]) +if not np.all(np.diff(TC_RPs) > 0): + raise ValueError("config.return_period_years should be monotonically increasing") +if not np.all(TC_RPs > 0): + raise ValueError("config.return_period_years values must be strictly positive") + +# check transmission wind speed damage thresholds +if not config["best_estimate_windspeed_failure_threshold"] in config["transmission_windspeed_failure"]: + raise ValueError( + "config.transmissions_windspeed_failure must contain config.best_estimate_windspeed_failure_threshold" + ) + # Constrain wildcards to NOT use _ or / wildcard_constraints: DATASET="[^_/]+", diff --git a/workflow/rules/exposure/electricity_grid/disruption.smk b/workflow/rules/exposure/electricity_grid/disruption.smk index c9e12300..92a0cf53 100644 --- a/workflow/rules/exposure/electricity_grid/disruption.smk +++ b/workflow/rules/exposure/electricity_grid/disruption.smk @@ -114,6 +114,204 @@ snakemake --cores 1 -- results/power/by_country/PRI/disruption/IBTrACS/pop_affec """ +rule disruption_pop_affected_return_periods: + """ + Calculate how many people are affected by storms corresponding to given + return periods. Also output the estimated recurrence time for the largest + event of every year in the storm set. + """ + input: + per_event = rules.aggregate_per_event_disruption_across_samples.output, + tracks = "{OUTPUT_DIR}/storm_tracks/{STORM_SET}/tracks.geoparquet", + params: + return_periods = config["return_period_years"] + output: + return_periods_raw = "{OUTPUT_DIR}/power/by_country/{COUNTRY_ISO_A3}/disruption/{STORM_SET}/pop_affected_RP_raw.pq", + return_periods_interpolated = "{OUTPUT_DIR}/power/by_country/{COUNTRY_ISO_A3}/disruption/{STORM_SET}/pop_affected_RP.pq", + run: + import pandas as pd + import numpy as np + + # read in the number of people affected by each event (event rows, threshold columns) + pop_affected = pd.read_parquet(input.per_event) + thresholds: np.ndarray = pop_affected.columns.values.copy() + + tracks = pd.read_parquet(input.tracks, columns=["track_id", "year"]) + tracks: pd.DataFrame = tracks.drop_duplicates("track_id").set_index("track_id") + n_years: int = tracks.year.max() - tracks.year.min() + 1 + + # bring in year data for the storms (common event_id index) + pop_affected: pd.DataFrame = pop_affected.join(tracks) + + # year index, threshold columns, values are event_ids of max pop affected that year + event_ids_of_annual_max: pd.DataFrame = pop_affected.groupby("year").idxmax() + + data_by_threshold: list[pd.DataFrame] = [] + for threshold in thresholds: + + # index into pop_affected data with event_ids of largest disruption per year, sort ascending + df = pd.DataFrame(pop_affected.loc[event_ids_of_annual_max[threshold], threshold]) + + # move speed threshold from column name into vales of new `threshold` column + df = df.rename(columns={threshold: "pop_affected"}) + + # add zero-valued entries for years with no record in the time span + years_with_no_data = pd.DataFrame( + index=pd.Index([f"no_data" for i in range(n_years - len(df))], name="event_id"), + data={"pop_affected": np.zeros(n_years - len(df))} + ) + # sort to ascending pop_affected + df = pd.concat([df, years_with_no_data]).sort_values("pop_affected") + + # store threshold as data (will be set as index later) + df["threshold"] = threshold + + # calculate recurrence intervals using 'plotting position' formula + # most impactful event gets rank 1 + df["rank"] = range(n_years, 0, -1) + + # T = n + 1 / m, where T is expected value of return period, n is number of observations and m observation rank + # for a derivation of this formula, see Gumbel 1958, ยง2.1.4 or Makkonen 2006 + # N.B. this is valid for any underlying distribution + df["return_period_years"] = (n_years + 1) / df["rank"] + + # the Annual Exceedance Probability, AEP, is 1 / T + + df = df.reset_index().set_index(["threshold", "event_id"]) + + data_by_threshold.append(df) + + # write out raw return periods as calculated for the largest event in each year + data = pd.concat(data_by_threshold) + data.to_parquet(output.return_periods_raw) + + # interpolate between the raw events to find population affected for a given set of return periods + interpolated_RP_by_threshold = [] + for threshold in thresholds: + df = pd.DataFrame( + { + "threshold": threshold, + "return_period_years": params.return_periods, + # note that numpy interp expects the x grid, i.e. + # return_period_years data to be monotonically increasing + "pop_affected": np.interp( + params.return_periods, + data.xs(threshold, level="threshold")["return_period_years"], + data.xs(threshold, level="threshold")["pop_affected"] + ) + } + ) + interpolated_RP_by_threshold.append(df) + + interpolated_RP = pd.concat(interpolated_RP_by_threshold).set_index(["threshold", "return_period_years"]) + interpolated_RP.to_parquet(output.return_periods_interpolated) + +""" +Test with: +snakemake -c1 -- results/power/by_country/PRI/disruption/STORM-constant/pop_affected_RP.pq +""" + + +rule plot_pop_affected_return_periods: + """ + Plot population affected as a function of return period. + """ + input: + return_periods = rules.disruption_pop_affected_return_periods.output.return_periods_raw + params: + best_estimate_threshold = config["best_estimate_windspeed_failure_threshold"] + output: + plot = "{OUTPUT_DIR}/power/by_country/{COUNTRY_ISO_A3}/disruption/{STORM_SET}/pop_affected_RP.png", + run: + import matplotlib + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + + matplotlib.use("Agg") + + f, ax = plt.subplots(figsize=(12,6)) + + data_by_threshold = pd.read_parquet(input.return_periods) + thresholds = np.array(list(map(float, data_by_threshold.index.get_level_values(level="threshold").unique()))) + max_delta = np.max(np.abs(thresholds - params.best_estimate_threshold)) + + cmap = matplotlib.colormaps["magma"] + for threshold in thresholds: + + delta = np.abs(threshold - params.best_estimate_threshold) + + threshold_str = f"{threshold:.1f}" + df = data_by_threshold.xs(threshold_str, level="threshold") + + if threshold == params.best_estimate_threshold: + line_style = "--" + else: + line_style = "-" + ax.step( + df["return_period_years"], + df["pop_affected"], + label=f"{threshold_str}", + color=cmap(delta / max_delta), + ls=line_style, + ) + + ax.set_xscale("log") + ax.set_xlabel("Return period [years]", labelpad=10) + + ax.set_ylabel(f"Population affected", labelpad=10) + + ax.grid(alpha=0.4, which="both") + plt.subplots_adjust(right=0.8) + ax.legend( + title="Threshold [ms-1]", + fontsize=8, + bbox_to_anchor=(1.02, 1.0), + loc='upper left' + ) + ax.set_title(f"{wildcards.COUNTRY_ISO_A3}: {wildcards.STORM_SET}") + + f.savefig(output.plot) + +""" +Test with: +snakemake -c1 -- results/power/by_country/PRI/disruption/STORM-constant/pop_affected_RP.png +""" + + +def pop_affected_return_periods_plot_path(wildcards) -> list[str]: + """ + Return a list of paths, one for each country. + """ + import json + + country_set_path = f"{wildcards.OUTPUT_DIR}/power/by_storm_set/{wildcards.STORM_SET}/countries_impacted.json" + with open(country_set_path, "r") as fp: + countries = json.load(fp) + + return expand( + "{OUTPUT_DIR}/power/by_country/{COUNTRY_ISO_A3}/disruption/{STORM_SET}/pop_affected_RP.png", + OUTPUT_DIR=wildcards.OUTPUT_DIR, + COUNTRY_ISO_A3=countries, + STORM_SET=wildcards.STORM_SET, + ) + +rule plot_pop_affected_return_periods_storm_set: + """" + Target rule for population affected as a function of return period plots for + all countries affected by STORM_SET. + """ + input: + plot_paths = pop_affected_return_periods_plot_path, + output: + flag = touch("{OUTPUT_DIR}/power/by_storm_set/{STORM_SET}/pop_affected_RP_plots.flag") + +""" +Test with: +snakemake -c1 -- results/power/by_storm_set/STORM-constant/pop_affected_RP_plots.flag +""" + + def disruption_per_target_sample_files(wildcards) -> list[str]: """ Return a list of paths, one for each sample. From 14ff6df343afeff1d345136e0bbb403463424c36 Mon Sep 17 00:00:00 2001 From: Fred Thomas Date: Mon, 22 Jan 2024 16:45:43 +0000 Subject: [PATCH 2/5] Remove validation work from this repository --- validation/compare_wind_models.ipynb | 15055 ---------------- validation/iso_codes.csv | 257 - validation/map_outages.ipynb | 1044 -- validation/observed_outages/2005236N23285.csv | 2 - validation/observed_outages/2005261N21290.csv | 2 - validation/observed_outages/2005289N18282.csv | 2 - validation/observed_outages/2008238N13293.csv | 2 - validation/observed_outages/2008245N17323.csv | 3 - validation/observed_outages/2011028S13180.csv | 2 - validation/observed_outages/2011233N15301.csv | 2 - validation/observed_outages/2012296N14283.csv | 2 - validation/observed_outages/2013018S14138.csv | 2 - validation/observed_outages/2013306N07162.csv | 2 - validation/observed_outages/2014092S11159.csv | 2 - validation/observed_outages/2014190N08154.csv | 2 - validation/observed_outages/2015293N13266.csv | 2 - validation/observed_outages/2016242N24279.csv | 2 - validation/observed_outages/2016253N13144.csv | 3 - validation/observed_outages/2016273N13300.csv | 3 - validation/observed_outages/2017228N14314.csv | 3 - validation/observed_outages/2017242N16333.csv | 5 - validation/observed_outages/2017260N12310.csv | 2 - validation/observed_outages/2018073S09129.csv | 2 - validation/observed_outages/2018242N13343.csv | 2 - validation/observed_outages/2018280N18273.csv | 2 - validation/observed_outages/2018292N14261.csv | 2 - validation/observed_outages/2020136N10088.csv | 2 - validation/observed_outages/2020211N13306.csv | 2 - validation/observed_outages/2022255N15324.csv | 3 - validation/observed_outages/2022263N10313.csv | 2 - validation/outage_model_validation.csv | 241 - validation/outage_model_validation.ipynb | 1166 -- .../undesa_pd_2022_hh-size-composition.xlsx | Bin 342176 -> 0 bytes 33 files changed, 17825 deletions(-) delete mode 100644 validation/compare_wind_models.ipynb delete mode 100644 validation/iso_codes.csv delete mode 100644 validation/map_outages.ipynb delete mode 100644 validation/observed_outages/2005236N23285.csv delete mode 100644 validation/observed_outages/2005261N21290.csv delete mode 100644 validation/observed_outages/2005289N18282.csv delete mode 100644 validation/observed_outages/2008238N13293.csv delete mode 100644 validation/observed_outages/2008245N17323.csv delete mode 100644 validation/observed_outages/2011028S13180.csv delete mode 100644 validation/observed_outages/2011233N15301.csv delete mode 100644 validation/observed_outages/2012296N14283.csv delete mode 100644 validation/observed_outages/2013018S14138.csv delete mode 100644 validation/observed_outages/2013306N07162.csv delete mode 100644 validation/observed_outages/2014092S11159.csv delete mode 100644 validation/observed_outages/2014190N08154.csv delete mode 100644 validation/observed_outages/2015293N13266.csv delete mode 100644 validation/observed_outages/2016242N24279.csv delete mode 100644 validation/observed_outages/2016253N13144.csv delete mode 100644 validation/observed_outages/2016273N13300.csv delete mode 100644 validation/observed_outages/2017228N14314.csv delete mode 100644 validation/observed_outages/2017242N16333.csv delete mode 100644 validation/observed_outages/2017260N12310.csv delete mode 100644 validation/observed_outages/2018073S09129.csv delete mode 100644 validation/observed_outages/2018242N13343.csv delete mode 100644 validation/observed_outages/2018280N18273.csv delete mode 100644 validation/observed_outages/2018292N14261.csv delete mode 100644 validation/observed_outages/2020136N10088.csv delete mode 100644 validation/observed_outages/2020211N13306.csv delete mode 100644 validation/observed_outages/2022255N15324.csv delete mode 100644 validation/observed_outages/2022263N10313.csv delete mode 100644 validation/outage_model_validation.csv delete mode 100644 validation/outage_model_validation.ipynb delete mode 100644 validation/undesa_pd_2022_hh-size-composition.xlsx diff --git a/validation/compare_wind_models.ipynb b/validation/compare_wind_models.ipynb deleted file mode 100644 index b88e66e2..00000000 --- a/validation/compare_wind_models.ipynb +++ /dev/null @@ -1,15055 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "ff0b1de4", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'\\nCompare the output of our wind model (Holland, downscaled with local surface roughness)\\nagainst the footprints of Done et al. (Willougby with numerical boundary layer simulation)\\n'" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"\"\"\n", - "Compare the output of our wind model (Holland, downscaled with local surface roughness)\n", - "against the footprints of Done et al. (Willougby with numerical boundary layer simulation)\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "837f092b", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_868937/4090681641.py:2: UserWarning: Shapely 2.0 is installed, but because PyGEOS is also installed, GeoPandas will still use PyGEOS by default for now. To force to use and test Shapely 2.0, you have to set the environment variable USE_PYGEOS=0. You can do this before starting the Python process, or in your code before importing geopandas:\n", - "\n", - "import os\n", - "os.environ['USE_PYGEOS'] = '0'\n", - "import geopandas\n", - "\n", - "In a future release, GeoPandas will switch to using Shapely by default. If you are using PyGEOS directly (calling PyGEOS functions on geometries from GeoPandas), this will then stop working and you are encouraged to migrate from PyGEOS to Shapely 2.0 (https://shapely.readthedocs.io/en/latest/migration_pygeos.html).\n", - " import geopandas as gpd\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "import geopandas as gpd\n", - "import xarray as xr\n", - "import matplotlib\n", - "import matplotlib.pyplot as plt\n", - "import matplotlib.ticker as ticker\n", - "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", - "import numpy as np\n", - "import shapely\n", - "\n", - "import os\n", - "from glob import glob" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "f03f2f12", - "metadata": {}, - "outputs": [], - "source": [ - "def grid_point_data(point_speeds: gpd.GeoDataFrame, col_name: str, agg_func_name: str, delta: float = 0.1) -> gpd.GeoDataFrame:\n", - " \"\"\"\n", - " Bin data on a regular grid. Grid will snap to integer number of `delta` from CRS reference.\n", - " \n", - " Args:\n", - " point_speeds: Table of data at point locations\n", - " col_name: Data column to rebin\n", - " agg_func: Name of function to apply to multiple points within a bin, e.g. max, mean\n", - " delta: Width and height of output raster pixels in decimal degrees\n", - " \"\"\"\n", - " \n", - " def n_cells(start: float, end: float, width: float) -> int:\n", - " return round((end - start) / width)\n", - "\n", - " # create grid\n", - "\n", - " # unpack and snap extrema to integer number of cells from CRS reference\n", - " min_x, min_y, max_x, max_y = map(lambda x: np.ceil(x / delta) * delta, point_speeds.total_bounds)\n", - "\n", - " cells = []\n", - " for x0 in np.linspace(min_x, max_x, n_cells(min_x, max_x, delta) + 1):\n", - " x1 = x0 + delta\n", - " for y0 in np.linspace(min_y, max_y, n_cells(min_y, max_y, delta) + 1):\n", - " y1 = y0 + delta\n", - " cells.append(shapely.geometry.box(x0, y0, x1, y1))\n", - "\n", - " grid = gpd.GeoDataFrame({\"geometry\": cells})\n", - "\n", - " # associate points with grid\n", - " raster = grid.sjoin(point_speeds, how=\"inner\")\n", - "\n", - " # take aggregate of arbitrary number of rows (points) grouped by cell\n", - " agg_func = getattr(raster.groupby(raster.index), agg_func_name)\n", - " aggregated = agg_func(col_name)\n", - " \n", - " # merge geometry back in, how=\"right\" for every grid cell, empty or not\n", - " rebinned = aggregated.merge(grid[[\"geometry\"]], left_index=True, right_index=True, how=\"right\")\n", - " rebinned = rebinned.drop(columns=[\"index_right\"])\n", - " \n", - " # cast to GeoDataFrame again (merge reverted to DataFrame) and return\n", - " return gpd.GeoDataFrame(rebinned)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "daf9c8f8", - "metadata": {}, - "outputs": [], - "source": [ - "def to_xarray(cells: gpd.GeoDataFrame) -> xr.Dataset:\n", - " \"\"\"\n", - " Given table of polygon cells, export to xarray\n", - " \"\"\"\n", - " to_export = cells\n", - " to_export[\"longitude\"] = to_export.geometry.centroid.x\n", - " to_export[\"latitude\"] = to_export.geometry.centroid.y\n", - " to_export = to_export.drop(columns=[\"geometry\"])\n", - " to_export = to_export.set_index([\"longitude\", \"latitude\"])\n", - " return to_export.to_xarray()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "77bc16b2", - "metadata": {}, - "outputs": [], - "source": [ - "def read_kw01(name_year: str, delta: float) -> gpd.GeoDataFrame:\n", - " \"\"\"\n", - " Read the KW01 data, wrangle as points in GeoDataFrame\n", - " \n", - " Args:\n", - " name_year: Storm identifier, e.g. IRMA_2017 or IKE_2008\n", - " delta: Grid resolution to return at in decimal degrees\n", - " \"\"\"\n", - " \n", - " data = pd.concat(\n", - " [\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - " for path in glob(f\"/home/fred/projects/WRN_TC_footprints/footprints/regions/*/{name_year}/*.txt\")\n", - " ]\n", - " )\n", - " point_speeds = gpd.GeoDataFrame(\n", - " {\n", - " \"max_wind_speed\": data[\"wind(m/s)\"],\n", - " \"geometry\": gpd.points_from_xy(data.lon, data.lat)\n", - " }\n", - " )\n", - "\n", - " return to_xarray(grid_point_data(point_speeds, \"max_wind_speed\", \"max\", delta=delta))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "2b78df95", - "metadata": {}, - "outputs": [], - "source": [ - "def fig_size(\n", - " min_x: float,\n", - " min_y: float,\n", - " max_x: float,\n", - " max_y: float,\n", - " max_width_in: float = 16,\n", - " max_height_in: float = 9\n", - ") -> tuple[float, float]:\n", - " \"\"\"\n", - " Given bounding box, calculate size of figure in inches for equal aspect ratio.\n", - " \n", - " Returns:\n", - " width in inches, height in inches\n", - " \"\"\"\n", - " x_span = max_x - min_x\n", - " y_span = max_y - min_y\n", - " aspect_ratio = y_span / x_span\n", - " max_plot_width_in = 16\n", - " max_plot_height_in = 9\n", - "\n", - " if max_plot_width_in * aspect_ratio < max_plot_height_in:\n", - " # tall\n", - " x_in = max_plot_width_in\n", - " y_in = max_plot_width_in * aspect_ratio\n", - "\n", - " else:\n", - " # wide\n", - " x_in = max_plot_height_in / aspect_ratio\n", - " y_in = max_plot_height_in\n", - " \n", - " return x_in, y_in" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "1468f85a", - "metadata": {}, - "outputs": [], - "source": [ - "def name_year_from_id(tracks: gpd.GeoDataFrame, storm_id: str) -> str:\n", - " \"\"\"\n", - " Given IBTrACS storm ID, return name_year.\n", - " e.g. \"2017242N16333\" -> \"IRMA_2017\"\n", - " \"\"\"\n", - " storm_track = tracks[tracks.track_id==storm_id]\n", - " track_point = storm_track.iloc[0]\n", - " name = track_point[\"name\"]\n", - " year = track_point[\"year\"]\n", - " return f\"{name}_{year}\"\n", - "\n", - "def id_from_name_year(tracks: gpd.GeoDataFrame, name_year: str) -> str | None:\n", - " \"\"\"\n", - " Given name_year, return IBTrACS storm ID.\n", - " e.g. \"IRMA_2017\" -> \"2017242N16333\"\n", - " \"\"\"\n", - " try:\n", - " name, year = name_year.split(\"_\")\n", - " except ValueError:\n", - " print(f\"skipping {name_year}...\")\n", - " return None\n", - " track = tracks[(tracks.name==name) & (tracks.year==int(year))]\n", - " try:\n", - " storm_id, = set(track.track_id)\n", - " except ValueError:\n", - " print(f\"{name_year} is ambiguous: {set(track.track_id)}, skipping...\")\n", - " return None\n", - " return storm_id" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "3dbcc465", - "metadata": {}, - "outputs": [], - "source": [ - "def clip_field_to_buffered_points(\n", - " points: gpd.GeoDataFrame,\n", - " field: xr.DataArray,\n", - " buffer_radius_km: float = 0,\n", - ") -> xr.Dataset:\n", - " \"\"\"\n", - " Clip `field` to spatial extent of a buffer around `points`.\n", - " \n", - " Args:\n", - " points: Must include `geometry` column of points.\n", - " field: Longitude latitude data array to clip extent of.\n", - " buffer_radius_km: Only return field within this proximity to points.\n", - " \"\"\"\n", - " \n", - " # make a buffer around the points\n", - " # N.B. using web mercator as geographic CRS, so extremely wrong for non-tropical latitudes\n", - " points_m = points.to_crs(3857)\n", - " buffer = points_m.buffer(buffer_radius_km * 1000).to_crs(4326)\n", - " \n", - " # get the unary_union of point buffers\n", - " aoi = gpd.GeoDataFrame(geometry=[buffer.unary_union])\n", - "\n", - " # get the field as geopandas points\n", - " field_pandas = field.to_dataframe().reset_index()\n", - " field_geopandas = gpd.GeoDataFrame(\n", - " {\n", - " field.name: field_pandas[field.name],\n", - " \"geometry\": gpd.points_from_xy(\n", - " field_pandas.longitude,\n", - " field_pandas.latitude\n", - " )\n", - " } \n", - " ).set_crs(4326)\n", - "\n", - " # find the field values within the AOI \n", - " clipped_field = field_geopandas.sjoin(aoi, how=\"inner\")[[field.name, \"geometry\"]].copy()\n", - " \n", - " # recast as xarray field\n", - " #clipped_field.geometry = clipped_field.geometry.drop_duplicates() # shouldn't be necessary?\n", - " clipped_field[\"latitude\"] = clipped_field.geometry.y\n", - " clipped_field[\"longitude\"] = clipped_field.geometry.x\n", - " clipped_field = clipped_field.drop(columns=[\"geometry\"])\n", - " clipped_field = clipped_field.set_index([\"longitude\", \"latitude\"])\n", - " \n", - " return clipped_field.to_xarray()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "6f408a65", - "metadata": {}, - "outputs": [], - "source": [ - "def plot_error(\n", - " errors: np.ndarray,\n", - " buffer_km: float,\n", - " filepath: str\n", - ") -> None:\n", - " \"\"\"\n", - " Plot distribution of wind speed errors w.r.t Done et al.\n", - " \n", - " pooled_ratio: 1D array of ratios to bin.\n", - " \"\"\"\n", - "\n", - " f, ax = plt.subplots(figsize=(8, 5))\n", - "\n", - " mean = np.nanmean(errors)\n", - " median = np.nanmedian(errors)\n", - " n = len(errors)\n", - "\n", - " ax.set_title(\n", - " (\n", - " \"Wind model validation against Done et al.\\n\"\n", - " f\"for pixels < {buffer_km}km from eye\\n\"\n", - " f\"$n_{{pixels}}={n}, \\ \\mu={mean:.2f} $ms$^{{-1}}, \\ q_{{50}}={median:.2f}$ms$^{{-1}}$\"\n", - " ),\n", - " pad=15\n", - " )\n", - " ax.set_xlabel(\"Errors: downscaled Holland $-$ Done et al. [ms$^{-1}$]\", labelpad=10)\n", - " ax.set_ylabel(\"Frequency\", labelpad=10)\n", - "\n", - " frequency, bin_edges, _ = ax.hist(\n", - " errors,\n", - " bins=np.linspace(-100, 100, 201),\n", - " color=\"g\",\n", - " alpha=0.5,\n", - " density=True,\n", - " label=\"PDF\"\n", - " )\n", - "\n", - " ax.axvline(mean, color=\"r\", ls=\"--\", label=\"Mean\", alpha=0.5)\n", - " miny, maxy = ax.get_ylim()\n", - " for probability_level in [0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95]:\n", - " quantile = np.quantile(errors, probability_level)\n", - " ax.axvline(quantile, color=\"pink\", ls=\"--\", alpha=0.6)\n", - " ax.text(\n", - " quantile,\n", - " 0.07 * maxy,\n", - " f\"$\\mathrm{{q}}_{{{probability_level:.2f}}}$\",\n", - " rotation=-90,\n", - " ha=\"center\",\n", - " size=9\n", - " )\n", - "\n", - " ax.set_xlim(-20, 20)\n", - " ax.grid(alpha=0.3)\n", - " ax.legend()\n", - " plt.subplots_adjust(top=0.8, bottom=0.15)\n", - "\n", - " f.savefig(filepath)\n", - " plt.close(f)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "94156616", - "metadata": {}, - "outputs": [], - "source": [ - "def plot_wind_speed_errors(\n", - " name_year: str,\n", - " storm_id: str,\n", - " buffer_km: str,\n", - " holland: xr.Dataset,\n", - " clipped_error: xr.Dataset,\n", - " plot_dir: str,\n", - ") -> None:\n", - "\n", - " model_arr = holland.sel(\n", - " dict(\n", - " longitude=clipped_error.longitude,\n", - " latitude=clipped_error.latitude\n", - " )\n", - " ).max_wind_speed.values.ravel()\n", - " error_arr = clipped_error.error.values.ravel()\n", - "\n", - " f, (ax_scatter, ax_hist) = plt.subplots(2, 1, sharex=True, gridspec_kw={'height_ratios': [3, 1]})\n", - " ax_scatter.scatter(error_arr, model_arr, s=0.1, c=\"k\")\n", - " ax_scatter.set_ylabel(\"Model wind speed [ms$^{-1}$]\")\n", - " ax_scatter.grid(alpha=0.3)\n", - " x_min = -20\n", - " x_max = 20\n", - " ax_scatter.set_xlim(x_min, x_max)\n", - " ax_scatter.axvline(0, color=\"k\", ls=\"--\", alpha=0.8)\n", - "\n", - " frequency, bin_edges, patches = ax_hist.hist(\n", - " error_arr,\n", - " bins=np.linspace(-50, 50, 150),\n", - " density=True,\n", - " alpha=1,\n", - " color=\"black\"\n", - " )\n", - " \n", - " ax_hist.axvline(0, color=\"k\", ls=\"--\", alpha=0.8)\n", - " ax_hist.set_xlim(x_min, x_max)\n", - " ax_hist.set_ylabel(\"PDF\", labelpad=20)\n", - " ax_hist.set_xlabel(\"Thomas et al. 2023 - Done et al. 2020 [ms$^{-1}$]\")\n", - " ax_hist.spines['top'].set_visible(False)\n", - " ax_hist.spines['right'].set_visible(False)\n", - " ax_hist.spines['left'].set_visible(False)\n", - " ax_hist.get_yaxis().set_ticks([])\n", - "\n", - " f.suptitle(f\"{name_year.replace('_', ' ')} / {storm_id}\\nError within {buffer_km}km of eye over land\")\n", - " f.savefig(os.path.join(plot_dir, f\"{storm_id}_error_distribution.png\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "9214b29e", - "metadata": {}, - "outputs": [], - "source": [ - "def plot_wind_speed_maps(\n", - " name_year: str,\n", - " storm_id: str,\n", - " holland: xr.Dataset,\n", - " kw01: xr.Dataset,\n", - " error: xr.Dataset,\n", - " plot_dir: str,\n", - ") -> None:\n", - "\n", - " f, (ax_h, ax_kw, ax_error) = plt.subplots(1, 3, figsize=(12,5))\n", - "\n", - " vmax = max(holland.max_wind_speed.max(), kw01.max_wind_speed.max()).values\n", - " vmin = min(holland.max_wind_speed.min(), kw01.max_wind_speed.min()).values\n", - "\n", - " xr.plot.pcolormesh(\n", - " error,\n", - " x=\"longitude\",\n", - " ax=ax_error,\n", - " cbar_kwargs={'label': \"Thomas $-$ Done [ms$^{-1}$]\"},\n", - " )\n", - " ax_error.set_title(\"Thomas et al. 2023 - Done et al. 2020\")\n", - " xmin, xmax = ax_error.get_xlim()\n", - " ymin, ymax = ax_error.get_ylim()\n", - "\n", - " xr.plot.pcolormesh(\n", - " holland.max_wind_speed,\n", - " x=\"longitude\",\n", - " ax=ax_h,\n", - " vmax=vmax,\n", - " vmin=vmin,\n", - " cbar_kwargs={'label': \"Max wind speed [ms$^{-1}$]\"}\n", - " )\n", - " ax_h.set_title(\"Thomas et al. 2023\\nSurface roughness downscaling\")\n", - " ax_h.set_xlim(xmin, xmax)\n", - " ax_h.set_ylim(ymin, ymax)\n", - "\n", - " xr.plot.pcolormesh(\n", - " kw01.max_wind_speed,\n", - " x=\"longitude\",\n", - " ax=ax_kw,\n", - " vmax=vmax,\n", - " vmin=vmin,\n", - " cbar_kwargs={'label': \"Max wind speed [ms$^{-1}$]\"}\n", - " )\n", - " ax_kw.set_title(\"Done et al. 2020\\nKepert & Wang physical boundary layer\")\n", - " ax_kw.set_xlim(xmin, xmax)\n", - " ax_kw.set_ylim(ymin, ymax)\n", - "\n", - " for ax in (ax_h, ax_kw, ax_error):\n", - " ax.set_xlabel(\"Longitude\")\n", - " ax.set_ylabel(\"Latitude\")\n", - "\n", - " f.suptitle(f\"{name_year.replace('_', ' ')} / {storm_id}\")\n", - " plt.subplots_adjust(left=0.05, right=0.9, wspace=0.4, top=0.85, bottom=0.1)\n", - " f.savefig(os.path.join(plot_dir, f\"{storm_id}_max_wind_speed_maps.png\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "9cfebae6", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "skipping NOT_NAMED_2006...\n", - "TOMAS_2010 is ambiguous: {'2010069S12188', '2010302N09306'}, skipping...\n", - "skipping NOT_NAMED_2011...\n", - "skipping NOT_NAMED_2005...\n", - "skipping NOT_NAMED_2010...\n", - "skipping NOT_NAMED_2017...\n", - "skipping NOT_NAMED_2007...\n", - "skipping NOT_NAMED_2003...\n", - "skipping NOT_NAMED_2014...\n", - "skipping NOT_NAMED_2013...\n", - "HARVEY_2005 is ambiguous: {'2005215N28291', '2005035S14136'}, skipping...\n", - "skipping NOT_NAMED_2016...\n", - "JOYCE_2018 is ambiguous: {'2018007S13130', '2018255N37320'}, skipping...\n", - "skipping NOT_NAMED_2002...\n", - "PODUL_2019 is ambiguous: {'2019237N08140', '2019236N08143'}, skipping...\n", - "len(holland_storms_name_year)=1236\n", - "len(wrn_storms_name_year)=743\n", - "len(common_storms)=586\n" - ] - } - ], - "source": [ - "tracks = gpd.read_parquet(\n", - " \"/home/fred/projects/open_gira/open-gira/results/storm_tracks/IBTrACS/tracks.geoparquet\"\n", - ")\n", - "holland_storms_id = {\n", - " path.split(\"/\")[-1] for path in\n", - " glob(\"/home/fred/projects/open_gira/open-gira/results/power/by_storm_set/IBTrACS/by_storm/*\")\n", - "}\n", - "holland_storms_name_year = {\n", - " name_year_from_id(tracks, storm_id) for storm_id in\n", - " holland_storms_id\n", - "}\n", - "wrn_storms_name_year = {\n", - " path.split(\"/\")[-2] for path in\n", - " glob(f\"/home/fred/projects/WRN_TC_footprints/footprints/regions/*/*/*.txt\")\n", - "}\n", - "common_storms_name_year = holland_storms_name_year & wrn_storms_name_year\n", - "common_storms_id = [\n", - " id_from_name_year(tracks, name_year)\n", - " for name_year in common_storms_name_year\n", - "]\n", - "common_storms = sorted(filter(bool, common_storms_id))\n", - "\n", - "print(f\"{len(holland_storms_name_year)=}\")\n", - "print(f\"{len(wrn_storms_name_year)=}\")\n", - "print(f\"{len(common_storms)=}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "7d44d9a7", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ALLISON_2001\n", - "ALLISON_2001 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "YUTU_2001\n", - "YUTU_2001 has 38.22004631968363, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TORAJI_2001\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BARRY_2001\n", - "BARRY_2001 has 30.863999999999997, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PABUK_2001\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DEAN_2001\n", - "DEAN_2001 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FITOW_2001\n", - "FITOW_2001 has 20.956774554577542, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DANAS_2001\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NARI_2001\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GABRIELLE_2001\n", - "GABRIELLE_2001 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LEKIMA_2001\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IRIS_2001\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KAREN_2001\n", - "KAREN_2001 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MICHELLE_2001\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LINGLING_2001\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BERNIE_2002\n", - "BERNIE_2002 has 26.226606060606056, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TAPAH_2002\n", - "TAPAH_2002 has 21.47117455457754, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHRIS_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GUILLAUME_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HARY_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BONNIE_2002\n", - "BONNIE_2002 has 26.09995454545454, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KESINY_2002\n", - "KESINY_2002 has 37.08940909090909, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NOGURI_2002\n", - "NOGURI_2002 has 38.9168371782115, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHATAAN_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RAMMASUN_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HALONG_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NAKRI_2002\n", - "NAKRI_2002 has 21.812298946294167, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FENGSHEN_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FUNG-WONG_2002\n", - "FUNG-WONG_2002 has 37.696098520219415, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KAMMURI_2002\n", - "KAMMURI_2002 has 28.903328210230892, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VONGFONG_2002\n", - "VONGFONG_2002 has 25.622069434876895, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RUSA_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SINLAKU_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EDOUARD_2002\n", - "EDOUARD_2002 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FAY_2002\n", - "FAY_2002 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAGUPIT_2002\n", - "HAGUPIT_2002 has 25.374433639494832, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GUSTAV_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HANNA_2002\n", - "HANNA_2002 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ISIDORE_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MEKKHALA_2002\n", - "MEKKHALA_2002 has 23.778423809159328, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KYLE_2002\n", - "KYLE_2002 has 38.58, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LILI_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HIGOS_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JULIO_2002\n", - "JULIO_2002 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KENNA_2002\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DELFINA_2002\n", - "DELFINA_2002 has 28.847318181818178, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FARI_2003\n", - "FARI_2003 has 28.847318181818178, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GRAHAM_2003\n", - "GRAHAM_2003 has 21.978909090909088, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JAPHET_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CRAIG_2003\n", - "CRAIG_2003 has 24.726272727272725, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INIGO_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MANOU_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LINFA_2003\n", - "LINFA_2003 has 28.137470014032402, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SOUDELOR_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CARLOS_2003\n", - "CARLOS_2003 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BILL_2003\n", - "BILL_2003 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CLAUDETTE_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IMBUDO_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KONI_2003\n", - "KONI_2003 has 32.6474124633244, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ETAU_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MORAKOT_2003\n", - "MORAKOT_2003 has 24.169393073096057, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KROVANH_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ERIKA_2003\n", - "ERIKA_2003 has 33.436, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VAMCO_2003\n", - "VAMCO_2003 has 20.75984708933963, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IGNACIO_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DUJUAN_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAEMI_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HENRI_2003\n", - "HENRI_2003 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ISABEL_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MARTY_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LARRY_2003\n", - "LARRY_2003 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NORA_2003\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OLAF_2003\n", - "OLAF_2003 has 33.436, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MINDY_2003\n", - "MINDY_2003 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MELOR_2003\n", - "MELOR_2003 has 30.556493596121953, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NEPARTAK_2003\n", - "NEPARTAK_2003 has 35.26281885954841, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CELA_2003\n", - "CELA_2003 has 36.47563636363637, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ODETTE_2003\n", - "ODETTE_2003 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DEBBIE_2003\n", - "DEBBIE_2003 has 35.71572727272727, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ELITA_2004\n", - "ELITA_2004 has 35.501393939393935, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FRITZ_2004\n", - "FRITZ_2004 has 24.52752727272727, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MONTY_2004\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GAFILO_2004\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NIDA_2004\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHARLEY_2004\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FRANCES_2004\n", - "FRANCES_2004 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ERNEST_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FELAPI_2005\n", - "FELAPI_2005 has 20.459090909090907, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INGRID_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ADRIAN_2005\n", - "ADRIAN_2005 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ARLENE_2005\n", - "ARLENE_2005 has 30.863999999999997, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DORA_2005\n", - "DORA_2005 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CINDY_2005\n", - "CINDY_2005 has 33.436, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DENNIS_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EMILY_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAITANG_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BANYAN_2005\n", - "BANYAN_2005 has 30.34216026278862, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GERT_2005\n", - "GERT_2005 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WASHI_2005\n", - "WASHI_2005 has 23.364474205893607, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MATSA_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SANVU_2005\n", - "SANVU_2005 has 30.118818859548412, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAWAR_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JOSE_2005\n", - "JOSE_2005 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KATRINA_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TALIM_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NABI_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KHANUN_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OPHELIA_2005\n", - "OPHELIA_2005 has 38.58, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VICENTE_2005\n", - "VICENTE_2005 has 23.835579364714885, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RITA_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DAMREY_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LONGWANG_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OTIS_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "STAN_2005\n", - "STAN_2005 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TAMMY_2005\n", - "TAMMY_2005 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WILMA_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ALPHA_2005\n", - "ALPHA_2005 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BETA_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KAI-TAK_2005\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TEMBIN_2005\n", - "TEMBIN_2005 has 23.014352681039245, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BOLAVEN_2005\n", - "BOLAVEN_2005 has 33.81906854190585, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GAMMA_2005\n", - "GAMMA_2005 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FANOOS_2005\n", - "FANOOS_2005 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DARYL_2006\n", - "DARYL_2006 has 28.847318181818178, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LARRY_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GLENDA_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MONICA_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MALA_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHANCHU_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ALBERTO_2006\n", - "ALBERTO_2006 has 30.863999999999997, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EWINIAR_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BILIS_2006\n", - "BILIS_2006 has 30.23312997065952, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KAEMI_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BERYL_2006\n", - "BERYL_2006 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PRAPIROON_2006\n", - "PRAPIROON_2006 has 37.39129076412807, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHRIS_2006\n", - "CHRIS_2006 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SAOMAI_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MARIA_2006\n", - "MARIA_2006 has 35.80005483352468, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BOPHA_2006\n", - "BOPHA_2006 has 26.537114458476843, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WUKONG_2006\n", - "WUKONG_2006 has 26.251336680699065, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ERNESTO_2006\n", - "ERNESTO_2006 has 33.436, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JOHN_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LANE_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "XANGSANE_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PAUL_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CIMARON_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHEBI_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DURIAN_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "UTOR_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BONDO_2006\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NELSON_2007\n", - "NELSON_2007 has 27.47363636363636, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FAVIO_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JACOB_2007\n", - "JACOB_2007 has 39.429539393939386, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INDLALA_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KARA_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JAYA_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AKASH_2007\n", - "AKASH_2007 has 33.436, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BARBARA_2007\n", - "BARBARA_2007 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GONU_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BARRY_2007\n", - "BARRY_2007 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAN-YI_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "USAGI_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PABUK_2007\n", - "PABUK_2007 has 34.17686330399285, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SEPAT_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DEAN_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FITOW_2007\n", - "FITOW_2007 has 39.62509852021942, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HENRIETTE_2007\n", - "HENRIETTE_2007 has 38.58, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FELIX_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GABRIELLE_2007\n", - "GABRIELLE_2007 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NARI_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HUMBERTO_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WIPHA_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FRANCISCO_2007\n", - "FRANCISCO_2007 has 20.66918783518306, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LORENZO_2007\n", - "LORENZO_2007 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LEKIMA_2007\n", - "LEKIMA_2007 has 34.533512986350296, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KROSA_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NOEL_2007\n", - "NOEL_2007 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PEIPAH_2007\n", - "PEIPAH_2007 has 39.10595743079474, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SIDR_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAGIBIS_2007\n", - "HAGIBIS_2007 has 39.05354296466386, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MITAG_2007\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OLGA_2007\n", - "OLGA_2007 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HELEN_2007\n", - "HELEN_2007 has 26.889090909090907, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FAME_2008\n", - "FAME_2008 has 38.98918181818182, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IVAN_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JOKWE_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NEOGURI_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NARGIS_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HALONG_2008\n", - "HALONG_2008 has 33.31952997065952, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ALMA_2008\n", - "ALMA_2008 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FENGSHEN_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KALMAEGI_2008\n", - "KALMAEGI_2008 has 38.086277055746905, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CRISTOBAL_2008\n", - "CRISTOBAL_2008 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DOLLY_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FUNG-WONG_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KAMMURI_2008\n", - "KAMMURI_2008 has 26.998593073096053, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EDOUARD_2008\n", - "EDOUARD_2008 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NURI_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FAY_2008\n", - "FAY_2008 has 30.863999999999997, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JULIO_2008\n", - "JULIO_2008 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GUSTAV_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HANNA_2008\n", - "HANNA_2008 has 38.58, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IKE_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LOWELL_2008\n", - "LOWELL_2008 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SINLAKU_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAGUPIT_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JANGMI_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KYLE_2008\n", - "KYLE_2008 has 38.58, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MEKKHALA_2008\n", - "MEKKHALA_2008 has 21.94944603138155, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NORBERT_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MARCO_2008\n", - "MARCO_2008 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ODILE_2008\n", - "ODILE_2008 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RASHMI_2008\n", - "RASHMI_2008 has 21.43333333333333, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PALOMA_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NOUL_2008\n", - "NOUL_2008 has 20.726343390738613, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NISHA_2008\n", - "NISHA_2008 has 24.00533333333333, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BILLY_2008\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHARLOTTE_2009\n", - "CHARLOTTE_2009 has 23.34284848484848, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ERIC_2009\n", - "ERIC_2009 has 23.34284848484848, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FANELE_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ELLIE_2009\n", - "ELLIE_2009 has 20.69290909090909, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IZILDA_2009\n", - "IZILDA_2009 has 32.89821818181818, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JADE_2009\n", - "JADE_2009 has 33.37754545454545, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BIJLI_2009\n", - "BIJLI_2009 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KUJIRA_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHAN-HOM_2009\n", - "CHAN-HOM_2009 has 39.130301038397754, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AILA_2009\n", - "AILA_2009 has 30.863999999999997, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LINFA_2009\n", - "LINFA_2009 has 34.262056907768844, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ANDRES_2009\n", - "ANDRES_2009 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NANGKA_2009\n", - "NANGKA_2009 has 21.240743390738615, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MOLAVE_2009\n", - "MOLAVE_2009 has 37.91994684270953, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GONI_2009\n", - "GONI_2009 has 23.65497666794234, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MORAKOT_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BILL_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CLAUDETTE_2009\n", - "CLAUDETTE_2009 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KROVANH_2009\n", - "KROVANH_2009 has 32.862285526215075, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JIMENA_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KOPPU_2009\n", - "KOPPU_2009 has 39.22171055491771, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KETSANA_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PARMA_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MELOR_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PATRICIA_2009\n", - "PATRICIA_2009 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RICK_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MIRINAE_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IDA_2009\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PHYAN_2009\n", - "PHYAN_2009 has 24.00533333333333, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAGDA_2010\n", - "MAGDA_2010 has 35.93006060606061, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OLGA_2010\n", - "OLGA_2010 has 26.18763636363636, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FAMI_2010\n", - "FAMI_2010 has 25.05751515151515, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HUBERT_2010\n", - "HUBERT_2010 has 28.720666666666666, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ULUI_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PAUL_2010\n", - "PAUL_2010 has 37.64472727272727, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LAILA_2010\n", - "LAILA_2010 has 29.14933333333333, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JOEL_2010\n", - "JOEL_2010 has 33.3190909090909, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AGATHA_2010\n", - "AGATHA_2010 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PHET_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ALEX_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CONSON_2010\n", - "CONSON_2010 has 38.90167881617553, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHANTHU_2010\n", - "CHANTHU_2010 has 38.98209852021942, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BONNIE_2010\n", - "BONNIE_2010 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DIANMU_2010\n", - "DIANMU_2010 has 28.117834685546626, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MINDULLE_2010\n", - "MINDULLE_2010 has 29.046612463324404, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EARL_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LIONROCK_2010\n", - "LIONROCK_2010 has 27.474439321342008, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KOMPASU_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MALOU_2010\n", - "MALOU_2010 has 25.16538112514351, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HERMINE_2010\n", - "HERMINE_2010 has 30.863999999999997, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MERANTI_2010\n", - "MERANTI_2010 has 32.67172326061998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FANAPI_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KARL_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MATTHEW_2010\n", - "MATTHEW_2010 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NICOLE_2010\n", - "NICOLE_2010 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PAULA_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MEGI_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GIRI_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RICHARD_2010\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JAL_2010\n", - "JAL_2010 has 30.006666666666668, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TASHA_2010\n", - "TASHA_2010 has 21.511272727272726, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BIANCA_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ANTHONY_2011\n", - "ANTHONY_2011 has 27.74642424242424, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "YASI_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BINGIZA_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ERROL_2011\n", - "ERROL_2011 has 32.383818181818185, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AERE_2011\n", - "AERE_2011 has 22.93580753922694, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SONGDA_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAIMA_2011\n", - "HAIMA_2011 has 20.211943390738615, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BEATRIZ_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ARLENE_2011\n", - "ARLENE_2011 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MA-ON_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NOCK-TEN_2011\n", - "NOCK-TEN_2011 has 28.627493596121955, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DON_2011\n", - "DON_2011 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EMILY_2011\n", - "EMILY_2011 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HARVEY_2011\n", - "HARVEY_2011 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NANMADOL_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IRENE_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TALAS_2011\n", - "TALAS_2011 has 29.341938040566397, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LEE_2011\n", - "LEE_2011 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MARIA_2011\n", - "MARIA_2011 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NATE_2011\n", - "NATE_2011 has 33.436, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ROKE_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NESAT_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NALGAE_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JOVA_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RINA_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KEILA_2011\n", - "KEILA_2011 has 21.0904, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WASHI_2011\n", - "WASHI_2011 has 25.16538112514351, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GRANT_2011\n", - "GRANT_2011 has 30.895175757575757, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "THANE_2011\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHANDA_2012\n", - "CHANDA_2012 has 20.653939393939392, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HEIDI_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DANDO_2012\n", - "DANDO_2012 has 24.726272727272722, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FUNSO_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IRINA_2012\n", - "IRINA_2012 has 30.33790909090909, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LUA_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BUD_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BERYL_2012\n", - "BERYL_2012 has 30.863999999999997, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GUCHOL_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CARLOTTA_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TALIM_2012\n", - "TALIM_2012 has 26.251336680699065, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DEBBY_2012\n", - "DEBBY_2012 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DOKSURI_2012\n", - "DOKSURI_2012 has 21.64980753922694, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KHANUN_2012\n", - "KHANUN_2012 has 26.765736680699064, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VICENTE_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SAOLA_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DAMREY_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ERNESTO_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAIKUI_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HELENE_2012\n", - "HELENE_2012 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KAI-TAK_2012\n", - "KAI-TAK_2012 has 36.91972462048731, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TEMBIN_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ISAAC_2012\n", - "ISAAC_2012 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SANBA_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JELAWAT_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NORMAN_2012\n", - "NORMAN_2012 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "couldn't calculate the error or ratio for GAEMI_2012, skipping...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PAUL_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SON-TINH_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SANDY_2012\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NILAM_2012\n", - "NILAM_2012 has 24.00533333333333, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "couldn't calculate the error or ratio for SONAMU_2013, skipping...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OSWALD_2013\n", - "OSWALD_2013 has 21.031945454545454, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PETA_2013\n", - "PETA_2013 has 22.48551515151515, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HARUNA_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RUSTY_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ZANE_2013\n", - "ZANE_2013 has 34.95581818181818, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAHASEN:VIYARU_2013\n", - "MAHASEN:VIYARU_2013 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BARBARA_2013\n", - "BARBARA_2013 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ANDREA_2013\n", - "ANDREA_2013 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BARRY_2013\n", - "BARRY_2013 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BEBINCA_2013\n", - "BEBINCA_2013 has 20.92064603138155, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RUMBIA_2013\n", - "RUMBIA_2013 has 30.20878636305651, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SOULIK_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CIMARON_2013\n", - "CIMARON_2013 has 20.29193492027044, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JEBI_2013\n", - "JEBI_2013 has 29.17998636305651, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MANGKHUT_2013\n", - "MANGKHUT_2013 has 22.559061543564233, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "UTOR_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TRAMI_2013\n", - "TRAMI_2013 has 36.54347241995152, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KONG-REY_2013\n", - "KONG-REY_2013 has 28.194625569587956, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FERNAND_2013\n", - "FERNAND_2013 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JULIETTE_2013\n", - "JULIETTE_2013 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TORAJI_2013\n", - "TORAJI_2013 has 25.67978112514351, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GABRIELLE_2013\n", - "GABRIELLE_2013 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LORENA_2013\n", - "LORENA_2013 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INGRID_2013\n", - "INGRID_2013 has 38.58, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAN-YI_2013\n", - "MAN-YI_2013 has 33.148063303992856, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MANUEL_2013\n", - "MANUEL_2013 has 33.436, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "USAGI_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WUTIP_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FITOW_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KAREN_2013\n", - "KAREN_2013 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PHAILIN_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NARI_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OCTAVE_2013\n", - "OCTAVE_2013 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KROSA_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SONIA_2013\n", - "SONIA_2013 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAIYAN_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HELEN_2013\n", - "HELEN_2013 has 30.863999999999997, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LEHAR_2013\n", - "LEHAR_2013 has 37.72266666666666, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ALESSIA_2013\n", - "ALESSIA_2013 has 23.26490909090909, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHRISTINE_2013\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DELIWE_2014\n", - "DELIWE_2014 has 26.012272727272723, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DYLAN_2014\n", - "DYLAN_2014 has 29.69490909090909, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GILLIAN_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HELLEN_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ITA_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BORIS_2014\n", - "BORIS_2014 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAGIBIS_2014\n", - "HAGIBIS_2014 has 20.76389642811583, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ARTHUR_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NEOGURI_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RAMMASUN_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MATMO_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HALONG_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NAKRI_2014\n", - "NAKRI_2014 has 27.165825569587955, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BERTHA_2014\n", - "BERTHA_2014 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ISELLE_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DOLLY_2014\n", - "DOLLY_2014 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ODILE_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KALMAEGI_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FUNG-WONG_2014\n", - "FUNG-WONG_2014 has 26.19838248501084, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PHANFONE_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VONGFONG_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HUDHUD_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TRUDY_2014\n", - "TRUDY_2014 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SINLAKU_2014\n", - "SINLAKU_2014 has 25.955504184207168, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAGUPIT_2014\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MEKKHALA_2015\n", - "MEKKHALA_2015 has 35.219379653016965, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHEDZA_2015\n", - "CHEDZA_2015 has 29.453296969696964, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FUNDI_2015\n", - "FUNDI_2015 has 28.720666666666666, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LAM_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MARCIA_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NATHAN_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAYSAK_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NOUL_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ANA_2015\n", - "ANA_2015 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BLANCA_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CARLOS_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BILL_2015\n", - "BILL_2015 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KUJIRA_2015\n", - "KUJIRA_2015 has 23.79364779181018, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHAN-HOM_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LINFA_2015\n", - "LINFA_2015 has 37.657923727516255, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NANGKA_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HALOLA_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "couldn't calculate the error or ratio for CLAUDETTE_2015, skipping...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KOMEN_2015\n", - "KOMEN_2015 has 21.43333333333333, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SOUDELOR_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GONI_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ERIKA_2015\n", - "ERIKA_2015 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ETAU_2015\n", - "ETAU_2015 has 26.989078083939276, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DUJUAN_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MUJIGAE_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KOPPU_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PATRICIA_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHAPALA_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MEGH_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SANDRA_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MELOR_2015\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "STAN_2016\n", - "STAN_2016 has 31.916181818181816, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ROANU_2016\n", - "ROANU_2016 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BONNIE_2016\n", - "BONNIE_2016 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COLIN_2016\n", - "COLIN_2016 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DANIELLE_2016\n", - "DANIELLE_2016 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NEPARTAK_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ABELA_2016\n", - "ABELA_2016 has 27.74642424242424, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MIRINAE_2016\n", - "MIRINAE_2016 has 28.80424108177063, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NIDA_2016\n", - "NIDA_2016 has 36.052876297997194, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EARL_2016\n", - "EARL_2016 has 38.58, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JAVIER_2016\n", - "JAVIER_2016 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHANTHU_2016\n", - "CHANTHU_2016 has 27.19392923842327, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DIANMU_2016\n", - "DIANMU_2016 has 21.94944603138155, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MINDULLE_2016\n", - "MINDULLE_2016 has 34.234018859548414, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LIONROCK_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HERMINE_2016\n", - "HERMINE_2016 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NAMTHEUN_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NEWTON_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MERANTI_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MALAKAS_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JULIA_2016\n", - "JULIA_2016 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MEGI_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHABA_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MATTHEW_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AERE_2016\n", - "AERE_2016 has 29.131950432453117, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SARIKA_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAIMA_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OTTO_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TOKAGE_2016\n", - "TOKAGE_2016 has 28.25178112514351, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NADA_2016\n", - "NADA_2016 has 21.43333333333333, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VARDAH_2016\n", - "VARDAH_2016 has 38.58, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NOCK-TEN_2016\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DINEO_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ALFRED_2017\n", - "ALFRED_2017 has 26.889090909090907, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BLANCHE_2017\n", - "BLANCHE_2017 has 29.706599999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ENAWO_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DEBBIE_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAARUTHA_2017\n", - "MAARUTHA_2017 has 22.290666666666667, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MORA_2017\n", - "MORA_2017 has 34.29333333333334, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BEATRIZ_2017\n", - "BEATRIZ_2017 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MERBOK_2017\n", - "MERBOK_2017 has 28.289841081770632, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CALVIN_2017\n", - "CALVIN_2017 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BRET_2017\n", - "BRET_2017 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CINDY_2017\n", - "CINDY_2017 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NANMADOL_2017\n", - "NANMADOL_2017 has 30.98516026278862, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TALAS_2017\n", - "TALAS_2017 has 26.251336680699065, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NORU_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SONCA_2017\n", - "SONCA_2017 has 21.337811591614578, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NESAT_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAITANG_2017\n", - "HAITANG_2017 has 22.806779364714885, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EMILY_2017\n", - "EMILY_2017 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FRANKLIN_2017\n", - "FRANKLIN_2017 has 38.58, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HARVEY_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HATO_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PAKHAR_2017\n", - "PAKHAR_2017 has 30.976152192881745, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IRMA_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LIDIA_2017\n", - "LIDIA_2017 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAWAR_2017\n", - "MAWAR_2017 has 25.736936680699063, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KATIA_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TALIM_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DOKSURI_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAX_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MARIA_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PILAR_2017\n", - "PILAR_2017 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NATE_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KHANUN_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LAN_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DAMREY_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KAI-TAK_2017\n", - "KAI-TAK_2017 has 23.236587830080367, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TEMBIN_2017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HILDA_2017\n", - "HILDA_2017 has 27.34893333333333, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KELVIN_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MARCUS_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ELIAKIM_2018\n", - "ELIAKIM_2018 has 32.60594545454545, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NORA_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ALBERTO_2018\n", - "ALBERTO_2018 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EWINIAR_2018\n", - "EWINIAR_2018 has 20.935363094782495, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BUD_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GAEMI_2018\n", - "GAEMI_2018 has 21.469365612960836, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CARLOTTA_2018\n", - "CARLOTTA_2018 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PRAPIROON_2018\n", - "PRAPIROON_2018 has 37.5299454828422, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MARIA_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BERYL_2018\n", - "BERYL_2018 has 36.007999999999996, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "couldn't calculate the error or ratio for SON-TINH_2018, skipping...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AMPIL_2018\n", - "AMPIL_2018 has 26.960039321342006, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JONGDARI_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SHANSHAN_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "YAGI_2018\n", - "YAGI_2018 has 22.497593073096056, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BEBINCA_2018\n", - "BEBINCA_2018 has 27.48438248501084, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LEEPI_2018\n", - "LEEPI_2018 has 27.027170850873834, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RUMBIA_2018\n", - "RUMBIA_2018 has 24.30804779181018, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SOULIK_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CIMARON_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JEBI_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FLORENCE_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OLIVIA_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GORDON_2018\n", - "GORDON_2018 has 30.863999999999997, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MANGKHUT_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BARIJAT_2018\n", - "BARIJAT_2018 has 21.94944603138155, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TRAMI_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ROSA_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KONG-REY_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SERGIO_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LUBAN_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MICHAEL_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TITLI_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TARA_2018\n", - "TARA_2018 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VICENTE_2018\n", - "VICENTE_2018 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WILLA_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "YUTU_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "USAGI_2018\n", - "USAGI_2018 has 35.64804631968363, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GAJA_2018\n", - "GAJA_2018 has 37.72266666666666, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OWEN_2018\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PHETHAI_2018\n", - "PHETHAI_2018 has 28.291999999999998, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PENNY_2018\n", - "PENNY_2018 has 28.75963636363636, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DESMOND_2019\n", - "DESMOND_2019 has 21.031945454545454, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TREVOR_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VERONICA_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KENNETH_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FANI_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "couldn't read kw01 for ANN_2019, skipping...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BARRY_2019\n", - "BARRY_2019 has 33.436, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DANAS_2019\n", - "DANAS_2019 has 23.321179364714887, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WIPHA_2019\n", - "WIPHA_2019 has 23.835579364714885, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FRANCISCO_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LEKIMA_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KROSA_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BAILU_2019\n", - "BAILU_2019 has 29.475279129991073, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DORIAN_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FAXAI_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LINGLING_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FERNAND_2019\n", - "FERNAND_2019 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LORENA_2019\n", - "LORENA_2019 has 38.58, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IMELDA_2019\n", - "IMELDA_2019 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KAREN_2019\n", - "KAREN_2019 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MITAG_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NARDA_2019\n", - "NARDA_2019 has 23.148, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HAGIBIS_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NESTOR_2019\n", - "NESTOR_2019 has 25.72, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PRISCILLA_2019\n", - "PRISCILLA_2019 has 20.576, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NAKRI_2019\n", - "NAKRI_2019 has 34.94272150019135, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KALMAEGI_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KAMMURI_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BELNA_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PHANFONE_2019\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BLAKE_2020\n", - "BLAKE_2020 has 25.06530909090909, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FRANCISCO_2020\n", - "FRANCISCO_2020 has 23.440272727272724, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DAMIEN_2020\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ESTHER_2020\n", - "ESTHER_2020 has 23.779309090909088, skipping plotting...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n", - "/tmp/ipykernel_868937/987684252.py:12: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", - " pd.read_csv(path, delimiter=r',\\s+')\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HEROLD_2020\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/fred/micromamba/envs/open-gira/lib/python3.10/site-packages/geopandas/geodataframe.py:2061: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries.\n", - "Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.\n", - "\n", - "Left CRS: EPSG:4326\n", - "Right CRS: None\n", - "\n", - " return geopandas.sjoin(left_df=self, right_df=df, *args, **kwargs)\n" - ] - } - ], - "source": [ - "buffer_km = 200\n", - "\n", - "plot_dir = (\n", - " \"/home/fred/projects/open_gira/open-gira/validation/wind_model_comparison/error_by_model_speed\"\n", - ")\n", - "os.makedirs(plot_dir, exist_ok=True)\n", - "\n", - "errors_by_storm = {}\n", - "holland_by_storm = {}\n", - "kw01_by_storm = {}\n", - "for i, storm_id in enumerate(common_storms):\n", - "\n", - " name_year = name_year_from_id(tracks, storm_id)\n", - " storm_track = tracks[tracks.track_id == storm_id]\n", - "\n", - " try:\n", - " kw01 = (\n", - " read_kw01(name_year, delta=0.1)\n", - " .interpolate_na(dim=\"longitude\", method=\"linear\")\n", - " .interpolate_na(dim=\"latitude\", method=\"linear\")\n", - " )\n", - " kw01_by_storm[storm_id] = kw01.max_wind_speed\n", - " except ValueError:\n", - " print(f\"couldn\\'t read kw01 for {name_year}, skipping...\")\n", - " continue\n", - " \n", - " try:\n", - " holland = xr.open_dataset(\n", - " (\n", - " \"/home/fred/projects/open_gira/open-gira/\"\n", - " f\"results/power/by_storm_set/IBTrACS/by_storm/{storm_id}/wind_field.nc\"\n", - " )\n", - " )\n", - " holland_by_storm[storm_id] = holland.max_wind_speed\n", - " except FileNotFoundError:\n", - " print(f\"couldn\\'t find holland for {name_year}, skipping...\")\n", - " continue\n", - "\n", - " try:\n", - " error = (holland - kw01).max_wind_speed.rename(\"error\")\n", - " ratio = (holland / kw01).max_wind_speed.rename(\"ratio\")\n", - " except ValueError:\n", - " print(f\"couldn\\'t calculate the error or ratio for {name_year}, skipping...\")\n", - " continue\n", - "\n", - " # make a buffer around the on-land track \n", - " print(name_year)\n", - " storm_track_over_land = storm_track[storm_track.landfall == True]\n", - " clipped_error = clip_field_to_buffered_points(storm_track_over_land, error, buffer_km)\n", - " errors_by_storm[storm_id] = clipped_error\n", - " \n", - " \n", - " # don't plot the weak storms (for brevity)\n", - " if storm_track.max_wind_speed_ms.max() < 40:\n", - " print(f\"{name_year} has {storm_track.max_wind_speed_ms.max()}, skipping plotting...\")\n", - " continue\n", - "\n", - " #plot_wind_speed_maps(name_year, storm_id, holland, kw01, error, plot_dir)\n", - " #plot_wind_speed_errors(name_year, storm_id, buffer_km, holland, clipped_error, plot_dir)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "a232d2d7", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2001157N28265 (104,) (104,)\n", - "2001204N19127 cannot retrieve model data\n", - "2001206N14134 (220,) (220,)\n", - "2001215N26275 (144,) (144,)\n", - "2001225N18146 (1620,) (1620,)\n", - "2001235N18296 cannot retrieve model data\n", - "2001239N19116 (693,) (693,)\n", - "2001246N19156 (936,) (936,)\n", - "2001248N23125 (810,) (810,)\n", - "2001255N26276 (285,) (285,)\n", - "2001264N21126 (285,) (285,)\n", - "2001278N12302 (144,) (144,)\n", - "2001284N28297 (399,) (399,)\n", - "2001303N13276 (408,) (408,)\n", - "2001309N10130 (1029,) (1029,)\n", - "2001365S12138 cannot retrieve model data\n", - "2002008N07141 (378,) (378,)\n", - "2002033S13121 (528,) (528,)\n", - "2002045S18049 cannot retrieve model data\n", - "2002063S11066 (266,) (266,)\n", - "2002098S07133 (252,) (252,)\n", - "2002122S07063 (80,) (80,)\n", - "2002155N20112 cannot retrieve model data\n", - "2002178N04155 (425,) (425,)\n", - "2002178N10139 (220,) (220,)\n", - "2002187N11160 cannot retrieve model data\n", - "2002189N21116 (198,) (198,)\n", - "2002195N11172 cannot retrieve model data\n", - "2002200N21150 cannot retrieve model data\n", - "2002214N19120 (315,) (315,)\n", - "2002227N14115 (338,) (338,)\n", - "2002234N14164 (462,) (462,)\n", - "2002240N16155 (442,) (442,)\n", - "2002245N29281 (128,) (128,)\n", - "2002249N28266 (220,) (220,)\n", - "2002252N20121 (252,) (252,)\n", - "2002252N29289 (150,) (150,)\n", - "2002255N26273 (375,) (375,)\n", - "2002258N10300 (1632,) (1632,)\n", - "2002264N13114 (532,) (532,)\n", - "2002264N28308 (735,) (735,)\n", - "2002265N10315 (4446,) (4446,)\n", - "2002268N15163 (1600,) (1600,)\n", - "2002268N15258 (500,) (500,)\n", - "2002295N11261 (768,) (768,)\n", - "2002364S16045 cannot retrieve model data\n", - "2003021S11081 cannot retrieve model data\n", - "2003056S17119 (713,) (713,)\n", - "2003056S21042 cannot retrieve model data\n", - "2003067S13130 (3612,) (3612,)\n", - "2003088S07131 (270,) (270,)\n", - "2003122S11065 cannot retrieve model data\n", - "2003144N16119 (621,) (621,)\n", - "2003158N08156 cannot retrieve model data\n", - "2003177N14263 (364,) (364,)\n", - "2003179N20271 (480,) (480,)\n", - "2003188N11307 (1152,) (1152,)\n", - "2003196N05150 (738,) (738,)\n", - "2003196N11137 (1410,) (1410,)\n", - "2003212N09150 (560,) (560,)\n", - "2003212N12130 (180,) (180,)\n", - "2003226N07156 (1647,) (1647,)\n", - "2003227N26277 (259,) (259,)\n", - "2003230N18125 cannot retrieve model data\n", - "2003235N20253 (342,) (342,)\n", - "2003240N20139 (437,) (437,)\n", - "2003247N10153 (798,) (798,)\n", - "2003247N27272 (420,) (420,)\n", - "2003249N14329 (1360,) (1360,)\n", - "2003262N17254 (198,) (198,)\n", - "2003271N18275 (1290,) (1290,)\n", - "2003275N16252 (56,) (56,)\n", - "2003276N12262 (722,) (722,)\n", - "2003284N19291 cannot retrieve model data\n", - "2003302N11133 (800,) (800,)\n", - "2003316N11141 (299,) (299,)\n", - "2003338S09065 cannot retrieve model data\n", - "2003339N13284 (800,) (800,)\n", - "2003350S10140 (598,) (598,)\n", - "2004025S16044 cannot retrieve model data\n", - "2004041S14147 (238,) (238,)\n", - "2004056S18125 (238,) (238,)\n", - "2004061S12072 (1800,) (1800,)\n", - "2004134N07132 (312,) (312,)\n", - "2004223N11301 cannot retrieve model data\n", - "2004238N11325 cannot retrieve model data\n", - "2005017S09061 cannot retrieve model data\n", - "2005026S20040 cannot retrieve model data\n", - "2005063S12141 (207,) (207,)\n", - "2005138N10265 cannot retrieve model data\n", - "2005160N17276 (1107,) (1107,)\n", - "2005185N15261 cannot retrieve model data\n", - "2005185N18273 (341,) (341,)\n", - "2005186N12299 (3864,) (3864,)\n", - "2005192N11318 (900,) (900,)\n", - "2005192N22155 (184,) (184,)\n", - "2005202N13138 cannot retrieve model data\n", - "2005205N19267 (299,) (299,)\n", - "2005210N19115 (1342,) (1342,)\n", - "2005211N09141 (364,) (364,)\n", - "2005222N14131 cannot retrieve model data\n", - "2005230N20144 (510,) (510,)\n", - "2005235N19266 (306,) (306,)\n", - "2005236N23285 (1880,) (1880,)\n", - "2005237N14148 (230,) (230,)\n", - "2005241N15155 (475,) (475,)\n", - "2005248N08142 (380,) (380,)\n", - "2005249N26281 cannot retrieve model data\n", - "2005257N15120 cannot retrieve model data\n", - "2005261N21290 (319,) (319,)\n", - "2005262N13127 (777,) (777,)\n", - "2005268N19146 (171,) (171,)\n", - "2005271N17255 cannot retrieve model data\n", - "2005275N19274 (2760,) (2760,)\n", - "2005278N27280 (391,) (391,)\n", - "2005289N18282 (1590,) (1590,)\n", - "2005296N16293 (594,) (594,)\n", - "2005300N10279 (455,) (455,)\n", - "2005301N13117 (460,) (460,)\n", - "2005311N08140 (476,) (476,)\n", - "2005316N05134 (408,) (408,)\n", - "2005318N13298 (156,) (156,)\n", - "2005338N09093 (272,) (272,)\n", - "2006017S15126 cannot retrieve model data\n", - "2006074S13158 (1820,) (1820,)\n", - "2006081S14129 (345,) (345,)\n", - "2006106S10153 (374,) (374,)\n", - "2006114N08090 cannot retrieve model data\n", - "2006128N09138 (2635,) (2635,)\n", - "2006161N20275 (1368,) (1368,)\n", - "2006180N06140 (480,) (480,)\n", - "2006188N10143 (198,) (198,)\n", - "2006198N08152 (348,) (348,)\n", - "2006200N32287 cannot retrieve model data\n", - "2006209N13130 (260,) (260,)\n", - "2006213N16302 cannot retrieve model data\n", - "2006216N07151 (247,) (247,)\n", - "2006216N21152 cannot retrieve model data\n", - "2006217N20134 (209,) (209,)\n", - "2006224N21141 (561,) (561,)\n", - "2006237N13298 (2585,) (2585,)\n", - "2006240N12265 (630,) (630,)\n", - "2006257N16259 (270,) (270,)\n", - "2006268N12129 (918,) (918,)\n", - "2006294N16254 cannot retrieve model data\n", - "2006298N12143 (782,) (782,)\n", - "2006311N16143 (532,) (532,)\n", - "2006329N06150 (2312,) (2312,)\n", - "2006340N08142 (610,) (610,)\n", - "2006350S07071 (648,) (648,)\n", - "2007032S11137 (572,) (572,)\n", - "2007043S11071 (899,) (899,)\n", - "2007062S14119 (357,) (357,)\n", - "2007066S12066 (1300,) (1300,)\n", - "2007082S16125 cannot retrieve model data\n", - "2007085S11085 (520,) (520,)\n", - "2007133N15091 (930,) (930,)\n", - "2007150N14263 (272,) (272,)\n", - "2007151N14072 cannot retrieve model data\n", - "2007151N18273 (500,) (500,)\n", - "2007188N04148 (310,) (310,)\n", - "2007208N20155 (525,) (525,)\n", - "2007216N18138 cannot retrieve model data\n", - "2007223N19136 (360,) (360,)\n", - "2007225N12331 (1248,) (1248,)\n", - "2007240N17153 (1518,) (1518,)\n", - "2007242N13264 (308,) (308,)\n", - "2007244N12303 (375,) (375,)\n", - "2007251N30288 (165,) (165,)\n", - "2007254N18140 (408,) (408,)\n", - "2007255N27265 (272,) (272,)\n", - "2007257N16134 (888,) (888,)\n", - "2007265N20122 (880,) (880,)\n", - "2007269N22265 (132,) (132,)\n", - "2007272N17125 (442,) (442,)\n", - "2007274N18131 (462,) (462,)\n", - "2007297N18300 (1078,) (1078,)\n", - "2007306N18133 (490,) (490,)\n", - "2007314N10093 (377,) (377,)\n", - "2007323N09128 (1410,) (1410,)\n", - "2007324N10140 (735,) (735,)\n", - "2007345N18298 (1470,) (1470,)\n", - "2007365S15134 (2170,) (2170,)\n", - "2008023S10050 (1995,) (1995,)\n", - "2008037S10055 (1947,) (1947,)\n", - "2008062S10064 (722,) (722,)\n", - "2008104N08128 (368,) (368,)\n", - "2008117N11090 (1700,) (1700,)\n", - "2008135N12116 (665,) (665,)\n", - "2008150N10274 (273,) (273,)\n", - "2008169N08135 (4158,) (4158,)\n", - "2008193N20126 (900,) (900,)\n", - "2008201N32280 cannot retrieve model data\n", - "2008203N18276 (1485,) (1485,)\n", - "2008206N22133 (540,) (540,)\n", - "2008217N19120 (312,) (312,)\n", - "2008217N28273 (8,) (8,)\n", - "2008229N13147 cannot retrieve model data\n", - "2008229N18293 (19092,) (19092,)\n", - "2008237N18253 (162,) (162,)\n", - "2008238N13293 (15470,) (15470,)\n", - "2008241N19303 (4088,) (4088,)\n", - "2008245N17323 (4623,) (4623,)\n", - "2008251N15256 (220,) (220,)\n", - "2008252N16128 (261,) (261,)\n", - "2008262N16142 (736,) (736,)\n", - "2008268N12140 (279,) (279,)\n", - "2008269N21290 (520,) (520,)\n", - "2008272N15113 cannot retrieve model data\n", - "2008278N13261 (864,) (864,)\n", - "2008280N18268 (420,) (420,)\n", - "2008283N12271 cannot retrieve model data\n", - "2008298N16085 cannot retrieve model data\n", - "2008311N14278 (363,) (363,)\n", - "2008320N08122 (490,) (490,)\n", - "2008329N09082 (1170,) (1170,)\n", - "2008351S11128 (2079,) (2079,)\n", - "2009011S16140 (350,) (350,)\n", - "2009017S15059 cannot retrieve model data\n", - "2009017S20043 cannot retrieve model data\n", - "2009031S16147 (868,) (868,)\n", - "2009082S16039 cannot retrieve model data\n", - "2009093S12062 (1224,) (1224,)\n", - "2009104N13088 cannot retrieve model data\n", - "2009121N13124 (456,) (456,)\n", - "2009123N10111 (651,) (651,)\n", - "2009143N17089 (510,) (510,)\n", - "2009164N10131 (612,) (612,)\n", - "2009171N15264 cannot retrieve model data\n", - "2009173N10132 (756,) (756,)\n", - "2009196N14129 (242,) (242,)\n", - "2009213N16130 cannot retrieve model data\n", - "2009215N20133 (616,) (616,)\n", - "2009227N12328 cannot retrieve model data\n", - "2009228N27277 (40,) (40,)\n", - "2009238N20151 cannot retrieve model data\n", - "2009239N12270 (176,) (176,)\n", - "2009254N14130 (300,) (300,)\n", - "2009268N14128 (638,) (638,)\n", - "2009270N10148 (1566,) (1566,)\n", - "2009272N07164 (825,) (825,)\n", - "2009282N16252 cannot retrieve model data\n", - "2009288N07267 (160,) (160,)\n", - "2009299N12153 (1620,) (1620,)\n", - "2009308N11279 (682,) (682,)\n", - "2009313N11072 (432,) (432,)\n", - "2010019S11123 (952,) (952,)\n", - "2010022S12160 (2624,) (2624,)\n", - "2010032S20042 (368,) (368,)\n", - "2010066S19050 (256,) (256,)\n", - "2010070S15168 (884,) (884,)\n", - "2010084S09138 (525,) (525,)\n", - "2010137N10090 (560,) (560,)\n", - "2010143S20035 cannot retrieve model data\n", - "2010149N13266 (437,) (437,)\n", - "2010151N14065 (714,) (714,)\n", - "2010176N16278 (391,) (391,)\n", - "2010191N12138 (1456,) (1456,)\n", - "2010198N15123 (544,) (544,)\n", - "2010203N22286 (176,) (176,)\n", - "2010218N20127 (608,) (608,)\n", - "2010233N17119 (459,) (459,)\n", - "2010236N12341 (782,) (782,)\n", - "2010239N15118 (171,) (171,)\n", - "2010240N15142 (570,) (570,)\n", - "2010243N12146 cannot retrieve model data\n", - "2010247N15266 (1376,) (1376,)\n", - "2010249N24125 (160,) (160,)\n", - "2010256N17137 (495,) (495,)\n", - "2010257N16282 (990,) (990,)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2010267N14285 (2325,) (2325,)\n", - "2010271N19276 (390,) (390,)\n", - "2010284N14278 (888,) (888,)\n", - "2010285N13145 (1353,) (1353,)\n", - "2010293N17093 cannot retrieve model data\n", - "2010293N17277 (726,) (726,)\n", - "2010305N06105 (375,) (375,)\n", - "2010358S13152 (1085,) (1085,)\n", - "2011021S16129 (1225,) (1225,)\n", - "2011023S16147 cannot retrieve model data\n", - "2011028S13180 (1938,) (1938,)\n", - "2011038S11062 (2640,) (2640,)\n", - "2011103S12126 (406,) (406,)\n", - "2011126N11129 (1634,) (1634,)\n", - "2011140N08142 (442,) (442,)\n", - "2011167N08129 (1127,) (1127,)\n", - "2011170N12263 cannot retrieve model data\n", - "2011179N20267 (552,) (552,)\n", - "2011192N18158 (814,) (814,)\n", - "2011205N12130 (2184,) (2184,)\n", - "2011208N22274 (143,) (143,)\n", - "2011214N15299 (189,) (189,)\n", - "2011231N15278 (2640,) (2640,)\n", - "2011233N12129 (1408,) (1408,)\n", - "2011233N15301 (5780,) (5780,)\n", - "2011236N15143 (700,) (700,)\n", - "2011245N27269 (360,) (360,)\n", - "2011250N12324 cannot retrieve model data\n", - "2011250N20266 (240,) (240,)\n", - "2011253N20145 (1176,) (1176,)\n", - "2011266N13139 (2639,) (2639,)\n", - "2011270N18139 (2584,) (2584,)\n", - "2011279N10257 (117,) (117,)\n", - "2011295N13279 (276,) (276,)\n", - "2011302N13062 (630,) (630,)\n", - "2011346N03156 (525,) (525,)\n", - "2011358S11132 (500,) (500,)\n", - "2011360N09088 (322,) (322,)\n", - "2012006S15043 cannot retrieve model data\n", - "2012009S12121 (575,) (575,)\n", - "2012010S24049 cannot retrieve model data\n", - "2012018S16041 cannot retrieve model data\n", - "2012056S13057 (1932,) (1932,)\n", - "2012070S17112 (690,) (690,)\n", - "2012142N09262 cannot retrieve model data\n", - "2012147N30284 (408,) (408,)\n", - "2012162N06150 (2257,) (2257,)\n", - "2012166N09269 (675,) (675,)\n", - "2012168N19112 cannot retrieve model data\n", - "2012176N26272 (410,) (410,)\n", - "2012177N11135 (247,) (247,)\n", - "2012196N19144 (805,) (805,)\n", - "2012201N15129 (989,) (989,)\n", - "2012209N11131 (312,) (312,)\n", - "2012209N25149 (360,) (360,)\n", - "2012215N12313 (1311,) (1311,)\n", - "2012215N23146 (1012,) (1012,)\n", - "2012223N14317 (4176,) (4176,)\n", - "2012225N16133 (1909,) (1909,)\n", - "2012230N21126 (1034,) (1034,)\n", - "2012234N16315 (4154,) (4154,)\n", - "2012254N09135 (1715,) (1715,)\n", - "2012263N15141 (2623,) (2623,)\n", - "2012272N22251 (289,) (289,)\n", - "2012288N14248 (180,) (180,)\n", - "2012296N06135 (4165,) (4165,)\n", - "2012296N14283 (1892,) (1892,)\n", - "2012301N11087 (306,) (306,)\n", - "2013018S14138 (1368,) (1368,)\n", - "2013020S17124 (1254,) (1254,)\n", - "2013046S20042 cannot retrieve model data\n", - "2013052S13126 (630,) (630,)\n", - "2013117S10155 cannot retrieve model data\n", - "2013130N04093 (448,) (448,)\n", - "2013149N14264 (399,) (399,)\n", - "2013157N25273 (2214,) (2214,)\n", - "2013167N12279 (989,) (989,)\n", - "2013171N15117 (1702,) (1702,)\n", - "2013178N09133 (2133,) (2133,)\n", - "2013187N20156 (540,) (540,)\n", - "2013196N14128 (253,) (253,)\n", - "2013210N13122 (1386,) (1386,)\n", - "2013217N11118 (744,) (744,)\n", - "2013220N12137 (2752,) (2752,)\n", - "2013228N23124 (611,) (611,)\n", - "2013237N11129 cannot retrieve model data\n", - "2013238N19266 (260,) (260,)\n", - "2013241N19254 cannot retrieve model data\n", - "2013243N26122 (560,) (560,)\n", - "2013248N16294 cannot retrieve model data\n", - "2013248N17255 cannot retrieve model data\n", - "2013255N19268 (162,) (162,)\n", - "2013255N20148 (726,) (726,)\n", - "2013257N15259 (2021,) (2021,)\n", - "2013259N17132 (585,) (585,)\n", - "2013269N15118 (672,) (672,)\n", - "2013272N10135 (437,) (437,)\n", - "2013276N21273 cannot retrieve model data\n", - "2013281N12098 (1120,) (1120,)\n", - "2013282N14132 (1748,) (1748,)\n", - "2013286N15251 (66,) (66,)\n", - "2013301N13142 (918,) (918,)\n", - "2013305N16252 (95,) (95,)\n", - "2013306N07162 (1800,) (1800,)\n", - "2013322N13090 (638,) (638,)\n", - "2013324N07103 (525,) (525,)\n", - "2013324S11113 (2790,) (2790,)\n", - "2013360S12124 (315,) (315,)\n", - "2014015S16043 (676,) (676,)\n", - "2014024S13160 (1190,) (1190,)\n", - "2014066S09138 cannot retrieve model data\n", - "2014086S10041 cannot retrieve model data\n", - "2014092S11159 (957,) (957,)\n", - "2014153N12267 cannot retrieve model data\n", - "2014164N19116 (396,) (396,)\n", - "2014180N32282 (2193,) (2193,)\n", - "2014184N08147 (456,) (456,)\n", - "2014190N08154 (5136,) (5136,)\n", - "2014197N10137 (768,) (768,)\n", - "2014209N12152 (792,) (792,)\n", - "2014209N16134 cannot retrieve model data\n", - "2014210N10323 (504,) (504,)\n", - "2014212N11242 cannot retrieve model data\n", - "2014245N19268 (294,) (294,)\n", - "2014253N13260 (704,) (704,)\n", - "2014254N10142 (3164,) (3164,)\n", - "2014260N13135 (2135,) (2135,)\n", - "2014271N10160 (550,) (550,)\n", - "2014275N06166 (2754,) (2754,)\n", - "2014279N11096 (1107,) (1107,)\n", - "2014290N14261 (200,) (200,)\n", - "2014329N08131 (660,) (660,)\n", - "2014334N02156 (1475,) (1475,)\n", - "2015012N09146 (1075,) (1075,)\n", - "2015013S18038 (950,) (950,)\n", - "2015036S20038 cannot retrieve model data\n", - "2015045S12145 (1080,) (1080,)\n", - "2015047S15152 (1160,) (1160,)\n", - "2015068S12151 (3100,) (3100,)\n", - "2015085N06162 (650,) (650,)\n", - "2015122N07144 cannot retrieve model data\n", - "2015126N27281 (1225,) (1225,)\n", - "2015152N12258 (195,) (195,)\n", - "2015162N12262 (243,) (243,)\n", - "2015167N27266 (2132,) (2132,)\n", - "2015171N15112 (1288,) (1288,)\n", - "2015180N09160 cannot retrieve model data\n", - "2015183N13130 (2449,) (2449,)\n", - "2015184N08172 (756,) (756,)\n", - "2015188N08194 (546,) (546,)\n", - "2015207N22091 (352,) (352,)\n", - "2015211N13162 (760,) (760,)\n", - "2015226N12151 cannot retrieve model data\n", - "2015237N14315 cannot retrieve model data\n", - "2015249N18142 (400,) (400,)\n", - "2015263N14148 (966,) (966,)\n", - "2015273N12130 (3526,) (3526,)\n", - "2015285N14151 (570,) (570,)\n", - "2015293N13266 (1131,) (1131,)\n", - "2015301N11065 (560,) (560,)\n", - "2015309N14067 (300,) (300,)\n", - "2015328N11260 cannot retrieve model data\n", - "2015344N07145 (900,) (900,)\n", - "2016027S13119 (910,) (910,)\n", - "2016138N10081 (576,) (576,)\n", - "2016148N27288 (228,) (228,)\n", - "2016158N22272 (140,) (140,)\n", - "2016171N19268 (240,) (240,)\n", - "2016185N08145 (512,) (512,)\n", - "2016195S06076 cannot retrieve model data\n", - "2016207N17116 (1550,) (1550,)\n", - "2016212N12127 (1113,) (1113,)\n", - "2016215N16283 (1134,) (1134,)\n", - "2016220N18258 (663,) (663,)\n", - "2016225N16138 (784,) (784,)\n", - "2016228N22117 (1148,) (1148,)\n", - "2016230N15138 (3127,) (3127,)\n", - "2016230N25160 cannot retrieve model data\n", - "2016242N24279 (5822,) (5822,)\n", - "2016244N21123 (528,) (528,)\n", - "2016248N15255 (210,) (210,)\n", - "2016253N13144 (551,) (551,)\n", - "2016256N12146 (558,) (558,)\n", - "2016257N27280 (2244,) (2244,)\n", - "2016266N11144 (645,) (645,)\n", - "2016269N15165 cannot retrieve model data\n", - "2016273N13300 (1558,) (1558,)\n", - "2016279N19130 (105,) (105,)\n", - "2016287N13130 (3496,) (3496,)\n", - "2016288N07145 (1944,) (1944,)\n", - "2016323N13279 (5,) (5,)\n", - "2016328N09130 (660,) (660,)\n", - "2016335N07088 (143,) (143,)\n", - "2016341N08092 (880,) (880,)\n", - "2016355N07146 (532,) (532,)\n", - "2017043S19040 (400,) (400,)\n", - "2017046S17137 (1365,) (1365,)\n", - "2017060S09139 (1584,) (1584,)\n", - "2017061S11063 (1508,) (1508,)\n", - "2017082S14152 (980,) (980,)\n", - "2017104N08085 (315,) (315,)\n", - "2017147N14087 (819,) (819,)\n", - "2017152N14262 (364,) (364,)\n", - "2017161N13119 (552,) (552,)\n", - "2017163N14265 (170,) (170,)\n", - "2017170N08310 (644,) (644,)\n", - "2017171N24271 (1770,) (1770,)\n", - "2017182N15132 (1440,) (1440,)\n", - "2017195N16114 (779,) (779,)\n", - "2017200N26162 (875,) (875,)\n", - "2017202N16116 (559,) (559,)\n", - "2017206N13129 (602,) (602,)\n", - "2017209N19118 (432,) (432,)\n", - "2017212N28275 (546,) (546,)\n", - "2017219N16279 (2130,) (2130,)\n", - "2017228N14314 (7704,) (7704,)\n", - "2017232N19130 (1430,) (1430,)\n", - "2017236N15129 (1827,) (1827,)\n", - "2017242N16333 (3212,) (3212,)\n", - "2017242N17253 (612,) (612,)\n", - "2017242N19122 (100,) (100,)\n", - "2017249N22263 (270,) (270,)\n", - "2017252N14147 (2226,) (2226,)\n", - "2017253N14130 (1008,) (1008,)\n", - "2017257N16258 (114,) (114,)\n", - "2017260N12310 (609,) (609,)\n", - "2017265N17257 cannot retrieve model data\n", - "2017277N11279 (25380,) (25380,)\n", - "2017284N15134 (2665,) (2665,)\n", - "2017288N09138 (782,) (782,)\n", - "2017304N11127 (980,) (980,)\n", - "2017347N11129 (1562,) (1562,)\n", - "2017354N08134 (760,) (760,)\n", - "2017360S15124 (1170,) (1170,)\n", - "2018044S10133 (2700,) (2700,)\n", - "2018073S09129 (2923,) (2923,)\n", - "2018073S12057 (225,) (225,)\n", - "2018079S08137 (638,) (638,)\n", - "2018146N19273 (517,) (517,)\n", - "2018153N12113 (992,) (992,)\n", - "2018161N12260 (88,) (88,)\n", - "2018165N22117 (8,) (8,)\n", - "2018166N15260 cannot retrieve model data\n", - "2018179N19134 cannot retrieve model data\n", - "2018184N10147 (1083,) (1083,)\n", - "2018186N10325 cannot retrieve model data\n", - "2018199N18128 (1400,) (1400,)\n", - "2018204N15137 (2544,) (2544,)\n", - "2018214N19153 cannot retrieve model data\n", - "2018218N18134 (1938,) (1938,)\n", - "2018221N17112 (1755,) (1755,)\n", - "2018222N16147 (624,) (624,)\n", - "2018226N23128 (1118,) (1118,)\n", - "2018227N11145 (1189,) (1189,)\n", - "2018229N11160 (1508,) (1508,)\n", - "2018239N11161 (442,) (442,)\n", - "2018242N13343 (5586,) (5586,)\n", - "2018244N14252 cannot retrieve model data\n", - "2018246N22283 (570,) (570,)\n", - "2018250N12170 (4508,) (4508,)\n", - "2018251N20122 (125,) (125,)\n", - "2018263N12146 (3139,) (3139,)\n", - "2018268N14253 (238,) (238,)\n", - "2018271N06154 (726,) (726,)\n", - "2018273N12259 (150,) (150,)\n", - "2018279N11069 (338,) (338,)\n", - "2018280N18273 (2295,) (2295,)\n", - "2018281N14088 (924,) (924,)\n", - "2018288N17257 cannot retrieve model data\n", - "2018292N13269 (70,) (70,)\n", - "2018292N14261 (196,) (196,)\n", - "2018294N08161 (714,) (714,)\n", - "2018311N07179 (288,) (288,)\n", - "2018314N12093 (476,) (476,)\n", - "2018334S08156 (1980,) (1980,)\n", - "2018347N07089 (374,) (374,)\n", - "2018362S13147 (770,) (770,)\n", - "2019018S24033 cannot retrieve model data\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2019074S08151 (4340,) (4340,)\n", - "2019077S13123 cannot retrieve model data\n", - "2019112S10053 (640,) (640,)\n", - "2019116N02090 (940,) (940,)\n", - "2019192N29274 (1440,) (1440,)\n", - "2019195N13136 (960,) (960,)\n", - "2019210N16117 (1254,) (1254,)\n", - "2019213N17155 (1353,) (1353,)\n", - "2019214N15134 (1260,) (1260,)\n", - "2019216N16147 (640,) (640,)\n", - "2019231N13135 (442,) (442,)\n", - "2019236N10314 (912,) (912,)\n", - "2019242N14180 (589,) (589,)\n", - "2019243N06136 (1024,) (1024,)\n", - "2019246N24266 (357,) (357,)\n", - "2019260N12262 (1632,) (1632,)\n", - "2019261N28264 (81,) (81,)\n", - "2019265N12301 cannot retrieve model data\n", - "2019268N10155 (620,) (620,)\n", - "2019272N14261 (3248,) (3248,)\n", - "2019278N16165 (714,) (714,)\n", - "2019291N22264 (1575,) (1575,)\n", - "2019293N17257 (247,) (247,)\n", - "2019308N13114 (578,) (578,)\n", - "2019314N14136 (1204,) (1204,)\n", - "2019329N09160 (561,) (561,)\n", - "2019336S06055 (1332,) (1332,)\n", - "2019354N05151 cannot retrieve model data\n", - "2020004S14122 (2256,) (2256,)\n", - "2020034S13063 (396,) (396,)\n", - "2020034S17129 (1610,) (1610,)\n", - "2020052S13140 (4104,) (4104,)\n", - "2020072S14054 cannot retrieve model data\n" - ] - } - ], - "source": [ - "model = []\n", - "error = []\n", - "for storm_id, clipped_error in errors_by_storm.items():\n", - " holland = holland_by_storm[storm_id]\n", - "\n", - " try:\n", - " model_arr = holland.sel(\n", - " dict(\n", - " longitude=clipped_error.longitude,\n", - " latitude=clipped_error.latitude\n", - " ),\n", - " method=\"nearest\",\n", - " tolerance=1E-3\n", - " ).values.ravel()\n", - " error_arr = clipped_error.error.values.ravel()\n", - " print(storm_id, model_arr.shape, error_arr.shape)\n", - " except ValueError:\n", - " print(storm_id, \"cannot retrieve model data\")\n", - "\n", - " if len(model_arr) == len(error_arr) and len(model_arr) != 0:\n", - " model.append(model_arr)\n", - " error.append(error_arr)\n", - " \n", - "pooled_model = np.concatenate(model)\n", - "pooled_error = np.concatenate(error)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "ace2e35b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 0.98, 'Wind model comparison (error within 200km of eye over land)\\n$n_{pixels}=442728, \\\\ \\\\mu=0.35 $ms$^{-1}, \\\\ q_{50}=0.22$ms$^{-1}$')" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHmCAYAAABwAIpbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xUxfr/P9v7ZtO3pJKQhBbpIL0IiKKoV73Xhu3asAFyvV+vDRu2C+K1XpVrQ2wodmlKb9JLIA0ISXY3PbvZ3SSb7O78/shvxm1JNslCEnLer1desGfPzpmZMzPnOc88hUcIIeDg4ODg4ODg6KPwu7sCHBwcHBwcHBzdCScMcXBwcHBwcPRpOGGIg4ODg4ODo0/DCUMcHBwcHBwcfRpOGOLg4ODg4ODo03DCEAcHBwcHB0efhhOGODg4ODg4OPo0nDDEwcHBwcHB0afhhCEODg4ODg6OPk2vFIbWrFkDHo+HL7/8MuC7iy66CDweD+vXrw/4Li0tDcOHDwcAbNmyBTweD1u2bAlbvYqKisDj8fDRRx+FrcxzBY/Hw5IlSzr8u97Uxu4kJSUFt912W3dXo03uuOMOXHrppd1djW7D/x6ZTCYsWbIEhw8fDjj3tttug1KpDKnczs6t1vj2229xww03ID09HTKZDCkpKbjppptQUFAQ9PxNmzbh4osvhlwuR0xMDG677TZUVFQEnNfc3IxnnnkGKSkpkEgkyMrKwhtvvBFw3pQpUzB48OCwtedc8dtvv2HkyJFQKBTg8Xj47rvvurtKFxTdvfZPmTIFU6ZMYZ/z8/MhFotx8ODBsJQvDEsp55kpU6aAx+Nh8+bN+Otf/8qO19TU4NixY1AoFNi8eTNmzZrFvistLcXp06exaNEiAMDw4cOxe/duDBw48LzXn+PCZ+3atVCr1d1djVY5dOgQPv74Y+zdu7e7q9Jt+N8jk8nEhIOhQ4d2utzdu3cjISEhDDVs4eWXX4ZWq8Xjjz+Ofv36oaSkBEuXLsXw4cOxZ88eDBo0iJ27detWzJ49G5dffjm+//57VFRU4J///CemT5+O/fv3QyKRsHPnz5+PTz/9FM899xxGjRqF9evX4+GHH4bNZsO//vWvsNX/fEAIwfXXX4+MjAz88MMPUCgUyMzM7O5qcZxDMjIycNNNN2HhwoXYunVrl8vrlcJQTEwMBg8eHKDV2bp1K4RCIe68805s3rzZ5zv6eerUqQAAtVqNsWPHnpf6cvQdGhoaIJPJMGzYsO6uSpu89NJLGD16NEaOHBmW8gghaGxshEwmC/iuoaEBUqkUPB6v0+XX19dDLpd3pYoBnKt7FO515ccff0RcXJzPsWnTpiElJQWvvfYaPvjgA3b8H//4BzIyMrBmzRoIhS3Le2pqKsaPH4///e9/uO+++wAAOTk5WLlyJV544QX84x//ANDyklldXY3nn38e9957L6KiosLajnOJyWRCTU0Nrr76akyfPr27q9NrCcdcPZ888MADGDlyJHbt2oVx48Z1qaxeuU0GtAg1eXl5MJvN7NiWLVswatQoXHbZZThw4ABsNpvPdwKBABMnTmSf/bfJqCq8sLAQl112GZRKJRITE/HII4/A6XT6XN9kMuH666+HSqVCREQE/vrXv6KsrCykun/00Ufg8Xj4/fffcddddyE6OhpqtRrz5s2Dw+FAWVkZrr/+emg0Guh0OixevBjNzc0+ZdTU1GD+/PkwGAwQi8Xo168fHn/88YB61tXVsWsolUpceumlyM/PD1qvgoIC3HjjjYiLi4NEIsGAAQPw1ltvhdSmYFgsFjzyyCPo168fJBIJ4uLicNlllyE3N7fD7eDxeHjggQfw4YcfIjMzEzKZDCNHjsSePXtACMGrr76K1NRUKJVKTJs2DYWFhT6/p6r+7du3Y+zYsZDJZDAYDHjyySfhdrt9zn3mmWcwZswYREVFQa1WY/jw4Vi5ciX8cxqnpKRgzpw5+PbbbzFs2DBIpVI888wz7DvvLRiPx4Pnn3+e1V2j0SA7Oxuvv/66T5k7duzA9OnToVKpIJfLMW7cOPz8888+59Dxs3nzZtx3332IiYlBdHQ0rrnmGphMpnbvS3l5OdauXYtbbrkl4Lu6ujosXrwYqampEIvFMBgMWLBgARwOR9D78e6772LAgAGQSCT4+OOPWd02bNiAO+64A7GxsZDL5XA6nfB4PHjllVeQlZXFxsO8efNQWloa9F5t27YN48aNg1wuxx133BG0LT///DN4PB727dvHjn3zzTfg8Xi4/PLLfc7Nzs7GX/7yF/bZ+x7RtQMAbr/9dvB4vKDbXaGsDf6/6+r98heEAECv1yMhIQElJSXsmNFoxL59+3DLLbcwQQgAxo0bh4yMDKxdu5Yd++6770AIwe233+5T7u23346GhgasW7euzTqtXbsWcrkcf//73+FyuVi7uzJHW6O9ObFkyRKmifvnP/8JHo+HlJSUNssMZZxPnz4dWVlZAfOeEIL09HSf8dXU1ITnn3+eje3Y2FjcfvvtqKysDKmNP/zwA9vaVKlUmDFjBnbv3s2+/+6778Dj8fDbb78F/Padd94Bj8fD0aNH2bH9+/fjyiuvRFRUFKRSKYYNG4avvvrK53dtzdVQKSwsxO23347+/ftDLpfDYDDgiiuuwLFjx3zOo8/bzz//HI8//jj0ej3UajUuueQS5OXl+ZxLCMErr7yC5ORkSKVSDB8+HL/++mvQ648YMQIDBgzAu+++G3KdW4X0UtauXUsAkNWrV7NjQ4YMIY899hix2WxEKBSSn3/+mX2XmppKRo0axT5v3ryZACCbN29mx2699VYiFovJgAEDyL///W+yadMm8tRTTxEej0eeeeYZdl59fT0ZMGAAiYiIIG+88QZZv349eeihh0hSUhIBQD788MM26/7hhx8SACQ1NZU88sgjZMOGDeTll18mAoGA3HDDDWT48OHk+eefJxs3biT//Oc/CQCybNky9vuGhgaSnZ1NFAoF+fe//002bNhAnnzySSIUCslll13GzvN4PGTq1KlEIpGQF154gWzYsIE8/fTTpF+/fgQAefrpp9m5OTk5JCIiggwZMoR88sknZMOGDeSRRx4hfD6fLFmyhJ135syZkNpYV1dHBg0aRBQKBXn22WfJ+vXryTfffEMefvhh8vvvv3eoHYQQAoAkJyeTcePGkW+//ZasXbuWZGRkkKioKLJw4UIyd+5c8tNPP5HPPvuMxMfHk+zsbOLxeNjvJ0+eTKKjo4leryf/+c9/2D0DQO6//36fa912221k5cqVZOPGjWTjxo3kueeeIzKZzGcMEEJIcnIy0el0pF+/fuR///sf2bx5M/njjz/Yd7feeis798UXXyQCgYA8/fTT5LfffiPr1q0jK1as8OnbLVu2EJFIREaMGEG+/PJL8t1335GZM2cSHo9Hvvjii4Dx069fP/Lggw+S9evXkw8++IBERkaSqVOntnlfCCHkk08+IQDIiRMnfI47HA4ydOhQEhMTQ5YvX042bdpEXn/9dRIREUGmTZvm058AiMFgINnZ2WT16tXk999/J8ePH2d1MxgM5O677ya//vorWbNmDXG5XOTuu+8mAMgDDzxA1q1bR959910SGxtLEhMTSWVlpc+9ioqKIomJieSNN94gmzdvJlu3bg3aFpvNRkQiEVm6dCk7du+99xKZTEYUCgVpamoihBBSXl5OeDweefvtt33uH71HVquV1f2JJ54gu3fvJrt37yYlJSWEkNDXBto33nOrq/crGKdOnSJ8Pp8sXLiQHVu3bh0B4LPuUa699lqi0+nY57/97W8kNjY24Dy73U4AkMcee4wdmzx5Mhk0aBD7vHz5ciIQCMhzzz0X0O6uzNFghDInSkpKyLfffksAkAcffJDs3r2bHDx4sNUyQx3n33//PQFANm7c6PP7n3/+2aef3W43ufTSS4lCoSDPPPMM2bhxI/nggw+IwWAgAwcOJPX19W228bPPPiMAyMyZM8l3331HvvzySzJixAgiFovJ9u3bCSGENDc3k7i4OHLTTTcF/H706NFk+PDh7PPvv/9OxGIxmThxIvnyyy/JunXryG233Rawbrc1V4MRbO3funUreeSRR8iaNWvI1q1bydq1a8lVV11FZDIZyc3NZefR521KSgq56aabyM8//0w+//xzkpSURPr37+9zzaeffpoAIHfeeSf59ddfyXvvvUcMBgPRarVk8uTJAfW67777SExMTLtjqT16rTBUU1ND+Hw+ufvuuwkhhFRVVREej0fWrVtHCGkZIIsXLyaEEFJcXEwAkEcffZT9vjVhCAD56quvfK512WWXkczMTPb5nXfeIQDI999/73PeXXfd1SFh6MEHH/Q5ftVVVxEAZPny5T7Hhw4d6jPY33333aD1fPnllwkAsmHDBkIIIb/++isBQF5//XWf81544YWABXvWrFkkISGBWK1Wn3MfeOABIpVKSU1NDSEkdGHo2WefDbqQeBNqOwhpWWi1Wi2x2+3s2HfffUcAkKFDh/pMhBUrVhAA5OjRo+zY5MmTW71nfD6fnD17Nmgd3W43aW5uJs8++yyJjo72uU5ycjIRCAQkLy8v4Hf+wtCcOXPI0KFDW+0LQggZO3YsiYuLIzabjR1zuVxk8ODBJCEhgV2bjp/58+f7/P6VV14hAIjZbG7zOvfddx+RyWQBi8eLL75I+Hw+2bdvn8/xNWvWEADkl19+YccAkIiICDYuKLRu8+bN8zl+8uTJoHXeu3cvAUD+9a9/sWP0Xv32229ttoMyYcIEMm3aNPY5PT2d/OMf/yB8Pp8JUfSBk5+fz87zv0f79u1rdWyHujYQ0row1Nn75U9zczOZMmUKUavVpLi4mB2nbdy9e3fAb+6++24iFovZ5xkzZgTUmyIWi9m6SsifwpDb7SYPPPAAEYvFZNWqVQG/6+ocDUaoc4KuS6+++mqb5RES+jh3u92kX79+ZO7cuT7nzZ49m6SlpbFrf/755wQA+eabb3zOo+PJWwD3x+12E71eT4YMGULcbjc7brPZSFxcHBk3bhw7tmjRIiKTyYjFYmHHTpw4QQCQN954gx3Lysoiw4YNI83NzT7XmjNnDtHpdOw6rc3V1ghl7Xe5XKSpqYn079/fR1Cnz1v/l9yvvvrKZ8zW1tYSqVRKrr76ap/zdu7cSQAEFYbef/99AoCcPHkypHa0Rq/dJouMjMRFF13Etrm2bt0KgUCA8ePHAwAmT57M7IT87YXagsfj4YorrvA5lp2djbNnz7LPmzdvhkqlwpVXXulz3o033tihNsyZM8fn84ABAwAgQL0/YMAAn+v//vvvUCgUuPbaa33Ooyp/qkql7b7pppvarGdjYyN+++03XH311ZDL5XC5XOzvsssuQ2NjI/bs2dOhtv3666/IyMjAJZdc0uo5obaDMnXqVCgUCvaZ9tfs2bN99rjpce8+A9DqPfN4PNi2bZtPvS655BJERERAIBBAJBLhqaeeQnV1dYBXTnZ2NjIyMlptI2X06NE4cuQI5s+fj/Xr16Ours7ne4fDgb179+Laa6/18VoSCAS45ZZbUFpaGqBO9m9LdnZ20Hb7YzKZEBsbG2AX8NNPP2Hw4MEYOnSozxiYNWtWUM/LadOmITIyMug1vLejgD/Hor+H3ejRozFgwICAex0ZGYlp06a12Q7K9OnTsXPnTjQ0NODs2bMoLCzE3/72NwwdOhQbN24E0OJhlZSUhP79+4dUZjBCWRvaorP3yxtCCO68805s374dn3zyCRITE4PWMxj+x9uyC/H/rrGxEVdddRU+++wzbNiwIWBNoXR1jnrTmTkRCqGOcz6fjwceeAA//fQTiouLAQCnTp3CunXrMH/+fNaen376CRqNBldccYVPeUOHDoVWq23TYzkvLw8mkwm33HIL+Pw/H8dKpRJ/+ctfsGfPHtTX1wNo8f5saGjw8aL+8MMPIZFI2JpeWFiI3Nxcdn/813Kz2RzQZ/5ztSO4XC4sXboUAwcOhFgshlAohFgsRkFBAU6ePBlwfntzYPfu3WhsbAwYX+PGjUNycnLQOtBtZKPR2Ol2AL3YZghomXj5+fkwmUzYvHkzRowYwSbN5MmTcejQIVitVmzevBlCoRATJkxot0y5XA6pVOpzTCKRoLGxkX2urq5GfHx8wG+1Wm2H6u9voCgWi1s97n99rVYbsGDFxcVBKBSiurqanScUChEdHd1mPaurq+FyufDGG29AJBL5/F122WUAgKqqqg61rbKysl2PmlDbQelIfwHw6TMAbd4zeq0//vgDM2fOBAC8//772LlzJ/bt24fHH38cQIuBoTc6na7NNlIee+wx/Pvf/8aePXswe/ZsREdHMw8fAKitrQUhJGh5er3ep44U//tKPYX86+gPNZL0p7y8HEePHg0YAyqVCoSQgDHQVtv9v6N1b619/m0LtV8B4JJLLoHT6cSOHTuwceNGxMTEYNiwYbjkkkuwadMmAC2CdVuCeSiEsja0RWfvF4UQgr///e9YtWoVPvroI8ydOzdo+f59CbTY5nnPk+jo6KDnORwONDU1BcypiooKrF+/HhdffHGbhqpdnaPedGZOhEJHxvkdd9wBmUzGbFLeeustyGQyHxu28vJyWCwWiMXigDLLysraXDvbmxcejwe1tbUAgEGDBmHUqFH48MMPAQButxurVq3C3LlzWf+Wl5cDABYvXhxQl/nz5wMIXMs7Mtf8WbRoEZ588klcddVV+PHHH7F3717s27cPF110UdBx3d4coP0R7Fna2vOVzslQ51Fr9EpvMsrUqVOxfPlybNmyBVu2bGEPbgBM8Nm2bRszjgw1Tkh7REdH448//gg4HqoBdTiuv3fvXhBCfASJiooKuFwuxMTEsPNcLheqq6t9BqF/PSMjI9nb1v333x/0mqmpqR2qY2xsbIBhbGfbES7oQuEN7QvaP1988QVEIhF++uknnwdfazFLQvW6EAqFWLRoERYtWgSLxYJNmzbhX//6F2bNmoWSkhJERkaCz+f7OARQqJFtuPojJiYmaGyOmJgYyGQy/O9//2v1d950RLNA+9dsNgcIySaTqUNl+zNmzBgolUps2rQJRUVFmD59Ong8HqZPn45ly5Zh3759KC4u7rIw1J1QQejDDz/EypUrcfPNNwecQ2MBHTt2zGctpMe8YwUNGTIEX3zxBcrKynweMtTw1T+uUFJSEpYvX46rr74a11xzDb7++uugAnU4OVdzoiPjPCIiArfeeis++OADLF68GB9++CFuvPFGaDQan/Ojo6NbNTpXqVSt1sV7XvhjMpnA5/N9tK+333475s+fj5MnT+L06dMwm80+RvC07o899hiuueaaoNf0DznQFc+xVatWYd68eVi6dKnP8aqqKp8+ChXaH8GepWVlZUEN42tqagB0fX3s1ZqhSZMmQSAQYM2aNcjJyfEJyBQREYGhQ4fi448/RlFRUUhbZKEydepU2Gw2/PDDDz7HV69eHbZrtMX06dNht9sDHtCffPIJ+57WEwA+++wzn/P86ymXyzF16lQcOnQI2dnZGDlyZMCfv0TfHrNnz0Z+fj5+//33LrcjXLR2z/h8PiZNmgSgZWEQCoUQCATsnIaGBnz66adhq4dGo8G1116L+++/HzU1NSgqKoJCocCYMWPw7bff+rzheDwerFq1CgkJCSFtx4VCVlYWqqurYbVafY7PmTMHp06dQnR0dNAx0J6HTlvQLa9Vq1b5HN+3bx9OnjzZpXstEokwadIkbNy4Eb///jtmzJgBAJg4cSKEQiGeeOIJJhy1RUc1NecLQgjuuusufPjhh/jvf/8b4AFGMRgMGD16NFatWuXjIblnzx7k5eX5PBznzp0LHo+Hjz/+2KeMjz76CDKZLGgwzpkzZ2L9+vXYtm0b5syZE+BhGG7O1Zzo6Dh/6KGHUFVVhWuvvRYWiwUPPPBAQHnV1dVwu91By2sr3lFmZiYMBgNWr17t47XmcDjwzTffMA8zyg033ACpVIqPPvoIH330EQwGA9Nk0/L69++PI0eOBK3LyJEj2xTOOgqPx/OJXQW0eHh2dstq7NixkEqlAc+sXbt2tbqlevr0afD5/C7HlerVmiHq9vzdd9+Bz+czeyHK5MmTsWLFCgCh2QuFyrx58/Daa69h3rx5eOGFF9C/f3/88ssvQaNenwvmzZuHt956C7feeiuKioowZMgQ7NixA0uXLsVll13G3oBnzpyJSZMm4dFHH4XD4cDIkSOxc+fOoA/2119/HRMmTMDEiRNx3333ISUlBTabDYWFhfjxxx/bFGqCsWDBAnz55ZeYO3cu/u///g+jR49GQ0MDtm7dijlz5mDq1KkhtyNcREdH47777kNxcTEyMjLwyy+/4P3338d9992HpKQkAC32WsuXL8eNN96Iu+++G9XV1fj3v/8dMOE7yhVXXIHBgwdj5MiRiI2NxdmzZ7FixQokJyczO5YXX3wRM2bMwNSpU7F48WKIxWK8/fbbOH78OD7//POwxf6YMmUKCCHYu3evz0K6YMECfPPNN5g0aRIWLlyI7OxseDweFBcXY8OGDXjkkUcwZsyYTl0zMzMTd999N9544w3w+XzMnj0bRUVFePLJJ5GYmIiFCxd2qU3Tp0/HI488AgBs3MhkMowbNw4bNmxAdnZ2UBd1b9LS0iCTyfDZZ59hwIABUCqV0Ov1bEumu3jooYewcuVK3HHHHRgyZIiP/Z5EIvGJl/Tyyy9jxowZuO666zB//nxUVFTg//7v/zB48GAfIWrQoEG488478fTTT0MgEGDUqFHYsGED3nvvPTz//POtxhiaMGECfvvtN1x66aWYOXMmfvnlF0RERJyztp+LOdHRcZ6RkYFLL70Uv/76KyZMmICLLrrIp7y//e1v+Oyzz3DZZZfh4YcfxujRoyESiVBaWorNmzdj7ty5uPrqq4PWhc/n45VXXsFNN92EOXPm4J577oHT6cSrr74Ki8WCl156yed8jUaDq6++Gh999BEsFgsWL17sY2sEAP/9738xe/ZszJo1C7fddhsMBgNqampw8uRJHDx4EF9//XWH+6w15syZg48++ghZWVnIzs7GgQMH8Oqrr3Y66GhkZCQWL16M559/Hn//+99x3XXXoaSkBEuWLGl1m2zPnj0YOnRoq/aLIdMl8+sewKOPPkoAkJEjRwZ8Rz0ZxGIxcTgcPt+15k2mUCgCyqGuft6UlpaSv/zlL0SpVBKVSkX+8pe/kF27dnXIm8zfm4Fex9vNuLV6VVdXk3vvvZfodDoiFApJcnIyeeyxx0hjY6PPeRaLhdxxxx1Eo9EQuVxOZsyYQXJzcwM8Xghp8Ra44447iMFgICKRiMTGxpJx48aR559/3uecUNpISItnwMMPP0ySkpKISCQicXFx5PLLL/dxuQy1HQjiAt+aBwm9t19//TU7Rj1itmzZQkaOHEkkEgnR6XTkX//6V4DXxf/+9z+SmZlJJBIJ6devH3nxxRfJypUrCQBy5swZdl5ycjK5/PLLg7bd31Np2bJlZNy4cSQmJoaIxWKSlJRE7rzzTlJUVOTzu+3bt5Np06YRhUJBZDIZGTt2LPnxxx99zmlt/AQb08Fwu90kJSUlwLuJkBbX6ieeeIJkZmYSsVjMwi0sXLiQlJWVsfOC3Y+26kav+/LLL5OMjAwiEolITEwMufnmm5n7OsXflTsUjhw5QgCQ/v37+xynnpOLFi0K+I3/PSKkxTMoKyuLiEQinznSkbXBf2519X4lJycTAEH/kpOTA87fsGEDGTt2LJFKpSQqKorMmzePlJeXB5zX1NREnn76aZKUlETEYjHJyMgg//nPfwLOC3Y/jh8/TrRaLRk+fDhbr7o6R1sjlDnREW8yQkIf55SPPvqIAPAJceFNc3Mz+fe//00uuugiIpVKiVKpJFlZWeSee+4hBQUF7dbnu+++I2PGjCFSqZQoFAoyffp0snPnzqDnbtiwgd1/b+9Ib44cOUKuv/56EhcXR0QiEdFqtWTatGnk3XffZee0NVeDEWztr62tJXfeeSeJi4sjcrmcTJgwgWzfvp1MnjzZx/OrtfsdrEyPx0NefPFFkpiYSMRiMcnOziY//vhjQJmEtHjdyeVyn9AznYVHiF9EKQ6OC5ApU6agqqoKx48f7+6q9AiWLVuGF154AUajMWjUaA4Ojj+hnl1FRUUQiUTdXR2O/8/KlSvx8MMPM7vLrtCrbYY4ODg6x/3334+IiIguRRjn4LiQcTqd2L17N15//XWsXbsW//jHPzhBqAfhcrnw8ssv47HHHuv6Fhl6uc0QBwdH55BKpfj0009x6NCh7q4KB0ePxGw2Y9y4cVCr1bjnnnvw4IMPdneVOLwoKSnBzTffzGwFuwq3TcbBwcHBwcHRp+G2yTg4ODg4ODj6NJwwxMHBwcHBwdGn4YQhDg4ODg4Ojj4NJwxxcHBwcHBw9Gk4YYiDg4Ojh/DOO+9g+PDhEIlEWLJkSXdXh6MHw42V8MIJQxwcHBw9BJ1Oh2eeeQZXXXVVd1eFo4fDjZXwwsUZ4uDg4Ogh0Afb999/370V4ejxcGMlvHCaIY4Lhg8++AA8Hg9KpbLT5/7++++44447kJWVBYVCAYPBgLlz5+LAgQMBZdx2223g8Xit/tGEmh0pEwAOHTqEq666Cnq9HnK5HFlZWXj22WdRX1/fiV7pedjtdixYsAB6vR5SqRRDhw7FF198EdJvDx8+jMsvvxxJSUmQyWSIiorCxRdfjFWrVvmct2XLlnbvC0fvoLPjJdR519H5yXFhwmmGOC4IjEYjFi9eDL1eD6vV2ulz33nnHVRXV+Phhx/GwIEDUVlZiWXLlmHs2LFYv349pk2bxs598sknce+99waUf8UVV0AikWDUqFEdLvPEiRMYN24cMjMzsWLFCsTExGDbtm149tlnceDAgQviLfCaa67Bvn378NJLLyEjIwOrV6/GDTfcAI/HgxtvvLHN31osFiQmJuKGG26AwWCAw+HAZ599hltuuQVFRUV44oknfM5funQppk6d6nNs8ODBYW8Tx7mjs+Ml1HnXkfnJcQHT5VSvHBw9gDlz5pArrrii1ezioZ4bLLu3zWYj8fHxZPr06e3WY8uWLQQAeeKJJzpV5uOPP04AkMLCQp/jd999NwFAampq2q1DT+bnn38mAMjq1at9js+YMYPo9Xricrk6Ve6YMWNIYmIi+9yRrOjng2nTphGJRBL0z3usUO68807y9NNPn/+K9jC6Ml5CnXddnfPhhhsr3QO3TdaLmTZtGqZOnYqtW7fikksugVKphFarxbPPPtvdVTuvrFq1Clu3bsXbb7/d5XPj4uICjimVSgwcOBAlJSXtlr9y5UrweDzccccdnSqTJoKMiIjwOa7RaMDn8yEWi9utQyikpqbi1ltvDTg+bdo0TJ48OSzXCMbatWuhVCpx3XXX+Ry//fbbYTKZsHfv3k6VGxMTA6Gwc4ruJUuWgMfj4ejRo7juuusQERGBqKgoLFq0CC6XC3l5ebj00kuhUqmQkpKCV155xef3lZWVuPvuu5GYmAiJRILY2FiMHz8emzZtYuf89ttvaGxsDPr33HPPdareHeX999/HkCFDIJFIkJaWhk8//RTz5s1DZmbmebl+Z+jKeAl13nVkfvaVsdIX4YShXszhw4dRVFSEhQsX4tZbb8UPP/yASZMm4emnn8bWrVu7u3ptQgiBy+UK6a8tKioqsGDBArz00ktISEgI27neWK1WHDx4EIMGDWr3vDVr1mD69OlITU3tVJm33norNBoN7rvvPpw+fRo2mw0//fQT/vvf/+L++++HQqEIud6tUV1djaKiIowcOdLnOCEEBw8exIgRIwJ+E677dfz4cQwYMCBAcMnOzmbfh4LH44HL5UJlZSXefvttrF+/Hv/85z8Dzrv//vshFAqhVqsxa9Ys7Nixo9Uyr7/+elx00UX45ptvcNddd+G1117DwoULcdVVV+Hyyy/H2rVrMW3aNPzzn//Et99+y353yy234LvvvsNTTz2FDRs24IMPPsAll1yC6urqkNrijcvlQmNjI9xut8//u8qiRYvw0EMP4ZprrsG6devw6KOPYuHChdi0aVPAOAgX4Rgz4RovlI7M5bbOu5DHSp+lexVTHJ3l1KlTBAAZMWIEaWxsZMdLS0sJAPL22293Y+3ah25jhPJ35syZVsv5y1/+QsaNG0c8Hg8hhLS5TdaRc7256aabiFAoJPv372/zvHfeeYcAIJ9//nmXyjx58iTJysry6YOHHnqI1burrFu3jgAgu3bt8jmel5dHAJBVq1YF/CZc96t///5k1qxZAcdNJhMBQJYuXRpSG+655x52PbFYHDDeDx48SB5++GGydu1asm3bNvK///2PDBgwgAgEArJu3Tqfc59++mkCgCxbtszn+NChQwkA8u2337Jjzc3NJDY2llxzzTXsmFKpJAsWLAip3u1B6+L99+GHH3apzO+//54AIGvWrPE5/sILLxAAZPny5V0qvzXCMWbCNV4ooc7l1s670MdKX4YzoO6lHDx4EADw7LPPQiKRsOP0DUOv17dbhtPpRHJyMvLy8gK2ZToCIQRqtRqnTp0KqnIOxogRI7Bv376Qzm2tLd988w1+/PFHHDp0CDwer80yOnKuN08++SQ+++wzvPHGG0E1Jt6sXLkS0dHRuPrqqztdZlFREa644grEx8djzZo1iI2Nxd69e/H888/Dbrdj5cqVIde9Nfbt2wehUIihQ4f6HKfeM8HaGY77RWmr/0O9N//617/w97//HRUVFfjxxx/xwAMPwOFwYPHixQCAYcOGYdiwYez8iRMn4uqrr8aQIUPw6KOPYtasWQFlzpkzx+fzgAEDcOTIEcyePZsdEwqFSE9Px9mzZ9mx0aNH46OPPkJ0dDQuueQSjBgxgm13dpQlS5aEPYDes88+i4svvhh/+ctffI73798fAHw0Q1OmTMGePXuYJmb06NH4/fffAbRs8dx2223YsmULDAYD3nrrLcyYMaPV64ZrzIRjvAChz+VQzrtQx0qfprulMY7O8dhjjxGJREKcTqfP8Q8//JAAIGfPnj1vdcnLyyN6vb5Dv/F4PKS5uTmkv2BQA8dHHnmE1NbWsr8bbriBKBQKUltbS+x2e4fP9WbJkiUEAHnhhRfabc+RI0cIAPLwww+3eV57Zf71r38lcXFxAfX53//+RwCQLVu2tFuX9pg7dy7Jzs4OOL5o0SKiVCqJ2+0O+K6r94syduxYMmrUqIDjx48fJwDIf//730616d577yVCoZBUVFS0ex4AUl9fz47RN+zKykqfc1vTHE6ePJkMGjSIfa6srCQPP/wwSU5OJgCIUqkkt9xyCzGbzZ1qSzgpKysjAMjrr78e8N2rr75K+Hw+sdls7NjkyZPJp59+GrSs6667jtxxxx3E4XCQ77//nmg0GlJVVdXqtcMxZsI1XkKdy+2ddyGPlb4OJwz1UmbOnBl0kbj//vtJTEwM+/zuu++S6dOnk0svvZRERkaSQYMGkZycHEIIIStWrCB33nknO3f+/PnkjjvuIIQQ4na7yZVXXkkefPBB9nnZsmWkf//+RKPRkHnz5jFB7PPPPyeXX345IaRli2f69OkkMjKSaDQa8sADDwStf1dV6GfOnGn3d3Pnzu3wuRS6KC5ZsiSEu0HIQw89RACQY8eOtXpOKGVmZmaSKVOmBBw/duwYAUDefPPNkOrTFgaDgdx2220Bx4cPH04mTpwY9Dfh2ia76667iFKpDHgAfv755wQA2blzZ6faRIXFPXv2tHke3V5raGhgx7r6gPPm7Nmz5I033iAKhSLo9s75Zt++fQQA+fLLLwO+mzJlChk4cKDPsdaEIZvNRkQiESkuLvY5d+XKla1eOxxjJhzjJdS5HMp5F/JY6etw22S9lEOHDuHaa68NOH7gwAEf1e7x48exb98+fPXVV5g2bRruvfdePPHEE/j2229x9OhRZogIAI899hgGDBiAp59+Gm+++Sbcbjdee+01AMBTTz2F7du3Y/PmzYiIiMDcuXPx/vvv4/7778ehQ4cwfPhwAMBNN92ERx55BBs3boTNZkN+fn7Q+ndVha7VarF58+aA4y+99BK2bt2KX3/9FTExMR0+FwCee+45LFmyBE888QSefvrpduvndDqxatUqjB49utUYNqGWqdfrcfz4cdjtdp+AkLt37waADhl+B6OsrAxGozHAIHXr1q04ePAgFixYEPR34dryuPrqq/H+++/jm2++wV//+ld2/OOPP4Zer8eYMWNCuoY/mzdvBp/PR79+/Vo9p7a2Fj/99BOGDh0KqVTaqeu0R1JSEh544AH89ttv2Llz5zm5RkeIjY0FAOTm5vocX7NmDbZs2YJ58+YF/GbhwoVYuHAhsrOzsWzZMgwdOhQFBQVQKpVITExk5w0ZMgQ5OTmtXjscY6ar4yXUedfROR8OetpY6etwwlAvpKSkBJWVlQFeIC6XC0eOHMGiRYvYsePHj+OJJ55gNhI33XQTHnroIQDA0aNHcfPNN7NzExISMG/ePFx55ZUAgB07dkAgEMBsNuP1119HXl4eW7RuuOEG7Nq1C0CLYHbfffcBAE6fPg232w2PxwO1Wt2qp4pKpeqSF4tUKsWUKVMCjn/00UcQCAQ+33Xk3GXLluGpp57CpZdeissvvzwgWvHYsWMDyvnuu+9QU1ODv//970Hr2pEyFyxYgKuuugozZszAwoULERMTgz179uDFF1/EwIEDfWwSgBabicmTJ2PLli1Br+0PfTh9/fXXGDhwINLT03H48GG89dZbAFo87o4fPx4g1HX1flFmz56NGTNm4L777kNdXR3S09Px+eefY926dVi1ahUEAgGAFuFs+vTpeOqpp/DUU0+x3999991Qq9UYPXo04uPjUVVVha+//hpffvkl/vGPf7CH/4033oikpCSMHDkSMTExKCgowLJly1BeXo6PPvqoy+2gWK1WTJ06FTfeeCOysrKgUqmwb98+rFu3Dtdcc03YrkPp6P1OSkrCiBEjsHz5cmi1WvTv3x+//fYbvvrqKwAIuKevvPIKBg4cCIFAgHfeeQeXXnop8vLyYLfboVarfc5Vq9Woqqpq9drhGDNdGS+hzrvOzPnOcL7HCkcH6W7VFEfH+e677wgAcuTIEZ/j1G7F26MhNjaWnDp1in3+/PPPyeTJk4nb7SZyuTxgz/+9994L8DT65JNPiFAoJBEREezP2ysiJiaGqbl//fVXMmHCBBIfH08WL15Mmpqawt38NgnVQ6y1cydPntymOj8YM2bMIAqFgtTV1QX9vqNl/v7772TmzJlEq9USmUxGMjIyyCOPPBJwr2w2GwFA/va3v4XUXkIIeeqpp4hQKCRff/01SUlJIVKplEyZMoXs3buXpKenE51OF+BlFm5sNht56KGHiFarJWKxmGRnZwd44NEtFv9gcv/73//IxIkTSUxMDBEKhUSj0QTd2nnxxRfJ0KFDSUREBBEIBCQ2NpZcffXV5I8//gioT1e2PhobG8m9995LsrOziVqtJjKZjGRmZpKnn36aOByOznRPq3TmfhNCyOnTp8msWbOIUqkk8fHx5L777iNfffVVwDwPxqBBg8gvv/xCDh48SCIjI32+e+CBB8iiRYs63I6O0tnxEuq868j87C1jhaPjcMLQBUx5eTkB4GMgef3115OXXnqJ5OXlEZ1O53P+3r17icFgINdddx2555572PEVK1YEtTEhhJDi4uKARZIQQoqKikhSUhL5+eefw9QaDn9+/vlnwuPxyNGjR0P+zezZs8mwYcPOYa04zhWdud+t8eKLLxKhUOhjSB6MIUOGkJ9//pnZDJWUlLDvpkyZ0qbNEAdHb4ILungBc+zYMQgEAnzxxRdobm7GypUrsXfvXtx7770B9kLFxcW49tprsWrVKrz++utYvXo1cwkdPnw41q9fj5MnTwJocd9ft24dgJYtMurC/O233+LMmTMAWuwznE4nBgwYcD6b3KfYvHkz/va3v2HIkCEh/+bAgQMYPXr0OawVx7miM/e7Nfbt24eBAwdCJpOxYxaLBRs3boTT6URTUxP+85//oKysDBdffDGUSiXmzp2LJUuWoKGhAT/99BMOHz7MttQ5OHo7nDB0AXP8+HHccccd+OKLLxAdHY1Vq1Zh48aNiIiIwLFjx5gwZLPZMGfOHDz99NOYMmUKdDodbr75Zjz//PMAWmK0LFy4EDNnzoRSqcTo0aNx9OhRAL7C0NatW9nCOW/ePLz33nvtRmLm6DyvvvoqVq9eHfL5xcXFqKio4IShXkpH73db7Nu3L8Cep7m5GY899hiio6Oh1Wqxdu1a/PLLL4iMjAQAvP322zCZTIiOjsbChQvx5Zdf+jgecHD0ZniEENLdleA4N9x1110YOXIk7rnnnu6uCgcHBwcHR4+F0wxdwBw/fhxZWVndXQ0ODg4ODo4eDacZuoCJiIhAfn4+4uPju7sqHBwcHBwcPRZOGOLg4ODg4ODo03DbZBwcHBwcHBx9Gk4Y4uDg4ODg4OjTcMIQBwcHBwcHR5+GE4Y4ODg4ODg4+jR9PlGrx+OByWSCSqUCj8fr7upwcHBwcHBwhAAhBDabDXq9Hnx+13Q7fV4YMplMSExM7O5qcHBwcHBwcHSCkpISJCQkdKmMPi8MqVQqAMDZs2eh0Wi6tzK9GI/Hg8rKSsTGxnZZQu/rcH0ZHpqamvDvf/8bDocDTz75JKRSaXdXqdfCjcnwwfVl+LBYLEhOTmbP8a7Q54UhujWmVquhVqu7uTa9F4/Hg8bGRqjVam6CdxGuL8NDQ0MDNm3ahObmZigUCigUiu6uUq+FG5Phg+vL8OHxeAAgLCYu3J3g4ODg4ODg6NNwwhAHBwcHBwdHn4YThjg4ODg4ODj6NJwwxMHBwcHBwdGn4YQhDg4ODg4Ojj4NJwxxcHBwcHBw9Gn6vGs9BwfHhYlUKsX69etRWVnJxRji4OBoE04Y4uDguCDh8XiIjIxEc3Mzl2qHg4OjTbhtMo5eBSEEdXV1IIR0d1U4ODg4OC4QOGGIo1dhs9nA5/Nhs9m6uyocPZympia88sorePPNN9HU1NTd1eHg4OjBcMIQR69CpVLB4/GEJRcNx4WN2+3GmjVr8OOPP8Ltdnd3dTg4OHownM0QR6+Cx+NxOeQ4ODg4OMIKpxni4ODg4ODg6NNwwhAHBwcHBwdHn4YThjg4ODg4ODj6NJww1E10xEWccyf/E64vODg4ODjCDScMdRMdcRHn3Mn/hOsLDg4ODo5w02OFIZfLhSeeeAKpqamQyWTo168fnn32WXg8HnYOIQRLliyBXq+HTCbDlClTkJOT0421Dp2OuIhz7uR/wvUFR6hIJBJ89913+PjjjyGRSLq7OhwcHD2YHisMvfzyy3j33Xfx5ptv4uTJk3jllVfw6quv4o033mDnvPLKK1i+fDnefPNN7Nu3D1qtFjNmzOgVWgPqIh5KmoCOnHuhw/UFR6jw+Xzo9XpotVrw+T12qePg4OgB9NgVYvfu3Zg7dy4uv/xypKSk4Nprr8XMmTOxf/9+AC1aoRUrVuDxxx/HNddcg8GDB+Pjjz9GfX09Vq9e3c215+Dg4ODg4Ogt9NigixMmTMC7776L/Px8ZGRk4MiRI9ixYwdWrFgBADhz5gzKysowc+ZM9huJRILJkydj165duOeee4KW63Q64XQ62ee6ujoAgMfj8dmC4+gYHo8HhBCuD8MA15fhobm5GW+99RYcDgcWL17MbZV1AW5Mhg+uL8NHOPuwxwpD//znP2G1WpGVlQWBQAC3240XXngBN9xwAwCgrKwMABAfH+/zu/j4eJw9e7bVcl988UU888wzAccrKyu5/EVdwOPxwGq1ghDCbUl0Ea4vw0NDQwM+/vhjuN1u3HjjjVAoFN1dpV4LNybDB9eX4cNqtYatrB4rDH355ZdYtWoVVq9ejUGDBuHw4cNYsGAB9Ho9br31Vnaev+0IIaRNe5LHHnsMixYtYp/r6uqQmJiI2NhYaDSasLejr+DxeMDj8RAbG8tN8BAhhMBms0GlUvmMWa4vO493nzY2NkIobFni4uLiAoSh1vqfIxBuTIYPri/Dh1gsDltZPVYY+sc//oH/+7//w9/+9jcAwJAhQ3D27Fm8+OKLuPXWW6HVagG0aIh0Oh37XUVFRYC2yBuJRBJUXc7n87mB2UV4PB7Xjx2grq4OQqEQDocjIN8a15cdgwo2hBDWpyKRiAk5wfqyrf7nCIQbk+GD68vwEM7+67F3or6+PqChAoGA7RGmpqZCq9Vi48aN7PumpiZs3boV48aNO6915eDoDF0JE8AFn/SFxp8CwIWs4ODg6DA9VjN0xRVX4IUXXkBSUhIGDRqEQ4cOYfny5bjjjjsAtEjWCxYswNKlS9G/f3/0798fS5cuhVwux4033tjNtefgaB8aJqAzeAef7GtajWDbWyqVivVFqFteXel/Dg6OC4seKwy98cYbePLJJzF//nxUVFRAr9fjnnvuwVNPPcXOefTRR9HQ0ID58+ejtrYWY8aMwYYNG7g3PY5eQ2ftVujDvy+O9WCCYFuCDfXe4eDg4GgNHunjq0RdXR0iIiJQW1vLGVB3AY/Hg4qKCsTFxXV5H7cvGbbW1dWBz+fD4/Gwh3k4+7I309o4CHV8NDQ0YNy4cXC5XNiwYYOPbSFHx+DGZPjg+jJ8WCwWREZGwmq1dlnL22M1QxwXHqE+xPrSFlBf1vC0R2vjINTtLYlEgq+++gpGoxExMTHnsqocHBy9HE4s5ThvhJpktS8ZtoY7vciFZFitVCphsVigVCoDvgulnXw+H2lpaSxWGQcHB0drcMIQB+NcP0hDFXK4/GOdJ1SBsyfR2riz2+3QaDSw2+0Bv+mN7eTg4Oi5cMIQB+NcP2A4Iefc0xu1aq2Nu2Bt8Xg8KC0thUKhaLedzc3NeO+99/Dpp5+iubn5nNWfg4Oj98MJQxyM3vgg5fClNwqcrY27YG0xmUwQCoUwm83tttPlcuGDDz7AqlWr4HK5zln9OTg4ej+cMMTB6I0PUo7eT0fGnV6vh8vlgl6vPw814+Dg6CtwwhAHRytcSMbIFwp8Ph8JCQmcSzIHB0dY4VYUDo5W4Ix0zz+cAMrBwdEdcMIQB0crcDZU5x9OAOXg4OgOOGGIg8MPqp0A0OtsqHq7ZoUTQDk4OLqDTkWg/uGHHzr8mxkzZkAmk3Xmchwc55XeHAG7N9cdCB5dui+lZ+Hg4OgeOiUMXXXVVR06n8fjoaCgAP369evM5Tg4ziu9OUVGb617WwJPqAKefxkSiQQfffQRqqurIZFIznUTODg4ejGd3iYrKyuDx+MJ6U8ul4ezzhwc55TeHGLgfNY9nFtybdkKhbp15l8Gn8/HwIEDkZmZyXmfcXBwtEmnVohbb721Q1teN998c69U2XNwtEZvt80JB8EEGBoh2uPxdKistgSeUAW8nm5vxI0ZDo6eS6eEoQ8//LBDC84777xzwWaN5ha47qezD+CuwHk9BRc+aIRok8nE5obH42l3joQi8LR3n/3LaG5uxieffIKvvvqqR6Tj4MYMB0fPJWy64wMHDoSrqF4Ft8B1P94P4PNFT9dCnA+CCTDeEaJtNht4PB7y8vLA4/G6PEc6ep9dLhfefPNNrFy5skek4+DGDAdHzyVswtDVV18drqJ6FdwCd+5pT/t2vlI0eGsmzoVtzoWgZfSOEK1SqWC1WmEwGGC1WtucI7RvXS5Xq9qf3p6KozfbonFwXOh0yJvs+uuvD3qcEIKampqwVKi3EcwVmCO8tOdNRB/A5xpvzcS5uF5v1zJ6PB6YTCbo9Xrw+XzweDwYDAbYbDYYDIY2hQDat4cOHUJiYmLQPj5f95mDg6Pv0SFhaNOmTfj000+hVCp9jhNCsG3btrBWjIOD0lPcxfV6PUwmE7RaLUpLS9lDP1x4t7OxsTFs5Z4vggmLob4s0L4dNmwYysrKeq32h4ODo3fSIWFoypQpUCqVmDx5csB3w4YNC1ulODi86SnaN6qZKC0tPScaItrO82kIHk6oQKPX6zscKJH2LSGE3eu6ujoolUrY7fZ2y+lsYEYuoCMHBwfQQZuhb7/9NqggBADr1q0LS4UoKSkp4PF4AX/3338/gJZFbMmSJdDr9ZDJZJgyZQpycnLCWgeOC5Ou2ub0dtuVzhBKn1GBhsfjobS0FDabjaU1CRW6VWgymXz+bW/r0H+LkdogtXePe/vWJEdwLgT7O47zS5d0/GVlZeGqRwD79u2D2Wxmfxs3bgQAXHfddQCAV155BcuXL8ebb76Jffv2QavVYsaMGdyi1kX6wiLS1Qegt5FwX6EjfUbPtdvtHb4OdUjQ6/U+/7a3RervyEC37Npzqe9NDhB9YW6GC07I5egoXVrNZ86cGa56BBAbGwutVsv+fvrpJ6SlpWHy5MkghGDFihV4/PHHcc0112Dw4MH4+OOPUV9fj9WrV5+zOvUF+sIiEs4HYF95QHWkz1QqFZRKJbRabYe3N+lWIZ/P9/m3vS0sf08tvV4PgUCA999/H6+88kqr6Th6uoeXd6wmo9EYlhAFfYHeJORy9Aw6lZuMcr4eAE1NTVi1ahUWLVoEHo+H06dPo6yszEcYk0gkmDx5Mnbt2oV77rmn1bKcTiecTif7TNX4NHVIX0ehUDAbio70h8fjASGk1/ShUqkEIaTLY7iurg58Ph9Wq7VDebPaoqf2ZUf6jD6EWjvf4/HAbDZDp9MBAPt/R7Rt7fVpQkIC9Ho9Kisr2TV7G3R8GY1GqNVqWCwWpi07n/TUMdkW4Zrj4aY39mVPJZx92CVh6Hy9TX333XewWCy47bbbAPy5PRcfH+9zXnx8PM6ePdtmWS+++CKeeeaZgOOVlZVoamoKT4UvADrqzeTxeGC1WkEI6VPbR4QQNDQ0QCaTtdln9fX14PF4qKmpaTdX34Xclx6PBzU1NSCEQCgUIjc3FwAgEAiQm5vrE6neu2+DrTWh9On57sv26tzZ8qRSKaqrqyGTyZhwdy7xb8eFPCbPN1xfhg+r1Rq2srokDJ0vVq5cidmzZwcYrPovNoSQdhegxx57DIsWLWKf6+rqkJiYiNjYWGg0mrDVua9BAxHGxsZyEzwIHdUMXah9aTQaER0djaamJvD5/DY1Q3V1dZDL5airq4Nerw8639vqU5fLhW+++QZ1dXWYN28enE7nOfcaq6urg0KhgMfj6REekJ3Fvx0X8pg833B9GT7EYnHYyurxwtDZs2exadMmfPvtt+yYVqsF0KIhoospAFRUVARoi/yRSCRB7Qf4fD43MLsIj8fj+rENOiJsX6h9aTAYYDKZkJiY6NO2xMTEgHMjIiJgNBqh0WjgcDiCChfefeof9NHtdmPZsmVobm7GlVdeCZVKxcrxPzdcREREwGazISIiosfaIYVCsHZcqGOyO+D6MjyEs/+6VFI4pbLW+PDDDxEXF4fLL7+cHUtNTYVWq2UeZkCLXdHWrVsxbty4c14nDo4LifOZ6LYjnng0gjUhJCRD2LZyl7XmbRbufHY93SA7VC6UdnBwhEqXhKH9+/eHqx5B8Xg8+PDDD3HrrbdCKPxTicXj8bBgwQIsXboUa9euxfHjx3HbbbdBLpfjxhtvPKd14rjwaEsY6AveYsEEg/MhIIXStx15KLcV/4nH47EI34SQkGJFnU8hkYODo3vp0Tq6TZs2obi4GHfccUfAd48++igWLFiA+fPnY+TIkTAajdiwYQPnSsnRYdrSEvSFUANUMNDpdEw4aa1Pwikchrtv29M6eV+Pz+fDYDDAbre32hbvPuiMYNQXBGkOjguFLgtDDQ0NqK+vZ5/Pnj2LFStWYMOGDV0tGjNnzgQhBBkZGQHf8Xg8LFmyBGazGY2Njdi6dSsGDx7c5Wty9D3a0hL0hXglVIhwOBxMWPDvE/pgp67e4RBgzmXf0vq2dj1CSEDcHm/hhYbaaGpqYmlGOrqt1hcEaQ6OC4UuC0Nz587FJ598AgCwWCwYM2YMli1bhrlz5+Kdd97pcgU5ei4XyptvWxqFvmQ74S0s+PcJfbADCJsAE66+DTYOaX3dbnfQ61HjYKvVytriLbyYTCaIRCI4HA7weLxWBea2NEZ9QZC+ULlQ1raeQm/ozy4LQwcPHsTEiRMBAGvWrGGxfj755BP85z//6XIFOXouF8Kbb1+3F/KmLeGEPtjVanXYhcOu9nOwcUjrKxAIgv6GaocMBgNri7fwotfrUVtbC5VKxbRhwQTmtjRGfUmQ7kmEY96Gsrb1tfWhK/SGZ0WXhaH6+nr25rNhwwZcc8014PP5GDt2bLsBEDl6NxfCm29ftxdqC29B8Vw+2Lvaz8HGIY/HQ0xMDJYvX45nn302wPM1XO3pi0l7ezrhmLehrG19fX3oCL3hWdFlYSg9PR3fffcdSkpKsH79epYio6KiolcHHeNonwvhzbev2wu1Rah2Mt5CU2fellvr51DLouMQaAkW6Ha7UVpaCh6PhwkTJmDMmDGtaoi8oQ83q9WKAwcOsG00mhssGH0xaW9PJxzzNpS1raesD71BQ9UbnhVdnsFPPfUUFi9ejJSUFIwePRoXX3wxgBYt0bBhw7pcQQ4OyrmY9L3dXuhcLoShaj28habOvC231s8dKcvj8bDUHvn5+e0KccG2R+nDzWazseCQKpUKIpEooCz6e7fbDYvFgpKSkpA9zXrDw6s3c77mbU9ZHzgNVXjosjB07bXXori4GPv378f69evZ8enTp+O1117ravEcHAxu0gdyLvqEPqx5PF5IWg9voSmcb8sdKctkMkGj0cBoNCIjIwMulwtxcXH48ccfsWHDBrhcroDzhUIhSktLmVBDU3sYDAa43W70798fBoMhqEBIf5+fn4/y8nI0NjYygak9N/xQ7xknNPUeuvNe9RQNVW8nLLpdjUaD5uZm/PLLL/jhhx/www8/oKysDPn5+eEonqOTXGiLKTfpA+lIn4Q6HoI9rNv6rbd2LZxvyx0NuOh2u5GZmQmBQICEhAS43W4899xzLCWH//lUQKJCjXcMooiICAiFQjgcjqACIf19eno6XC4XxGIxE5ja214M9Z5xwn/voTvvVU/RUPV2upybbN26dbjllltQXV0d8B2Px/NxbeU4v3hP0AvBfsvbNqSn05HErF2hI30S6nigkZq9H9Y9fSxRgayj59McZRkZGXA4HKzNwfqA4p3XzGQyITo6Gi6XiwlMOp0O+fn5QeOjAaHfs7bq0BHO11jsy4TrXnF0H13WDD3wwAO4/vrrYTabWaAy+scJQuGlo5qe3qRJudC0WD3trd7j8cBqtcLlcrU7HoK9afamsdQe3mONCkUCgcCnzW29bXtrfoLZVTkcDiQmJsLhcHSpnv516Owc6Wlj8UKE0870frosDFVUVGDRokXtZovn6DodXdR60wS90BbsniY80CCCdru9Q+PBO5Lz+R5LHo8HxcXFKC4uDmt+MJvNBh6PB6PRGFSwaE/o8BaAghngh3rvPR4PSkpKYLFYQhJwOjtHetpY5ODoiYTFgHrLli1hqApHe1zIi9qF1jZvQbQnaL1C8QxrK5JzdwipJpMJFRUVOHHiBEpLS0P6TSh9rVKpYLVaEREREbRd/m3u6P3zfwlpLfSAyWRCY2MjysvLQ+rfzs6R3vJS1BPmCUffpcs2Q2+++Sauu+46bN++HUOGDIFIJPL5/qGHHurqJTj+P73JZqajXMht6wn2NqHY1ASrZ3farej1ehiNRsTExIR8HdqGuro6NDY2tnqed0TtYN95t9m/X7y3yUKxU/I+X61W++R/MxqNUKlUIfXvhTxHgJ4xTzj6Ll0WhlavXo3169dDJpNhy5YtPgsdj8fjhCGOPk9vMa4MVs9wPYC9t6ZoCgxvQ2R/by1CCOx2O0aOHAmz2RxyhGfaBgABucm86yIQCFhkbX/82+zfL9RwOtQ6eZ9P86JRoTAxMTGkMkKlrT7t6fSWecLhy4VioN/l2fLEE0/g2WefhdVqRVFREc6cOcP+Tp8+HY46cpxHOFV1x2mvz3rLNsW5rGewrSmj0QiHw4Hc3NyAvqNagtZc20O5nlAoxEsvvYTHH3/cJx1Ha9tNrW1n+fcL1bLxeLyg9907IKO/vdW5Hgv+bv3txTzqSfSWeRIKfWkdvVDsPbssDDU1NeGvf/1rr3sL4QjOhTKwzye9sc/OxWLtbRDs8XhY+fTNUa/XgxDChBClUomysjIfbQ5FqVTCYrFAqVR2qA70XtjtdkRGRmLGjBmYNGmSTzqO1h66JpMJAoEAeXl5TIjJzc0NOXgi7VOj0chiFwHAgQMHAABWqzWgf2jqEJfLFRahxd82zFs46k2CUW+nN64JneVCsffssgRz66234ssvvwxHXTh6ABfKwD6f9KQ+60pgxY6W4Y/RaERlZSXMZjPy8vLYlpC3gOKvYUlPTweAgL6rq6uDw+FgQkl7daPHlUqlz70ghMDhcMBqtbbbHp1Oh5KSEiiVShBCUFpaCoFAAKPR2O61CCEwGo3g8XhQqVRwuVzIyMhg24JGoxE2mw0NDQ0oLy+HyWQCn89nqUMOHToUVGjpqADj793mLRyFmmuOo+v0pDXhXHOhaPS6bDPkdrvxyiuvYP369cjOzg4woF6+fHlXL8FxHrnQjTTPBV3ts3DuuXc2sKK3rYndbu+wISvVAMlkMng8HiQmJsJqtcJgMLB6UaGB/l+pVMJoNEKn07Xajrq6OvD5fNY3rbXPX+ACWtamH3/8EdXV1ZgxYwaLJeTfXrrdVVdXB71eD4fDAbVaDb1ej/Ly8oAHmv+1qCCkVqtZmzUaDQAgMzMTpaWlUCgU0Ol0MJvNUKlUUKvVsNvtTGCKjY1FU1MTEhISAoQWmjaEz+f71BdoP9yBt+F8R22dODoPt472ProsDB07dowlZD1+/LjPd71dUuTgOB8Ee8BT7UNERESH5lGoRqjeizUhBHl5edBoNDCZTDAYDEHL8BfavD/bbDZERkayB7bdbodOp4PRaIRer/fJKk/bWldXB5FIhIqKCvB4PNjtdvaw944ETYUiHo8HpVIJu90eULdg7W5qasLzzz8Pp9OJ2bNn+whjVquVJWBVq9VwOBxMyPCuLxXEgl1LqVSyjPY8Hg9Wq5XZElH4fD74fD6EQiHKysqYwTTdJlMqleDz+RCLxSyKtb/Q4i0UedfX+z6GIlB3NEp3OAnFsPtCMcTl6Bzdff+7LAxt3rw5HPXg4OizBHuQNzQ0QKFQdNjNmAoSHVlUaJZ2muS0td/6C23en+k1qaeYWq1GaWmpjws61R65XC7weDzodDqWGd5ms0EkEqG0tBQOh4PZF9XV1THth7/mpzXo7xoaGgCA5RoDWrbyIiIioFKpfIQv+pvExEQfeycAsFgssNvtMBgMPvnXqGBntVp9tE5WqxUejwd2ux1arRYWiwUAkJWVBYvFApvNBkIIxGIxSkpKYLfbIZfLmYebv9DinTbEu76EELjdbpSUlDCD8Z7qlh4sHIH/w49zre/bdPf956yeOTi6mWB77nS7qTM2Bx013qTXyMrKgsPhYL/1t8/xt4Pw/hysDTqdDrW1tWwbjLq02+12CAQClraCCic0mapGo0F+fj7q6+vR2NjIBCC3282EAG+87XWojZLD4YDdbkdTU5NPv0RERMBqtUKtVvsYbqvVaqjVauZJVlZWBpPJhCNHjqCwsBANDQ0Btja0/QaDAXK5HHV1dbBarXA4HDh9+jQaGhqwY8cOuFwuOJ1OlJWVwWw2o6ioCB6PB01NTSgoKEBVVRXOnDkDkUiEvLy8kJLhRkREgM/no6KiAo2NjbDZbCGPl+4wpA4W9NN/nPYlOxuOQLr7/ndKGDp69GiHJlJOTg7LEN0RjEYjbr75ZkRHR0Mul2Po0KHMMwNoWQSXLFkCvV4PmUyGKVOmICcnp8PX4eDoaXTFKLGji4r3tbx/6/+w8o+q3Z72yW63IyIiAna7HcCfHmI6nc6nft42ODT7/PDhw6HVaiGTyZg2hMfjQSAQBAh53kKOQqGA1WqFTCYDIYRpW2i/EEJgMBhQV1eHwsJC5v1VV1fHPM5sNhvkcjnKysoQFxcHmUzG6gH4ChMulwv79++HxWKBSCSCzWaDQqFAv379IJVKMWTIEDidTqSkpECpVMLtdkMul7Pts4iICFRVVSE1NRUWiwVarRb79+9n8ZHaMmZXqVSIj4+HVCqFwWBoc7x417k7DKlbS1vicrmYJu1CMcTl6Bzdff87JQwNGzYsaJb61rj44otRXFzcoWvU1tZi/PjxEIlE+PXXX3HixAksW7aMGSYCwCuvvILly5fjzTffxL59+6DVajFjxow+4c54odGT43L05LoFo6OLCm2fy+XCiRMnUFtby1zgPR6Pj22M1WqF1Wr1sf0JVdNgt9uh0WjgcDiY8TQVioxGIzQaDcrKyqDX65mhMbWZaivRrLeQYzabIRKJ4HA4mPE2fQB720mZTCYolUqYzWa2hUbrr9FoYLfbMWLECADAwIEDkZiYyMqhLvgHDhzA7t274XQ6UV5eDpfLBZ1Ox4QzjUaDpqYmlrS1vLwcer0ecXFxUKvV0Ol0iIuLQ1ZWFpKSkpCVlYXCwkKmGQPa1vLxeDxoNBqfurVGe8llu2OMUzsxarvFwdGddMpmiBCCJ598EnK5PKTzvVXVofLyyy8jMTERH374ITuWkpLiU4cVK1bg8ccfxzXXXAMA+PjjjxEfH4/Vq1fjnnvu6fA1OcJHR43hgkUo7k78jYM7s5fd3QaBoULbd+jQITidTlRXV0MgECAhIcHHNsZoNKK+vh5KpdLHrZzG1fFPT+GtbQJ8baOMRiOL6ZOVlYWMjAzk5eUxo2uRSIT8/HwkJib6GFtTgQrw7V+6xUW3nxISEuB0OplmiD7saR0SEhJgNBoxfPhwJoDxeDxYLBZmO1VfX4+srKyAe6fX61ldFQoFysvLMXr0aJw+fRpNTU0oLS1l/ZiWlgaBQMCOuVwuJCQksG3CyMhIREdHMw+24cOHIz8/HxkZGUwApEJhV/A2yg5mSN3RMR6usc15uHH0FHikE68CU6ZM6fAEWL16dVAX2tYYOHAgZs2ahdLSUmzduhUGgwHz58/HXXfdBQA4ffo00tLScPDgQebNBgBz586FRqPBxx9/HLRcp9MJp9PJPlOjyerqah+tE0fH8Hg8qKysRGxsrI9LdGv5n/yhiSupZ0x3G1B617+jBsn0QeG9TePtudVeWbQvY2Ji4HA4zpkwRetCPbTkcjny8/OhVCp9tjS82+NwOJidjHciUrPZDK1W61Pfttrq8XiQn5/PHoLUTgcA4uPjYbfboVQqfbylqLE1FbL8xxgVylwuFwwGAxoaGjBp0iS4XC78+uuvPgKcv6BLtUJlZWXg8/mQyWRMs9Ra33m7t+fl5UEkEuHkyZPQaDQwm83IzMxEU1MTM0ovLCxEeno662+dTsfaQYNSemt4/NvT1fvb1jhqb1y2N787IxzRcaPT6fpU0F7/vuToPBaLBdHR0cwOsCt0Shg6H0ilUgDAokWLcN111+GPP/7AggUL8N///hfz5s3Drl27MH78eOa6S7n77rtx9uxZrF+/Pmi5S5YswTPPPBNwPDc3t8tvX30Z+hZLDTsJIWhoaIBMJuvQdo3/b0IppzPX6kxdQqW+vp5t7fB4PJ8y6HeEkFY1q7QvRSIRBAJBm+d2Be+6SKVS1NTUICoqqk3X57b6hJbncDgQHR2N+vp6OJ1OSCQSKBSKNsurr69HbW0tACAyMpLZCHm33b/vvH8PtGg3ioqKkJKSApVKBbfbjU2bNqG+vh5z5syBy+Vi5zY0NEAikcBoNEIqlSImJobVvaGhAZGRkTCbzcyDzP9aDQ0NPn0GAMXFxaivr4dcLoder0dubi7i4+MRGxsLh8MBk8kEjUYDhULhc1+rqqogEAjgdrt9ktJ6PB5Wfn19PRoaGhAdHR3yA9T7figUii6NIxopm2q1/MdCKOPan9bafaHjv1aeC87FmtgTsVqtyMrKCosw1GXX+nOFx+PByJEjsXTpUgAtdko5OTl45513MG/ePHae/42muYRa47HHHsOiRYvYZ6oZio2N7bWaoZ6wHUMf/OF+26mrq4NCoWhTw0QNMKVSaY8QaNu6H6Fqhng8XoBmKNhvO3rvvc8H/gyGaDKZEBUVBYvFgszMzKD1rqurg1QqbdWImmpvqHt6dXU1+Hw+oqKi2HYbEDxQICEEUVFRTENCPcP84wq1doxGjJZKpbBarcwu54YbbsDhw4ehUCiYMTchBAqFAidPnoTT6QSPx4NcLvcZX7m5udBoNKitrYXBYGAPMCqoKRQKlJaW+vRZcXExmpqaIJfLoVQq4XQ6UVJSgoiICDidTtTX10MqlSIpKYnVOyYmBjExMa1qSOLi4pCbm4vy8nIYDAa43W5otdqQ729dXR1b17pinFpaWsoEzGAa/s6sQW21+1zS3evluVorvQll3bwQ8M452FV6rDCk0+kwcOBAn2MDBgzAN998AwBsQSgrK/OZnBUVFYiPj2+1XIlEAolEEnCcenf0Rurq6iAUCpndwbmmtcWExoIJZz/SxJ5tBR+k7sbn6h62FWywtTq1JViHInRTzynvc6nHE9VY0C0W73vvv33jXz//82n/UjsYGhmZxhGibbRYLDh9+jTi4+NZTJ1g9aHjz2azwel0wuPxwGazMY+yiooKpKWlBe0DgUDAtCC0bjQukN1uZy7l1EWfGlkLhUK43W6kp6cz+xM6Xk6dOgWXy4UzZ85Aq9VCo9EwT63+/fvj9OnTiI2NZe2hsZIyMzPZNp5QKERxcTGEQiHsdjsSEhJgs9l8zsnLy4NMJkNNTQ0UCgXMZjOamppQX1/P2i6XyyGVSmE2m6FQKCCRSFBWVoaEhAQYDAYfmx632438/HzI5XImsBUUFGD27NltjnGLxYLy8nI2zgQCAdvO8s7P1hbUIB4A2y6lmq62giZqNJoOCRp8Pp8FoTxXBKvP+V4vg3Eu1ysgtHUznHSXgBnO/uuxT//x48cjLy/P51h+fj6Sk5MBAKmpqdBqtdi4cSP7vqmpCVu3bsW4cePOa127G2936PPhFdLRODZdIRTPKLVaDaVSec4WNv/2en9uL1dWOO+DShWY+d3/3huNRtjtdjgcjpBiBXm7tXsvZPS41WpFaWkpCxxIDXqD1YcawdPz3W43ZDIZeyCbzWbmXn/y5EkWN4jWz79utbW1KCgoYJ6r3gEe6XUBsN8IBAIMHDiQaW/cbjcqKiqQk5OD5ORk6PV69qZMhS25XM4MusvKylg8IYFAgAEDBjDhSafTQSqVsrqp1WoIBAJkZWXBbDZDIBCgsbERUqkUOp0Op06dQr9+/ZCdnc2CL9J8a9QQvLm5meVBMxqNaGhoYHnQ8vPz2XmxsbFQKBQYMWIEs6vyhwowVquVRcMuLi5GbW1tUA+8YNB7UVpaiqKiIlRWVjIvLz6fj5iYmKAPH29vwnCuDeGYQ8Hq093xbM4H59tN/Xw+E84VPVYYWrhwIfbs2YOlS5eisLAQq1evxnvvvYf7778fQMvNXrBgAZYuXYq1a9fi+PHjuO222yCXy3HjjTd2c+3PL94D/3wMyp62mIRr4re2+LYVbDBYf/sHAQwXPB4PBoOBCQ70mPe9j4iIgMfjgUKhYPWjXnp0C9m7r2hbCCFMg0AFlpqaGqb9KS8vZ4IDIYS519NI0d7JTRsbG1FbWws+nw+1Wg25XA6Px4Phw4dDoVAwgSAvL489/Gn9vCksLIRIJEJ5eTkIIaitrWVG1QaDAS6XC0ajEQqFwiefGqWpqQmLFy/GW2+9xWL7eLfdbDZDKBTi9OnTcDgcPvGECCGwWCwoLS0FIQQikYil1fC+Bo/HQ2ZmJkulkZaWhq+//hpqtRqHDx9GQ0MDoqKi8Pvvv8NgMEAoFMJisSArKwsRERGsPP8xlp6ejrNnz0KhUCAhIQGjRo2Cx+MJ8LqiggiN9k23/Hg8HqqqqlBTU8O0anRstiZg0LEMALGxsRCLxcxDry283fZDXRtCCccQ6lrWVlnB6tPd8WwuRHraM6Ez9FhhaNSoUVi7di0+//xzDB48GM899xxWrFiBm266iZ3z6KOPYsGCBZg/fz5GjhwJo9GIDRs29Ogbcq40N7Rc/6zd54JzuZh0Z0yf1hZf//Z6f/aPxUPVxTQIYLjvQ1t9T+tCNR+0fhaLhW2ptdW/9Py8vDxUVlaivr4eKpUKpaWlyMzMBNBi3Ey1KHV1dcjNzYXb7YbRaGTbKTExMYiKioJEImFap8jISNTX1yMhIQFZWVlobm6GTqdjW2HUI8tbgBw+fDgkEgnS09NRXl7OygJaHoA7d+4En8/HwYMHg2art1qtbEvMarXCYrH4ZK+nwVpjY2OhUql8YvbYbDaUl5ejoaGBxVKKj4/HyZMnIZPJfPqQuqprtVocPXoUs2fPxsGDBzFo0CDU19fDYrHgqquuglgshlwux/DhwyEQCNj9omlXYmNj2bXKy8sRFRWFmpoaluHeP2gh8KcgAoC57dO/mJgYREdHQ6vVhqS5ofWh23YajQZisbjdGEDecYtCXRtCCfwYbG51tCxO8Dk/XAj93ClvMm8D5Pbo6VnraTLM2tra82JA3VGX8+4uN1Q8Hg8qKioQFxfXpX3c7mxHqPverdkhdMQVvz238/b6srXfB6uH2+1mmh3qwUKzq9OHo8vlgt1uZ/Yu5eXl6NevHzQaDTtfr9fDZmtJcsrn82EymdgWGfVWysrKgt1uZxGe4+PjmQs5AJ+Erd5Lj3+qDIVCgYKCAmRkZMBut7Pr6nQ62O12Fixxz549uPLKK1msIGojYbVacebMGdx8880ghOCzzz5jxt9KpdLnHtHr+xtpW61W5iIvEAhw8uRJiEQi1NTUICEhgRllAy3eVtu2bUNaWhpOnTqF8ePH4/Dhw9DpdGxLjmpvqNBCocdLSkqQmJjI4rJRTUcwQYjef3q/gtny0GjTbrcbTqcTMpmM2TuFYtvhnQ8NAMrLyyGTydq0Qwl1DoWSuJXS3prQkbI6wrmyg2ltfne3YXdvxGKxIDIysvu8yQ4dOuTz+cCBA3C73eztMT8/HwKBgEVw5fgT/0W4p5d7vunOdngbALdFsAB1/gJQe+V0JpCjt3E0AJaawvv3KpWKnUO3uKgdCTWgpfY29Dy32w0ej8e8p/h8PnQ6HTQaDfM08/bw0mg0qKurw4gRI2AymSCVStHQ0MCMrxUKBfbv34+4uDiYzWb0798fZWVlLHkrjVdEt3Soq7bb7WZCEU1x4Xa7MWjQINbO3bt3Iy4ujm39jRo1itnXlJWV+bjke0MNlmUyGdMY1dfXM6HQ/77QbTcajToiIgIZGRnIzc1lZVD3fpvNxrbwjhw5gkmTJqGxsRHDhw/HoUOHEB8fj9LSUmi1Wia0eUMDDw4bNozZBNEs9kCLMHTgwAGMGDGCPTxpPR0OR6uZ6KnGxGq1QigUtjqnWnsIewdn9Hg8ISUPDnVc07LpFldbgoz33PIX0Oj/aSJgGlizM8KEfz90Zo52hfN9PQ5fOiVGb968mf1dccUVmDJlCkpLS3Hw4EEcPHgQJSUlmDp1Ki6//PJw17fXc67UiReCmhJovx3duY1GCYcdQnt77MHaabO1JCB1OBwAEPT3LpcL27dvZ1oFGiBRq9UyI3NqdwS0CFS07h6Ph+UNi4+PZ8INFQjq6uqY1oUKELSOcXFxbEuDbnudOXMGWVlZKCgoYNtgHo8HR48ehdFohMlkQmlpKUpKSlBeXs7i8OTl5TFBg26LGQwGJoBQLZVWq4VIJILb7YbJZIJEImG/obYuQqEQfD6fxb6hUbTz8/PZw4canVMhqbi4mMVFotttNHO9Wq2GWCxmcXW8haeGhgb069cPJSUlKCkpYZqkHTt2QCgUMs8xf20ANbAuKCiATqdDQkIC23bS6XTIy8uDVqvFgQMHfPKstbcdTrevsrKy2Jak/zZZa/ZtwcZfKMmDO2o70tE8adS4ndqbCYVCllvOO0VMZ/Dvm/NtB3Mh2N30ZrqsU1y2bBlefPFFREZGsmORkZF4/vnnsWzZsq4Wz8HhQ0/wWgiH4OlfRnNzMzZv3oz6+nps2bKlVS8YmUwGi8XCBBv/OmzZsgWnTp3Czz//jNraWuYFFhERwbY36LVVKhVqa2vZA1atVqOsrIzF+6HGyd4LtHe98/PzUVNTg+LiYpw6dYoJTW63G2fOnEFUVBRcLhcyMjJQV1eHzMxMFBYWgsfjobi4GA0NDWhubmbxiKjhdlxcHBwOBzQaDROC6NaVQCBAeno61Go1MjIyWFqPyMhINDQ0sP4oKyuDRqNh0ebLy8vR2NiIhoYGpp1RKBRse49qBSoqKiAUCmE2m1moAmpATmM+yeVy9OvXD4QQeDweuN1uZGVlITU1FSqVCg0NDWhqaoLdbkdtbS2io6PR1NTEDLNpfjf6f7PZjAMHDjCjcrvdzoI9OhwOjBgxAoWFhcz93v8++Asu/uEVvA3H/e1wqJmAv31bsPEXyrj3b18wvA2eg+VJ88e7Lnq9HjU1NQBatH3UU44KmF0RJvyFkfP9gnmhvND2VrosDNXV1bG4Ft5UVFT0ajc7jp5Jb397ak2ztWPHDkgkErz77ruQSCQoKioKqn1yOByIioqC2Wxu9Ro05UxJSQmqqqpafeuura3Fnj17mLBBvcKamprYAyg/P99n648KYYQQaLVaREZGIioqCunp6cjNzYVCoUB9fT34fD6amprA5/MhEAiYNqpfv36w2+0YOXIkoqKiEBkZiQEDBjABJC4uDjk5ORCLxRAIBGwrkGou3G43MxCnQo1cLodYLEZGRgYbHxkZGbBarZBKpXC5XEhLS4NMJkNaWhqSk5NhtVqZZ1pkZCTr65iYGFgsFsTHx8NmszFNWWxsLNxuN1QqFRQKBQ4cOID9+/czrQSNgZSQkIC0tDQ0NTVBp9NBpVKxaPomkwkWiwVlZWXMDor2c1xcHGpra6HVan2EECq0TJw4Mag3GdB66AdqeB1MoKHbgHRM+ucDVKl8M8oDLYIGTa7bGiaTCQ0NDSgvLw+6/hNCkJeXB4FA0KZhuDf+c97hcPhsEVIPSm/Hgc7ACSN9my4LQ1dffTVuv/12rFmzhrl4rlmzBnfeeSdLoMrBES56+4Ll/eCi2qDm5mZMmDABTqcT9957L5xOJwYOHBi0nbGxsdi2bRtiY2ODlj9lyhSMHDkSV1xxBUsCqtfrfa4FtDyUdu3aBbVajaNHjzK7DLqtlJiYyJLm0oca1SzYbDZUV1dj9+7d0Ol0GDRoEBNM/vjjDxiNRqSnpyM1NRUKhQIWi4UJgFVVVYiPj0d9fT0iIiJQWVmJoqIi5ObmwmQy4ciRIxg8eDCsViuGDRvGQgRYLBYmHJnNZrjdbubeHxERgYEDBzIbIPogHjx4MO68805cffXVOHLkCAug2NjYiOrqapw6dYppd2j7jhw5goiICOTn58Nut7Otu/LycpZz7NixYygrK8OpU6dw5swZEEKwdetWpl2qr6+HTqfD6dOnIRaLWQoPKvAplUomaGi1WrhcLmg0GgwYMIClp6DaKmqvVFZW5pMapK3YUfSzTqdjmj9/rRH1vmtNgODxWjLKCwQCtj1XXV3tEwspGNRDLz4+PugLi83WEtTSYrFAp9OxdrTn5UjrSJMB19XVsa3a3r4mcPQMuiwMvfvuu7j88stx8803Izk5GcnJybjpppswe/ZsvP322+GoIwdHryTYAu/94NqyZQuOHz+OLVu2QCQSYerUqZDJZMz12r8si8WCtWvXIiIiAjt37gx6TaFQiJEjR0IikSAlJQWRkZHg8/lM87Rjxw4ALQ+lCRMmoLm5GbNmzUJdXR3cbjdqa2uZwW9aWhqLaUSvf/LkSQDArl270NjYiI0bN4IQwrLO5+XlweFwsJxa3lqCvLw8JgRYrVbk5+cjLy8PFRUVEIvFIIQgNTUVNpsNWq2Wab+8DazdbjcUCgV++eUXti2mVqtRW1uL5uZmbN++nQkxIpEII0eORGZmJioqKpiWSyqVwm63QyqVMo0Yn89Hbm4uMxindkgymQy5ubnQ6XSwWCxQKBRISkpCXFwcBg0ahEGDBqGgoIBFoa6trUVJSQk2btwIPp8Pp9OJiIgIqFQq1NTUMO0Vn8+HSCRCYWEhc+f39pZyOBzMGNg/0GZdXR3sdrtPHCT/0A9KpRL5+fng8Vryhvlrjaj9UzABgo5bnU7Hcj/m5+czmyGaiiSYhogK0hqNptXwDwCQlZXFNDzeGrL2dhNo4ExvY/JzwfmwTewJ9o8cf9Ll0SSXy/H222+juroahw4dwsGDB1FTU4O33347aHJGDo6OcK7jMtFyPR4PSkpKYLFYQr5We3WjDy1vD7D23mLpQ6G+vt6n7JqaGvzwww9ITExEeXk5LrrooqB1sVqtLP+Wt7Zg3LhxKC0txbhx49h3drsdl112GRobG+FwOFBRUQGBQID8/HxUVVWhvLyc2RjRuDvUBTwlJQVWqxVDhgxBTk4OfvnlF6SmpmLAgAHg8/nIzs6GUqmEQqFAfHw8y5FVU1ODpqYmlJWVsW0SqknIyMhggs+BAwdYzJ3c3FzweDyIRCKmcdHr9SgrK2OJKPl8Pnbt2oXa2locP34cMTEx2LdvH4tUr9frkZGRwbzq+vfvz7RTdKuLPuzdbjeLmn3q1Cmo1WqYTCYoFAocPXqUBY1sampCVVUVSwOSlpaGoqIiZghts9mQnp4OoCVpqkAgYCkgaNDI9PR0lJSUMNssfyGDBphsbm5Gbm4umpqa2FYVjXydl5cXMAapRovmqAoWMLQ1qB2TzWbDiBEjWHBNHo8HrVYLh8MR9LqhBFIMFqNLpVK1WS86tqmA2lEX+lDq5c/5sE3sCfaPHH8SNtFaoVAgOzsbF110EScEcXSK1jyozsWC4V9ue7YO7ZXRnmAU7PspU6YgKysLQIudT2lpKRQKBZqampCTk8OC5AHAkSNHEBUVhV9//RWXXHIJjhw5gqamJp9Aj97t8Re6KisrMWnSJFRUVKC0tBRlZWVMQ6BUKuF2uxEXFwexWIyjR49CIpGwhxNNUqrRaHDo0CHIZDJER0cjMTERZWVlOHPmDCQSCY4fP46srCxMmTIFEomE2fpEREQgKysLcrkcY8eOhcFggE6nQ2pqKgvSKJFIWBbziooKJCUlwW63M2Nis9nMYhZNmjQJMpkM2dnZSEpKAo/HYxqLhoYGxMTE4OeffwaPx8M333yDsrIyjBgxgmnb9Ho93G43hg8fzraMcnJymB2KSCSCx+NBTEwM4uPjQQiBXq9nmqrjx4+DEILi4mJ4PB5m5Gw2myGVSqHVapGYmIjLLruMxS5rbm5mD3RvA2Oz2YzIyEgUFBTAbDbj9OnTrE5US8TjteQlq62txfr169l2XUZGBiwWi89WJoW2kUa6pobW1HWcRgsPJiB422jx+Xw2RmkEcqVSiZKSEhZ3ikI99aiw1pYA4u/GTrVZwWySvO3XOuJ5RumoxxpwfmwTu8P+kdNGtU5YhKHt27fj5ptvxsUXX8z2kz/99FOmku8NcIOke/Dud7oIe6dmOFcLhn+57dk6tFdGMKHNO8AfdV+mub48Hg9EIhGEQiHEYjFeeOEFENKS9X337t1QKpXYuXMne3BddNFFyMvLw4wZM/DFF19AKpViw4YNPvm6qBt9sDxtOp0ONTU18Hg8TEDyrjvVhBw9ehRRUVEoKipCeno6Nm/ejMOHD2Pz5s3YtGkTEhIScOzYMWYEK5fLUVFRAQCYNWsWALAtLbptdfbsWfB4PCQkJKChoQFJSUksQjXdMnK73Sxtx4QJE1j6Dr1eD6PRyAIf0hQWNG8Y3VoyGAxIS0vDkCFD4HA4MHLkSOTm5uKtt97Cyy+/jDNnzuDEiROora1lBs+lpaVwu90oLCxESkoKysvLERkZiZycHFgsFthsNkRGRkImk8FkMjEvtzFjxsBmsyEpKQmEEKSnp+PAgQMAWoTaqKgoJCUlMeNvqhHi8XjYvn07SktLcfjwYTgcDpbQNT093Wfc+2sP4+Pj4XK5EBUVhdraWmRmZsLhcDAPNTpO6FwKZpjsPUbbEhAMBgPkcnlQmxybzYaGhgbodDrk5+f7vPjSOtCtxrYEkGBzvbXfeBvFt+d5FoxQPNb8OR92SN1h68Rpo1qny8LQN998g1mzZkEmk+HQoUPMldVms2Hp0qVdruD5ghsk3YN3vwezjzhfcZn8bR3og8Xj8YRk2NlW7CFqn1FaWsoyZtOtmfHjx+PAgQOYOnUqdu/eDZVKhfHjx8PhcGDmzJnsASSRSHDbbbfB4/EwI+uZM2eya9Jrud1uHDhwgAXso1BXdaFQCEIIi2cDgLXTarUiNTUVzc3NGDNmDHbu3Am3241vv/0WjY2NKCgoQGVlJYYOHQqdTgeFQoETJ04gMTGReQetX7+eBXk8evQompubkZOTwxKAAi1CWFxcHOLj49m2Ec3BpVarmRu52WyG0WiEXC5nnmoUq9WKsrIyEEKYsW9UVBScTicuuugiVFVV4aqrroJIJGIamKqqKhQWFsJkMqG8vBzHjx9HZWUllEolTCYTtFotiouLIRKJsH79epSXlyMvLw82mw2NjY04duwYhgwZgoqKCrb9pVKpsH79emi1WhQWFqKpqYltt3kbKuv1emaEffr0aSgUCmag7h1jCQCLak0hhCAiIoJp5LzTU9A4Uf5BAoPhnf7D4/Ewd396jWCCVDBjbRp4MSEhwcerMSIigsUz0uv1aGpqYvGe6H2nLwLB5nprQgsd2wKBoF3PM/+2AH8GeOTxeH3+hbe3e+OeS7osDD3//PN499138f7770MkErHj48aNw8GDB7ta/HmjLwySnqj98u53ah9B3y67k7bck4PRltBGo0LTh713bJTGxkY8+OCDIIRg+vTpLC7MyJEj2XxSqVRwOp04cuQIJkyYAJlMhhEjRkAkEvlckxCC9evXQywWB2hl6UNMJpPBZrOxBxr1xjKbzeDz+RCLxUhLS0N0dDQuuugiCAQC3H///aioqMCoUaOgUrXk8NJqtdDpdLjiiitQV1eH2NhYHD9+HCKRiHmnTZgwAXw+HwMGDGBBC6l3lMFggMPhQGpqKnO9937I0+2SiooKnD17lnliUajXGPVUo+kzhg8fDo/Hg8mTJ4PH47EEqjTlSGxsLJRKJctJRu+FUqlERUUFM/oeOHAgioqKoNPpmLBE3e31ej3q6+shl8tRX1+P9PR0HD16lGmtqqqqAuzFVCoVkpOTERkZieTkZBZmID8/H3q9nm1X9uvXL0AY8tbG0ICbweLqtLeG0TFqNpshFotZv3iPdxp7iApz3oEMqaCtUCiQlZUFl8vFhD3vuEbUhouOJ5PJ5ONSbzQaWT96z/Vgcyic9j7cCy/nedcWXRaG8vLyMGnSpIDjarWaBXzrDfSFQdLTFgN/uwGg59wHGgCQxpnprHBG20htOOj/aWwUlUrFvJ4kEklQLx+qZZFKpdixY0fQ+0gFiLFjx6KgoABjxozByZMnWaJSartTVlaGxsZGbNu2jRko01QRVGvg3WYej4eYmBjce++9qK+vR3Z2NgCwyNROpxPZ2dnsIa9Wq3HppZeCx+OhsbERI0eORHNzM+rr61lmeEII80qjdja0DdSQm2qN4uPjkZSUhNjYWB9XbGpjQj2S7HY7EyqGDRsGs9nMNFHNzc2Ij49nW5Y0t5lSqURGRgYIIWy7TyqVYvTo0WhqasKoUaPYteLi4pjLPHUFV6vViIuLg0KhwKhRo2Cz2SASiRAXF8fuOzVoz8/PR0xMDAQCAWpqatDY2IiqqioWkDIrKwt6vR6JiYk+wi0V9Oh9SU9PZ8KS/1wJde4E08BQQQoAewkAWuyAqMB46tQpNDU14eDBg+Dz+Uz4a+2Fwfs63i71dC7RSONU8A02rsNp70PntFwu77CABYT/ZbInvpz2ZbosDOl0OhQWFgYc37FjB/r169fV4jnCSE/Tfp1L4SzYQtORxYc+7Ok2TmeFM6ohsNlssNvtEIlEMJlMAQ+u1u4NrfP48ePhdDoxYcIEtqgrlUp2ns3WktOL2r9s2rQJQqEQ+fn5PuVRL6f4+HimqVGr1aioqGDbbLt27YLL5cLOnTuZO75IJMKoUaPw008/sfxlNC2HVqsFACQnJyMtLQ2bN2/Gxo0bIZVKIZfLIZVK4XQ6cfr0abjdbpSVlaG8vBwnT54En89HUVERc4cHwMpLTExk/yYmJsJms8FsNsNisUCtViM2NhZZWVnweDyQSCT4+uuv0dzczB7WZrMZTqfTJ2/Z+vXr8ccff8DpdCInJ4dtXdLtPiqYjR49mm2hUQFNoVD4jAOq5dJoNKiurkZkZCREIhFLhust5Ot0OjQ3N8Pj8bDcZv369YNSqWTeUf4RpS0WC8xmM9PeaTQaFkncO11Ia3iPd+//07EHICBaNB2H1FYrMjISdrsdPB4POp2OecAB7b8w8Pl8lneN1pcadBuNRmaQT4UdlUrlE2MJaH3rzF9j5O0NCgTaXNH7pdFoUFBQECBghbI2hHu96mkvp32dLgtD99xzDx5++GHs3buXBcX67LPPsHjxYsyfPz8cdeQIE53RunT17aWt359L4SzYQtORxSeYwNFVvBd2Qv5MW0DfimnU3y1btjCbH1rnxsZGTJ06FSKRKGg7qPGqUqmE0+lEbGwsLBYLMjIyfOqg0WgwdOhQJsRQt+28vDxs3ryZpYWgW3JUAFOr1fjjjz9gMBiwd+9e5q7tHXm5pqYGq1atwtatW/H9999j69at4PP5EAqFOHLkCIRCIf744w+2NTJgwACW2sJkMsFgMEAkEmHz5s1ISkpiBs40rcX+/fuRk5ODVatWweVyoa6uDiUlJaitrcU333wDi8WCb7/9FlqtFkajkd07KoAcPHgQDQ0NaGhoYAJARUUFcnNzUVRUhKKiIiiVStTX1zOtxY4dO1BXVweJRIJjx46hqakJBQUFzF6J3j+6tUi36bRaLUpLSyGTyVBdXY2TJ08yIa6kpAQZGRloaGhgEbqDjVO6dUm3qzrqZel9jvc2GDXmNxqNKCsrYzGgqO0V3arNzMyE2+1mgohSqWRbp7TtZWVlqKurC1hX6Lz3zx9GhTFa9rBhw3yEnfa8IilGo9EnAKTJZEJjY2Or3qDUJo6mh/EXsELpz3CvVz3t5bSvwyNh0NE9/vjjeO2119DY2AgAkEgkWLx4MZ577rkuV/BcQ9+6amtrmQEjx59QmwHvgHDBoPYdcXFxPgaOof4+3ATbggt2rDXCVe/Wrkk1RgBYXBuFQoGDBw9CLBbD4XDgkksuYYax3r+niUOPHj2KSy+91MdWz+12Iy8vjxmy2u32Vtvb3NyMHTt2oLm5GYcPH4ZUKmWpMSZMmAChUOhz7aamJmzYsAEzZ85EQ0MDHA4HFAoF1Go1bDYb9u3bh8rKSnzwwQeYOHEi+vfvj+uvvx55eXlwu93IycnBxRdf7LOtYzAYUFpaysbO77//DplMhpycHMyZMwdnz57FwIEDcfr0aTQ0NGDbtm3MYyw7Oxt//PEH0tPTmRfYmDFjoNFokJmZicOHD+OWW24BIQTLly9ncYFSUlIglUrR3NzMfkdj6dCHeFNTE0QiERISElBRUQFCCEQiETP6pUbgWq2WGYDT+xoREYH9+/fD6XTC7XajsbERjY2NzDONeqWNHDnSx3mA/t57G5Bu5wmFQjYWvRPmetsb0Qe5t4bJu2zvAJNWqxUKhQLl5eVwu91ITExkUZ2DjRU6v6VSKYRCIRtnQqEQUqkUAwcOZOMvPz+fJdF1uVwsca5YLIbL5WKG+/74JwKmBs/+85CGNaBjhnr1GY1GqFQq5rTgPe5LS0shFApbvX5H1oau0tpaydFxLBYLIiMjYbVau/x8CYswBLQEFTtx4gQ8Hg8GDhwY1jfqcwknDLVNqItEaxP8fC4y/nT02sEeHkqlMqhA0dV20Ycu/X99fT0UCgXkcjm2b9+OjIwMtn3iX6+6ujps27YNUVFRaGpqwtSpU4Neg8a12blzJ2bNmsUyvNMs6Dt37oRGo0FJSQnUajVOnDiB+fPnw2KxMDsPh8MBuVzOtn2o+z+N6UM1OZMnT8auXbtw9OhRDB06FPv378fdd9/NHtSnTp1CSkoKxGIxs2M6ffo0srOzYTKZUF1dDbFYjNTUVKxatQqXXHIJDh8+jOTkZBa88MiRIxCJRDAajZg8eTJ27NiBxsZGVFZWQqvVYtKkSWhqakJWVhbsdjtiYmLwzjvvoL6+HldeeSUqKysRFxeHsrIyFvhx0qRJcDqdMJlMUCqVkEqlWLduHSZOnAiVSoUTJ04gNTUVZrMZLpcLarUajY2NkMvlPpHC6+rqUF9fz4QSt9uNgwcP4qKLLmIG6nK5HE6nkwkkaWlpqK+vZ/fZW0D2Do/gHx+IPvS9s9BbLBam2dFqtQFG2DSvmFKpZElx8/LyoFarIZfLUV5ezoJeBhvjVIsWHR2NwsJCaLVa8Hg8HDp0CBMnTmTardLSUojFYhZ5m7bN4/G0GzAxlBcY2n6gJRkvzf/m3VdGoxERERHMrou2vzMBG88FnDAUPnqcMLR9+3b897//xalTp7BmzRoYDAZ8+umnSE1NxYQJE7pa/DmFE4a6Bl2sFAoFe9icrwnenkDSlnYn2G+Dnd9aGaFqjkIRmvzP8V8sva/ldrtx+vRpJCYmIicnB+PHj0djYyOkUil27tzJPlPB6eeff0ZkZCQTmk6ePInGxkbmRv/7779jzJgxOHbsGBITE1FaWsqECrplQgiBRqNhW0sikQjNzc1Qq9X46aefUFxcDKPRiDlz5sDpdKKxsRFTpkxBVVUVC4A4evRopgkCwLQKNIr1li1bkJCQgMTERKapkkgkiIiIQEZGBioqKiCXy1FdXQ2ZTIb6+nqIRCJs27YNFRUVUCqV0Gg0mDp1KtMs0Iz01dXVEIlEUKlUyM3NxeHDh2GxWFg2+ezsbEgkEiQlJWHbtm3Ma6xfv35sy2zo0KGoqKiAx+NBfX09DAYDYmNjmUbPZDLhzJkzLEdaXV0dy0s2YMAAttVXVVUFi8WCxMRE1NbWMm1RYmIis4MB4ONCTgUZGhOK9j/1UqT5xUpLS5m2Tq/Xo6CggAk41DZq//79uOyyy1BZWcnWPZrwlMapoi8BJpOJacEIIWhoaIDL5WLXpyElqJAVGRkJl8uFsrIyphmi86OjwkhbGlUej8cMsb230aggRLVn1DM1FCGM2mfReFadqVuocMJQ+AinMMTFGeLoEqHa4ZwLz4lQ46oE25Nvze7G//zWygh1vz9YSg5/2rPlooalHo+H5ZuqqqrC1KlT0djYCD6fjw0bNkAikfgEYuTxeJg1axaampowfvx4VFdXo6SkBPX19UhJSYFMJoNUKoXH48G0adPgdDoxd+5cZq9EIx3r9XqmeaBJRqnmSKFQoKqqCmPGjEF1dTWLxrxu3ToALS9Ker0e27dvZwk2y8vLkZ6ezrZ5qHC3e/duVFdXo6ioCFVVVSgtLUVhYSEqKirgcDhQXl7OIkLzeDyIxWKMGjUKycnJ4PP5mDZtGnOfpxniCwsLWR85HA7k5eVBKpUiIiKC5SLLycmBVCpFSUkJxo4dC7vdjri4OBQWFsJoNKJ///7g8XjQ6/UQiURobGxkqSHKy8tRWlqKoqIiVpbL5YJQKGS5xXJzc9mYI4Rg6NChkMvlSE9PZ4IHAJYYtaGhwWdcGo1GVFZWwmw2gxCCpqYmuN1uHD58GA0NDSwDPTXcFggEOHToEEQiETOg1+v1OHbsGOLi4rBr1y6oVComUCQkJLAcZHRelJaWMgHO4/GgrKwMDoeDGVEbDAYYDAbm7VVfX4/a2lrY7XZkZmaygJh0fnTUK4zOG5qMl5CWQJ6lpaVsq4salNN5Q50IvLf72rouXZPq6upw6tQpOJ3OAIeDYPivHV111uDoGXBxhi4gumMChioUnAvPiVDjqrQW+4f+1nvLKphbe2tZvVszGvX23qHG0R29J/7ePzwej22puFwu5uJN2zFz5syAQIwAWALYxsZG7N27F/X19TCZTBCLxdiyZQuio6Nx4sQJxMTEYOrUqZBIJEhISEBCQgIsFgvi4+ORl5fn88CmqSlUKhXS0tJw6aWXYuLEidBqtUhOTsYXX3wBlUqFwsJCFlTy6quvZvFmvLeE3G43+vfvj2PHjsFiseCPP/7AkCFD2Fb7iBEjUFBQgJycHCZ4AC0RmamWRiAQICUlBU6nE0KhEOXl5aiqqoLRaITZbMaWLVsgFouRn5+PuLg41seZmZnYu3cvGhoacPLkSZSXl6OiogKDBw9GcXExrFYrE05UKhWLAh0TE4PS0lLs2bMHmzdvhtPphEwmg0gkwtixY5lmKC0tDRUVFeDxeCgpKYFAIGDbVECLt5VOp2NaP2rgq1AofMaRx+OBy+WC2+1miXep9o8KlHR80RACw4YNQ3NzMzOg5/P5uOaaayCRSDBu3Djw+XwYDAamERo+fDjb0qQeWjSgI/Umq6mp8RnH1BBaIpEwLzChUIi8vLyAueQ9br3XKDrO3W43iouLWYoTive6kZ+fD7FYzDwD/aFz2dvuKZg3mrcQRO9FWloaJBIJ66+2BBzaR97b6a05awQzfufomXBxhi4gusNVM1QPtXPhOdGVmETevw1Xv1FtDPWcofFv2lOnB1t4qacRrRMNmqhWq5GZmcm8ymg7hEIh+vfvz1T8/mWqVCqMGTMGKpUKU6dOhUKhwGWXXca2TajARn9HNSFnzpxhnk1utxt8Ph9GoxEKhQLr169HQkICxowZg5SUFEycOBHV1dWYPXs2mpubMW7cOBw4cACTJ0/Gtm3bfIJOnjp1CtHR0Th9+jT4fD4iIyNRXV3N4v0kJCRgyJAhOHbsGLO1qampQUVFBSoqKpCXl+fz0PR4PCgvL2cpPTweD/h8PhYsWIAVK1bg888/R2xsLCQSCSQSCYYMGQKn04nx48dDLBajoaGBBYYUCAQYNGgQNBoNCw9A4yTRWDlFRUUoLCxEfn4+du7cCafTCR6Px7RaFouFpfBQq9XMrkWhUMBut0MoFDLhQ6FQYPPmzSgrK2Pt0Wg0LChmfX09c1O3Wq3Q6XTQarWIi4tjRth1dXWw2WzMRZ2mLKHf0e3NqVOnsijWNMcY1b7Q8apWq5GQkACZTMY0QG63GzExMQFu6VSYoKleWsuVRutPNS/0ezr38vPzUV1djaqqKphMJpbKxmAwsHUjIyPDR8DzvvfFxcUs4a33y0dbaUno9phKpUJkZCQGDhzI5k9bAo5/LLC2NMq0Dpz7fM+nx8YZWrJkCXsjpn80/gjQstgvWbKE5ZSaMmUKcnJyOn29C4Ge6qrZnUbUoeDfb53VsNGtB2q/0FauMG+CvUXSlA7e0XlpjBlqg+FdXxrdNz8/P2jkbB6Ph+joaEyfPh0xMTGIiIjAvn37MGXKFGzevJlt5Xk/BHg8HtLS0mC1Wpm9Cm3Xjh07kJaWhh07dsDlcrHtt379+mHfvn1ITk6G3W6Hy+XCyZMnMWzYMBQXFwNoiRs0bNgwNDU1YcyYMTh8+DD0ej1GjBgBoMVb7tixY8jNzYVGo0F9fT00Gg10Oh0AoLq6Go2NjezhGRMTA5lMxqIra7VatiVItSgejwdHjx5FUVERmpubsX//fgwaNAhqtRrR0dFISEhAREQEoqOjWYiCzMxMGAwGVFRUMANquVyOESNGYNq0aVCr1UhLS0NMTAwTJKnQVF9fzx6GcrmcRcjW6/XQ6XQoKSmBTqeDWq1GQUEBRCIRzp49y7bN/O89jXdEY1/RscDj8eB2u5Gbm4v8/HwW4ZmGbbBarbDZbEzooZpKpVKJ/Px8nDlzBjU1NUzYpe3wFiKomz0hBFqtFs3NzT4aHmr07Z8rzRuPx4N9+/bBbrejpKQkIGp2RkYGoqOjERUVBavV6hMslM4dh8OBrKwsHwHP7XZj69atKC8vR3V1NRv/objI83g8aDQaVn86l4Jpf7x/579OAK1rlOma4O1QRMdJW+sLt812/unRcYYGDRoEs9nM/o4dO8a+e+WVV7B8+XK8+eab2LdvH7RaLWbMmNGnJfCeEr3Zn3OhsQrnYuHfb52pr7/AR8ukwfQAtFrfYG+Rbd3LYPWlGouMjAwWNM/j8bCHsHdgPQqNI3TxxRcH1IVqosxmM9LT01FfX8+8l4RCIYYMGYKjR48iNTUVp0+fRmNjI9vKoPFljh07BofDAbfbjZMnT2L9+vU4ceIEXC4XIiMjMWLECFRUVIDP54PH42HQoEHQ6XQ4cuQISxQaGRmJ1NRUaLVaJgCp1WoMGjQIHo8HqampLI0F5dSpU5BKpaiurmZtpnFoCCHYvXs3E/xoIEeb7c+Eqjk5Oaiursbhw4eZoTj1WqOBGEtKSnDFFVcgNjYW48aNQ0pKCuv7xMREREREoLq6GpWVlTCZTCw0gMlkgslkYrncADBBICsriwl/9L7SPGLx8fEwGAxwuVzsfnpvH4lEIjgcDhYt2uFwwOFwsDaWl5ezwJZUWDYYDIiJiUFUVBQyMzPB4/F8Yh4F26oVCoUsZAMVoLOyshATEwODweCTKw34MzhiaWkpBAIBqqqqfF6K6FgWCARISkpCQ0MDJBIJDh065DMHg8VMom03GAywWq0s4a2/EOO/VtBr0pcKhULBYlrRGEzB5n5n1gka6NFb4KLzO9QYUf50ZO3r6jrZl4SyLgtDjz76KK666ipMnToVdrsdkyZNwt///nfcc889eOCBB7pUtlAohFarZX+xsbEAWm7QihUr8Pjjj+Oaa67B4MGD8fHHH6O+vh6rV6/uapM4wsy50Fidyz351t4AaQ4m/2tRLxb6EAimCWprcfNfnDvaT/T8rKwsCAQCHyHMbrf7PBi94fP50Gq10Gg0rM7eb+KHDh1CREQETp06hfj4eKhUKmRmZjItRXZ2Nux2OywWCxoaGlggxsjISERERLDcZGPGjEFRURGLiE2FDz6fz7aNMjIykJGRAYfDwVJkDBgwAIMHD4ZGo4HL5UJBQQEEAgF7qI4YMYL1F820XllZCZfLhfz8fCQmJrIYTnK5HNHR0SgrK0NsbCykUimampqYsfLx48dRU1ODM2fOgMfjYfPmzXC73di3bx8TAGpra2Gz2bB9+3bU1dXh4MGDGDx4MCorK5GZmYmKigqoVCo0NjYyw2az2cxCJtTV1UEulzNDaArdlhs0aBATQun9KSgoQGRkJLOToVHMaYRqmlLE5XKxBLomkwlSqZR5ldEgkFRIdrvdTPNB7cP4fD5kMhn++OMPNDU1+Wyd0XHjr62kY5/akXmnmKFQA2YAiIuLw6BBg1qNMwSAbYUNGzas1bxrCoUCxcXFzN6M/puUlITCwsIA1/zWBBw61s1mMxubERERsFqtrP9D0TC1NV/pOd5596htUyi/C3ZOKE4ZlNbWnVCFnO4wveguemycoSVLluDVV19FREQEJBIJxowZg6VLl6Jfv344ffo00tLScPDgQQwbNoz9Zu7cudBoNPj4449bLdfpdDKPN6BlYCUmJqK6uppzre8CHo8HlZWViI2NPS/uolQTQ0hL5u5QgiN2druOPhS8A+55xzWhdho2W0vesWBlt3Vt7+/o9RoaGkJyvfV4PGxryOFwBI2HRB+cVNCg8XAOHjzIBI2srKyANhNCsGPHDkyYMMFHSAJatqp+//13OJ1OyOVyREZGQqVSQSaToaKiAhMmTGDBCk+dOoXk5GTs3bsXSUlJGDhwILNLcrvdqKmpQUxMDBPeTCYTMjMz0dTUhC1btmDSpEnYt28fCGnJXZaUlMTctuPj41FdXc0e/idPnoTZbIZarUZ1dTWWLVuG5uZmvP7662xsFhYWwuFwIDMzE/X19Th58iTUajXEYjGioqJw4sQJJCcnM+81hUKBmpoauN1uph0RiUTMxujqq6+GWCyGUqnE9u3bmYE1IS05zy6++GJmD0Tj+ZjNZgwbNgwOh4PFsvKOaUXvAc1tRgUIpVLJEp0mJCQwrQ39rdFohFgsRnNzM7KystgD02QyISMjg2nvqU1nZWUlE3Tz8/PR2NiIiooKjB07FnK5HGVlZUhNTcXRo0dhMBhYzji5XM7iDdXX18NutyM+Pp7FN3K73SgoKEBaWhrKy8uZzZS3kEK1czQBbajzkkafpkIefYnIz8+HTqeD2WxmdkX0GBXYWgso6T+HALS5VvjP2fbWFe/wGEqlsktrpdVqZYmC/eNJtVVP/xAF4QoN0p3QEBk9Js4QxVsN2VV+/fVX1NfXIyMjA+Xl5Xj++eeRm5uLnJwc5OXlYfz48cwdlHL33Xfj7NmzWL9+favlLlmyBM8880zA8dzc3HYH1oUKjSEik8k6fe+oNwx17z0f0L13oMUuo72619fXM3seuVzebtm0T4AWg2apVIrGxkaffqJlOhwOlvHcuz6h9K13vSh1dXXtCkOEEOal5Ha7ERsbG7Rt9fX1MBqNbPFLSEhgSVNNJhPS0tICrkMIYTF9ampqYDAYWNvEYjE2btzIHqi0zNjYWGaHwefzIZVKUVBQwALwRUdHw+l0slg4NPaMTCaDXq+HQqGAw+Fg/XXixAmIRCKYzWYMGjQIVqsVEokEMpmMxbSSSqWwWCyQSqXg8/nYuXMnRo8ejUOHDkGr1eIf//gHXC4XXnvtNbbVVl5eDpfLxbbrbDYbtFot7HY7ioqKYLVaERUVBY1Gg7i4ONTW1jKtDABER0fDZDKxAIpqtRozZ87Enj17EBcXh8bGRmg0GuTn57No13K5HGfOnGF1SEtLQ01NDYudFBMTw/qFRq2m3lnUw0wqlaKhoYEZmtM4QFRjTo3HS0tLERUVxTRM1dXVLOYSIYTZUAEtL4d0a8/j8SAnJwfx8fHMQ04oFKKwsBBRUVGoq6tjRvqVlZVMKATA7je9JrXXqq6uRr9+/VgKD6lUipqaGnbfqECsVCohkUjY79vCv43eAlZpaSkbW7ReNI5SOB/m/nO2vXXFex2g9U9ISGg3ppH/b/3XFAAhr92d/V1Pxmq1Iisrq+cIQytXrsRrr72GgoICAED//v2xYMEC/P3vf+9q0QyHw4G0tDQ8+uijGDt2LMaPHw+TycSMKgHgrrvuQklJCYtxEgxOMxRIOFJPdIdmiL7h0gdSKL8J5S2ntbK9DSZVKlXA27zN1hKxGQDz/Aol8KN3KgVaTiiaIavVyuIOpaensyjRwTRPVqsVZrMZ/fv394mU7K3NClYXqmWxWCyoqKiAVqvFgQMHcObMGQgEAubCnZqayjyglEolGhoa0NzcjFOnTqGhoQHJyclISEhAfX09JBIJTp06BbfbDYlEgrq6OgwdOhQ8Xkv6BaFQiNraWsTExGDNmjWYOHEiALBI0xaLBXw+HxkZGVCpVDh06BB0Oh2+//57OJ1OFBUVYdSoUSgtLcV7770HoVCIf/7zn8jIyEBZWRlOnDgBhULBhNcBAwagtrYWERER2LVrFyoqKpCdnc0e4i6XC0ajEVKpFIQQlJeXQ6/Xs201mp6krq4ODocDEydOZHF5qqurMWXKFOa9dOrUKUycOJFtXdIAkXV1dcxGy+PxoKmpCdHR0RAKhcz9nuYCo3F/aMBHhULBbH7ouKCaAzoGAbD/0+9UKhXTatJxB/y5HlAjZpfLhZycHAwcOBDR0dFwOBwQi8XYunUrRo4ciaSkJNjtdigUChiNRtjtdqSnp2PXrl3IyMhgXohUayMUClnQSO/x4q3paGuues8pWgY9j2p5aPLYw4cPIzs7G5WVlawfw0FHNUPe0BhOSqWyzS1Divf94PF47DodXQPbW+d7uhYoGOHUDAm7Wpknn3wSr732Gh588EFmiLl7924sXLgQRUVFeP7557t6CQAtD5chQ4agoKAAV111FYA/w7FTKioqEB8f32Y51LXWH+o10RehhrHeAcw6A4/HO2/9WFdXx6Iit5ZPyR/qJUMNdukx/wXAu2ya+0kulzNtAzW09fZ0AuDTf972N61FwKUPfhorh8/nM0Nlp9MZ0Jf+daXGmVarFUqlEkeOHMGwYcN83jbpw0Gv1yMqKgpAi2YHaHnBEAqFOHjwILRaLbNNodcUCARISEjwMeg2m81MY5CRkYHk5GQALRGT7XY7IiMjUVxczISIiIgI9hadn5+P/v37o7CwEBqNBqWlpVCpVEhNTWVZzBUKBY4cOYK4uDgUFxdj1KhRTHuh0+mwf/9+ZGZmIjIykiVdTUxMRElJCYYMGYLvv/8ebrcb33zzDTIzMzFx4kSo1WpMnDgRzc3NyM/PZwatAoEAqampOHnyJGJjY7F79272kKbRo6mnFe13mpSWCkQGgwF8Pp/FNxo4cCAUCgXbKpPL5WhsbGTZ2wcOHMhsi2isHxow0Ww2o6qqCmfOnEFycjLcbjdGjRoFACwFCp1jcXFxzG7E/57T8U21InRLUSAQQKPRQCAQsDFEtXj0vtOtSCpY0zGakZHBwgfw+Xzs3bsXAoEAf/zxBxoaGpCVlYX8/HxUVlaCx+PhzJkzmDJlCtNe0XFOAzVSO6XIyEimAfOfgzQ3Ht3iouPSe72iBv0Oh4PZyiUmJgJoETqSkpJYdHWz2YyIiIguP+ypnZT3fO/Ii7Rer0dubm7I0bi9067QtYcKth1ZA9tb52mf0/J7A+F81nS5pHfeeQfvv/8+XnzxRVx55ZW48sor8eKLL+K9997Du+++G446AmjR6Jw8eRI6nY55l2zcuJF939TUhK1bt2LcuHFhu2Z3cb4t+HuqF1pbBAuw1h5txQ7xPuZdNo3ue+jQIRaRWaFQQKfTBbjMeru/0zp5e5N431f653a72Zt5e8aY/oaTOp2OxfzZsWMHxGIxDh486DN2vCPw+l9fqVSitLQUarUa5eXlzN1bLpejubkZFouFvXHqdDoUFBQgPT0dGRkZSElJQXp6OqqrqwGAPTyp1gYAszHJzs5GVVUVRCIRTp06hczMTBQUFCArKwtCoZB5iRUUFDBvJ5p9XKlUQiaTQS6XY9euXdDpdJDJZJDJZNBqtSxYn9vtxtmzZyEUClmC1NOnT6Nfv36YO3cueDweCzgYGRmJ0aNHMwNnmUyGwsJCNDU1obGxEXFxcUhISIDL5UJqaiokEgnKy8vhdDpRW1uL3NxcpKamwu12o6mpCaWlpbDZbBCLxTCbzSxidmVlJRISEiCXy33c0umWFd1KpWNIJpPBZrMhJSUFhYWFOHjwIIqKiny8z6RSKUsh1NTUxKJH5+Tk4OzZs2wM0X/9xxXVLFB7O/q9Xq+HXC5ncYyosXf//v3R3NyM+Ph4REdHszHdr18/9pJQVVWFvLw85v0nFovRv39/FlvIZrMxL7dgcX/860TnIA0D4B3XiIYRoNtp3nOIQrehtFotXC4Xhg0b5nP9YE4XHVlz2zNgbq8sPp+PmJiYkB/krTlYdHQNbG+d76mhWc4XXRaG3G43Ro4cGXB8xIgRLKx/Z1i8eDG2bt2KM2fOYO/evbj22mtRV1eHW2+9FTweDwsWLMDSpUuxdu1aHD9+HLfddhvkcjluvPHGrjSnR9CTLPh7qmtlqAKcd/2VSmWAABNsAfA2FvZ4PKitrcXQoUPhcrkwfPhwH60MDYzXWv94e5N4e7VQV27gzwB0HRVIy8rKoNFoWKydxsZGxMbGsjoBLW+hzc3NzJvF2z1ZIBAgPj6eaT+o5slut6O+vp5FcQaAwsJCZGRkYOfOnaiqqsKwYcOYXYvH48GJEydYADua/JNqPiIiIpCSkgKJRIJhw4aBEIJBgwahuLgYTqcTVVVVzEaK9r1CoUBGRgbzetq5cyf4/JaEpFRjZTQacfz4cZSXlyMnJwc2mw0jR47EkCFDcOmll2LIkCHMSJoaaet0OiQkJKCwsBBqtZr1lcPhQGNjIwvy19zcjPLycng8Hsjlcmg0Ghw+fBg7d+5Ec3MzTp8+zYIyZmZmwmazQS6XIykpCWVlZdi+fTsEAgGKioqYTVlDQwN4PB7Ky8tRVlbGti5PnjzJNC7jx49nGqCqqirs3r0bSqUSNTU14PP5qKqqgkajQVlZGYYMGQKZTIaysjLU1NQwwcl7bAbb9vD2xKTfUy1kQkICDh8+DIPBwLb6kpKSwOPx0NDQAKVSycIeXHnllejXrx/i4uJYRHSNRoOMjAxs27YNNTU1MBqNEIlELIo1nVOlpaUs55l3NGjvuFhqtZqFE6C2oTSMQG5uLnJzc5kHp3f76AtAWVkZEhISIBQKWRwpakvE47UER6XztrPhNILNfe+ywrl++q954X6J7Y0vxeGky8LQzTffjHfeeSfg+HvvvYebbrqp0+WWlpbihhtuQGZmJq655hqIxWLs2bOHqeUfffRRLFiwAPPnz8fIkSNhNBqxYcOGC0Kq7UkSek8SzDqKv1ttsJgfbS0ANpuNbWFR2xIaDRhASBFmaflUrU4DGHYmQq3/uNDr9YiJiUFMTAxSUlKg1+vR2NjIgu7RbUG6TUHrTK9vtVohFArR1NQEkUiEM2fOMK0DzYVGBceMjAzU1tZCKpWivLyc5cqiDx2n04nTp0+zt3yqHTtw4ABsNhucTifbKjp58iRycnKQn5+PU6dOoaysjNnTZGRksMjKVNA6e/YsoqKiIJfLkZCQwCI20wSxZ8+ehcViYQlo9Xo9oqOjMXz4cBQWFqKurg61tbUoKCjAoUOHcOrUKRaNevDgwejfvz/TIuTm5kIkEmHTpk2oqKjAH3/8gZKSEsTFxUGv10OpVDIbGDoOzpw5g7S0NHZfZDIZM6SOjY3F6dOnWT4xpVLJtlno+OLxeDhx4gTMZjOsViu0Wi1GjBgBlUqFQYMGQSgUsojMLpeLeYoJhUJoNBpkZWVBLBYjOTmZRZZ2u93MY89/bFHXdGrAbLPZmAOExWLBsGHDkJ+fzwIo0kwCPB4PZWVliIyMhEAgQGRkJAYNGgSDwQCNRsM0oxs3boRIJMKRI0dACEFzc7OPowv1BqOR2qnWtLU1z1ugoK73NDEvTWDrTWspOKimEWixNaHbRv5a2vag94IKsP796z1Pg62f1PGjp71g9nW6bED94IMP4pNPPkFiYiLGjh0LANizZw9KSkowb948n3xly5cv71ptzwF08eey1gcnVKM6j+fcZWL2XshCSW9BoQ8DuqcO+Bo6ttc2b4Np78zY3sf8y2yvDcFc3/0NQI1GIwQCAbRaLfh8PlwuFw4dOoS0tDSIxeIA135aH0IIysrKYLfbodPp2ILt32/UoJoKTB6PB2fOnEH//v1ZufQhQxNvOhwO1NbW4vjx46ivr2fRmBsbGzFkyBDYbDZkZGSwhyIhhHlolpaWQq/Xw2g0wul0wmq1orq6GlFRUYiJiYFCoUBeXh769esHt9vNPMtOnz7t81Y9dOhQGI1GbNq0ibmN06Sp0dHRyMnJQUpKCnOJ93g8eOmll+ByubBs2TI4HA6Wz6z6/7H35sGRXdd5+Nf73ui90Wg09h0zwOycGZJD0qRIUYsp0U68yFtcZasqqbhkp2JV4ix28nMSW5Hssl2yE6dsS7YVpWyZtClx32aGsw92zGBfG43e933//YE6Rw/NBgYYYKihrVPFIgk03rvv9Xv3nnvOt4TD+MQnPgGDwYAbN25Ap9Phrbfegt1uR7FYxIkTJ3Dnzh3GF9J1Li4uolQqwWQyIZPJYGBggO0gWltbkclkYLFYWJRQrVbDYrGgVCoxUJvo8j6fD8PDw6xJRN87teempqbw/PPPQ6FQoFKpYGFhAc3NzSiXy2hoaNgGdqcqFwFkKTweD3p7e/mdpO+FKkONjY1oamrC6Ogo231QMkvPh0QigVKpxPLyMoaHh5HL5RjsLcS90OZDo9FgbGwMHR0dMJvNKJfL26jt6+vrCAaD6OjoYHySVqvdxual9yIejzP7jZ7pzc1NNDY2wufz7Rl3Q+/I3Nwcq2kL23P3QyDZy9xY7zOxWAzRaBRGo3HbmvODADB/HEHTwjhM1/oDJ0NPPfXU3k4kEuHdd989yKkeSDzoZOijfth+UA83JUNWq3VfmiF7CSqhx2IxdsPeL3sM+HDSshNLY6/juRdDbK++ZMIxUgIRiUQwMDAAsViMW7duQS6XcxtHuADEYjFe/GkBSyQSnLzRfSPMQbVaZSPNdDqNQCCAtrY2TmB6e3sxPz8PvV6PsbExnDhxAvF4HM3NzVhbW0MgEIBWq4XFYsHdu3dhMBhgMpmg1Wrhcrm2XWu5XMbc3BwaGxuRTG6pIFPyRSBe2r0nEgksLCzAbrdzdUu4w1apVEin03C73fxdPvHEE1hbW4NSqcT6+jra29tx8eJFFoaUyWT44he/CKlUij/8wz9k9lY2m2XLjmQyCZvNBo/Hg0qlAplMhr6+PmbGarVaTE9Po7u7m1usqVSKLTzsdjuCwSCUSiXGxsZYr4nArnK5HOFwGM8++yzm5+dx9+5dNDc34/Lly+ju7oZCoeDrSKfTmJqaQlNTE5aXlzmJ6e3t5WsmfI8wAZifn+f2Ld03Au43NDQwPokSaqlUirt370IikaCzs5PB05ubmzh58iQ/PwA4qSsWi8jn81AqlRgYGODELRaLoa+vb1uSnUwmGcdCauRGoxGlUonZeOTJRsmfEBdDlSKxWIxoNAoA/Lu5uTkYDAaUy+U9MbGE7xm9W0THriVR7PbOHua8Svi21tbWbcD3w2D17jd+EOc8zHiokqGPezzoZOijfth+UA83JUNKpRJSqfRQz19vsgLAE29TU9M9E7B694WOS7vfer+rV0UiSistSsLqDLDFwopGo0x93k2/iqpXBFamSpZSqUR7ezsvFrWVIdrRUntIpVLB5XIhFovB5/Nt8+oilo1Go+EFMhqNsrgjeagJKbpzc3Po7u5mOv7c3BwLBBIA2Ov1cruoqalpG0Wb/k0tSWrJLC4u4pOf/CS3CahyRXRoj8fDoojVahXt7e0AwG7mKpUKmUwGzz//PNLpNBYWFpBKpdDe3o733nsPg4ODSCaT6OjowNraGn7lV34F1WoVf/iHf8iyGoSzooSC7glhjiYmJhCPx7GwsICzZ89CoVDwtbvdbnR3d3OCs7m5CZFIhMuXL6O5uZnxZalUCn6/H2KxGJ2dnVCpVLh9+zaDzI8cOYKVlRW8+OKLyOVy0Gq1mJubg0qlwquvvoqnn34aGxsbOHbsGGNkqG1Fmj1UkaKKTVtbG99zm83GVaPm5mbcunWLW0P9/f3Y2NiAVCpFuVyGXq9nZW6xWMwbDnoPRKItLSASo6Sq1MzMDFPmDQYDt7wI+ExYKsJlNTU1wefzIZFIwO/34/z588jn84wDI4FHYhpqtVpmm5G8A0kPkAntXoNwSnQ/6v1t7RwhfOfvt3q001jqVdH/KVaGDnr+w0yGDtzPyGazLHwHAGtra/j93/99vPnmmwc99D+K2C/+56CAuweJN9rL2ITnPyzwIO0axWIxVzySySR8Ph+CwSDm5ubuibvZDShdzwaD6OQEshSCTmvl/ROJBLenADDWRsiO2W1c5DNFJp+E06AESyqVsjt5NBrlYxODq1QqMRaFcCiBQABLS0sAwGKFs7OzUKvViMVi6O/vR1NTE/L5PDO0NjY2oFKpUK1W2eoikUhgY2ODdXHK5TJ8Ph9WV1fZKLVcLm8T/KOKQKVS4XZab28vt1VIG0kk2vLCcrvdXDVxOp2wWq1Mmydqvlqthlqtht1uR1dXF2ZnZ7G6uorJyUlOVp5++mlks1l0dXUhn89DJpOhXC6jVCpBLpcjGo2y43w+n0ehUIBWq8Xx48dhs9kgk8nw6quvoq2tjT3UqCpH9/kzn/kMPB4PmpubcefOHbjdbszOzuL06dNIJBI4deoUNjc32dJhbm4Oi4uLKJfL6OrqwvXr1/HjP/7jEIlEePbZZyGVSvl76+jowPe+9z2oVCpOQqka1tPTg2QyyTpLuVwOk5OTnHAtLy8jFouhWCxysp7L5eDz+TAzMwOVSoVyucxVuubmZlQqFfT29kKn08Fut8NkMnESIMQ16fV6NDQ0cJuKANdarRaBQICfVY1Gg1KphI2NDYjFYgbfU9VVr9ezuGVPTw+WlpYYKO/xeGCz2VCpVHD79m1WIqdqEs0l2WyWz7/X+aVSqWBkZARSqXRX6Y/aOUKI9xESIQ4LEF07/oMAmO93rv1Bg6b3ikn9KIg8B06GXnjhBXzzm98EsJWlnTlzBl/96lfxwgsv1AVW/1OLerTR3eKggOUH+XDvZWxCJtZupoc7xV4fep1Oxwukw+FgA0shXqJ2XPQ91HqM1d4zmnzD4TA2Nzexvr7OrCZaJGr9pej3lFwJBRB3uyaRSMTO9o2Njdw6yOfz/MzEYjHMzMywNg5Vx0qlEld+SGW6qakJVqsVFouFRfrIXyyXy2F6eporWg0NDWhvb4dOp0Mmk4FcLmecTjK5ZYK5ubnJBsnU4qAdstlshtlshkQi2ZYQUpWL2Ej03Bw7dozvP7CVpEWjUWZWud1uptZrtVpYrVYsLi6is7MTXq8XSqUSlUoFi4uLeOutt3D58mW43W6Mjo6yL1pbWxszAFUqFWQyGUqlEhYXFxmU7PV6oVAooFarIZFIuNKTSCTQ0tKC9957D4899hhXOm7cuIErV65gaWkJf/7nf47l5WVcu3YN169fx+3bt7GysoKbN2+ivb0d8/PzmJ+fx9raGt5//32IxWJsbGzA7/fj+vXr6OnpwXe+8x0YjUb4/X6MjIzwvbty5QqsVitWV1e3Ve6y2SzcbjeSySQuXrwIiUTCSRpdAwkXZjIZ6HRb/l3UYsrn85BIJFCpVFxdFbaKEontLu1Chlc6nebqpVDlnYQfyadOJBJhdnaWn4GNjQ1OjEqlEhMXDAYDnnjiCSQSCRaKzGQyzEimDQ8B2UlckpIyEjOtVqv8vFDiuVOQKW2tY0G9d1E4DwiTIyER4rAIJbUbroMeq964Pook4iCx1837R0HkOXAyNDo6ygqxf/u3f4vGxkasra3hm9/8Jv7gD/7gwAP8xxD7+SIfJiaZMPbLuEgmk9vYU3uNvd4rkUgEl8uFpqYmnmhlMhnrkex2bFpwdzoH0c4DgQDy+TwCgcC2z1JrhyZNvV4PnU63TfKfJm7g++X3eucjwLROp4PBYEBzczMcDgf0ej1rtPh8Pk52SDmY2mnBYBDRaBSVSgUNDQ1Ip9NwuVzMNKLFrbOzE4lEAnK5HPF4nFWVVSoVmpub0dvby5UUaoFVKhXI5XK0tLRwAqPX6xlnRJ+jCTcWi2FhYYEtOmjR3dzcxPXr1+HxeBjbRLt/aqmo1Wq4XC5uK7a0tMBms6G7uxtXrlxBKpXC5OQk1tbWsLCwwCas1WoVZrMZoVCI8S1vvfUW0/0pmVhcXMT09DRyuRwcDgcnByS2eOzYMbS3t0MqlaKlpQV+vx8mkwlisZhZa6+++iqmpqYwPz/PgpHBYBCRSIRbVCsrKwgGgwgEAjh37hwWFhYQjUZRLpeRyWQQj8dx4cIFKJVKblFtbGwgkUiw0OKpU6e4GhOLxaDRaDg5zWQy8Hq9OHPmDMRiMfr6+jA8PAy9Xo/5+XnYbDauNIpEIqhUKk68enp6sLy8zJWReDzO38Pk5CRKpRJu3ryJ27dvA9h654WVkGw2y9XRubk5ri6RHYJYLObnUSwWY2VlBaFQCBMTE1yxojbfiRMnWEiSztHT0wONRoN4PI7z58+jWCzCZrPxnEPVKWppZjIZZDIZ1tDaKcis9uTJkx+qCt1ro1K7sawnz3Gv2OkcVBWm6zlI7LRuHKZkwIOIvW7eP4p18cDJEO1EAODNN9/Eiy++CLFYjLNnz2Jtbe3AA/zHEPv5Ius9HA9Ddk8JQq2mx06xV0Gw2mu7170Sfl54r+rRaeuNiQCou52DPnfixAmYzWZ0dXUB+L6yr8Ph4IQFqP+d0X2ixUOYRFK1x+12Y2NjAxKJBHNzc9uuSa1WI5lMsleVECdEkUwmWbumqamJfZmALcFDSiacTieznDweD7xeL0ZGRhCJRBAMBpFMJll11mQycYJjMBjQ1tbG1O5QKIRisYiOjg6srq7C5/NhZWUFd+/ehVarRS6XQ7FYxMbGxjbjy/X1dczPz2NmZgaRSATj4+Ow2+3w+/344IMPsLKygkgkwtUwugeEJVIoFJzcaTQaPP7441AqlfjsZz+LU6dOQaFQIJ/P4/bt2xgbG4Pdbse3v/1ttvool8tYWlpCOBxGuVxmReuuri6EQiHY7XbMzc3B5XJhdXUVb7/9NiYmJlhjiEQIJRIJs9dMJhMCgQBaWlpYbfrOnTvQ6/VQqVSw2+0olUoYHByESCTCN77xDTQ3N8NkMkEmk0Gn0zEzSqvVQiKRIBKJ4PHHH4fdbmej0d7eXsboGAwGqFQq1mwin7BYLIZkMonu7m6WKrh9+zb8fj//09TUhLW1NZTLZWb4+nw+6PV6TE5Owm63Y2JiApFIhLE5hFEizSLy1aLnKx6Po6uri5lijY2NMJlMaGlpQXt7Ozo6Orgyubi4yBUeAPB6vTAajfB6vVwx8nq9WF1dhdlsxvr6Oss90PtE7365XEY8HmdvOlJJ32muEIlEH8IJCatf+0kW6slz3Ct2SkioKlyt7u5gv5fYKam4nyTio6jC7Dc+inbegZOhrq4uvPzyy3C73XjjjTfw7LPPAtiyxvg4otMfRBz0i/yoHs7dkq79vlR7vebaa7vX3+10L+op2wpDCNQTYo/od/XaZlKpFAMDAzAajYwroh076ejc657F43EYDAamHVMlxO/3s/FpNBqFTqdjjFAyuaXLQ1WAlpYWaLVaxjvQtTscDsbrEMvG6/Xy/XC5XLyQiUQiNjfNZDKw2+1QqVSwWCy8YNC9ILFDen/1ej0WFhbYiqShoQHDw8Psm6VUKuHz+XDkyBEYDAa4XC5uuzgcDpjNZjZYJZr99PQ0j+Hu3buYmZnh6yf6O4kper1euFwuprErFAo8+uijkEgk3Lp588034ff7kUgkMD8/j+HhYdy4cQOPPfYYTpw4wcy8crnM5qcTExNoa2tjh/WXX34Z4+PjWFlZYVFArVaLwcFBNDY2ore3F52dncyS0+v1KJVK/Cw5HA7E43Gk02m0tbVBr9fD7XazZcb4+DhOnDjB2kwrKysol8u4fv06gsEgj4Vc5EkoUKFQYHl5GSqVCn19fbwpAcDK2Gq1mnV7IpEIW49sbGygWq2yqKRKpcKdO3fQ0NDAreVnn30W1WoVjz/+OFpaWtDT0wO73c5tMKoQEeid5gAy702n09zCbWlpQUNDAyQSCVwuFwYHB7kCF4lEuNXscDgQjUbhcDi2bVI6Ojogl8sxPDzMyWjtxuHy5cuQSqXs77VTpWa3eZN+R8/bXue1+0kuHlRVYy+b5PtZez6KKszDsMGvjQN7k/2n//Sf8NM//dP41V/9VTz99NPsT/bmm2/i+PHjBx7gD+P75p0PunUmnDxqE1khFugwY7/Xdr/3YrdrE4KjhRT7vVBu73XPnE4nM2qojUcYJzJqpMqM8BrlcjnK5TKcTifS6TTr6lBLye12s0BfOBzetrgQs4ISsHK5DL/fD7VazaaexC5799138dRTT+HWrVtoa2vjxV2v13O7RCQSoaOjg93WpVIptFotLly4gNnZWYTDYeTzefj9fvT19TE7iKw5bDYbawSRns6ZM2fg9Xqxvr7O7SifzweFQoFMJsNGm9SOJIYetRUVCgXvzilhDIfDOHnyJIrFIrxeL4aHh9HX1weLxYLW1laEw2Fe5MPhMHK5HKLRKN5++23I5XL+bsi/inBVV69exZEjR7CwsIBcLsf6RmNjYzh69Ci3uMivTqVS4e2330Y8Hsfg4CCDjAmjQ6w4q9WKb3/728xkNBgMjL+xWq38LFKbMJlMYn19Hf/8n/9z3LlzBx0dHVAqlSgWi5iZmYHFYmGLkHK5zJYxpKBtMBhw69YtPPPMM5ibm2Ola2J60fUKk6dUKsUsRUrQqUIqfAdpAaXqpMFgwObmJvv3yWQy9sKjJMTlcjH7jc5vNBq3+ZURbkksFrPT/fHjx9kWh1TQKeEXvqO7zRXCzcd+mEw0D9Jivpe/3W3upOurVCqMldurltpuc89B4n7n+v0ww3aac3+QcSjUep/Px5MPPeg3b96EXq9n3Y2HNX4ouvj9OAjN8UGKLh5G7HZtO1Hsw+Ewrl+/joGBAVit1j3pCqnVaiwsLKCnp2ebhkihUMCbb76JZ599FoFAgJMFoh8Lq1JarRZra2uwWCwAvi/uSCV9t9sNiUTCmBmhGzclVTQOnU7HoFa9Xg+LxcIVtFdffRUGgwHT09M4deoUVldX4XK5uDJBeJj19XX8yI/8CLf+hBpGkUiEvbOsVitCoRCUSiWbg/p8Puh0OnR1dcHr9TL2ifzIWltbMTMzg66uLkQiERQKBaZ3P/PMM0zDPnbsGObm5uD3+9HV1cXA242NDYRCIaTTafT09MDr9cJkMiGfz/O9j0ajrPSs1WrxYz/2Y3jzzTeRy+Wwvr4Os9mMd999F0ePHoVarUZfXx8qlQpCoRDu3r0LuVyOlZUVPP300xgfH4fb7UZTUxNsNhuWl5eZOk+JkNfrxdLSEorFInw+Hz71qU9heXkZarUaP/IjP4L29nYolUqMj48zY+348eNsoLu4uIju7m4eh8fjwczMDAKBAFwuF6LRKM6fP49oNAq1Wo07d+5ALpfj9u3bOHPmDFdNSKvKZDKhUCigUqlwMtbd3Y2FhQVOMhobG/H222/Dbrejo6MDarUaU1NTXO1LJpMoFoswm80QiUS8gJPWD8k8ZLNZlEolxhMtLS1BrVZzpVG40CaTW6KKMpkMxWKxrolqtVrdJqFBNH1qw1M71u/381j2upAfRIbkIH8r1BlKpVLM0jQajSx/sBfz1R80Lb429nNPdppz9xMEom9tbf2hztBhxMOaDD1sD/q9QpgMEYPsB61dsV/F6tp7/u6776JUKjG1fS86RjMzMzAajSgWi+jv7+djzs7OQqFQoFAo4OTJk2xsSc+f2+1mBppGo0E2m4VKpdpm+krHIr0goivTNVYqFTaxpCoF6QWVy2Wk02k0NjYikUhgZWUFjzzyCN59912cOXOGsRnZbBbd3d18jsXFRWZkqdVqbu09+uijTLevVCpIp9OIxWKsXdPY2AitVovl5WWk02mo1WocP36cJTeInZRKpXD69Gmsrq5CoVBgfHwc1WoVp0+fRn9/Py+80WgUuVwOXq8XHR0dqFQqyGazrGYtNIwlZWuz2Yzbt29jfX2dW2hHjx7FI488wjR2u92OcDjMato0JrPZjFQqhVAohFAohOHhYUxNTUGj0SCRSKC9vR2lUgmFQgGhUIg9wo4fP465uTmUSiWEQiHYbDaYzWZEo1EoFApYLBY8/fTTyGQyaG5uZlFKn88Hi8WCP/qjP8KFCxfQ2dmJpqYmpFIpVnQOBAJIJBJ45plnIBaLcefOHeh0OmSzWUxMTMBsNkOtVjN7zGg0wm63Q61Wc5VFo9EgEAiw8rfb7YbRaGTmm0KhwLFjxwAApVKJ/6azsxOFQgEGgwFarZYTbALEE+YpGAzCbrdz9YTatlRxq1QqrNFFJAB6V7PZbF1dLjJnJfxSbRWVWtGxWIwT4t2Uqe93fthtrtjr74DtCtQEnhZKcSSTSW6tH7Yi9oOM+zn/QcacSCQQj8fR0tLycOgM/TAeTBwEJ/SD6MdWq9/329nL2GmMRHMnbySyABB+Zr/XsVfWWG3U9tcff/xxSKVSDA8P3/NlpWTk+PHjKBaLDICl8r3VakU4HEZHRwdEIhFXTMkCgTBJZGcg3DnRfQC2dr2Ex6AdO7G25ubmkMlkeJFMJBK4cOECA7Op2nP79m0sLy9jamoKTzzxBDQaDfr7+9Hf34/jx4/zxEzUe8L7ZLNZZmT5fD6uPkUiEcaXjIyMcKWGyv7hcBiZTAbj4+Po6Ojg8Xd0dGB4eBjz8/PI5/PY3Nxk4LTb7UapVILb7WbW2+LiIlZXV7GxsYHV1VVWLi4Wi6xKrNfr4XA4kEwm4Xa78T/+x//An/3Zn0EkEsFisaCnpwdDQ0NcqaEEw2w2Q6VSYW1tDdPT0/jbv/1bjI+PsyDjrVu3IBaLGehOiYNEIsHnP/95KBQK9Pf34+7duxgcHIRMJoNWq4XdbofRaMTRo0f5u7x48SKq1SqrZlN17S/+4i/Q0dGB0dFR3L59m4U7p6amEA6HGWguFovxwQcfwOFwIBKJIBQKceWOWFdra2vcopTJZFhdXUVnZyeCwSBLDaytrSGbzXKiXiwW4XA40NXVhcbGRkilUvT29mJwcJDlEqRSKbd9AbCqOJlyt7e3M8aIEvvGxsZtchuZTIb1mag1B4AZjMKoVCq4dOkSgsEg+6lRi1GlUkGlUrGvHGlZSSQSzM7ObptL6s0PVC0FsO95ZjeiSy0oux5JhLBXdBxqPRJZ4X5A1XS+2dnZHSVGDhr7Zd/dK+5FGKLWK3ntCWVRagklB40fJkMPWdCDINT92G/8INgAtOhTlr+b8CJhWUQiEScsm5ubXGmgcd/vdeyVNUZj2enllslkOHXqFORyeV0tkHK5jJmZGbbzINB1f38/t8h0Oh3jLYRGqvQ7wkvQGF0uF7uQS6VSbG5u7qpHQkkTWSiQJYrP52NPsWAwiFAoBL/fD4VCwXIHRGumBWZubo4nUQJvm0wmNDU1oa+vj1tIcrmc2yzRaBTXr1+HzWbDnTt3oFarEYlE+H40NjbC5XJBp9PBarVCLpcjlUqhsbER/f39UKvVKBaLnNCQa3ylUsG3v/1teDweXL58GfPz8wiFQpBIJBgfH0djYyOCwSCy2Sz0ej0/T21tbQiHw1heXsbi4iKz7fL5POx2O7LZLObn57mtFY1G4ff7sbq6imq1CpVKhWg0yp5aAwMDXAlaXl5mM1S5XI6rV6/C6/Xi5s2b+OQnPwmr1YovfvGLCAQCcDqdMJlMmJycRCgUQmNjIx555BGIxWIGHWezWdy+fRuvv/46PB4Pg9mlUinkcjlGRkawuLgIo9HILLHGxkb87d/+LcxmM65duwa9Xo/Ozk6srq7i+PHjcDqd2/BAPp8Py8vLMBqNeO211+B0OlntW6PRQKlUshlxZ2cnOjs7+R1Wq9X8Hvb29kKtVqNUKkGn27JRIePZSmXLN42A4cQaS6VSMBqNPC+Uy2XEYjFsbGxwZXNkZISlA6rVLasYSrzo/7u6uuD3+9Ha2sqMx0wmg4aGBoyPj/NCmkwmGSel1+u3zSX15gd65+41z+x1U7YTKLseSUSo2VQ7LsLs7bdSotPp4PF4GK/1IOIw1pZ73U/hOTY3NyGVSjE/P/+hDS6RFg4rfpgMPWRRu2u5n3LnD0KrqN5uhyZBeniFOyfqi1PCQuacJJ53kOsQ7rbutfOjcd2+fRvlcnnb72hCpj4+jZ2OMz8/D5lMhrm5uboJn7CaQ4sLTXbE/KHvuqGhAX19fQx8NZlMKJVKcDgcPAb6u3K5zLslKrHTOajl1dnZye71VqsVsVgMjY2NCAQCOHbsGDvAE/jypZdeQjgcxsTEBB+TqNQ9PT1Qq9VIp9NwOBzo6+uD3++H1WrF0tISL1ZtbW1Qq9XcnqFn4fjx47BYLJBKpVhfX4fBYMDFixdx9+5dvvZisQi5XA6RSITBwUEsLy8zS4xUqlUqFUKhEJ577jn4fD6cPXuWLSnMZjNKpRI2NzexsLDAgokqlYqrBsTgGx8fx6uvvoqbN28in89jaWkJN27cYCq3TCZDKpVCuVzGG2+8AblcjkuXLqG5uRkLCwvQarWYnJyETqfDnTt3IJVK8corr+DkyZOMMWtpaWEsTD6fRyqV4qogMb88Hg9T63O5HNrb23H06FE8+uijyOVySKfTaGpqwrVr1wAAZrMZ6XQag4ODcLvd+MQnPoEjR45genoax44d4wpNX18fg6ALhQIUCgXef/99mM1m/P3f/z36+/uZ2aVWqzEwMIDm5mY2jC0Wi3jllVfgdrsxMTGBbDbL7Vmn08msRpJOIId7Ak/T7p0SJYpLly4hn8+z9tP8/Dy6u7tx+/ZtbpdJJBIsLS0xWcDpdMLn8+GTn/wkGhoa2KhWo9FgZGQETU1NGBsb4/fI6/WyNx0lazvND0SSqFZ310+rlwDUW9B3Smb2qk10UNaxSCRCb28vmx3vJ3ZLUIS/24v0SW2Fv/Y4BJomdi0du14hgCRTenp6+PsUfleH2Q78YTL0Awoq/9WWMw8jkfkoNBnqnZN2Ozu9PMKdU7Va5YmVEhchZb32OmrbavUSj9rf0YtJFhE77RLn5+dhMBgwPz+/7Xc0OVPZGsC2SbGnpwfFYpEtBujc1Mum9hWVe5ubm9m/anNzk8X4KJFMpVLbFhtikpHC8NzcHHQ6Hebm5pDNZvn/5+fn2fV7dXUVvb29uHbtGsTiLbPQdDqN06dPQyQSobu7GyKRCEePHkU2m2UQIiVMBKYlXR2RaEtZ+OrVq2hubmb8T1NTE7LZLB555BGIRCIMDQ3B4XDA6XSyACFVay5duoSJiQlWeM7lcjCZTIwDKRaLbDVC4o1msxnhcBhHjhxBoVBAe3s7fD4f+vr6MDIywt5eOp0OLS0tvOiTkja1NzOZDBQKBVZWVvD4448jEolgZWUFa2triEajbLuh0WgwOzsLm83GLK1QKASRSIQrV66wTk+1WsUHH3yAnp4eSKVSnD17Fqurq3A6nfiTP/kTdHV1IRAIsM5OT08PA8inp6cRiUQQCARYNTkSiXBrSyQSQaFQAAC3nF955RVOANra2hgD9Nxzz8FqteL27dtobW3FwsIC1Go1lEol9Ho9nnvuOXR2duLKlStYX1/Hpz71KUxPT+PFF19k/TcaA1WIOjs7sbCwgHfeeQdWq5Wfq0gkglKpxEa3lUqFNw6ZTIbvHbUpya+NEm21Wo3vfe97SCQSyOfzMJvNcDgcnBRKJBIUCgVOXMkShubAEydOMICa2kmEbUskEnjsscd4TA0NDawSbTQad9QDEi7MtfpptYkBJTNqtZrn7HoJkhAcLlzgqdW6H22i+417SYzsFHuRIaBqzL2kT6jCX7t5FM7/JDYprPTUKwTQPEjz63607vYb9wWg/rVf+7U9f/ZrX/vafg//kcb9AKgPA6hGRonEvPg4xG7XLQRQ02RUyxA4KFhOLP6+c73QaZ5eolpXe6oO0KS0EzuDdGPIcLIWsFxLta8dP2nLUGtCJBLB7XYzYJRaZlTBIU8ro9HILvQ0YVKLiFSNiX7qdrvZVLWrqwsrKyvo6OjA0tISDAYDCoUCGhoaYLPZMDExgWPHjnGbQGhkC4BbFkS3r1arCIVCiMfj7Frf2dmJQCCwTZdnbW0Nn//851m0LxwOc6smHo+jvb2dKdm0wE5MTODWrVvsbP/cc88xy4jA0PF4HJFIBJFIhKsfwFaioFAoMDw8zADh5eVlnD59Gmq1Gh0dHSwQOTMzA6lUCpFoi4avUChgMBjwb/7Nv0Eul8O/+lf/CuVymduQMzMzaGxshEqlwvj4OLRaLXp7e7G2tga1Wo1nnnkGIyMjWFpagt1uZ1zR3bt3EYlE0NraiqGhIRQKBfbIe/TRR1GpVGC32xGLxXD16lU4HA4cPXoUR44cwVtvvcVigr/4i7+I1157DX19fVhbW4PRaMTk5CSGhoZYLHJpaQkXLlzgtl06nWZTyuHhYWxubrK0QUdHBwqFAmQyGZxOJ1uvbG5uolAoYGBgAI888ghWVlbQ3t4Ot9uNt99+G48++ij7nq2ursJisUCn0+Hu3bs4deoU43oIzE8MR5FIxC02r9eLcrmMlZUV2O12HDt2DCsrKxgeHobRaMSNGzdw7do15HI5PPnkkzh9+jQuXbqEnp4eBmkHAgF0d3cjlUohEAjw39a+X0T9p6qrVqvF7OwsRCIRU/qFbLWd5hqaT4TzCH2ulhUlZHEajUaUSiWWzKh3fOHfU3g8Hpa0KJVKmJ2dRV9fH6TSD6vbCEHmD4KZW28eOwggvPaz9N0A2MYUEx4HwIdA7PSz2vPsNo8fplHrfekMjY2Nbfv/kZERlMtl9Pb2AthqH0gkEpw8efJAg3tYIx6Pw+/3szbI/QQtgPdTzvxBMQb2qmuxk76HcOe036BjEsMG+H6VhsDCVEKlc1DFBcC2ClPt/ZNIJLybEl5b7XiF/y+csOjYdL1k5JlIJHjSpPEAW999JpOBUqnkcrHBYGAsTyaTYWArvfgSiQShUIgXRYfDgXQ6jeHhYVy5coWVov1+P3p7e9nDTK/f8nnS6XSs2SMEZ2cyGXY4N5lMuHXrFlP7E4kETp48iTt37sBqteK5556D1+uFSCSC3W7HBx98gEgkgtXVVTgcDqZiJ5NJKBQK6PVbTuMWiwV+vx9PPfUUVldX0draimg0yqByqh6ePHkS4XAYAwMDGBsbg81mAwD2X7t79y6eeuopZttQMnf16lVIJBJcvHgRLpeLxSSDwSAKhQKkUimDwKmKQfR7qiAoFApcv34d1WoVRqORZQYoASKWXKFQQKlUwurqKoLBIKRSKaRSKSQSCdbX19HS0gKfz4fr168zu/Dxxx/nOTGXy8FoNOJb3/oWHA4Hrl+/jqeffhrvvfceOjs7EYlEoNVqMTw8DLPZDLFYjKGhIaytrWFoaAi3bt1ixtb6+jqy2SxisRhEIhGmpqZYGLOvr4/Zd4899hhEIhFu376NkydPQiqVYnFxEQqFAtPT04ynamxsRKFQwPLyMj796U8jFAqhv78fi4uL8Hg8MBqN/F02NDRArVbD7/ejs7MTV69ehVKphFarxdLSEicREokENpsNdrsdmUyGE57u7m5Eo1EGDbtcLl7w6B2nZIiC2sXUPhOLt6xSqNLV3t7OlVzhu1pvU0OtsZ1Um4XzF80vVAGmd3Knuaz27z0eD5xOJ88XhH8hMdHaIJzM5ubmA9ko15vHd7uevc7btUlcbfJTexyhqGvtz4RRbx5/EHFfaed7773H/3z2s5/Fk08+iY2NDYyOjmJ0dBRutxtPPfUUPv3pTx/2eB+KEIKF7zceRDnzQcdeW3gPok1XiwMi9hVNcDSpCkuoIpHoQ623ne7fftuTwgmr9nrp5aUJu3YMBoMBvb29cLlcvKPd2NhgV/BoNIpwOAyRSITx8XGuNhCTh3AZYrEYCwsLPDmvrKwwCJqYWaOjo0in05iensbMzAxisRgWFxd5UaCJe21tDYuLi4hEIlheXsba2hpyuRxeeeUVpNNpvPfee7hx4wbv4l966SXE43F4vV44nU4UCgVOHAh7srGxwRiGn/zJn8TGxgYvphcuXIDf78eZM2dQKBRgNBqh1Wrx/PPPs+FzPp+HRqPhKpLL5UIkEkFLSwvrQN26dQuBQAAjIyPI5XIIBAIQiURIpVK4e/cue2IRU+rSpUswGo2Yn5+HXC5HpVLhqlV7ezu0Wi00Gg0WFxcRCARQqVTQ3t4OjUaDVCqFvr4+NtYldehKpQKZTMYMM7VajTNnzsBqteKXfumX4Pf7cerUKQwODqK/vx+lUokB5w0NDVheXsYv/MIvcKuQbDpMJhOMRiOmpqagVCoxOTkJj8cDsViMN998kzdU7e3teO+996BUKjE9PY1yuYyJiQlOqohuT/e+UCigsbGRn0273c7eaZubm0ilUvirv/orrvYSG3Bubo4TUwL2NzQ0IBQK4ROf+ASam5thtVpZB6pa3aLWk2L5c889B6lUikqlAr/fDwAwGo1IJBJQKpXo6+tDX18fisUiV0gBMMOQAOHBYJD93KrVKqxWKxQKBZRK5bbWNP2+9p2n9vdO7Zba95k+J5PJ0NDQcM85W/j3IpFom4QGCXtubGzAbrfX/fu9WAsdJPYz1+2EJaoHTRDOicDu68BeQel0nNo59EHEgXWGnE4n3nzzTQwODm77+fT0NJ599tkHhmo/rLifNtmDLmPuFrXA3IM+HIdVafpBiy7udB332q3c69p3Ku0KAZ6UGAtbdvsRHiNhw5aWFmY/JRJbTuZC8LLP50M+n0dLSwuampqYHZbP51EsFplFpFAo8MQTTzA499KlS9DpdLDb7QxYLpfLrGpNdPHJyUmk02lYrVaUy2WUSiWUy2WMj4/DZDKhWCzi6NGjcDgcsFqtmJmZgclkgkgkYoPmWCyG5eVlNDY2summ0+lEOBzm62tvb8fi4iJ7kVHFhFogJpMJN2/exMDAAG7duoWuri7Mz8+jr6+PKeorKyuw2WyYnp5GKBRi93KDwYAXXngBHo8Ho6OjePfdd9HX14ef/MmfxOjoKJqamnD58mUYDAbYbDbk83n2Pstms1AoFBCLxVhaWuLn5ad+6qcwMTHBekt9fX0MtCYWnsfjgUwm44Tt3LlzMJlMiMViaGlpQSAQYNbUjRs3IJfLGfT9yCOPMEh5eXkZALgyEwwG4XK5cPPmTeh0OmxubmJzcxMvvvgiRkdH0draiuXlZfT19eG1115jbSYym1UoFGhra0NzczMn7tR+XFhYQEdHB7eWu7u74Xa7cfXqVbS0tAAA7HY74vE4A+Xb2toQiUTYM6+xsREA2NuOntuOjg6k02k2/xUqqJfLZfa502q1bOtiMBiQSCTg9Xq5NSesoFP7OZPJQK1WM8mAEn8ScBTqcxFJQ9iKESpPk6XHvfSG6F3VaDT31DHa7e+prUfnr1cZ+ihjt5YZJeX0XgrnM2pdlstlrmo7HI4935u9CjTea306zDbZgVctUoitjVqn739Mcb9VncMI2m0ITQ8PEgetNO0nwz/MY9Z+ZqddyG67lXpMNwI71wNK0n/TMWmXKKS+15NE2A3gTQuEWCyG3++H0+lEuVyGSqXC448/zrtj8gAzGAzo6enhtlxDQwM0Gg2bx3o8Hpw/f34bnurChQvM1Ovp6UEikUBXVxdmZ2exvr4OiUSCQCAAo9EIk8mE6elpKBQK5HI56HQ6nDhxgunvi4uLLLL4yCOPQKfTwel0MptMLBbDYrGwPpBcLkc6nUZ/fz/0ej3bVmQyGUQiEV4A6b4Ui0W89dZbsFgsuHnzJp588kl4vV78zM/8DJ566inE43EsLCzAarXC7/fj/PnzXM2hquHq6io2Nzfh8/nQ2tqK/v5+NlF96623UCwWoVQqsbm5iURiy/iT9IZ6e3uhVCpRrVYRCARgMBjwrW99C3K5HIFAAAqFghO6gYEBtLW1sa4S4Xz0ej2mp6dRKBQgkUhw69YtNj31+XyoVCqQSqUwmUwYGhpiOQQSh9TpdMjn84hGoygUCrh69SoymQxmZ2eRyWRw7Ngxbknm83mcPXsWyWQSzzzzDNLpNFpbW9ky5fr162hoaEAkEsHNmzcxPT0NjUaDubk5Br0TJZ2qTmfPnkU4HEZ3dzdsNhtcLhccDgdcLhecTidUKhWmp6e5Fbu6uopMJoOFhQVWV7906RJEIhFisRhTvglesLi4yG1Zcp4n2QiNRoNSqQS5XI6mpibWJSIwvsvl4gSsVCqhoaGBK7Dk1SdkYBJwWfjOU1WIsI170SOjeYN0jGgDsdd5S1jZ7unpYd++vcb9zLO7kU4o6s3/hNHxeDxoaGjYJnVQGzqdjsHQ6XR6z+tivepUvWvcK5PvMOLAlaGf+7mfw8WLF/HVr34VZ8+eBQBcv34d//bf/ltcuHAB3/jGNw5loA8q7qcytJ94EFWkw8QNHfRYlOGXSiXkcrn7rgwJx7GX6spOO4va69nt/u90zng8zgrQRD+n1hclPLTwUjvA4/HwztjpdALAtmNXq1WMjo7i+PHj3KtPJBKQyWTI5XLw+/2s5gtsKUETlTSdTvN5M5kMrFYrq1VTpWdjY4OrD2Sams/nmf5OLTifzwen04m7d++yu/zg4CBaWlpw584dFItFyGQyhEIhuFwuBufGYjG89957qFQq6Ovrw9DQEFPX6d6pVCo4HA6MjY0xE4uEDpVKJVZWVmA2m9lI9NatW7BYLOypJZVKsbGxgSNHjuDVV1/FM888g0uXLmFoaAiZTAa9vb2YnJzExsYG1Go1jh49ilwuh2AwiFQqhfX1dW6pJJNJLC4uolQqoaWlBXK5HJFIBEtLS5DL5WhoaOBWm1QqxdraGlQqFVpaWiAWixGPx1lc0m63Qy6Xw2g0orm5GQ6HA3K5HDKZDNFoFNeuXcPq6iq6u7vR2dmJUqmE4eFhJJNbhrwOh4NtKnQ6HQKBAKrVKo4cOcLaR4FAABsbG6wJ1NfXxwrbCoWC1axNJhOUSiWy2SxXaTo6OjgBlMlkWF9fR09PD0ZHRxnvolKpsLS0hHw+z4BuwpdZrVa89dZbUCgUsNvtbHFQKpVw9OhRrKysoFQqQSwWo6OjA8FgEJVKBW63Gz09PZDL5fD7/Th69Cg8Hg/u3LnD4HSRSMTq07FYDOvr6yyYSEyzqakp2Gw2xtcJiSWxWGzbu5FMftjCg77vRCLBVQo6Xy3NvbbSG4/HWaNrL20YUnknKQuhWvZeqx33U0W/17HrzXO1pJPd7ISE8z9VfdRqNVdHay0z7lVhv591pRYov9NxhPeiUqk8PJWhP/mTP8GnP/1p/MzP/AxaW1vR2tqKL3zhC3j++efx9a9//aCH5/jv//2/QyQS4Utf+hL/rFqt4jd/8zfR1NQElUqFJ598Enfu3Dm0cx5G1FYmDiMOE5Oz12PtlI3Xy/CFlZWdJARqQ7gDoGNSO4p2JbUqrvX63sIqTbVa3VMVTwio1Ol0fOza3VAymeSdbC02SYgLEFaR6HpIi+WDDz4AsOXnp9FoEI1GWawxn8/D6/UinU5jY2ODrTaSyS0Bu+npaaRSKaysrCCfz8Pn88FgMPBnW1pacPPmTajVaty8eROpVAoTExNcdUqlUgzsJpwSea7dvn2bTTKdTieOHj0KsVjMpXK73Y6jR4+it7eXqydWqxUAWPwwlUrh1q1bjLGhEnYymYTP50MsFsO1a9cQi8Vw48YNbnNIJBI2Si2Xy3j11VfxxBNP4MqVK7Db7Xj55ZcRDAYxMjKC5eVlFAoF6PV6hEIhVCoVWCwWaLVaHD9+HE1NTezZ9dRTT6Fa3VJNvnPnDqanp5kVR99RJBLB1NQUJ0oejwd+vx/Ly8tcjSB8CtF+q9UqgsEg8vk8m71SggIAZ8+ehUgk4uqR3+9HLpdDqVRCJBJhC4HFxUVcvHiR1ZIdDgdkMhl8Ph8nfbFYDD6fD3K5HD09PezDBWz5P/b29uLu3bs4cuQIOjo6UCqV4HK5EAwG8dnPfhbZbBbnzp2D2WyGVCpFW1sb5HI5t/2uXLmC//k//ydWV1exurqKy5cvw2Kx4MaNG2zrQqKjyWQSL730EiYnJ7kSGAwG4fV6cfr0aYyNjWFubg5tbW0AwE72Xq+X5RgGBgZgs9nQ39/PUg3EwiR6PBkPA0BDQwMcDgf0ej1XGwnIXq1WucIDgBf+pqYmRCIRJrkI57ZaPE8qlYJMJmNW4r0qDkT1rjefPEh9t3sdu946Q39DWm40nworRfXmf9pQ0IZBiM+kqL2PtcfYqeMgrFbtpEckjHrHflD3+cDJkFqtxte//nWEw2GMjY1hdHQUkUgEX//616HRaA5jjLh16xb+9//+3xgaGtr289/93d/F1772NfzRH/0Rbt26hcbGRnziE594qNpzQjfxj3Ps9HDXe1iFL+Zek0G1Wo2ZmRnWKqJEoLZFReffKYkTlm3v9RwI215CQCW1niQSCbcO6FjUBhMmasJz00sq/G+RSIQTJ06wJgr149PpNLNoSN2XfKpUKhU8Hg+3V8gIVaVSsUVGd3c3O9dTkvTII4/A7XbD5XIhHo/DYrHA6/VCoVBsmxR1Oh3OnTuH1tZWaDQaWCwW3L59G21tbejq6uKFN5/Po1KpIBaLoaurC8PDw2hpaeGqlEgkQldXF6rVKtbW1lj7hpzsb9++DalUym0kjUaDGzduwOVyYXJyEl1dXWhqamLRv+npabS0tGBhYQHHjx+H2+2GwWBg1W6r1QqZTMb6QSQS2NXVxeBwlUqFQqGA+fl5XL58GX/xF3+BUCjEAn5yuRy5XA6rq6u88JIcgM/nY/ySwWCAyWTiCo6wwkEmvsnklq6K1+tlc9jp6WmIRCKEw2GMj4/DaDRCLN4yRM3lcnA4HBgfH4fX68Xs7Czee+89xONx3Llzh4UQSdeHGG8ktCkWi2G323H79m08//zzWFhYwLlz5zA1NcX6Ll6vF62trdjY2EA4HGa15xdeeAGFQoGxNKurq4zBIWkFm82G+fl56HQ6jI+PY35+nitUy8vLWFpawtTUFOO2RCIR5HI5bt68iVKphHg8jrW1NRw9ehTd3d0Ih8Ow2+1YXFxk/Sza9VOySe+/x+PB8vIy/H4/b2boPacq28rKCoLBIM8Bd+/eZcNiYSuK9LkWFhZ2XWybmpoQi8WY7QWANZN2Ag4DW9pMtZWI+9mk1kvAqtUPCxfe69gEunY4HB9KdKiKTJgx+nc9Rft657qf69pts0pzbq3jACVh96rwPAiCDnCIoosajQZDQ0MYHh4+tCQI2NpdfOELX8Cf/umfbqNaVqtV/P7v/z5+4zd+Ay+++CKOHDmCb3zjG8hkMvjWt751aOc/aNCCJzQX/DjEXisx9ULIhtgLM6JarWJsbAwGgwELCwv8852Si92CqjTElALAJf1YLLZtV7TTzgkA74Y2NzdRLBah022ZotKzLVRRpVIu6QkJqfTUIpNIJDh16hTEYjH6+voYayNUrKWJq7GxEdlsFk1NTayo29HRwUkKqf7OzMwwHmNxcRFWqxWlUgknT56E0WjkHbJarcba2hqr/BKwlZIQp9OJSCSCnp4e5HI5bG5uMhvuxIkTkEgkaG1txalTp9De3o7R0VHGGxGLR6lU4uTJk3j11VcZ06TX69HW1oarV68y0HJlZQV9fX0YHR3F2bNnEY1G0dbWhqWlJbS3t/Oue3h4GAaDAf39/TCbzVxtUCgUjP2YmZmB1+vF5OQkFhYWGJRMlSOPx8OLv0qlgtvtxpEjR7hSRpUSkUiEz3/+81Cr1VCpVADAbVCDwQCz2YzW1laIxWJuIUYiEaTTady4cQNerxfFYpEVkLVaLd566y288soryGQyeOWVVwBsVdAsFgveeOMNSKVSVKtV2O12Tv6i0SgikQhyuRzEYjGDuglflEwm4fV6sbGxgZaWFvzVX/0VXC4XxsfHoVQqcffuXczOziIajWJjYwMjIyPQarW4desWbDYbt0hnZmagVCoZb/PII4/g/PnzOHfuHCeFGxsb8Pv9iEQieO+999hnzeVyweVyMY1eqVRy+5AW3bNnz8Lv90Oj0eDkyZNsEHz58mVUKhUsLi5yNZOsQYAtnOns7CxSqRQymcyHsHykiq7ValGtVrG8vMx4N5FIxAtptVqFw+Fgj8CNjY0PVSDouCLRdp9Akrkg+nvthupeTLT9Rr1NJlWCfT7fNs2e2rELr4cq4OQJWG/cQtX/vW4Y7zd226zu5Dhw0C7Fgcd8UMwQALzzzjt45513mIoqjD/7sz870LF//ud/HiaTCb/3e7+HJ598EseOHcPv//7vY3l5GZ2dnYzDoHjhhRdgMBh2xCrl83newQFbixphIx4EZugw8T0fZdTrUe92LZVKBcFgkPEs+z1XtVrlagAlFYcVHo+HBQupH117XQRkJuaETrflm2QwGJhBBGyJZeZyOQYGC3czwsSHWoRLS0vo7OzkZ2sn9gYxYkqlEhYWFmA0GllIkZgcer0eGxsbuHjxIjKZDFtl6HQ6hMNhKJVKdHV18aSn1WoRj8cxMTEBqVQKs9mMgYEB1jOic3/wwQfo7+9nRWyiOwNbGj/d3d1YWlrCs88+izfeeAOFQgGzs7OwWq0oFAo4ffo0AOC1117D4OAgJicn0d/fj3Q6Da1Wi0KhgGg0yvfL5/Ph/PnzWF5eRj6fR09PDxoaGnDp0iVYLBb2oPL7/VhaWoLJZEI8HodIJGKHeKVSiWKxiNXVVej1ethsNthsNigUCm6lrK6u4q//+q8hl8vZfHRhYYGtP6gtevr0abbNCAQCjL1wu91M43c4HOju7obH40E0GsXa2ho0Gg2y2SwikQiSySS3fuLxOMLhMD/bXV1diEajOHLkCN5++23GnxkMBhgMBiiVSlQqFW63mUwmNhstFAro6Ojg74VsVF5//XU2Qe3v74dCoUAwGMT8/DyUSiUGBweh0+nw3nvvwWQysWHv9PQ0V1pJCy4SieD8+fO4ePEixsfHWaPJYDAgEolgcHAQa2trOH36NLxeL5u9Njc3I5PJ4Pz584jFYshkMjAajVhcXMQTTzwBiUTCicnly5fR2dmJxcVFNDU1wWKxIJlMIhAIoLOzkxl8dAyJRILjx48jEAjwxqQ2iEZPTDOqVtI7SNUdwm3Rhoa+l3oYnEqlAq/Xy1YjtXPdfufzep8XzpVCJqpwPqCKtFBoci+Yyp3GV/vzg65LD3pd2+34tZghs9l8KJihAydDv/Vbv4X/8l/+C06dOgWHw/Ghgb/00kv3fexvf/vb+O3f/m3cunULSqVyWzJ09epVPProo9xKoPjlX/5lrK2t4Y033qh7zN/8zd/Eb/3Wb33o5wSKI+DsYX/B1Wr1gR37QUS98RJWplqtsokjBfWA96LDsZdzHXS8wv+vVqsIh8NQqVRQq9XI5XIfuq5cLscYIZPJhFwuB4VCgc3NTa5WEP6J/iafz8NoNMJsNnPFiM5Lmi8ajQYymQwWi4Wd30UiEdLpNJ+H8CaVSgV3797lNgntgEmoz2QyoVqtYmNjgxctoRqr0+mERqPh68tmswww9ng8GBgYYBbc6uoq2tvbcefOHaTTadbQIdaURqPB2toaHA4HZmZmYLFYoFAo4HA4mMIfiUTQ0NCAXC4Hq9UKg8GAsbExNDY2YnV1FWazGclkEna7nXe7ZMkhFotx69YttLS0sFo12XKQmOni4iK32AYHB+HxeLgV53A4GLcjl8vR0dHBopNarRYbGxuYmZnBP/zDP0Amk+H5559HKpVCPp9nrRt6TijJICC6VCpFNBrlZ9lqtWJ4eBg+nw+pVIqrhdlsliUH9Ho9JBIJMpkMTCYTt2kKhQI0Gg3a2tq4hUcA8HK5zNUUooSTgers7Cy8Xi+D7SnJampqgtFoxFtvvcVJg0ql4oTb6/VCp9PB6/Wir68PExMTSKfTMBgMOH36NFZWVuBwODA7OwutVotisYju7m7WEaJk02q1IpFI4NixY7h79y4aGxtRLBbh9Xo5UU4kEujs7GRmlEgk4iSdsD5GoxFra2tobW1l8DSB8/1+P78H3d3d2NjY4FaiTCZDMpmE2WxmXFjt4k7vN71ToVAIFotlW+KUyWRQKBRQLpfR3Ny87X0TtqDqGaceRtSbM3ebK4XzB2HQ1Go1X2O1WuVr3st8eT9za72/qf0ZtXAVCsWhdoIodltrhGNJJBLo6+t7OJIhh8OB3/3d38XP/uzPHmggteF2u3Hq1Cm8+eabGB4eBoC6yRCJWFH80i/9EtxuN15//fW6x92tMkQ97b1oxOw39so0eJjjsCpD99p93c9Yau9vPB5nPRIh42OnYwnbYzvtvMhHiXRCyGOrt7f3Q+VdwkPMzc2hs7MTRqORK05UBSIWCynUzs3NQSwWY2VlBc3NzdDrtxSco9EoLBYLGhsb+VozmQxWVlagUql4MSNtF4fDwSyQRCKBjY0N1iJyOp24du0auru7USqVoFAo8PrrrzOwuqGhYVsZnfBLa2tr6O/vh1arRSAQQC6XQ2NjI6ampuByuZjZZbFY8I1vfAM2mw1TU1NccVKpVPD5fNBqtVyBITDz5z73OWZwyeVyPPnkk3j55ZfR0tLCQGsC0NJ4BgYGIBaLWaySWhdUYVlbW8Pq6iomJyehUqnwiU98AqVSCfPz84jH4+ju7obf70csFmMAd6VSgdPpxPr6OoxGIxobG5HL5fDII49wcpxIJLC5uYm1tTVks1mYzWa0tLSwsSsZ1ALf919aX19nNp/b7UYqlcLg4CBX4iwWCy/6+Xwera2tuH37NkZGRpBOp9mio1wuo6WlBa+99hpaW1sxNzfHlUGz2Yzjx4+jUCjg2rVrGBgYwOzsLFP7H3vsMWg0Ghw5coRtT+7cuQOz2cyii9PT0/xekvKxx+PByZMnEYvF0NzcjLGxMSwvL0Mmk0GtVmN9fR1PPfUUMpkMBgYGGLtktVpx5swZjI6Ooru7m99VhULBrVWtVsu2HfT9JRIJWK1WXL16FUePHkWhUIBarYZWq8XCwgK6u7u5ckxzgFar5fYkVTKFWkV+vx/d3d3cQqLvJR6P81xFyVC9ueggVZB7VYZq58paKw/6b41G86Hr30vsd90RVqmpIl3vOLvNr4dRNRJ+t7tpQJGP4UORDJnNZty8eROdnZ0HGkhtvPzyy/j85z+/7YsnHxmxWIy5uTl0dXXtu01WG0JqPfVQH0Tp7+PaLqsXO73ge6WLCnffLpfrvhLE2pez9uWpVCpsIllbZgZQ97/vRQstlUoYGxvD8PAwvF4vUqkUmpqaWFhOOJmWy2XMz8/DarVy0jIwMMDg1WQyyYJytAMii4uhoSHEYjGoVCr27CKvLfLdSqVSnEjShoAqDVNTU3jxxRf5PbHb7fD5fBCJRPD7/ax+/PnPfx6pVAqzs7NsPhoOhyGTyRAMBtHW1obnn38ei4uLzAAJh8MIhUJsZWCxWLC4uIihoSH09/fjzTffRD6fx/T0NIaHhzE7O8vaRgqFAul0GsVikTV5BgYGuIVIVN75+XmcPn2aWUsi0ZaIYLFYxNjYGDo6OtDe3o5r165BKpXyYh4MBuFwONgEd3NzE3Nzc1Cr1fjRH/1RJJNJjI6OwmKxQC6Xs5luJpNBqVSCSCRCPp9nDJnFYmGAbWdnJ5RKJbeXrl27hmw2C41GA5vNBrVajXg8Do1GA6vVisbGRhiNRly6dIld1glkbjQaYbfbce7cOcbBra6usq1EJpNBOByG3+9HPp/n+1wsFgEAzc3NuHr1Kk6cOMGJtN1uh0gkwo0bN/C5z30ON2/e5HYtzW3nz5+Hx+PB2bNnIRaLOWlSqVR8L6LRKBu2SiQS5PN5FAoF9Pb2crJKprAEtFYoFHjxxRcRDAahVCoxOzuLH/uxH8PCwgJcLhfm5+dhMplgMBhYSsJut3NFn3SO6HikNk5SBESbVygUKBaL6O/vR6VSwdzcHMtY6HQ6BphXKhVm/qlUKkilUgY8C+cIouTT+24wGLYlADvNNQeN3ebKevMUmTSTJ+N+LDr2u+4QjorEUmluEs5Z1P7eKUk5zPt1r2MdpujigZOhL3/5y9BqtfiP//E/HmggtZFMJnlyoPgX/+JfoK+vD1/+8pcxODiIpqYm/Oqv/ip+/dd/HQBQKBRgs9nwO7/zO/jiF7+4p/M8aJ2hf4xR7wHdTzJEwGTy1zqsHZdwbLXJiXDM1WqVdTRIp4eqNslkEmq1GgsLC+jp6dm2C52dnf3QhETjIOE+u93OWifpdBput5sduWmHDGzhHQg8mE6neVyERxJO2lKplAGwarUaEomEEykAXK0pFosYHR2F1WplzBCx0ex2O+tBpdNplgLQarUYHR2FSLRldWCxWPCd73wHRqMROp0Ow8PDePzxxzEyMoKFhQUWolQoFOjv70coFOIWj1arRS6Xw7vvvsseXSQAaDabeZJdWVlBOp1GZ2cnqtUtIcILFy5genoauVwOsVgMbrcbJpOJkziz2czJgEqlYusIiUQCo9HIi2epVIJUKsXc3BxmZ2fhdrshk8nQ2trKmiTUjlpYWGBRv2w2y2V/mUwGu93OhrRqtZpbl+3t7ZicnGQ6d3d3N1uolMtlrhZWq1U0NzezMjhVmjY3N+H3+zE4OIjOzk4WqyMcFmlCNTQ0YGlpCWtra9yipApSKpVCY2MjRkZGGE9ltVrZ3iMcDrPOVCwWY2C93W6HSqVCsViE2WxGLpeDVqtlzBEBuMPhME6fPo35+XkGfW9ubsLlcmFtbQ0mk4ltXqiS5XQ6cerUKVy/fh39/f2wWq0YGhrC1NQU2traoNVqEQ6HcfHiRTz66KNYW1vDhQsXsL6+zokWJesdHR280Ugmk5DJZMjn81z1JHahRCJBLBZDb2/vtg2QsOVVrVa3bYp2ms9qE4C9zDX3G/XmynthZIDtZq8PKuqNg0QYaeykWUTz5U74pL0oe+923tqfAx/euD5UCtS5XA5f+9rX8MQTT+Bf/+t/jV/7tV/b9s/9hk6nw5EjR7b9o9FoYDabceTIEYhEW5pD/+2//Te89NJLmJ6exi/8wi9ArVbjp3/6pw96Wf9kYy+6QHthdgkR/7Xof2I+CE0V9xO7TRw0tlqxNZ1OxxRcGoeQYaHVapm+ffnyZV5Qhf5GTqeTdUwoiAFBNHPaacbjca7uGI1GxlakUinEYjH+22QyyRMM3X+y3VhdXWU9lUwmA7PZjFAoBLlcjpmZGaysrLAAZCKRQDAYxGOPPcaTJ7HdrFYrmpqaoNVq2ReNGGPj4+OchB09ehTFYhFPPvkkixW2tLTg7/7u7yCXyzkRbGlp4ftGldpCoQCxWIzbt28zK81ut8Pj8SAWi7F7ejgcRjwex5EjR9jxXS6X49KlS+jq6kKxWITf78exY8cQDAYRCoWQSCQQj8cxPz+PQCAAr9eLxcVFFItFJJNJNDY2cvWAQLOkX0OJY6lUYs0erVaL1dVVXmDpHhPglwDNAFgJmry43n77bWZZGY1GRKNRBkMXCgUAwOLiInK5HKamprC2tgadTodisQiVSsWMrGKxCI/Hg+vXr7PIZyaTgVgs5nYj4TGi0SgzhNRqNVpaWpgl6Pf70dLSAq/Xi46ODnZWJzHBxx57DOl0Gi0tLTAYDNswTULW4/r6Oj/rdFybzYbz588z/kcikbCnmdPp5MpZU1MTBgcHmV5P1jJkLUIbnkuXLiGbzeL3fu/3kM1m8ed//ucAgNHRUW4Bk1+XTqeDRCKBTqdjl3hKnEmTKRaLoaenhyU4iFFGPlakk3OvuYoA7fUSIeE7Xu93NLcJWar3E/VYZXRsrVYLAOjr6ztQIrQXFla9a9XpdMz8oqqpEMi9k9yKUBql3hiq1SpvfKhlWcsgFI6HkrJ6DLvDiAMnQ5OTkzh27BjEYjGmp6cxNjbG/4yPjx/CEHeOX//1X8eXvvQl/Mt/+S9x6tQpeDwevPnmmw9E9OqfSuxFF2gvFEjhi7LTS3O/sdvxasdGiQm9QIRNoKoM4USoQuTxeHD8+HHEYjHG3lDiVa1WYbPZcPv2bW710MRCNgU6nY53mtPT0+zjRJM4ALZfoGSCWF9kANrb28tVjFgsxhYDpVIJx48f5+qOWCzmd4x26ZlMBu3t7bDb7ahWqxgeHobJZGLriWq1iosXL7LHEjGiCKP0yCOPoK2tDT/2Yz+Gxx57DO+++y4sFgsbmw4PD3PraGNjg9tspVIJN2/ehNVqRbVaZdHGcrmMpaUl+Hw+XLlyBdeuXWNhQdIICoVCcDgcuHPnDpaXl6HRaDA2NsYtKYvFwh5e+XyemVpEQfd4PFCr1ahWtyw0dLotZeBsNovTp0/jxIkT/N2n02lMTEwgn89jbW2NdaMaGhogk8kgEm3p5jQ2NqJUKiGbzUIsFrPmFIGiDQYDYrEYtFotJiYmGHNIAO2xsTG23qD7vr6+zsxEMpVtb29n3SOqREmlUrz77rtQKpUol8vsrUUJYT6f50oIAdlJdsRmsyGXyyGTyeDxxx9HMpnEwMAAPB4PdDods8qcTieMRiPK5TJeeuklOBwOqNVq6HQ6DAwMoKWlhUkAJpMJDocDlUoFjz76KJxOJzo6OqBSqXD8+HFYrVZks1lYLBbGcKTTaSiVSmg0GrjdblQqFZw+fRqBQAA//uM/jrm5OZw8eRJzc3OMGXI4HGhqamKJCbLTaGpqwtjYGDKZDILBIBKJLf8yopLvtAEiVhaAbZo6tUnBXindu81Fe7H02C3qbTDp2EI7kYPE/c7DItH3jVKFyvv32hTvdk2JRAIejwc+n499+e6VZAEPjlYPHBK1/uMcP2yTbQ9qYe3XPqS29Huv8uZB4l5AbuH44/E4VwPI+boePbW2tKvRaFisTigSt7CwgEKhAJlMhjNnzqBYLMLn86GrqwsLCwtMtad2CDFDWlpaGDhMFSY6L1lRWCwWLC8vo729HSsrK1Cr1Zibm0Nra+s2UGu1WkU0GsX4+DhOnDgBkWhL4O/27dvo7e2FxWLB7OwsbDYbmpqa4PP5WE16YmKC/aiOHj2Kq1evoqurC8lkEs3NzVhfX0cmk0FPTw/m5+fR2NiIa9euQSQSMUuN1IjT6TQUCgUvWA6HA2tra+jo6IDT6WR7DwAIhUJYXV1FLBZDsViE1WqFRCKBWLzlZZZOp7mCRBU0kUjEthNWq5UTgnw+j1KphGg0yuylgYEBFAoFThxCoRCz4gwGA7LZLILBIDNxSNxwYWGBE0KpVIpUKgWDwYDGxkZsbGxAoVBAIpHw31CSSq0qj8cDlUrFtiUGgwGhUAixWAwikQitra1oaGhglhe1KwOBAJRKJcsBGI1GrniFQiGIxWJEIhE8+uijKJVKrGHU09OD1tZWxGIxjI6OcpWVREs7OjowNTUFs9mMxsZG2Gw2zM3NoVgsQqFQwOl04siRIwCA5eVlhEIh2O12FItFnDt3Di0tLRgaGsLf/M3foFKpMJaKkioaw8jICAKBAFcqjx49Cq/Xi2w2C71ej46ODlitVn6WKNknGYJcLodUKoVHH32Ur4HmiUqlwiagDQ0NSCQSkEgkWF9fh06nQ1NTEyentW2jWgp6MplkSxUhHqjWXuKgcxHhj4B7G2jvFVJw2O25h4FOT8eg75hsXoSq3jvdUwDsl0bf5UPVJvth/OMKmpgO2pcW7rbq7byE7bi9tOZ2OnZt1Kts0e5fuHOs3bXUHpN8noTtr4aGBm5fDA8PMytOJpPhgw8+gEQiYauEpqYmtLa2QqlU4ty5c4hGo+jt7cWFCxdQLpfR1dXFY8hms0in07h27RoUCgWuX7/OPmK9vb2s0xONRvleZTIZdHV1AdiaPILBIDNNSEeoUChgamqKk1NSK47H4xgaGkI6nWYc04kTJ9jfbHZ2Fm+88QbOnTuHZDKJ3t5eyGQyLCwsYHx8HCKRiO8LAJhMJqhUKiwvL6Na3bJAeeONN1jHx+FwsJu6z+dDT08POjo6OCHxeDzI5XKs/CuRSGCz2aBUKrnqXCqV4PP5sL6+zlRotVqNaDTKVHSfz4eVlRWkUilsbGyw+CBhUT7xiU/A5XKho6MDR44cQS6X4wmUEiK9Xs8gYWBLKLFQKECn00EqlUKlUiEQCDDrz+VyMZBaJNpS4z579iza2trQ29vLWJRMJsO4ImrXTU1NYWJiApFIBFeuXEEkEoHL5UK1WkUqlWIsDd1jMiidnp7GrVu3EIvF+L54PB60t7eziGG5XOZqSDabhc/nQzgchs/nw+zsLLO2iDlI6txXr17Fl7/8ZdaQOnv2LI4cOYLPfOYzTGe+dOkSCz0C4AqSVqtFd3c3t+tCoRCq1SrkcjkeffRRxGIxNDY2slWLWq2Gz+eDw+FAPB7HzMwMKpUKaznF43FcvnwZCoUCbrcbGo0GTqcTXq93m2q0cD9PrRQSWdRoNNyiJgkJmn9qKxr7rToIkwNq01GlUniM+61m3Ktida/j1quACYVg9xuHXeEXiUQwGAxwuVzb1hthm02oUi0SfVhQ9zDjvipDv/Zrv4b/+l//KzQazT1xQV/72tfue3AfRfxjqgwd1k7ifo6zHwA18H1GWalUArDVGiDjxZ3Ou5eqVe1naitUxIrYyV9IaDxLf0eVoXq7lWKxiDfffBPPPPMMgsEgj10ikWwzPh0cHKwr9EiT9tLSEs6fP4+JiQlYLBauNBAYmdoqfX19yOfz3Oqg5KNUKmFpaQmPPfYYfD4fAPB9oMW1oaGB6diktk3Gr36/HyqVCjdu3MDy8jKz36i68v7770MsFiMajcJoNCKdTqOjo4NtH5RKJdPTyfqChFGtVivGxsYwNTUFlUoFuVyOxx9/HHK5HKFQCKlUCuPj4+jp6UEgEEBDQwNXlAqFAgN3U6kUlpaWkM1m0drayglqOBxGIpFgvIzVamUF4VQqta2919LSgvX1ddy5cwdKpRJ+v58TsGKxiFKpBJVKhVAoxC3HfD7P3ym1zsizi4TzCoUCTCYTzp07xxToubk5Zs9pNBrI5XJOCAlsrVQqUa1Wcf78eSgUCszMzPAYCNScz+fhdDphtVqxsbGBdDoNv98Pg8GAfD4Ph8MBqVSKQqEAp9OJbDaLqakpGAwGrp4RMLyhoQHt7e1obm5GR0cH1tbW2GLk5s2bDFCORqN48cUXodfr0d3dzRity5cv49q1a1Cr1TAajTh69CjrB+n1evT19fEYNzY28OlPf5orYtPT0yiXy9zu6+/vh8PhgEql4mSCjI4TiQTu3r0Lu93O4qOpVApKpZKrgIFAYJvaOb3fVFUyGo3bqODUWmxubq47v9RjqAolN3ZjTVF7nMxi69HSidSh0WgQDAbv29R6p/Hu5ff3Q7XfT4X/XmvHTgSXen93r/sPPARssqeeegovvfQSDAYDnnrqqZ0PLhLh3XffPdAAH3QcRjL0sNDmd3vQ9zPG+6FG7jcZEiYtwNbCrdVqWRCv3nmFCRSV1XdKkHZiRXi9Xq4sNDc3f+hztWX2eircwlItafgUCgX09fVtm3RWV1cxPz+Pnp4etLW1sUIunSsajbKTeKFQgNVqRUNDAyQSCTY2NpBMJmEymdj+wWazMaNGqVQyrVj4nSUSCTQ2NuLq1at49tlnkUqlsLCwgI6ODqysrDDYeHl5mcG1pJicSCQwMDCA69evQyqVIh6Pw2g04saNGzh58iQuX76MhoYGLC8vM7bD6XRCqVRibGwMarUaPT096Onpwdtvv4329naEQiGo1WpUKhVcuXIFq6ur+PSnP80Uabfbvc1L7eTJk0zl9/v9rFxNKswXL17k78disUAmk0Eul2NqagqhUIh1jKitRYBgqVTKWKrNzU3kcjmmYpdKJcjlcpRKJRQKhW06ZBqNhgHiVquVk8hEIsHsM7FYjGKxyG72DQ0NKJVK29pvSqUSFosFt27dYqNRsl2hKldHRwfm5+f5eycRSPJPa2pqgtPpxOzsLDQaDcLhMORyOcLhMDPYTpw4wZUfAnqT8KjBYEBzczMb9vb398NutyMQCGBkZAQ6nY6TjWq1CovFgkQiAZvNxm0/MgHOZDLo7u5GZ2cnJ9/0/lBl7uTJk9BqtXj66adZ/HFlZQWBQIAxag0NDTCZTIhEIrBardBoNNBqtexUv7y8zJsDkWjL/FYikSCRSPAiSOrwtbR54bu2l/mv9jNCFpXQM6seW4rmitpFXvh5AumXSiXkcrkDJ0P3uqb7TTCEsdNaUO8eAFttLEo+azFcu435fun4P/Bk6B9THEYy9LAIKt6LnrnXMZJGjpBafq9z7TcZ2u/4gfpVn3p0952ul8DUwspQ7e6uNjGqnThqaa5kd2Gz2WAwGNgEdWNjg60LbDYbenp6UKlUsLy8jI6ODhiNRty9exf5fJ49voh+7fP5YDabIZFIuLpiMBgwNzcHq9XKO2KJRMLYB2LaEPjYaDSy5cTU1BT0ej0ee+wxbpfp9XpMT0/jZ37mZxCJRPCnf/qneOqpp5h9s76+ju7ubvy///f/cOLECaysrODMmTO4fPkyotEogsEgmpubcebMGfzDP/wDs0M6Oztht9uh1+sRDoeh0Wg4mctkMowZOn/+PNLpNFZXV7GxsQGtVovm5mZsbm7i6NGj7FBOi55er8fq6iobqRaLRW4bkV/ZzMwMzGYzJ6iEc6KEpVwuY3BwkFtGlUoFuVwOEomEvcKIEUZB4oI0jtbWVkQikW0VF8JSNTY2sshfV1cXJBIJkskkjEYjM99Iwbm9vX3bM0/+bgD4flAbKJPJoKGhgSsaNpuN2XmU/ObzecaadXR04M6dO6hWq4hEIigWizAajVztlEgkaGtrg9FoxMmTJxEIBKBQKLC0tIQXXniB7U3eeecdPPnkk1hdXUWxWIRWq0UkEmGGV1tbGyYmJliMkvzOyBKkWq3ihRdewPT0NFQqFYLBIKLRKLdHqP2aSqXYYLS5uRmxWAwul4v93whjp9Ppti2u8/Pz7J0npMcTbuwwKuT1Eoed5pa9Jlv1KkP3qsAc5oZ7P2vBTptFSuxisRhT7Qk2QKKWer2ev7PdjrWXqtNO1/9QYYbIRFVosPlxjv3iV4D9mZg+qHHc62XZzxi9Xi8DOneKw+4fA/fukdfimXaiuwP1r1fYowa2Fh0y8NRoNB+6JsI7iUQizM7OolKpMAWfGGgGgwHHjx9n40Eql5MwmcViYYV0UsUlUcByuQyZTIbnnnsOcrmcAdQ2mw3Ly8vs5ZXNZpFIJOBwONgNfmlpicHX1ENvbGyETqdjXBDp+BCIm1zFW1pacP36dTQ1NeHVV1/FlStX0NLSgrGxMVSrVczNzUEul+Odd95Be3s7V5GWlpagVqvR19eHpqYmHDt2DFNTU0y7F4lEKJVK7MhO1h3UfqJJsr+/H16vF4VCgRlamUwGExMTSKVSeOONN7C+vg6xeMustKmpCYFAgDWCSqUS+vv7kUwmmZFHejpE1SdlXErSiGq/srKCarXKFizA98Vc671rpJ3U0NDA1Tyq9FAFyGAwcItwcXERmUwGIyMjWFlZQaFQwMLCAmZnZ5lyLxKJGNOWy+VYlkCj0bCYJVXmWltbmWJeKBSgUCiwurrK1ar+/n4MDg7ihRdewOzsLPr7+zEyMgKFQsFss4aGBkilUgSDQYhEIm4ParVaXL9+HRqNBvl8Hs8++yzMZjNUKhX+7//9v/jJn/xJrK2toa+vD21tbZDJZDCbzfB6vVAqlYhGo9DpdLh79y4KhQKkUikUCgVLGchkMnzzm98EAGZ1USXRbDbz5oWqgq2trYjH42hvb2cGGiWE/f39MBgMkEqlAMDvA2GGdDodL4hzc3P8ftcatO41aD6l6pUwKaH3juaWeou8EKtTm1QBW8KawnHdi3271/m2Ho6o9mf7WQtq52TC7pCMBUkcEHwgm81uU4OvxySjaxD+/73m/gex3tTGgZMhrVaLr371q+jt7UVTUxN+6qd+Cn/yJ3/ClgUft9gLtbw2DkLNPKxx3Oth2c8YaTKj3Vq9yeR+EsD7BRLuFHTuWv0NqgDtNhHS/R0fH+fEr54WkU6nYyfrzc1NbjEIj93Q0ACDwbBt0tTpdNDptkxAqVzc29sLuVzO1RliUqysrKC/v5/xGzdv3oTJZEIgEODrIfFBakMQYBcAAwxpN5ZOp1mvhRSSzWYzlpaWEA6HMT4+DpvNhunpaQZlr6+vQ6/XY35+nplXjY2NWFlZwfHjxzE3N4d4PI5AIID5+Xk8++yzjA0h7FNHRwdGRkYgl8uxvLyMhYUF6HQ63LhxA0tLS2yYm0qlYDabEYlEIJVKIRKJ8Nhjj0Gn03ELhVonQmXnUCiEbDaLzs5OxvoolUo2WU6lUmz14HA40NvbC2CLOaTRaCCVStHZ2ckWDxR6vZ7Vu6naplAoAGwturQAF4tF5HI5ZLNZ1l45cuQIFAoFWlpaeHykr5JOp5nJR8KaiUSCBR5JKJMW8oaGBvT09MBoNEKpVKK3txfJZBKtra1sYJpOpwGAhSyz2Syamppw9epVWCwWrKyswGazoVQqsZ0KVVRtNhszF+12OwOa19fXYbfbYTKZsLi4iO9+97uQy+X4gz/4AxSLRSwtLSGRSEClUmF2dpbZjJOTk5idnYXJZGLK/9TUFIAtUDV52wWDQZw8eZIp2n19fRgeHkYqlUJbWxsWFhYglUqxtraGYDAIn8/HyfXY2BiD6LVa7bYKUa1DO91Hp9PJRqdCPSV6l3aag4S/22k+JXZqtVrdliDUW+Tj8Ti3gYmEQb8X/j8AvjaqLNfOQ8Lf7xZ7SaSEGKv9zsfCZzWZTPKGMJVKMa6NTJFr8ZFEZKF5ez9ryIMoONTGobXJfD4f3n//fbz//vu4ePEi5ufnYbPZdq0uPAxR2ya7X2r5Ycd+x/EgcEv7KafupU12WO3EvYD0CBukUqnqgrKp8lYulzkRGhgY4Am2Vl2bFLMJQwB8n55br71G5XCv1/uhtp5er8fa2hpyuRxrrIyNjeH8+fOYnJxkd++uri6uJBkMBrZoIAE0g8EAnU7HbCaNRoOLFy+iWq0y80ksFmN0dBQmk4lBx3K5HNFolEG1xDzK5XKQSqWQyWTso0U7+fb2dnzve99jfIrVasXJkyfx6quvYm1tjWnTRCN/4oknkEqlsL6+jmw2y8atCoUC7e3tGB0d5Xvb3t7OFSzSlpHL5SxN4PV6YbfbecGl1pVarWa2GIGYga0F68SJE4hEIpibm4NEIoFMJmOQPj0HtIsVi8Ws8J3L5VCpVPiYVC1SqVQMmCeDVNLzIfd2YvkBYIPe48ePw+v1MvBayH6i7wgAWltbuWqUzWbhdDpRLpe5/dDS0oKVlRWuRFmtVqyurrL4ZUNDA4O46dmmCmU+n+efHzlyhKtiRDcnmQOXywWr1cpg9RMnTmBtbQ0ikQgDAwNsw5LL5RjLRcDz3t5eriIFg0GYTCYEg0EEAgH8xE/8BCtWq9VqfO5zn2O23MjICIAthlxzczNbpRBeitSyBwcHt80fVKElgkMtZkdotUEYHqGjfa2kRi1GkOQxaudft9vNlVYiVtRiAemYsViMjW91Oh2LOpZKJczOzqKvr48TbQJ+k21ILYV8r3PnTjih+8Hp1MMF0fUR3o4wdbsdG8ChzPv14qFqk1HodDoYjUYYjUYuZ1JP/+MU96KW308b7UGMozYeRHXqsLPx+zlevft9ryoYsVdoEqr3WbFYzOwoouqSN9JOYxSeV7h7oxe/dufl9Xq5ulepVDA7O8ulfYPBAIPBgHQ6zZOu3+9ndozL5eJKk9B3TCaTYXFxEcFgEHfu3GH1bK1Wi9deew0bGxuYn59HuVxmGnd3dze3mMhLjAChjY2NePLJJ3HixAkYjUY0NzejUqmw8StpJFGLLJPJIBKJAAA++OAD6PV6pn23trbC4/HgueeeQ7VahUKhgE6nQ2dnJx5//HHodDqYTCZcvnwZgUCAdWRkMhnrxZA+Do1/fX0darWaKxKUjBImiSxVyBh3c3MT5XIZc3Nz7GUFbC02oVCIlcGpOkM6RaT7Q89ZtVpFpVLh94+o2S0tLdBoNCgUCiwvQCBxuVzO3386nUa1WsX8/DxjY8LhME/YItGWuCOBtUOhEGMuSqUSFhcXuc2TyWTg8/kQi8UQCAQYeyORSFh0M5VKIRAIwO/3Y3R0FFKplBNwAlCbTCbGGSkUCjax3dzcZEd6YiwSU215eRkffPABbty4gUKhgLW1NchkMjZZbm9vx+nTp6FQKOByuaBQKLillkwm0dfXh7m5ORw7dgzxeBxms5l/TppFfr8fR48eZZp/X18fXC4XMyGTySSKxSI2NjZYLZywWMRCo/eWqrBisXibCjKJIlJVi3B2QlVj4bsvrHgIgzYH1M4iuj7NvcLEQ6/Xc9IunE+osuv1eutWZajKSxIZNKftZe6stw7U/qxepUZYFaP/pnmtVlBSeLyd1h3heD+Kqs5hxIGToS9/+cs4e/YsLBYL/sN/+A8oFAr4d//u38Hv92NsbOwwxvhQBD0gHo9n32004d8ftBB32K2m3eKwE6z7OV69duG9Xi4hNqihoWHbC0/y75VKBU1NTbBYLDhx4gRMJhN6enrq3l8aA2FUiOYLgDVNhBgCCmo3ko8YeSrZ7XaeJPV6/Ta8E/XbqYyeTqdZ/8bhcKBYLKKzs5MxCDQRe71eWK1WbG5uoru7G8BWq4KSNgC829VoNOyIXq1W4fV6YTAYcPbsWbjdbgZ/JxIJtLS0wO/3Y2VlhV3QzWYzq2DPzc0hl8vB4/FgdHQULS0tGBkZQbVaZV0YAhYDwMrKCgOeNRoNjh8/zpT/ZDLJCsrkz0aMpr6+Puh0OgwODrJRrVwu57aB2Wxm4DlhjagdVu85EQKlqVISiUT42RSLxZzcyGQyVCoVSCQSeL1eVpnWarUol8vbtE/o2oCt3bFMJsPExAQb8hLGiUx3afGRy+XcMiMsDqltF4tFRCIRxmkAgN/vRzweh0qlQiKRYKD46Ogo+6ER2Lqzs5N92wi3tri4iNbWVrjdbjQ1NSGXy6FcLsPtduO9996DSCTC5OQky12Qgnoul8PCwgJu3bqFnp4eRKNRyGQyrgDG43HYbDakUikMDQ1BqVTi6aefhtFoxPnz56HT6bC0tMQVwFQqxS3SarXKYpcksKhSqdDS0oLLly8jl8thfHx8W4K62wIrTCrIRkIkEjFGjRZ8eteF8xPNMcQepM/QJspkMiGRSLDyOf1euGEiMVL6roXtPEqkhVgi2qDQvRDag9xr7tzPukAJIGGiaK6pxSzRfEnq48J7LRxvvdhLwrTX+KjWvAMnQ1/5ylewsrKC//yf/zO++c1v4qtf/Sp+9Ed/9GOv2VMb9IAQk6IWsCuMel+e8GE7SHXpfoFkH1VFa7eg+0LYib083PXwS/t5uYSfTSaT3HqhxYnAqv39/ZBIJHWTr6amJl6oSCBOq9UylgfAh8TfgK2JkxIhqnbodDrIZDJkMhk25CTvJ6rKCHeD1P4CtsC2ZIVBZpZ2ux0bGxuw2+1IpVLc6nvssccY95LP55FMJrG0tASn08m7+I2NDUxOTmJiYgIAWEvG7XZjcnISuVwObrcbfr+fqzCVSgUqlQoymQzVahXhcBherxc+nw82mw2Tk5MAALvdjmRyy2ST8CWRSISp63a7HUNDQ6woTQmqUGLBYrFAKpWir68PKpUKn/nMZ2C1WtHa2sqaMdVqFefOneO2j0KhQF9fH/r7+5FIJOByudDe3r7tWaFERhikd0VJDbWdqBpHekKZTAbxeByFQoG9xMhDLhgMolqtbhMj9Pv9bKmSzWb5fET9LxaLnFg7HA5Uq1V0dHRwpYrwb36/n7FphUIBZrOZWzUdHR145plnuGVAYHIALPxJFi8EpNfpdNzeIuA9sesoOW1ra8MTTzyBlpYWuFwuFpwMBALM2iPhS2J/Wa1WjIyMsPdgf38/9Ho9mpubMTQ0hGw2C7lcjrm5OWxsbLDXGb0L1FINhUIsJEoioclkEl1dXdwSodYWCTXSOy6sfFBSQZUivV6/7Z0iTSAiPtDcBIDd4gHwfFutVqHVatlWhSpTRLAQbtRofiGGJr3XIpFom5ls7Ty1UyVnt/lyp3Vhr4lEvUoOJe1E5KgdL93/gyQpO4HNd1o7H2QcOBkaGxvDb/zGb+DmzZu4cOECGhsb8RM/8RP44z/+Y8zMzBzGGB+KoB22SCTaUbCPot6XJ3zY7gekXe84+4mDnPOwgu7LXn18qC3idDo/BJa8nxC2z8gR2+/3I5fL8X0RVnMoxGIxM3I8Hg+DhkUiERobG3m3TYwZGnsikcDGxgbjXpqbm5k6TDTpnSa8cH1uBwAAp3dJREFU2j4/JUblcpmNNDs7O7G8vAyxWIzLly9Dp9MhFosxTdrlcmFgYAAmk4mFAo1GI7q6umCxWBgDotPp4PV6oVKp+Fz0vLtcLthsNjzzzDNobm7GuXPnIJPJYLFYoNFocOzYMTidTrS2tqKpqYkFC+/evcusuEAgwK7yEokEarUaTqcT09PTsNlscLvdbIbq8/nYt4za7hqNBgqFAsvLy5DJZNjc3ITZbOZ2CNktkI+YUqnEysoKzGYzVldXt20AqBW223OUTCYRjUYBbCVJ5XKZTW4BcBKUSCRYNsDtdvNumlzSs9ksCoUCCoUC5HL5NswFtbEAQC6X82fa29s5MSuVSqyRREBz2o1vbm7CaDSipaWFHeHJwLqhoYHp/lKpFNlsln3RyFqEgPyVSgWXL19GX18fnE4nenp6oNFo0NjYCJlMBoPBgKGhIWg0Ghah7OrqYiFRegfEYjHsdjsWFhbQ0NCAmZkZBnf7fD5IJBIYDAY88sgjzLzLZrOM6aLn3mw2Y2hoCBaLha1LXC4XZDIZhoeHAYATWeF8Umu4LBKJtmkA1av+kCcgta6pzUrzzObmJvR6PUZGRjh5SiaTkEql3IKj8xHBYi9tKgBQq9Xb2Kf3k+gIY6d1Qfi3NMfodDp+jijZpp8Lk7HaJK42hC3G+43dGGY7Aa8fVBw4GRoeHsav/Mqv4O/+7u8QDAbxxhtvQK1W41d+5VfYA+fjEPfKoOkhEZY7d4p6D6bwhai34O41dqqK3Kvyc5BzHlbQfRE6H+8W9GLQ91KvFQXsffcjbJ9Rlc9ut/PkTBiRelgtGjsdh0rMOp0OPT09AMAldfou6IUWXqtYLGaROPpZIpHgJIDYL9lsFtXqlqkqYWCoYkELrUKh2FYZWllZ4c+Qd1elsuXbRSrF8/PzXIEwGo28MFJLq6enB93d3eyBVSgU2DC0v78fqVQKNpsNKpUKP/VTP8UgTzLNBLZo1NPT03jttddQKpUYzNvZ2ck74oWFBVQqFbz22mtMAZdIJDAajbh58yZP0MSKy2QymJ6extraGmN9wuEwotEo37dSqYR8Ps+WHNPT0/y9KZVKBovvpJ2123Pj8Xi4VUbXRK22YrEIpVLJ2BxKbkQiEYOgSUZBoVBwezSZ3HKhJ5VyurZQKMRUeK1WC7FYzOSOWCzGWBKTyYR4PM5YH7VaDYPBAI1GA6VSCbVajcnJSayuriKfz/Nun4Q3FQoF5ufnUalU8Prrr6Ozs5PvtdlsZvXvQqGA5eVlfl6KxSIGBgaQTCYZw5PNZpHL5TA0NIRCoYCenh5YLBYsLCzA4XBw5a+hoQGNjY1oaGhgMkCpVMLc3BwymQwn7C0tLQxQJrkBan+m02l4PB5uU9Ji2dTUxBsSYl7VM2qleYXaw16v90PtNKoCk94a4Xuq1SrLRCSTSab409y6V7YazeP1nN1r/2a3uU/4jO6E3anFNgoxTvF4HIuLi9weqz3mfqo/99POErYj4/E4vytCQPthGdXeKw4FQD02Nobf+73fwwsvvICnnnoKf/mXf4nh4eF7WnU8THGQ7Ls27tXG2S84ei9xr8rPgzjnfoPuC5Ws7/VwCxMQIZaGohbot9uEUu8lpeSIQLBut3tHSj6NnUCeDoeDf2YwGNjhXlj5IgsMagEA21lswnNptVreLZL2EbnLv/zyy8ww0el07FkWCAQYvOz3+xnMHA6HEQ6Hsbq6ytdNi7XD4eCqwdzcHIsHGo1GzM/Pw+/3w2azwel0srjh8vIyYrEY7ty5wwyhVCqFf/iHfwCwhVu6e/cuKpUtqwPCOshkMty5cwcmkwnlchkrKyuIRqMM1l1cXEQ4HIbb7UZrayuOHTvGVbbx8XGmMQcCAYyNjfFOlBKnavX7ooJUEaK2G1Xu/H4/ZmZmuOVFCc1+glh2tHCRbhIATlTIc4uSnmKxyM8Q6RnJZDKoVCoolUo2D85kMrwoSiQSbrcIx9/W1gaLxcItGaLgx2IxRCIRrK2tYXZ2FsViEQaDgZ3jiSlLySON2+12AwArbyeTW6KPFy9exMLCAmZmZvD+++9DqVRicnISY2NjaGhowNraGsrlMss6RKNRtLW1YXNzk3FL5XIZAwMDrDgtrLosLCxgYmKC50+TycRYJJ1Oh3feeQcLCwtclUsmk/xdETuTgPWENxKJRFw1EwKadTodJ0IbGxv8/lBLTLgpoySGKv5Urdnc3MSJEyeQSCS4kkzXQZUnGqMQ50cbuNq5pN4acy/KvPD4wP6p8DQuovpHo9Ft5yK2WCKRgEajgdvtRiwW23XMFLW4odrPUtVpN4kTYVKYTqeRyWR4zB818PrAK6PRaMSZM2fw13/91+ju7sY3v/lNRCIR3L59G1/5ylcOY4wfSezlxh82oPgw42Go/Bx21CvXChMbeuk8Hg/jIISxW7JUr5JWawxY71herxcul4u1RoQASBpnU1MTtFot74CFz8zm5iay2SzGx8cxPj7OE6xWq+XPjo2Nwev1IpfLYWxsDKdOncLo6ChKpRL8fj+Gh4eRTCbx+OOPMyDXYrHAYDBAoVBgcHAQa2trjBmipEmlUiEWiyEcDgPYWozy+Tx8Ph/u3r2LcDiMYDCIeDyOUqkEqVSKt956i1tf1B4jB3WbzYbZ2VlIpVLI5XLYbDbW9yGW1Pnz5zk5KRaLKBaL2NzcRF9fH2NwCPycy+VY4VmlUiGdTiMQCDCbiL5HYCuxoEqBSqWCzWbj7yGRSHACIBKJuOqXz+eZGr6fZ1DoZk+VHalUygwyYk6FQiGu2tUmXFTtE4lEjO2hZFksFqOtrY09y+iZIsFJi8XCNPZyuYxwOIylpSVOGrLZLAOCfT4fjEYjZmZmOMknEkGpVOKqE31fra2taGlpQTAYRKVSQSQSgdfrRaVSwerqKiKRCPr6+pBOp2E2m7m643a7YbFYcOXKFVaAb2trg1KpxPXr19HZ2YlgMIjFxUWYzWYsLi5iaWkJ5XKZq0WhUAj5fJ4xZ7QoLywscJWgWCxyEjM3N8cbKcKLkekrLfDUTqYEgFpZhDOqNVGtF5RU0ZxB2CBKsJqamljuwel0bjs2VakIT0gJE42tdo2hZ6Ae5rD2b3ZLTGguKpfL2+Y1qizRpofuCYXT6YRGo0Fvby/m5+eRyWTg9/t3HbPw3RDObbWfpftI82m9TamwFUZYLiG26qNcbw+sM/Td734XFy5cOHT9gI8qanWG6kUtfoN+di/Tz3p/D9zb7O7jGERPPqjfzr1CqF+h0+lYt2dzc5OF3Wp1Q+r5BZHPGQGjk8kky/gDH/btIR0QlUq1zfuI2he1x9/tPs3OznKVQa1Wo7+/n0Gydrsd0WgU09PTjNmgakkkEsHp06chFou5dF+pVBAMBgF8f/dMTBav14vnn38eqVQKm5ubSCaTWFhYQHNzMwtOhsNh9PX1MSAZ2NLUaW1txdjYGFZWViAWi3HixAnIZDLW66ENz5EjR7C5uQmZTLYNwBuNRpm6r1aroVAoMDc3xz5pyWQS4XAYgUAAuVwOx44dg0ajwfz8PGNgCNgeDAYRDAaxsLAAm83G9zkWi2Fubg4Wi4VbUn6/HyKRaJu/mFqt5rbjXoOqOxRCzZR6vxcGtVxqQ6PRcCsR2AKZy2QyKJVKhEIhiMVixGIxyGQy5PN5WK1WdHZ2slYbJQfVapXbl+l0GkqlkpM2k8mEpaUliEQiBr6SZEE6nWa2W0tLC+sVud1u5PN5VkwnGYVnn32WveicTicnTFRRuXTpEnp7e7k6ajabEY1G4XQ6sbi4yCwkEtcMh8Nobm5GV1cXt7dWV1cZkzQ3N8f0eIPBgEwmw4arbrebv3eqypI0BolqUutR2H5OJBL8jlJre2NjgxNEel7pM0IMD83x6XQafX19rE9EiaZWq4XL5eJEjbwC9foPG8PS+0kbukAgAKvVypibWnPXelG7Dgk3Y8BW9ZzMism/kSqMbrebMUL1jGrpOBsbG2hqatomIHu/UbtZpPlYqDd0UO25h0pn6DOf+czHNhHaa9TLyGuZSXv9+48KGf+wxkFpkrVsjd7eXmxubrJsv/D+0mepakNVAsLYUMlYKpWyQWo9ZVZiqxCmiFgvVHoGsOfvVCwWo7e3l20luru7WbKBEjliQPX19UEul0MikWB1dRVSqRQrKyvM9iFdGblczowlGu/m5iaOHz++bccdiURYLJCYQGq1Guvr67BYLGhqaoJMJoPRaMTS0hLi8TgUCgW8Xi9CoRCam5uhUqkwMzODyclJDA8PY2ZmBiqVCplMhn2mCBNDfmyzs7NYX1+HyWRi4HAul0MoFILH40E8HsfKygru3LnD1QuLxQKdTge/348XXngBTU1N3OJLJpPI5/OIx+OMtYlEIkgmk7yoHDTIaZ6iFou3UyIEoG4iBGBbIgSAWyn0HUYiESgUCjaATSQSmJ+fZ1VmUpWm5Ccej3O1iLBpVAUUtjnoM9SqzefzmJmZwfr6OmtcEVhdLpfDbrdzUuR2u1m9vFKpIJVKoVQqYX5+HnK5HOvr65BKpejt7cXGxgZcLhfC4TAuXLgAtVqNZDKJlpYWRCIRmM1mGAwGrhBVKhUMDg6iWq1CLBbj6NGjMBqNUCgUzCokja3u7m5mglF7JhaLcfJPyQ5VgTY2NqDT6ZihCWxVzwkoTO9FLYaR7pdYvKVevb6+jmg0irm5OV7YRSIRExI8Hg+SySQnHpSIEZ6QEo+d1hCac6h9t5/5UVh5oWe0p6dnW4dAp9tSjKaEjP5NelvUwqJxk+3JvRKhvYyTWrqUWNWrMn3UrbDd4odGrT+sDB1K7LUytJ+dQL37vtO5aVIXVoaAD99rqggRHVioWEsKtTS5UD98Y2ODTQkJ/Czc8dQ7T71ricVizNqanZ1ll27apSaTSfT29qJarWJtbY3bcYTvyWazGBoawurqKrexiL1EFaJKpYLGxkakUimoVCp0dXWxXszq6irjd6xWK9555x0MDw/DarXCZrOhsbERlUoF77//PlpaWlCpVPDyyy9DLpejs7OTF0XCAdjtdpw6dQrvvvsu+vv7MT09jfb2dkQiEdhsNvj9fqyvr3OlQSQSoVgsQqFQYGhoCB988AHK5TIv8sDWBKpQKPi7b2trwzPPPAOPx4PXX38d5XIZCoUCoVAIuVyOfbqq1SqDy4PB4DYdofupDH0UQdgIqkLUhkqlQqFQ4CRXrVZvww5RS02lUvGCTwraBIzPZDKsVO50OpnZSFYmZ86cwbFjx3D9+nWcPHmSsWzvvfceWlpaoNPpWHyTmH3VahU3b95EPp/nZGZtbQ2f+9znMD09jeHhYVYJF4vFUCgUDI6mluvNmzfxqU99CiaTiYHQAJjeX2tITO84SVuMj4+jq6sL1WoVuVxuG0Ce2qPlchl9fX3bKhI6nY7Vk+n9rq22CCs4brcbqVSKNwqxWIznBK1WC6PReM/KcG2FpFqtwu/3Q6lUfgg/SfNjvWo2VXkI6E2tJ2E7icZf6yYvnBNr2XZkAbKfdelBzOP3Ew9VZeifQuxElxQyk/b69w8z7uijiP3sBIS7qd3YckJwuPD+1tuNEbaKqha0gyOQJ4AP9a6FWkfA9h0PjfNeLzq1qNbW1nD9+nWYzWaUy2WmMut0OsYmEI4onU7D5XIx5XpgYACBQABut5uNHhsbG2Gz2dhbrLGxEeFwmG0SqI1IOjWhUAjRaBSXLl3CsWPHGD9DVhhvvPEG0+7FYjFOnToFm80GmUyGu3fvIhaLYXV1FXa7HWazGbdv30axWMTFixcRj8cxOzuLYDCI1157DcViEevr67xApVIp5PN5GAwGRKNRnDp1ClqtFq2trXyNuVyO2x808U9MTDAIXKFQMEaGFjXCaFCVZSdG5cMWVM2plwhR24YWRQJuE56jUqnwop9KpZBKpVi7iEDmlJDEYjHGX0kkEqhUKoTDYZYpmJiYgMfjwczMDDQaDZaXl1GpVHDz5k0sLy8jmUzCarWisbERfX19vACRkCaxsb73ve/h2LFjyGQy2NzchFwuZ40jjUYDq9WKjo4OjI2Nob29HSMjI7BYLPx8ZDIZZuuStAKxuIQK45OTkygUCrh+/Tov/MJ3t1QqoVAowOl0bqsQ0ztKJIhKpcLtLCEOUUgxNxqNGBgY4O+DwNZNTU3Q6/UolUqMednp/a8FWQPft4KpJYUISSP15FlisRhEIhEbHFOlmo5Bc8fs7CxLewDf37R5PB7GXNntdp579tqxoPesXC5/CIy9U3xcuiE/TIZ+GB9p7CcZrNVmEovFGBkZ2dNitxMllRInKk9T0kQ4D71ev620S39DOkO1LzRNPgTMFJaPhQmcTqdj6wgC+54+fRoSiWRbYiXU1aBjlEolrK+vo1Ao8G52YmKCzUar1SpOnjyJUqmEo0eP4syZMxgYGIBer0cul4PL5cKFCxcwNDQEo9GIYDAIm82GTCaD7u5uFAoFhEIhfPe734Xf72fhxEwmA5vNxgBbnW5LHfnYsWOYmZmB2+2G1+uF3+9HJBJhBeJ0Oo3W1lZMTEygubkZLS0tcDqdOH36NFQqFTQaDbdhBgYGkMlkYLVasbS0hM7OToTDYYRCIV7gr169ijfffJOtU4TAWOGzQLRnYnp9XEMikXDiKBJtyXmQZxxVEGOxGGPOZDIZTCYTDAYDt7ro2SGvNEoaKpUKwuEwbDYbQqEQdDodJiYmkEgksL6+zotnNBrlRLNQKHC1bn19nXFsFosFDocDp06dQjqdxs/+7M8ik8kw2H5qagq5XA5XrlxBNpvF/Pw8bt26xc9Pa2srfD4fL9Skpk3/TxsQkqnwer3QaDRoa2uDVCpFS0sLj5G83LxeL0wm0zbfMKqwUCWFbHIInE9Ru2jXW8QpeaHkzefzQSqVYm5ubsfKY70NIFXzajeFQtKI0Ky1NlGrPSYlKSS/QBug2utpaGhAIpFAc3PzNnPpvW5SqTVHiXWtXcler/9hjB+2yfbQJvth3DseNIC6UqlgZGSE+/7ERtopdirj7tTyTCa3NF8WFha4NF97fqFxI/0NgX4JPAmAKxrE/LFYLGhpaUGpVMLFixdht9uh1+vhcrm2XQONmXyYRCIRAoEAtFottz+Ghobw1ltvMdCTmEYikQjd3d3Y3NyE3W7H8vIyUqkUgsEgBgYGGKQdjUZx+fJlZqAlEglEo1E0NzezSadIJILVasX09DT6+/t54b116xaefvppTE5Owuv1YnNzEx0dHRCJRMwYOnHiBCwWC2ZnZ1mIsqmpCV1dXVhZWUG1WmUMjNVqZT84jUbDmkmUnKXTaV7UyI5CoVBwSyWZ3NLKicViuz47NpuN1aE/jkHXTKKJMpkMpVIJGo2GKzSUHJKtCOFAKElta2vjShJp/Jw6dQperxdGoxGhUAhOpxNarZZbkNRq+/Ef/3E2e11bW8OdO3fYdb61tRUSiQStra0ol8vMVCMzU5vNBoPBwBYvZA1SKBQQj8dhMplw/PhxBAIBVCoVdrm32+0wGAxIJBLbEqFqtQqXy4VoNAq/349qtYqenh6ms3u9XiYl0PsvVDUnTRtifgmr9cDO7e/aVptQpVr4/te2m+rNN/uBFNBcQjIM1HqsrUST7AQAxrrt1EI7CFyDNntUgbwXRORBxz+JNtkf//EfY2hoiLPkc+fO4bXXXuPfV6tV/OZv/iar3j755JO4c+fOD3DEDyZ2aw/9UwqxWIyTJ08ikUjA6XR+yFeIolwuY2Zmhq0jancju5Vs5+fnIZPJMD8/v+3n1Wp1m8rtzMwMJwikLC2U/6cWT+05iJZPNGkaP/1bWCInWr1YLEapVEI4HGbA7Y/8yI/g7t27vGuORqMssKfT6TA6OopIJIKpqSmEw2HE43HWRtHr9Whvb4dGo4HP58PU1BSrcHs8HrS2tuKpp57C3Nwc5HI5JicnkclkcPv2bZw+fRqRSARarZa1iIxGI06cOAGpVIpTp07B5/Mhn8/jiSeegFKpRDabxczMDG7evMmEg5WVFbS2tmJpaYmBwtFoFOvr62w3QhWNbDYLt9uNYrHIO3G6H9lslnEPCoWCbTBqn5vW1taPbVtaIpEgn89v0zUSCg3mcjkEAgFEIhF4PB7k83kGyROgl0QWi8UiG9YePXoUGxsbaGlp4QqEVCpFPp9HX18fTp8+jRMnTuDMmTOYnZ2FQqHAysoKbt26BbVajcXFRcjlcqRSKeRyOUxMTPD/0zgdDgd7pNFzEwwGoVKp0NPTA7VajYaGBrz99ttIJBIsUSCsiBCmpauri8HTRKWnBJAqGyQzAYD/7fF4WHaA5gOqDlN7UQiMpkocVXwpkaitbtDvJBLJNhHV2koxzTc7zVe7BV1TQ0MDzyW1iRsdj3BX1LokRp6wwn0vCMFegpJpEkjdS2Xo4xL3VRnaj5ji1772tf0eHgDwyiuvQCKRoKurCwDwjW98A1/5ylcwNjaGwcFB/M7v/A5++7d/G3/xF3+Bnp4e/H//3/+HS5cusVLvXuNhrwwR4Jeokj+ouBcIbj+Vodoqy/2Mgx7b+fl5nDhxgis5MzMzTHvu7+/f03VQa4csH44fPw6pVMp/I9yhJRIJVhhubm7eBlSkCYbovqSVQ9cZi8UYOCmRSHjHR15ZVAUplUoYGRlhp3q73Y5Lly5BLBajq6sLbrebqfMWiwXVapV1hgirMTExgUAggHw+j0ceeQRms5lL84Q3Wl5eRjgcRrVaZQZSOp3GqVOnMDs7i0gkwhWptbU1SKVSOJ1OqFQqrK6usrO5w+FAJpNBLBaDSqWCTrflv6bVavHuu+9CoVBgdXUV1WqVXc2XlpbQ1NSEpaUllEol6PVbDt+kJUOKybFYDEqlcpsQHABmXclkMjaPDQaD28QOge8n0Xttrz7ModVqGVs1NzfHtHNh8tjU1IRAIMBUe5JnoKqb2WwGAPbWIu2jVCrFbvQA0NHRgcHBQbzzzjt45JFH8NZbb8HlcmFhYQFyuRz/7J/9M6RSKcagZTIZNtElzSFSrS4Wizh37hwuXrwIi8UCvV4Ps9kMh8OBy5cvs+8gGQwTQ7ejowMGg2GbWnI6nYZarcbGxgYnVmfOnOH3bnJyEh0dHWhoaIBOp4Pb7UY6nYZGo9lWiaWKE1m5AODqzr0qJruBhwnfRMrsVEUi+jyB3guFAtrb2+sKgNar4AjnGeG9IMwPUfuFUgL7oenTz2oVsncjhDwMRKDDrAzdVzL01FNP7e3gIhHefffdfQ9qpzCZTPjKV76CX/zFX0RTUxO+9KUv4ctf/jIAsPnj7/zO7+CLX/zino/5sCdDB0kcDvM892IP7CcZEmr80KS13xeqWq3i1q1bkEqlUCqVGBgYALBVGSIJ/b0qDdPEQgwtYngJzyUEYtLxaWcl3KUK/12PyUGfp0Wf/p92yaRRsrGxgXQ6jXK5jHQ6jUqlguXlZTz33HMwGo344IMPcPbsWXa0r1arWFpaYpXeu3fvYnx8HCqVCn19fTw5i8Vi+P1+KBQK3LlzByqVCqdOnYLRaMTf//3fw+l04s6dOzh79iyuXr2Kzs5OXLt2jZOP7u5uZLNZFpsrFosYHR2FyWRCW1sb5HI5axktLi7CaDQik8nA4/GgWCyisbERHo8HbW1tWF9fh0QigcfjgUKh4CqR3+/nagZV2u6VyMhkMgYaC0UVH/ZkiNoXtOHZKUhx22AwQCwWbwMcU1sK2PI5E94Dq9UKqVTKSVM6neb/1+l0+MxnPoMrV65Ao9Ew64685BoaGnD27Fncvn2b2zNUCVlfX8eTTz6JWCyG69evQ6FQsAI6VSSkUinu3LmD1tZW9Pf3c2Lg9/tx4sQJpFIpzM7OMnaNEv/XX3+dmY1SqRQdHR0AsG1+8ng8uHv3LhvBEsZmeXkZVqsVLpeLvcU8Hg+am5u36fiQXIZQL+xeOj8U9fR+6s0DQvYWiYES+zOZTKKzs5PnynqMMuFcW8uYJfKARqPZZifS29u7LWnaT1Crja5tN1f6hyV+4MnQRx3lchl/8zd/g5//+Z/H2NgYlEolOjs7MTo6iuPHj/PnXnjhBRgMBnzjG9/Y8Vj5fH6bIFsikWBtjIcxGfqowuPxcIJCOh7Cl2qnnYAQOxMKhWC1WvdUGfJ6vdBqtUyb3c+DTCq2xGZ65JFHYDKZdj0X2WXs9hm1Ws3g4tq+fC3lVjh+KmXX0vRrsQbCaxRiGRKJBAKBABwOB7faNjY2eNddLpcRCATQ39+Pjo4Opjh7vV7odDpmh4yMjECn2/JbGx0dZf8vqVTKAm+rq6twOBxYXFxkkOzQ0BA6OzuRyWTwxhtv4Ny5c/jWt76Fc+fOIRaLYWBgAK+88gq6u7uhUqlgNBphs9kQj8dx7do1uN1u5HI5dHd38+9u3rzJStKkCZPL5Vi1eX19HUNDQ1haWkIul2NgORmeCrEtwIff270EtVq0Wu1DSa3fS+h0Om59UcJDiQm1KKhSWS9MJhOsViui0SiSySQfQ6FQoL+/HxqNBlqtFm63G4ODg6zcLRaL8fTTT2Nzc5MrcIlEAkeOHGGlYofDgR/90R9FMBhkxllDQwPS6TSOHz8Oj8eD+fl5mM1mFt8knAlVZTKZDBQKBRwOB79LhDFSqVSsGk4gcoVCge7ubty+fRsikYjVwIlKL5VKUS6XOWki7zBKrJPJJL+HhMGppdfXRu0cUkuVp3ec5oFaUUGRSMTjiMfjmJ+fh8lkYmZkbeJRb66l+ZmU9umY1CYkbN5eyCm7zeVCEcePA+uZrGcemmTo8uXL+F//639heXkZf/M3fwOn04m//Mu/RHt7Ox577LH7Pu7U1BTOnTuHXC4HrVaLb33rW/jUpz6Fq1ev4tFHH+UHgOKXf/mXsba2hjfeeGPHY/7mb/4mfuu3futDP5+dnd1WDXiYo1rdMkYkl/HDCFKKpRYOlWCr1SqzluqFUNODKj17rWDt9zpoV0U7OhLnk8lksFqtdf8mFAqx6JzFYqn7mXQ6jXw+z5YPVK0iCwIqfVOLgXbkpVKJwauBQABtbW2QyWTb7p1KpbrnNZIuTrlcZosMEhckELZCoYBYvGXbQHo/KpUKuVyOTVqVSiVyuRwaGxsRi8X4n+bmZk4qrFYrQqEQ5HI5VldXkc1m0dLSwmBtvV6PmzdvoqmpCZFIBMeOHUMgEEC5XEYqlYLFYmGfr76+PoyOjvKCSTtrUlUmMLTZbIZcLkexWOQWG32O8Ce5XI4XvFQqBbPZzPiLXC4HkUjEDvJ7rfCQWrBSqWSg98cxlEol318AzOyiZ00sFnNCRBgzCsLZAGAWValUgsFggMFgYOxWPp9nEHu1WmU/tNXVVf5bp9OJWCwGhUKBYDCIlpYW9Pf3o7GxEZFIhFvBx44dA7DFmLp79y5cLhd7xhGmpauri33uWltbkc/nIRaLIZPJ4PP52Ex4fn4eLpeL26W0cSWxQFLUpuSZAOH0bphMJq6kEZicMEekE0T08J3mo9o5JJPJcOWNPP8IME6aR+T/V61u+eeZTCbWeKIKqM1mY4FNUlGvDZrzaGxmsxkikYjHCYATfUrUdpuvge/P2Xv57MMe8XgcfX19D0cy9J3vfAc/+7M/iy984Qv4y7/8S9y9excdHR34+te/ju9+97t49dVX7/vYhUIB6+vriMVi+M53voP/83/+Dy5evIhYLIZHH32URbgofumXfglutxuvv/76jsf8x1AZOqiE+W5RT7Rrt0XkfipDex1DPcYEtY58Ph+Gh4e5onKvqo/wM7XHj8fjyGQyiEajkMvlnHhQ+4l0QiKRCPR6Pex2O5aWltDd3c0gZIlEAoPBgN7e3l3vXb3xlEoljI+Pc6VEp9NhZWUFDocD0WiUKe1utxtPP/004zyuXLmCI0eOsMnn7du38eijjzIwNBqNoqWlBWtrayz0ZrPZmFlEyZJIJMKdO3fQ39+PlZUVWCwW3Lx5k0UMzWYzpqamkM/nYbPZ4PF4YLfbYTKZoFQqWUXa6/UiGAyyUnU6nYZOp0NTUxN8Ph+am5tRKpUwNjbGQFW73c4ebQDYNJZ0lnK5HBQKBQqFAidLhUJhT1Uiqgyp1eptycQ/hqAFmOLIkSPI5/OIRCLsPUfJDSlcFwoFGAwGZgjK5XJuMVBb1mKxoK2tDU6nkxlktCGIRCJYXl7G+fPncfXqVTz33HPo6uqCVqtFMpnE8vIypFIp9Ho9nnrqKUxOTkKj0eDSpUtobm5GNBqF2WzGuXPnAHy/fez1elm/h2xqCMNHSuO04PX09LDqs8/nw8mTJ7nN7XA4kE6n4ff7YbVaWRCR3uNEIoHR0VHGwTkcDnR2dnJ1hxIPallTUBWXqrAAdq2gCKtBwuo3VZTj8TisVitkMhnrnNHzX8v8IhxfKpWC3W7fsX0vvJ+1c07t54RVrY/rBoHioaoMHT9+HL/6q7+Kn/u5n2PNio6ODoyPj+OTn/wkfD7fgQYojGeeeQadnZ348pe/fN9tsto4CGboo8Lz1MZhgNcOGwBHmCGr1cqL4P0edzda/GG8yLXHFyZ0NDET40KtVmN2dhbAFoC1UCigVCqxQrNWq8X6+jp8Ph+6uroYTyOk9QqfD1KzjkajfB5iUhEoOxaLwWQyIRKJMJbigw8+YADmsWPHMD8/z8DXI0eO4N1338WRI0fY8JSqUtXqljowafa4XC5mZlGSNTc3BwBYWVnB6dOnoVarEY1GEQgEWMSOdvCJRAJmsxkrKyusWExVpenpaSSTW1YZDQ0NMBgMCIfDaGtr4+ob7cx9Ph8GBwdZRDKVSkGhUKBYLLLKNFleyGQypguTsGCttcVu8bAqUO8nqDKxU2i1WshkMmQyGeTzeW6Nklnv6uoqe2k99thjGB8fR6VSgcVigdPpxI0bN7gC4XK54HA44HK5IJPJcOTIEfT39+Pb3/42pFIpbt26hU984hNQKpVobW2F1WpFU1MTrl69yurR6XQaTqcT3/3ud1mNvKuri0HDGo0GYrEYPp8P3d3dSKfT7Dt36dIl2Gw22O12hEIh3pwQrsdgMGBmZoZb0wTYp+eFsDSkwzQ/P4/Gxkbe+NC8R9imWuIDgZKF764QsCzUBNtpHiG6PYGRCS9FKtxULTIYDCwySd8j4YuIOUj/LSRZ1Dv/TiH8HN2fB7GR/kHEQ0Wtn5ubw4ULFz70c6JAHmZUq1Xk83m0t7ejsbERb731Fv+uUCjg4sWLOH/+/KGec7fY3NyEVCq9pzfZYcd+hAt3ip2olQel8u+XslkqlXDr1q1tpf2dRLqoFC7cye0WQnaEMHaiyda7n/Pz8yiVSlzGr1arbEBJNN22tjb09/djdXUVgUCAfcxGRkYgFovZkZpwA0JRtFQqheXlZdYKWl5ehlarZRo60ceHhoYQDAYRi8WgVqtZQZuA0+fPn8fKygra29vZW2pwcBDf+973sLy8DJVKhf7+flSrW8KEZJ6az+fhcrkwPz/PVQSVSoXOzk5YLBZmJA0NDTGbzGAwoK+vD36/HwsLC5iZmcHi4iLS6TSsViu0Wi070Q8ODmJ1dRXxeBwOhwNmsxm5XA4Wi4UNSMkGhVoe5NtGHlwKhQJHjx5lkC4xp/4pxW6JEACuBBLIme6lWq1GqVTiKkm1WsXq6iqUSiUKhQIikQjm5ubQ3t7ObDKpVIpcLoelpSX09vZiaGgIo6Oj6O3txfT0NJ544glEo1H2l5ubm8P8/DysVitMJhN8Ph+y2SzGxsYgkUggkUjw2c9+FoODgwDA/mEjIyMYHBxEpVJBZ2cnnE4nb0aKxSLS6TRjiijxL5fLiMVizDJubGzkdYFsJShp0Ov1WFhYQD6fx9WrVzExMcGJOgHSSaiQsDgk/EibltnZWW7JCYOqjiRzQLIXZIrsdDrh8Xi4mkRzDI2RvA2J8k/vJM1JNEfp9Xo0Nzdvq0rVnr92nqyd93Q6HcsVkCTDwy6A+IOIAydDBMasjQ8++IBZAPcT//7f/3tcvnwZq6urmJqawm/8xm/g/fffxxe+8AWIRCJ86Utfwn/7b/8NL730Eqanp/ELv/ALUKvV+Omf/umDXM6+gmwahLilH2TstPjXi50SjtoEb7dj1kuc9qs2OjY2BrlcjrGxMf7ZvZK9nRKu2rHu9Lmdji+8dvpbh8MBuVyOjo4ONDc3w+FwbKP7Cs8r1DaiCXFjYwMajYZFFMkBW6vV8qLf1dUFk8mEzs5ODA0N8TGLxSKuXLkCpVIJv9/PPmUffPABf4ZK6leuXEFHRwfvPHt6evDd734XuVwOa2trnIAQziQYDEKj0aBSqcDtdqO3txfA1iaGsA0EKM/lckin0ygWiwxYLRQKCAaD8Hq92NjYwNjYGNOdm5ubkclk0N/fj4mJCcZL0M6b8FiVSgWhUIgTLpFIxO0So9HIrTGxWIzJyUluyQllD/6pR21FmmQWCBgtl8thtVq59aNUKlGpVLZhXcLhMObm5tDU1MRiiEtLS6w2/PLLLyOdTmNxcZHVyG/cuAGpVIpgMIh4PI5AIMBCnP9/e+8dHtd53fl/p/eKAaZh0AtBggBBUqRYVClRkiVFkp3i5LEsl+SJZEu2rHVLlF3Lu3HdrC2vHTtOsirZjaNsbMmy17YkSmIRu9ghovcyDQNMwfR2f3/w974egAAJkgMCIM7nefhImLlz573v3Llz7nnP+X6ZcW9fXx/PtKxZs4Z3d8ViMb6kzjogWca3sbGRq55rtVpYLBaEQiFeDsFsYiQSCWw2GzweD+LxOPr7++H1ennGkN0s1dfX8+W50tJSHlQmk0n09PTg8OHDPDMjlUrh9Xohk8l4EwM7V1ljBMsAMVVs1qJfeJ1hWSCmPzb7GsmyR0yqg3X4sWz07Nb2ua5Xc1l8sOsQywQVahOxZeloNHpDLI8tBtccDP3lX/4lPv/5z+PYsWMQiS54x/zrv/4rvvjFL+Izn/nMVe/X5/Ph0UcfRWNjI3bt2oVjx47hjTfewN133w0A+PKXv4ynn34an/nMZ7B582aMj4/jrbfeuq4RLxPvWkoFzkIulZWZHSjMFxDMDvAutc+5MmMLyVoVjqWtrQ3pdHrGcuflxj6XFP1cF4G5tguFQhgdHb3IxiEcDkOj0XB9G+bpZDAY0NTUxC88hbL+7LVMV0Sn06GhoYG/L2slj0aj8Pl8vP4nl8vh9OnT0Ov1EIvFkEqlWLNmDSorK6HX69HY2Mi1dex2O9rb2wFc0EGZnJxESUkJxsfHEYvFeJ2FSCTCkSNH0N/fD5/Px9vaZTIZqqursWXLFpw8eRKDg4M4dOgQL17VaDRwOBz87jsQCGBwcBCRSARerxeZTIZ7nTGdmZGREUxOTqKzs5PbGrClCaPRCJVKBbPZDJPJxOuqkskkRkZGcP78eXg8Hr48xgrXgQtZQtYGzZZ6stkspqamEI/H0dvbC+DSjvGrjXw+f5GEBNMfYpmV0dFRXvAvl8tRUlICiUSCsrIyXrPCpAyYs7zVakVFRQVOnjwJkUiEzs5OABe6mg4fPgyRSIRf//rXmJqa4hkVvV7PO6TY8oXb7UYymcThw4dhtVoxNDSEiooKABeKX4ELAU4gEMD4+Dii0ShcLhdMJhOkUilXxmZLO1ar9aIlnqNHj0Kj0fAAmy1XjY6OXpSdaWxs5OMUBAFWq5XX8AWDQVitVt4IwsQUWRF6oWChSCRCX18fv84xSxAWMLFrAAtamOt9Yd0iyyzncjm+DFwo2Hgp5rrpZK3xgiBc9NxKscRYSorSTfbss8/i+9//Pq+wVygU+OIXv4j/9t/+2zUPcLFZ7jpDC4HVprACwrnqda626PpStUWFmj6sbmQhOkNXOpbLbT+X0zNwcUEhk+tnywfl5eXI5/NcqJPVBphMJm5REQ6HodPpZhRBstoBpmHCJPnr6uq4srRMJkMwGITT6cSJEyd4ULR582acOHGCBwG33XYbb7FnRdvMNoMtaaxfvx59fX1IpVLcPby3txc2mw3ZbBbT09Nwu92IxWLQarXIZDJIJpMoKytDf38/tmzZgqNHj8JsNuOdd96BTCZDIBDAxo0bsWvXLkQiEZw4cQLJZBKDg4NcWToajSKbzcLj8eCWW27hx8ECosrKSgwMDECtVvOi3ba2NoRCITidTl6bdP78eWQyGR5oMqsSADzzw+7omcEo6xwDMKNQ+GpgHXQruWZooTARSo1GA5FIhFQqBZ1OB5/PB5fLhbKyMpSXl0Mul0Mul3PV51QqxYOS+vp63HHHHZicnEQsFoPX60VzczP8fj86OjqgUqng9XqxZs0aWK1WKJVK3HHHHVAqlejt7YXf74dMJuNaOHK5HHfffTcikQhaW1vR19eHdDoNn8+HO+64g1ttMJ0itpzT1dXFv8vsxiEcDnNxxLGxMbjdbt7JtWbNGi5AKAgCvF4v/H4/bDYblEolrw9iYqystqe2thZnz56FzWbjc8eY68aOZYaAC9cYZg1UaN3B6pPsdvtF9UMajQYTExM8cGR1SIU3Vqwzk73fQuo756prutFZVjVDAPCNb3wDgUAAx48fx9GjRzExMbEiAqHlxkKXuWZvxzI0Ho9n3qzM1d4ZXCrTw1zVC5c8WMHfpY5h9lguV6d0ubEXrq9fSm6eFQMrFAqe+XK73dwDSaPR8LR6fX39DN2Q0dHRGRdJ4PfGh729vTAajejt7cWpU6cQCoWQTqdRX1+PsbEx1NXV8W4qt9uNuro67jPGrD+YO/jY2Bi/szOZTGhoaOA2M9FoFHV1dVCpVFi3bh1Xbma1ODt27EB9fT20Wi1qamrg8/m4JovVasVbb72FnTt3QqVS8eLR9vZ2qNVqOBwOeDwe2Gw29PT0YGhoiNeNTE9P46WXXoLZbOYCe0z8b+vWrZienuaFs/39/YhGo1ztmBWUs2LRbDbLu9RYZqKwBigWiyESiXBvrMvVylwOVtO1WpYFMpkM941iS5CsqwkAKisreQdVPB7H0NAQ8vk8FAoFP5+z2Sz6+vpgNBqRyWTQ2NjIs30GgwENDQ1obGyEwWBAWVkZqquruSmwQqFANptFKBRCWVkZr9np6+tDXV0d/H4/ampqYDab8eCDD0IsFsPpdPLWfKbKzoQKAaC8vJwvTzmdTv79Zj/4VquVC4v29PRAr9fjgw8+QDKZhFQqRTwe540OTLCR3eA0NTWhv7+fm8+q1Wp+c1W4BFWISCTibgAswCq83jAbDZ1Oh56eHtTX13NrlMJrKashYscpEol40FR4rVtoHebs/RFXRtHWd9RqNTZv3owtW7bwLx5xZSz0pJ+93UJql4pRdA383vuLFe6xIMXj8UAikaC3t/eyS3XAzBbS7u5uSCSSeQvR2dgBzBlozXVscwVQHo+HLxGw7JXD4UAul+MXU7bkxDpJ2DKUyWTiQouhUIhf8HO5HNra2rhbOqubYdomTITOYrFgdHQUNpsNJpMJra2tGBgYgF6vh8fjgdVqRTAYRF9fH7+z1Ol0PGUeCARgs9ng9Xq5dQK7EPf19cFisfCW/vr6esjlcjz22GMYHBxES0sLOjo6sH37dvj9fjz88MPYsGEDIpEINmzYgFQqhUgkgsbGRnR2dkIikSCdTiMWi0GpVGJwcBAA8Ktf/Qo1NTVwu92QyWRIp9PIZDIoLS2F1Wrl3XdTU1NIp9M4ePAgOjo6AABVVVXcbDSbzfKW47k+T1ZQCmBeMUFifgqlB4LBINLpNJLJJAwGA+rq6jAyMoLy8nLeyTg+Po5kMomtW7eisrISSqUSYrGYCxuqVCrI5XKUlZWhsbERmUwGFouFyxXceuutmJ6e5uatrGX83LlzqK2thdfrhcVi4d9HuVyOpqYmmM1m3jnFlqscDgdvr5/P94oVDnd1daGxsRE6nQ46nQ7nz59HJBJBd3c3tm/fDqVSicbGRjQ3N8PpdKKyshIqlWqGHAtwQfNobGwMbW1tEIlEvLOMFSkXvu98dhXsuqDRaDA9PQ2Hw8H9DE+dOsUDuELmWnaf61q30BvZYl3jVyvL1pvserGclskW2jpe7Lb4K2E+769sNssvTkxVFZi5VDXXchc73vHxcTQ2NvKOrfl0hgpfP1ui/nJzMp8UQuH7sWCGZUtmvw9LyzPBT6Z2K5FIMDQ0hEAgAKVSiS1btvBjHh8f511hNTU1cLlcPM1+5swZ3HPPPdyQlC2fVVRU8GWH6elpXpPBapfcbjeqq6tx9OhRvrQXCASQzWaRyWSwYcMGTE5OQqPR4NSpUzxIue+++zA4OAiPx4Obb76ZZ8omJibwzjvvIBKJ8KUSm82Gt99+G+l0GpOTk2htbUUikYBCocDY2Biqq6sxOTmJiooKHDlyBHK5nC+VBgIBLkMglUqxdu1aTE5OYnh4mNe0MHf6xawBWu52HMWg0MqEwWpoNBoNFx90Op0oKytDWVkZIpEIJBIJz3gyQdLa2lrY7Xb85je/4QETE1dkRc+pVArHjx/nwVEikeAZFgDo7+/H5OQkFx9ct24dqqqqYLPZeGaHfUdZ4BGNRvmyNeuwYu35rKaH1ZCNj49zfTFWqxMOh/HBBx9AJBJxDzLWWs/EPdm1pXC5TSQS8c6xUCgEm80Gn8+HXC4Hl8vFjaEB8GW/wvZ3APymhX3fWeE0WyLTarX8s2C2IOx7wgK/2SUA87XtL8U1fzmz5HYcs73JmKkk60jp6emBRCLBpk2biupNthgsp2CIjWc560DM9v4q1NYotLIAZh4LS33rdLoZTspzfckvpTNUuG2hiS2rKbiSi0ehsBmrCVKr1Th16hTq6uq4+F/hsXd1dUGtVkMkEsHn82HNmjXI5/NcZ8jn8/Fgq3Buurq6eHeaXq/n9Q4mkwlqtRoul4vPbW1tLUZHRxGPxzE5OYloNIqGhgZugtrV1cUD0omJCYyOjkImk8HlcuH999+Hw+GATqeD2WzGoUOHuACkx+OZUd+wceNGno2Ty+Vob29HMBhEbW0tbDYb3njjDaTTaYRCIdx2223o7OyEWq1GIBDgdU1tbW3o7e1FNBrF8PAwjEYj15+JxWLcrNPpdCKRSODs2bMQBIGP/0r0gq6WhUoxrBRm22+w5Uf2uWq1WqRSKVRVVcHr9fIlTaPRyNu6maeZWCxGbW0tV4iurq6GSHRB4ZhZp6xfvx4ymQx2ux3pdJp/J3K5HKamplBRUYH9+/ejqamJd0j19PQgn8+joaGBK0y3tbXxWia2/My+6+xx1i3Iggl2zXC73di4cSNCoRD2798PhUKB6upqrFmzBmKxGB0dHbye77bbbkNvb+8M/8NIJMLP/dl1OaxukAVV8XicZ3hY8AKAd51ZrVZEo1F+DCzj4/V6eSE6ex3rLGMGqoIgQKPRYHh4GJWVlTOW1gqvNezawbK9hdeo5fi7sFQseTBUyPe+9z3s27cPL7/8MkwmE4ALqdlPfvKTuOWWW/Cf/tN/uqYBLjbLLRhabncACzVwzWazvGiXbTc7o8ICF7bePh+FcwDMr6x6qczQQoLK2YXXzEBVr9fD7XZjw4YN6Ovr44Ef654aHR3lHThsqY8V/RYeW6HLNjsOp9PJ52JychJSqRRWq3XGuRcKhTA2NgafzwetVgur1Yp4PI6GhgbEYjHezVVVVYXp6Wl0dHSguroaoVAIfX19aG5uhk6nw5EjR7hFwdjYGFwuFwKBANRqNReWY4rFarUa8XgcUqkUlZWVSCaT2Lt3Lw/42LLVxMQEr++wWq3cKmR0dBSZTAbZbBYulwvAhR/tfD7Pj8Pj8XBtoevJjSC6OBudTsd/JAsfY8XzrLg+n89DJLpgl1NdXQ1BEJBMJqHX6+H1erF161a4XC4up6DX6xGNRlFdXY1UKgWLxYLq6mqIxWIolUpYrVauo5XP57nnmdFoRDqdhs1m4+3kAwMDfFm4ubkZYrEY27dvRzKZRDab5UHQxMQEtwHp7e2FQqGARCLhGZkjR47AZrNBJpPhxIkTAC58Rx555BFUVlZyUdTz589j69atAMCvAY2Njejp6eGCpSxImX1NmavbdvYSFnscAM8uaTQaeL1e5HI53vXGPpvZ+y+sJ2IyE0wPab5r/VzNIcvhd2G5sKyCIafTibfeeosLajE++OAD7N69+7oLEl4pyy0YWm4UZl/mCmLmygwV6mWwuxmtVjsjqJp95zPfl/xqLwZXkhkqDKCAC5nOxsZGdHd3c8XmpqYm5HI5vuTEvIeampr4nSXTIGJdIcwkNZ/P8xoIm83G73Rnd/+x8ahUKhw5cgQlJSXw+XxobW1FIBDgnknMzmLHjh2QSCSYnp5GOBzmnTxsfmUyGXw+H2pqalBbW4vDhw/z7BdrqWd38FNTUwgEAigrK4PJZMLbb7/Nl/b0ej00Gg0SiQQmJia4sWxjYyP3mxoZGeECdMynjnXfsR8aZgJ6vbkRgyEAFzndz84YsYJ/iUSCiooKHtgmk0l4PB7U19cDAG6++WbefRWJRFBXV4f+/n7U1NRgYmICZrOZK0ePjIzA6XRywUWv14vKykpeb7dhwwZMT08jn89jYmIC/f39KC8vR3V1NWpra5HL5XhgUlJSgqmpKRiNRmg0GoyPjyOVSiEYDHLLkIaGBq7p4/P5YDAYsG/fPmzcuHGGUCQTOGXGwIFAALW1tTCZTBdls4G5nefn6uRi7epsPtm5zJo1urq6eEeY3W5f0DWK1V2yjN2luteW283xcmNZdZNFIhFuAlmI3+9fsAoxsXxh+huziw4Z8wmCFWaHWNt6oSYT87Ji6/DzCSgyxVRGV1fXgmo/5iu6vlQRJMtE3Xrrrchms6iqqkIqlUJDQwOACz8qGzdu5BpCTFJgevqCG3g4HMa+ffswMjKCeDyOiYkJXtPAAkLg9/pUEomELx+yJYNoNMpd4N1uNxobG3H27FlEo1Hk83mcOXMGiUSCFz1PTU2hs7MT2WyWm5vGYjGEw2GMjIzA5XKhpKQEMpkMTU1NsNvtsFgssFqtCIfDsFqtXH2XGcXG43FUV1djfHwcGo0G69atw4YNG2Cz2dDY2IhAIIB8Po+hoSEIgoCzZ89yoTq/388LoJnZ7OTkJDKZDG+zJooDq71hIpSFgRCTKxCJRFAqlQgGg6iqquLn4dq1a6HX6/Enf/IncLlc3HiVZRjXr18PtVoNtVrNC+V9Ph8ikQjOnTvHi5HLy8u5COldd92FY8eOwWq1QiqVoqysjLvRy+XyGT/q7LrS0NDAa3AaGxuhUCjQ0tKC0dFRnlGWSCSIx+Noa2tDJBLBhz/8YS6GyDR8mGGyVqvlEi+9vb289sjlciEajfLv/uwmFNadxrrAGCy4Z9ldn8+HZDLJ/f+YD5/NZuPzfrnfPZFIBLPZjHw+zxWvo9EoYrHYggViieJzzcHQI488gk9+8pP4+c9/jrGxMYyNjeHnP/85Pv3pT+PDH/5wMcZILCGF7fOXY3YAU9jqPpu5Aqa5nmeZCabpYzQaryjbONdFb/YFi7XOF2oKsbtMJt3P8Hg8yGQyUCgU3HePZbiOHTsGk8nECzBtNhuvZSqU1GfvFwqFeI1E4TENDAxweX63243a2lpks1kcOnSIZ11YHUJnZyc6OjrwxhtvIBwOo7a2lhtzlpeX86UsvV4PpVKJRCKBvXv3cu0ev98PuVyOkZER1NbWch+ozs5OWK1W+P1+XjRtMpkQiUR4wXhh/UUoFEI4HEY2m+X1EWKxGAqFAmq1GrFYDNls9obLziwl+XweJSUlXEyxELlcDovFwr3cMpkMQqEQgsEgwuEwjEYjnE4npFIpfD4fFAoF2tvbUVdXh82bN6OkpARbt25Fa2srGhsbMTExgdLSUu4/6PV68fDDD0OlUuGmm27i/nm33347jh8/zgMio9EItVrNv0NarZbr+ZSXl8Pr9XKjV5ZVYZ2T3d3dyOVycLvdEIvF6O3tRV1dHWQyGcRiMRwOB4LBIDdZFokuWHYolUpe+MwMVgt9uVhQVnjd0el0M1r3mRArO79ZtkupVEKpVPK6PAC8bqnQ9mJ2F1o4HJ5h65FMJmE0GhGLxWA0GpHP5/nSNbE0XPMyWTwexxe/+EW88MILvCtEKpXi05/+NP77f//vF2mzLDdomWxuZi9jXW45i2UKWFfK5VKWl6tFmis9vBBxycvtZ646o2AwiOHhYZSWlsLpdEKv1yOTyeDgwYPYuXMnZDIZf53NZuP1PJs2beLLYG63G6WlpTh06BBaW1u5bonVauV1R6wLLJ/Pc+dspVLJCy/Zj4NMJsPBgwfR2trK7+rPnz8PiUSCqakpZDIZtLS08Bbn/fv3Q6PRoKGhgTcvBAIB3HXXXbzNn9UpvP7661CpVLBarVzgMBgM8q4bk8nEOwbPnj0Lk8mEDRs2IBgMYnBwkGcb2F0266Kpra3lP7RsCY5Zf7BljmvVDLpabtRlMo1Gg1wux9XK2bKZwWCAwWCAWCyGz+fjVicSiQRWqxVlZWWYnp6GXq/HrbfeCrlczp3lbTYbVw1fs2YNampqcPLkSZjNZvh8PkxNTSESiWDjxo28IH9oaIjLJqhUKlRUVMzQLGK1Q42Njdw3TKPR4PTp02hoaEAoFILf7+f6V5FIBP39/airq+PCn8lkkru2s5sWpmDNmgO0Wi2MRiOvpRIEgQcqwKW7dWdf71hTBNsPC4hEIhFsNtu8hqnA741QWdaXlQuwukTmPcg6RC91XSUuzbKqGWLEYjH09/dDEATU1dUt+yCIQcHQ3MwuQL5cQTIrlGXZlNmFicC1Oc3PNbb56oguFWhFIhGuDsuyQMy7S6lUYu3atRCJROjo6EA6neZdWuFwmBdJAxcueGNjY2hoaODHW1hfwObpwIEDaGho4N0+TMiOBWYTExP8YhiJRLBp0yYMDw/D5/OhtLQU6XSaK1R7vV5UVVXB4XDg6NGjaGlp4UtTo6OjfCnzzJkzUCgUWLt2LQDg3LlzmJ6e5grDHo8HlZWVMJlMGBoagkqlgslk4kKNTF5g27Zt6OnpQVVVFT744AN4vV6EQiFUVVVBJpOht7cXHo+HX/htNhsXX2Tiefl8HufPn+e6N0vBjRoMARduPAXh9ya3UqkU09PTKCsr49mYqakpfi45nU4oFAqEQiEoFAo0NTVh/fr1mJychN/vR1tbGyQSCXK5HDfdTaVSGBoaQl1dHZdDSKfTMJlMyGQyWLt2LcbHx5HL5ZBMJrnIJRMdlEqlkMvlfN+xWIzXDo2Pj0OpVGJsbAxyuRxWqxWxWAwOhwOnTp2CTqdDWVkZ99aTSCSw2+28bo558bGaPpbBkUqlF7m8A/OrNLNrSigUgtFoxNTUFHw+HwThgr8Zu6FgS9uFry0MpFjGmWWy4/E4z/qwDHdha/1ysXJaqSyrmiGGRqNBS0sLWltbV0wgtBq4nLrzfMyVRr6c8Nd89UPT09Po7e3ld3KX43JK3EzgjNX9zPbymcszrfC42BcnEolwwcWysjLevQJcqJViBcEsBc6ELW02G06dOsXv8NgFUKvVclFBu92OsbEx1NTUoLu7GzabDXa7HZ2dndBqtVxVN5/Pw2w2c42TkZERRKNRKBQKXmzMlghaWlogkUgwMDAAq9WKZDIJnU7H9Ut6enowOTnJ1Zt7e3sRCASQSCT4XEgkEpjNZgSDQfT09MBsNsNsNsNiscDtdiOdTiOXy2HDhg0YHByESqXC2bNn4XQ6uWs4yxApFAr+Y8yUx1nRdywW4ybLSxkIAYBKpVrS918sRCIRstksFzlkyOVyvgwqEolQU1MDlUqFrVu3oq6uDg0NDSgtLeXyC6yLcM2aNZBKpaioqEBZWRlyuRw6Ojpw/PhxRCIRDAwM8NqzrVu3wmw2o6WlBWvXrsXNN9/MzYdzuRzWr1+PfD6PpqYmdHR0wGaz8cJ+FjiPjY3BZrNxCxn2XWLfaSZDEYvFuJ1NNBpFd3c3V3Vm9W/ZbJaLHDIJgdk/jrOvK4V/syUuNhbWFMKWuQ0GA1wuFxd4ZK8rzDxHo1EegE5PT8Nut/N6ovLy8hk3icTyoyjBUCgUwv/4H/8Df/7nf46/+Iu/wPe+970F//ARi8ulAoNLUazCPXbhYFovC4FlWApF5AqJRqMwGo08w8NS2AymyG232y8KqkSiC5L3rK6FFaEy8bNwOIyxsTHo9XrU1dXBYDDwiyO7gJ88eRIbNmzgmiMsQGTO11KplC8tssJP1gXmcDjg9/sxPj7Ohe8mJib4xZ7VaCUSCej1epSWlqK0tBQbN25Ee3s7AoEAr99SKBTQarVQq9Xwer3Q6XSYmJjg+khWq5U7e7OlP4VCgampKa6ezUQWc7kcxsbGkMvl0NDQgLKyMqjVagwODmJychITExPcAiSbzWJ4eBjT09OwWCwoKyvjFiJerxfBYBAej2fRBRUXglgsRk1NzQ35I8Q6BkUiEbxeL1KpFGKxGJLJJOLxOM9C5PN5tLa2Qi6Xo6amBjabDS0tLdi6dStisRja29vh9/tRUlKCeDyO4eFhXoyfyWR4HZxYLEYymeRLbrfeeitEIhFCoRCGh4dx9OhRxGIx6PV6+P1+OBwOjIyMYPPmzXj//feRzWah0Wh4W77f7+e6PlqtFjKZDKdOnQJwofzCarUil8uhrq4OwWAQQ0ND3KV+fHwctbW16O/vh0gkgsfjgclk4mKmhcvi7GaQSQCw4KfQeZ7VCfl8PrjdbpjNZgDgAVlh9oddS9l3mF03WM0c8PsCdpfLxa8zxPLmmoOhEydOoLa2Ft///vd5e+73v/991NbW8hObuHoulyW5HAux6ljI+yzUKmQ2IpEIa9asgVqtnpF5uRJmj60wS1X4/2w7keiCd1AsFpsx5sIlO5a50Wg03J9sfHwc09PT3OeNLTuwOp7Tp09zB/fx8XGu5Mt+cMLhMF+CyOfz3MGdXYgbGhowPj6OTCbDL65svB6PB+FwGCqVCl1dXfyO1O/3Y/Pmzbzdl4m2seU5FqywC7NCoYDFYuE/UseOHePLHCyTwNStdTodBgYGkEqlcO7cOV6cns/ncezYMUxOTsLr9XLFafZDKAgCPB4PEokE96Ni9gx+v5/XeRCLCwtKMpkMz1yyec9kMohGo7ywmp3Po6OjUKlUKCkpgc1mg0qlwuTkJEpKShAKhVBSUgKPx4Nf/epXkMvlvNWcKU9PTEzwjs5Tp05hYmICb775Jn7+858jlUqhs7OTNxeMj49j/fr1PJA+deoUBgYGIBaLceTIEYjFYpw/fx7l5eUoLS3lWdqBgQHU19djYGAAdrsd586d46/zer3QaDRQq9XYu3cvRCIR3y6Xy8FqtaK3txfBYBBTU1P4f//v//GuVa1Wy81T3W43rxkMh8O8mQH4fQcZs+hh24nFYrjdbt5SLwgCL0pn5sys4YMc4lce1xwMfeELX8Af/MEfYGhoCK+++ipee+01DA4O4oEHHsDTTz9dhCGubq42CGHMbmlf6PtcKgBZCIV3ZPONYb4AjOnasG3Y2CKRCFe4LUxLs+zO7GOYPebCFDxTf2ZS/0zThLmts0JHpqKbzWbR1taGkpIS3jIcDAYRCAR4tkgsFuPcuXPc8Z1ln1j9Alsuk0ql8Pv9MBqNKCkpwcTEBA+8mHKuWCzmJq7Hjx9HKBTiQcb69evhdrthtVpRWlo6o6ZIq9VidHQUHo8Hk5OTcLvdPEPj9/u5V9X69et5XcfExARvW1YoFDh+/Dh6enq4ErfH40E6ncb58+chl8sRCoWg1+sxNTWFiYkJvhTHMglLVSi92hAEAWq1mmf9SkpKuHyDRCKZ4QE3NTWFnp4eeDwe9Pf3w263c784i8UCmUyGe+65ByMjI+jo6EAkEkEwGJzhcM/qZUQiEY4cOQKlUomRkRH4/X7eev6hD30Ik5OTvCMxEAjgzjvv5AXVyWSSZ56i0ShuvvlmBINBHjCJRCKsXbsWhw4dQklJCXp7e2fUnlksFgiCgPb2dr4PpVIJvV4Pm82GPXv2wOv14vTp0zh79iwymQwPXNgymsfj4erR7PrENIzy+TxcLhdfFmaSF2wMhTdR/f39iMfjkEgk0Ov1/KaT2uFXJkXJDH3lK1/hWhfAhaK+L3/5y1wtlLh6rtZt/lrfZ3ZgcaVf8IUsz80X6LHghgkKFrbGxmIxrsfBaofYhYqlqdkxzKUjxJbVCmuACuUDWH0AK0QFLgR2Ho8HgiDwlmTWEcbS6U6nE93d3aitrcXU1BR0Oh0cDge0Wi2USiXOnDkDq9WKoaEhyGQynkUKBAKoqqrC0NAQysvLuX2BUqmExWLB22+/jfPnz+PQoUMYGxtDJBLB3r17MTk5idOnT8NsNqOiogJTU1PQaDQYGhpCNptFIpFAe3s7HA4HNBoNPx62hMIUo1mdR1dXF4aGhhCJRBCLxRAMBvlyh1arxfDwMFcNtlqtCIVCAMCX2pg563Lz/8rn8+jp6bkhi6eVSiWmpqYgCALKyspQWVkJs9mMuro6noktKyvDmjVrUFlZyc2FmfWF2WyGVCqFSCTiS1QsKA+Hw1w4c2pqChKJBEqlktcn1dfXo6+vD263G+FwGPX19bj33nthtVrR2tqKXC6HtWvXIhqN8vqZyclJ7lvGbDzUajV+/etfY2JiAufOnYNKpcLExAR0Oh3Onj3LDYz7+/thsVjQ29uLvXv3orS0FCLRBd+0VCqFsbExvP/++xgbG8OePXu4crbRaMTOnTt5h13h9cJgMHAfsbKyMuh0OjQ2NvIbGZYJKpT4iMViMBgMSCQSvCOTFWMv5KaTWL5c8yen1+sxMjJy0ePMsoC4Nq7XXcZcgcO1BGELWZ671HsUPsfGxjJGarUa+Xyea4BEo1HupM5c5+c7RqfTyVtl2cWrUB8kl8vxVntmZfDmm2/ydneRSIRTp05xGwqpVMo9jVpaWuD3+3krbSQSwfT0NMbHxyGRSHD48GFkMhm8+uqrSCQSeOedd2Cz2XgbPcsusQ6Z0dFRmM1mDAwMoLq6Gkqlktc7RSIRZDIZtLe3Y2xsDHa7nat+53I55HI5roi7adMmXjhbU1MDjUaDeDzOj7umpgZDQ0OQSqW884tptbC5VavVXEYgnU5fVJS81EXSl2Kp65aKBQtIAPAsRllZGcLhMG95Z3YUWq0WExMTSKfT3CdOp9PBZDLxpobh4WFusVFXV4eSkhKUl5ejsrKSB+QHDhyAUqlEJpPh+lbNzc2QSCTw+Xy8lV8QBNTW1kIqlSKVSmHTpk3QaDRcjJDZvTgcDi7t4HQ68e6770KhUODYsWO864y10EulUgwPD+PcuXNwOBzwer3o7u6GIAgYGRlBc3MzF1hkxzQ+Po7y8nKMjIzAYDCgqakJZrMZer2ed5CyAJA1UbhcLm6NwWoHgQuBtMPhuKiRRKvVoq6uDg6HAy6XiwqjbxCuubX+c5/7HF577TX83d/9HbZv3w6RSISDBw/iS1/6Ej7ykY/g+eefL9JQFwdqrS8OrCCyGO2iC/FDY1oirIWdeV/N95rLEQqF4PP5kE6nMTY2xt29RSIRNBoNzpw5g507d8Ln8/HiS51Oh/Lycn4BHR4eRiAQgMVi4TL7crkcg4OD/A7z3LlzvK7ogQceQCgUgsFgQHt7O9ra2niRaGNjI+RyOdxuN9xuN0pKSvDoo4/izJkz3PmdZZhYTZNKpUIgEOBibtFoFGq1GgaDAcPDw/wundlnZLNZ1NfX8wzYBx98AL1ez53MWXaAOduXlZXxwmuWETIYDJiYmLimz3uxuZFa69lyjEajgdls5mrIsVgMdrsdJSUlUKvV6OvrQzwe54rplZWVCAQCUCqVKC0thVKpRCqVwrp16yCTydDc3AytVov+/n5+3vT19cFsNiOVSsFms/Hi/IqKCi4JMTk5CZVKhZaWFsRiMQiCAKvVirVr1/LgxOfzQalUwmQy8a5JVns2MjKCN954A9u2beNLr62trfB6vTh79izee+89VFRUQCqVwuFwoK+vD0qlEn/yJ3/CXQ7cbjf++I//GIODg1zzaMeOHbz+j3WyzfYhLNRPW6ieWjEo5rVytVPM1nrp5Te5NH/3d38HkUiEj3/841xhVi6X44knnsC3v/3ta909cYMxX6BT2KI6Pj6OZDKJ8fFxbvpZCCuWZjDtkssZwF6KQsVrtVqNTCbD1Winp6dx++2388zS9PQ01/CZnp6GWq1Gb28vV9ZlhpC5XA7RaBSNjY3Q6/U4e/YsNmzYwB2r4/E4VCoVPB4PmpqaIAgCxsbGoFAoMDIygvLycnR3d0Mmk2F8fBxdXV04ceIElEol11JhrfisGJYtc9hsNpw7dw75fB4DAwOIx+Pw+/28Tkqr1fKGh1gsBp/Ph/LycgwPD6OsrIwvj01OTgIASkpKuE8dU+g2GAz8eWLxsVgs3Gg3kUhwx/lQKIR0Oo1sNouysjKMjo5CrVZzCYX77rsPg4OD3FUeuGAr0dLSgvHxcWzatAk9PT3QarUYGhriS8DNzc3cMoMpsbPW8WQyCbFYjNLSUqxbt46/Ti6X8+Ulm82G/v5+OBwOKBQKaDQaZLNZbucyPT3Ndaz6+vpQXl6OdDqN7u5u6HQ6nDt3DmVlZWhvb8ett94KiUQCi8XC66JGR0fx7rvvoqGhAW+//TZaW1vR3NwMu93ONe9YtpuZrrJaw+npaUgkEr78xZbF2N/E6qNooovxeHyG6CIrqFvuXElm6HIZi9UMu9uxWCzwer3zztF8xq+Foo5MwJGly+dymF6Iq/2lBB/ZMhvTI2FLWoUu2rPPh8L3FQQB3d3d3OzU6XQiFArB6XTOcK1mx9bZ2cmLjKuqqhAMBiGTyTA2NgaTyQSJRMLrIPbt24e2tjZe+Pzuu+/yHwqj0Yjh4WEuTqdQKDA+Pg65XI6Ghgae3Uomk2hsbMSBAwfgcDgwODiIRCKBoaEh/lq9Xs+DTmY+q1Qq+TLYxMQEstksbDYbfD4f74Jj2ktMlG65d47dCJkhJqoIgHfw6fV6SKVSrtTM/Lr0ej1yuRwSiQTa2tqg1WrR2NiI999/nzcssBqixsZG7jEnFot5QNTQ0IB0Oo0dO3ZwsUGmQcSW5aLRKEpLSyEIAhKJBCwWC+LxOEpLSyGTyZDL5WAwGHDmzBncfffdOHv2LJRKJbq6unj3plgsxtDQEHbt2gUAfD/Dw8NQqVT49a9/zX3Fdu7cCbfbjZtvvhk9PT0YGRmBx+NBNpvFxo0bUVdXx81n3W43otEoysrKuHcaE0adS7D1ehqiUmaoeCwLBepPfepTC9ruhRdeuJrdXzeuJBi6nIP7aoZ9wTOZDFdqnmuOFpIZAn4f4LCMTaHydaGKNMvezEWhIjQzg2SMjY1x3yaVSsULIucKvgr3x8bCNIJGRkb4OFl2hx0LyyJFo1EMDQ2ht7cXTqcTGzduhNvtRnt7O2/jNRgMqK6uht/vh8/n40t0w8PDGBoa4t1joVAIyWQSa9eu5UXL3d3d3AeMOcWzNnpm8cEc56PRKAYHB/mPHRPtGx0d5Z1C+XwewWCQzz3zgmIeZexHRSaTrYh6nBshGALAs46FsAJeu90OqVQKmUwGuVzOVZJNJhNaWlowNDQE4EKQIJfLkUqluCAgy+7V1dXBZDIhmUxCrVZjx44dGBgYgEgk4rYfLDBJJBK8oJpZgTD1ZplMBq/Xi9raWnR2dqK6uhoTExPQ6/U4ceIENmzYgBMnTkAsFmNkZITbhNx6661cfNFms2FgYAC7du3Cm2++Ca1Wi+rqajQ1NeG9995DWVkZ+vv7uVK2yWTiy9asXV4ikXCJC9YBWXijslR1PhQMFY9loUD90ksvYe/evVxnYb5/V8u3vvUt3HTTTVyO/eGHH0Z3d/eMbQRBwHPPPceL8m6//XacP3/+qt/zcixUs+d6c7Uq04uB3W6/5BzN12ZfmMoGMCO9PbvIurArjIkkznXsTJ15LgNEh8PBO7b6+vp4AHOpgvXCsTgcDm7GKpVKuRUGcGEJIpFIcO0fVrsgFoshEol4+69EIoHH40EymeQ+Xj6fjwu4lZWVoaSkBPX19XA6ndylu7a2lhepOhwONDQ0QCKRQKFQoKKiAgB43RLTTiktLcXmzZshl8tRW1uLyclJaDQaXv9RVlYGuVzOg8NcLsczTOzHJZ1OIxaL8WzbSgiEbiTmkiyIxWJQKpWYnJzk9WFMCFQsFuPWW29Fd3c3RCIRTCYT2traeOZeo9EgkUhgzZo10Ol0qKmpQSgUgkqlQl1dHUQiEUZGRpDP5zE5OQmlUolYLAa5XM67qmw2GzQaDfr6+uD3++H1ejE0NASFQoE9e/ZAq9Xi0KFDSKfT2LdvH7Zt24ahoSHU19djamoKuVwOfX196O3txcjICM8sZbNZbNmyBWKxGFu2bOE3A2xpcHp6Gg6HA01NTbwln10/WDG0TqfjzQ2sMYEtg1HBMzGbq84MfeYzn8Err7yCiooKfOpTn8LHPvYx3mZcDO6991589KMfxU033YRsNotnn30W7e3t6Ojo4Bo03/nOd/CNb3wDL730EhoaGvC3f/u3OHDgAF9zXgg3QgH1cshYzXW3c6Wp58v5nxXC9l3oGXapY59vyayzsxNisZin8pnR4+wxz3csszNdgiAgGAyir68PtbW1SCaTyGazPNBi4obMuiIWi/GCUbVaDZ/Ph9HRUdhsNuh0OrjdbjidTiSTSf6jk8lk8MADD2BiYgJjY2PYv38/F5lUKpVQKBQ4e/Ysd4svLy/nxrAA8MYbb8BisfAOHGYWm8vleDDEnlvOXWILhRXurvTM0Hyo1WrI5XIYjUY0NDTwup2mpiYolUpks1mEw2GUl5dj9+7dOHToEFccX79+PRcYPHXqFEpLSzE5OQm73Y54PI5MJoP+/n586EMf4l59Go0GqVQKVqsV3d3dOHv2LM8mGY1GKBQKTE5OYvPmzTh48CDviHQ4HBAEAQ0NDejv74der8epU6f4dePuu++Gy+Xi9W6NjY2IRCL44IMPkMlkIJFIcPPNN2NiYgKZTAZ2u51fa5LJJARB4MXZs5fVi+2PeC1QZqh4LIvM0I9//GN4PB585Stf4eu6f/zHf4w333yzKBedN954A5/4xCewbt06tLa24sUXX8TIyAhOnjwJ4MIJ/vzzz+PZZ5/Fhz/8YTQ3N+Pll19GPB7Hz372s2t+/2JxPbI2yyFjJQgC4vH4jM9+oYKRbI6YCzdbaircd6EXUOGFzel0LujYp6enZ2gUMRoaGuB2u9Ha2oqJiQne9VW4TT6fR1dXF99P4bii0SicTueMi5rP54PL5YLX6+Vdb6zw9O6774ZSqeSq3KwLjhU0M78xiUSC9957Dz6fD6FQCPX19UgkErjlllug0WgwNjaG06dP41e/+hXsdjtGRkagVCqRy+UwNTWFyclJXncxPDyM7u5uHD58GP/7f/9v/gPn9/uRzWbh9/shkUiQTCaRyWQQDAaX/AejWIjFYp7lWMnI5XLodDooFAqo1WougMiWf1nXXzqdnlGvaTQakUwmIZFIYDKZ8Oabb3KV6erqahgMBqxZswYTExO45ZZbYDabodPpMDU1xb+XGzZsQDqdRk9PD/L5PI4fP45sNsu979xuN5dyEIvF+OCDD2A0GrF3716+RMVc7wHg/Pnz0Gq1OH78ONauXct9+4LBIMRiMc6ePQuRSIQDBw6grKwMt912G5LJJLZs2YLp6Wn4/X6kUinE43HeNq9SqVBWVgYAF92wiEQirjO00s8DYvEoWgH18PAwXnrpJfzLv/wLMpkMOjo6eNV/Mejr60N9fT3a29vR3NyMgYEBbvnR1tbGt3vooYdgNBrx8ssvz7mfVCo1426X6UxMTk4uSmZofHycZ22u1o5iOXCpzIjH44FGo+FROnN0XugdWeEcsfT+7Boh9hiAObNHl8tCXa6YenR0FD6fD21tbUgkEjP2w3SCgsEg9/piSrNMGZv9HQ6H4Xa7EYlEYLPZEIvF0N/fz9t7WbGrSCRCT08PgsEgpFIpL2ouLS2Fw+HAuXPnuABic3Mzz268/vrrsNvtaG9vB3DhzohZnnR3d6OxsREjIyMIhULIZDJ86auvrw+BQICP0eFwIB6Pw2g0IpFIzPBmYxmm2cHtSkQsFmPjxo04derUslhGvlqYvlY2m4VcLofFYuFLPtPT05iamoLT6URVVRU0Gg3WrFmDQCDAM0bJZJI3JYhEIt4xuGHDBt7pxfzsxsfHceTIEZjNZlRVVUGv12NoaAh6vZ5rYgHgGZ5wOAypVIrW1lZ0dXXh1KlT0Ov1MJlMAMDr3xQKBYaGhuB0OnHq1Cns2LEDBw8exAMPPMC90QDA7/fD4/GgtbUVer0earWaZ11ZTVxhyzz7rl5JZnkpyefzmJiYQGlpKWWGrhFmIbMsWusZTDWYnbDFRBAEPPPMM9i5cyeam5sBAF6vFwBgtVpnbGu1WjE8PDzvvr71rW/h61//+kWPM4GyYiORSDA5OQmz2Qy/31/0/V8v4vE4RCIRpqamZtx5BgIBLvcfiUR4cebs1wWDwXk7DAvnKJFIIJFIQKVScUE11q3ChP5mP3+p8c1FoS4Oq4dgCs779+9HTU0NEokEP59TqRSmpqZgNpvR2dmJdDqNYDAIh8OBRCIBtVqNzs5OlJSUIBAIwOfz8aUCr9fL74pramowNTUFpVKJ3t5ebqdQUlKCVCrFLTVMJhOkUilKSkp4YazX64XP50NTUxPa29uxceNGLsrI2qmdTifv6GOeVaw9ftOmTYjFYhgdHeUGthaLBT6fj5t6SiQS2Gw2blGgUCi4+/lKRSQSoa6uDgBWfGAHXGgEkMvlUCgUyGQyMBgMvJaLKY1v2bIFsViM14PpdDpYLBaUlJRwvR1WZO92u/kSK6sVY7pEarWaBzJbtmzB2bNn8aEPfQjRaBQKhQLpdBoul4t/50dHRyEIAmpqaqBQKKBQKJDL5SCXy6FWq9HV1YXy8nKMjo7iQx/6EI4ePYpt27ZhYmICRqORe4fpdDpel6TX6/l3MR6Pw2Kx8GJudp2Zmpq65LVhucHU8lkHH3H1FNMQ/pqCoVQqhVdffRUvvPACj/B/9KMf4d577y3qh/zkk0/i3LlzOHjw4EXPzdVOfalU6F/91V/hmWee4X+zzFBpaemi1QwxFdaVzFyZl3w+zy9IKpUKMpmMq+Je6nVzca1zNN/7XO79WVu6xWLhSs/d3d3Ytm0bT/F3d3ejpqaGG8P+5je/wf3334+SkhJEIhH09vaioaGBG8RKpVKoVCreIeb1erlD+PT0NILBIGKxGMbHx9Ha2srrg06dOoWSkhIcPnyYawzdf//9yGQyUCqVCAaD8Hq9uPvuuzExMYGmpiYkEgn09/fDaDTi1KlTEIvFCAQCmJiY4NmdsrIyTE1NIZPJQKVS4ejRo6irq8Pbb78Ng8HA7SpkMhmkUikSiQRKSkqQz+e5GetKhAU/fX19/MdnJSOXy1FWVsb9xtLpNLfSYCas5eXl6O3txRe/+EW8+eabEIvFsFgsGBsbw44dO9DR0YGmpia8/vrrMBgMKCkp4fU2yWSS17HIZDIYjUbk83nEYjF4vV4uvNjY2AiJRIL+/n5uReH1euH3+1FXV8cV3oPBILesefPNN1FeXo6jR4/izjvvxMjICHbu3InDhw+jvr4e6XQagiBgy5Yt3AiWSQXU1dXB7/dj/fr18Pv9M2qFIpEINBrNss8GFcKU7SkzdO0wI+JiUJQC6k9+8pP42Mc+xtOcxeSpp57CL3/5Sxw4cADV1dX88atdJpvNUhRQX09Ni8WksHDbZrOhq6sLa9asmeFTt5hcTveJiRgy/RS2fDd7H0xvSKfTYf/+/TAajdyxmwVL2WwWN910E/bt2weFQoFkMsk7yFhqntUfsRZ14PddctFolC8nBAIBDAwM8DvYD33oQzy7tmfPHqhUKni9XlitVuj1epSVleH48eNIpVLc9sDtdsPlcqGrqwtms5m7yns8HvT09EAsFiMYDPKsmsPhgM/n4yKRHo+Ha62IRCLucK5SqbiRbOHS5EpmpbfWM+kHu90Op9PJPbrKysqQSqXQ2NiIQ4cOQavVYmxsDM3NzXA4HFi/fj1GRka4LlE2m8XWrVvx/vvvo6Kignt/1dTUwO/3Q6fTIRAI4J577uEiiKz4n/l6NTQ0QK1Wc9kHJufAtKesVit8Ph80Gg3efPNNABeC0XXr1iEQCKChoQEajQbV1dUQBAHpdJovk1ssFh5Mtbe3IxAIYP369RAEAS6Xi2fC5tMcWynXUiqgLh7LQmdILBajoqICbW1tlzwJX3311asamCAIeOqpp/Daa69h3759XEyr8HmHw4EvfOEL+PKXvwwASKfTKCsrw3e+8x385V/+5YLeZymCoZWytn05CoMRANf9C365LjrW1s4Umgtrmea7gOZyOfT09HARwrGxMWi1WmzevJkvPR08eBBVVVXcKJMVcjNzWmZsyQQKPR4P6uvrMTY2hlgsxuuLzpw5g9raWpw9exYVFRXQarU4ceIEXC4XF4BknmNvvPEGF8ljLuJdXV38R2ZgYACbNm3CyZMn4fP5EIvFkM/nucquWCxGNpvF4OAgBgcH+XK22WxGLpfjuixKpZJnCQqXjVeKptBcrORgSC6X88/BaDTyLkCTyYRcLgeXywW/34/q6moMDAygtLQUkUgE9913HyQSCdasWYPBwUEcPnyYu9Sz5dyJiQl+/lutVq49lMlk0NbWhlQqhQ0bNiAYDCKbzUKlUkGv18Nut2NgYADABRXolpYWLjMRDoe5EfDJkyfR0dEBl8sFvV6PpqYmfo11Op0wm80YHByESqXiXZ0s69TZ2QlBENDY2IjGxkburcb88Vb6dZOCoeKwLOw4Pv7xjy9qJP7Zz34WP/vZz/D6669Dp9PxGiGDwcBtB55++ml885vfRH19Perr6/HNb34TarUaf/Znf7Zo4yoGhdLwK5HCIIgFIUuRQXA4HDOCsdkwpejZgovhcBg+n48LshUikUjQ1NSEfD6PEydOoLy8HCqVil+MZTIZbr/9dt4+v3HjRkgkEu7M7Xa7odFoeGH11NQU4vE4Tp48yfWV2Bd39+7d+D//5/8gHA4jlUphcnISa9aswdjYGLZu3YpoNIqSkhK88cYbvOW/trYWgUAAgiBg3bp1mJqawvj4OPL5PA4ePAibzYbR0VGEw2FUVlYiFAqhqakJUqkUnZ2dvDU6GAxCq9XCaDQilUohk8kgFoshk8nMGTis1EBopcKKpQsD0lAoBLFYzPWpSkpKMDAwwE1ZWbfV2rVrMTIygg9/+MNIJpOwWCyorKzk9WsAeDa3v78fdXV1M+xjmPp4KpXCu+++i7Vr13IfvFQqBa/XC4VCgUAggIqKCqTTaej1egiCgEOHDsFoNOLEiRNcs4hlhEwmE0QiEV9+ZqrpbrcbALjukVKp5LVwdrsdcrkcUql0xV83ieVN0brJis18gdaLL76IT3ziEwAu3OF//etfx09/+lMEg0Fs3boVf//3f8+LrBfCjaAzdL2ZKyOzmHc7xU6Fj46O8qUDo9E4b52RRqPhbe/sjpR5p7Fsi1qt5rUNrCNHJBJhbGwM5eXlOH/+PKampmAwGBCPxxGNRpHP5xEKheByuaBWq3Hu3Dmk02ls3rwZiUQC1dXVCAQCSKfTGBkZQSwWQ3d3N6qrqzE5OYmmpiYMDQ1xi45gMIiuri7IZDIIgoCOjg7IZDKu7DsxMYFgMAiFQgGHw4EjR45w1WGxWAyz2QyJRIJAIIBQKHTN87vcWGmZIYvFwuu1WGYPAO/6kslkaGhoQDKZ5MtnBoOB21L09PRg8+bNKC0thdVqhSAI+OUvf4nS0lLI5XJMT0+jubkZr776KsxmM7RaLbZu3QqxWIyBgQHcfPPNGB4eRm9vL6RSKXK5HPcp02g00Ov18Pl8UKvVCIVCcDgcaGxsxLvvvgulUolz585h8+bNXO+tqqoKALiUhFKpRHt7O7Zv3w69Xs+XhPv7+7krPDM6djqdS64YXWwoM1Q8lsUy2Y0CBUNXzly1OrO/4Ffj4zZf0DPXsuK1+MSx1xYGOezOdnp6musCzX6c3Zmy7jgA/Hm/389rfNxuN+x2O2KxGLLZLNrb2yGXy9HT04PJyUn09vZCpVKhoaEBdXV1vBtGq9VCEATodDr09PQgGo3i/PnzsFqtmJ6eRjKZhNFo5K3xYrEYJSUlkEgkOH36NFeDV6lUCIfDaGxsRG9vL6ampjAyMgKbzYYNGzZgenoa+/bt46rVMpmMu4+PjY1d0VyuBFZaMDQbVtguk8mgVCqxdetW9PT0oK6uDhqNhhufsro3g8GATZs2YcuWLbDb7XjrrbeQTqfR0dGBBx54AE1NTXj++ed5sL9+/XouacFkIZiq83vvvQe73Y5EIoGmpiZ4vV5otVq4XC6cO3eOt8SzQmrWbKBQKFBfX4+qqip88MEHMJvNSCaT3A5GKpVCqVRi27ZtCAQCyOVyaGhoQDwe5/Y0y0EgcTGgYKh4LAvRRWL1Mp+lRiGsfoalwBfCfCKNc1lyFO6/UJTxSsZvMBhm7Je9P4AZjxdK/avVaoyNjcHpdMJoNEIqlSIajUKr1XLVZoPBwMdlMBhQU1MDjUbDBe22b98Om82G5uZmbNy4EWvXruWBU01NDTweD8xmM1KpFOrq6pDL5dDU1ASXywW73Y5169bBbrcjk8nAZDKhtbUVMpkMiUSCb9/a2gqPx4MNGzbwdn65XI5kMonBwUHo9XpUV1fDaDQim81CoVDMaFNl1iE34o/RSkMQBK4qbTAYcOTIEWg0GgwPD/MuuenpaS4vAQDRaBR2ux19fX2QSqXo7e3lJr+vv/46r3lj3Y+sRX98fBzZbBZnz57F+fPneV0PC7p0Oh0GBwcxNDTEg7RIJMLPr+rqal6UzaQexGIxurq6eOdlLBZDR0cHSktL4fV6ubQD0wxyuVwkkEhcd65P2w+x6rhcPc9czFUTMFe2iNUBFZqhsiCqcB+Xu5gyH7LZ7z/XHSnLCJ0+fRrl5eXweDz8vZ1OJ/cAGxsb43fZHo8H+Xwe5eXlCIfDsFqtaG5u5hf/fD6PaDTKf7jy+TxfnpNKpdi0aRPv8tFoNNySQCaTobe3F7lcDkePHsWZM2e4aWYul0NdXR06OztRV1eH06dPo7q6mnueRSIRDAwM8OBJrVYjk8kgGo1epLpd6BW3kmHHulJRq9U8AxkKhVBdXY3+/n5ub8EyRmwbZr/xq1/9ihfjS6VS3g4fDAZRX18Pm80GhUKBzs5OJJNJSKVSJJNJlJSUIBqNQq1WY2hoCHK5HBqNBo2Njejs7EQ+n4fX6+UisqWlpSgpKYFer4fNZsMHH3yAxsZGvpTW1dUFk8mEkZER3ilZVVWFZDKJjRs38nq8GzUTRKwMKDNELJj5MjCsPb2wiHoh2aPZFAYn7H3myhaxi7vBYOB3k4U/3mx7QRC46el89h5zvf98Jq2hUIi7fDMl3MLtPR4Pf47tX6fTobu7m2/HskgsVT4xMQGr1YpIJIKqqipMTExArVbz+gm9Xg+LxcLrijweD06fPo3x8XH09/djeHgYAwMDaG9vRyQSQUVFBWQyGerr65FKpaDX66FQKKDVatHQ0ID3338farUawWAQoVAIAwMDvIB69lzcCIGQWCzmGlArjZKSEiiVSkilUm7E2tLSgkAggPr6er78xxTIrVYrpFIpSktLEQ6HkUgkEI/HEY/HIZfLIRKJoFQqIRKJEIvFsHPnThgMBsjlcpw5cwbvvPMOz/SsX78eJ0+eRCaT4d54TNPFZrPBZDJBq9WipqYGVqsVJpMJRqMRfr8f9fX1OH369AwR0Xg8jl27dsHlcuHee+/Fxo0bsWPHDphMJrhcLhiNxhX5GRE3DhQMEQtmvmWswpbyYr/PXEtkWq0WoVAIGo3mIouN2YHRXH5kbP+RSASRSGRG8MJgFh2hUIhnbJhnGBOl6+zs5J1bRqMRgiBAo9Fwm4RMJoPe3l7U1tbC4/EgEolgdHQUfr8f/f393CA1Go1i8+bNGBwchN1ux4kTJyCXy/HWW2+hubkZgUAAt9xyC6LRKAwGAxQKBTZv3oybbroJer2eW6F4PB787Gc/w7FjxxAOh3Hu3DmMj4/D4/HAYrHgyJEjaGxsRCaTgVqtRjqdhkKhQDwe5xYkwIV27pVaX3OjwBTB9Xo9pqamkM1modVqeSDEAupcLscD/0gkgpqaGm7BEQgEeJG+Wq1GfX09SkpK4HK50NraCrfbDZVKhVAoxD3xPB4P7rrrLoyOjqKhoQGZTAYKhQJtbW18qU2j0eCOO+5ASUkJKisrEY1GuTwDM4AFLugLicVi6PV6rF27FlKpFHfccQfWrVuHm2++mXeXEcRygIIh4iLmy5wUBhqF2zCjWNa2e63vLQgCcrkcNBoNxsfHZ4gYAhfqIYxGIzwez0XBWWF2R6fTQa1WI5fLzfDJY8cBgBeNzt6P2+1GIpGAz+fD+Pg4IpEIxsfHoVar0djYyNucE4kExsfHEQqFsGnTJlitVjidTsRiMd5FdvjwYTgcDqjVarjdbq4vNDQ0xO/iWX0GE0rs6+uDWq1Ge3s7du3ahdHRUWzatAm5XI7bJNjtdv7DVV5ejomJCQwNDWFkZARHjhxBMpnE1NQUpqencfDgQWg0GnR3d8NkMsFsNnMLBNatxOqdFsOWhrgy2GcXi8UglUqRTqcxNTUFQRAwODgInU4Hm80Gs9kMm83GO8TYsmooFIJarcbhw4exZcsW/jmXl5dDqVQikUhgcHAQnZ2dsNlsCIVCsFgsePDBBxGJROB0OiESiVBVVcUzQyxA+4M/+AMYDAY4HA50dHQgGAxiaGgIExMTvC6NGcmyGrfGxkaeKablMGI5QsHQKuFKiowX4jZfuI1YLL7IuX2h45j99/T0NCQSCUQiETwez0VF2IXBksPhuChrNBsWOLEffOD3AROr25lrP+wHorS0FDqdDj6fD1KplAdga9asgd1uRzabhcFggEQi4bUPAKBUKlFZWYlMJoOWlhauBM1qO377299i3bp1GBoagtvtRjgcRigUwunTp5HJZJDL5RCLxWCxWBCPx7FhwwacOnWKm7e2t7fDZrPhxz/+MVceZlkilumRSqUzDC7dbjeSySTvOmN1SgyJRFJUr5/lQD6fx8DAwIrLdKXTaWSzWV5Yz4JU5gWYTqd5oMHMTI8fP869vFhmUKPR4JVXXkE+n0dXVxfeffddXti8f/9+nD9/HocOHeIio4lEAu3t7RCJRHA6nZBKpRgZGUF/fz98Ph8ikQgOHjyI4eFhnlVNJpNQq9Wora2FSqXC9u3bUVNTg/r6elRUVKCiooKWwYhlDwVDq4SFBDgsMGEp+NlBRuHyEgtIZmeJLkc4HIbH4+E/urPHVZh9YhmnwiLswmCJ1QuxZYK5jlmv12NsbIwvqRVuN7tGiB1HPp9HT08PdDodzpw5g3w+j5qaGuRyOV40zTJPALhq79jYGKanp+Hz+fhdstPp5OO95ZZbUFtby5WkBwcHsXbtWigUClitViiVStx7771IJpOor69HQ0MDtzYZHx+HWCzGuXPn4PP5oFQq8Q//8A+orKxEf38/VCoVVCoVb5XPZrNcPiAajSKbzfKCbbfbjXQ6jYGBgRlLm7lc7rKf30pkJRdPA+AFzKwbUSKRYGxsjIt9dnR04NSpU9wyg7nVGwwG/O53v0M6nUZXVxc8Hg/UajVGR0ehVqshCAKCwSA3Btbr9fB4PEgmk+jr60NjYyNqa2uh1+vR0dGBVCqFjo4OdHd347333oPf70dtbS0aGxvR2toKp9OJtWvXwmw2UwBErDgoGFqhXGk7+Vy1N7NhgQmreZktRMgCIAD8B54V2rIlo8vBAom5gh9gZoAyVxH27O0vFeTpdDpEIhHe/VVYJ1Q4b2wfTEyRLYe9/vrrfFmCWRtMTk7ixIkTyGQy6OrqwuTkJPr6+ng3Dmszzmaz6Orq4sXR7IeGtbQHg0HU1NTwLJPRaITRaEQikcCf/dmfwWAwwGKxwOl0IpFIoK+vD729vWhqauIK0uvXr+cZr5KSEqjVaiiVSkgkEv45BQIBHiwyF3E2/5lMZsVlTFYLarUaCoWCqy87nU7s2LEDzc3NSCaTMBgMOHnyJE6cOIF4PA6pVIpYLIa2tjY0NDSgpaUF2WwWFRUVvGvQYDAgEAigsrISAFBTU4OysjJs3LgRTqcT9fX1yOfzmJqa4rIRgiAgHo/D5XIhkUhgy5YtEIvFWLduHaqrq9HY2IiNGzeisrKS2uGJFQ0FQ8uMhQY5C8n0FO6zsN18ITVBc70fC4DY8hLbjr1OpVJddixOpxNqtRoOh+Oi4ueFMDubc6kxs1R/LpdDPp9HNpsFgIvmTafTIZfL8YBPp9NxJd5AIMAd66PRKDo7O5HNZnkNTjQahdVqhdVqhVqtxpo1a3hgJZVKcfbsWZSXl8PtdiMWiyEQCCCZTKK8vByxWAylpaUYHx+HUqnE4OAgtFotYrEYJBIJUqkUuru7sXfvXvj9fsTjcZw4cQIqlQq5XA7Dw8Pw+Xyw2+3o7+9HeXk5zGYz5HI5zyL4/X6uZiyVSrkRK3ChLuVGMGK9EWEdYHK5HBUVFbBYLKivr0cul0N1dTXXorLb7ZDJZDMENfV6PU6fPg2Hw8FNhisqKrhbeldXF2pra1FdXY3Kykr4/X5s374dQ0NDEASBiyYeOnQIa9euRTgchkwmw4YNG9DW1oY//uM/RltbG9atWwej0UhBEHFDQMHQMmN2kHM1gcvs183e53zvAcwfmBS+3+yA5FIt6bPHwrI9sVhsRgv8lWS5Crncexc6srOMV+G8FapOF/qG3XrrrdBoNHjkkUcQi8V4kLRlyxakUins2LEDRqMRNTU1/AeB/SgwU0qlUokNGzYgHA6jvr4e2WyWCysyn7P333+fezmpVCr09/cjn8/z8abTaa6TI5PJoFar0d3djfPnz/MfxsHBQbhcrhnBqkwmQyQSQWlpKbLZLGQyGaampiAWi8lnbBkyV/MB+35OTk4ik8ngJz/5CQYGBtDZ2Qmr1Yp0Os1b5JVKJXw+H1KpFM6cOcPP+3w+j3Xr1mF8fBwqlQqpVApSqRTnzp1Db28vIpEINm/ezN9LLBYjFovh3LlzaGxsxM9//nPs3LkTZWVlaGhogMPhQGVlJVwuF6knEzcUZMdxHe04FuKxNXubq3W4L3zdbDHD2YHP1b5HIUw3p7S0lBcSs2Oca/+Fx8mKgpmkf+E+r9ZyY/bY5tqPIAgYGxuDWCxGLpdDIpGAVqvltgasg8xkMvEi1nw+j3g8zj2a2FwCmLE8BYA/H4vFeAv04OAgzGYzGhsbEY1GodFo0N/fj9raWrz99tuorq6GXC7HqVOnsGnTJnR1dfHC2ampKfj9fkxNTSGdTvOaqmAwiMnJScRiMWi1WqRSKfT396OyshJTU1NQKBRcWZgtZbJxskzhjcxKtuPQ6XQwGo08gJ2cnERpaSnUajWsViv3w8tms4hGo9i9ezf6+/u5A/3999+PPXv2wOVywe12c5+vYDCIYDAIh8OB2tpaDA4Ocq8+1pwQj8fxzDPPoL29HbW1tUin07BarRQEXSNkx1E8yI5jhbKQpa2FLAMtJJPCtHhYWzrbZ+Fy10KWmopxjHPt/3IZHeBC0XA8HufqzrOZbx5mPz6fACQLVNjSgs1m48EQ0yjS6XQYGxvj5pGz2/hFIhEkEgmACwEGC/zYXDCNIlaUHovFMDk5if7+fgCAVCrlBq3btm1DLBbDiRMnYLVaMTQ0hE2bNiESicBisUChUEChUMBut0On0yEej8NgMHBnb1ZfMjw8DLPZjL6+PpSWlkIsFkOr1aK0tJQvZUqlUl6US0scyxO5XA6TycSXWL1eL0QiEf+7q6sLg4ODsFqtCAaDqKysRFdXF0QiEYaHhzExMYFf//rXXIaCBfkej4cvsbrdbvz2t7+F2+3G+Pg4amtr8cgjj8Bms+FLX/oSVCoVtmzZQppAxA0PBUPXkasJOgp9sQrbzy+3lDZXS/l8Y1hIYDIfs997ocdY+Dq9Xg+tVntRZM861ebbFyvGHh8fn7Mger6gs/C9WZcZM7jU6/U8eFGr1ZienkZjYyPPbDmdzhlj1Wg0vDvH7XZDr9fzTjlWjM6sQ3Q6HSorK3lWjAlCRqNRbm2g1WrR2NiIkZERmM1mnq1Sq9WIx+NQq9UoLS2FyWRCdXU1pFIpbDYbqqqqUFVVBUEQcPvttyMWi8FsNmNoaAg+n48HY+xYlEollEolFArFisyYXAmsRmqlIQgCRkZGZpzLTAPK7/cjGAxiYGAAb731FvekY8tczO2e6f7U1dUhGAxCqVRy8Uaz2Qy9Xo9NmzZBrVbj4x//OB577DE0Nzfjox/9KFecJojVAC2TrQDX+tnLTAtZSlvIktxCudS+2Htns1kkk8k5U79zjW8hS3OXOwZBEDA+Ps4DEKYdBOCSr2PvncvlMD4+DolEArVaDZfLNWNcwIVAMRwOcxG62WMaGxuDVCrlwoehUAhr1qzhY9BqtVwniSn1snoOtVrNDWNFIhGCwSDOnDmDUCgEv9+Pqqoq9PT0QCKRcJ2jQCDA/cRqamqQyWTg8Xi4VcfWrVtx4MABZLNZ9Pb2wufzcQFLtVrNHcJnB8k3KmKxGJs2bcLJkydXZLF4SUkJJicnoVAokEqlAFxY9tNqtQgGg1xQtKKiAuXl5YhEIlCpVHC5XNzqhbXGV1RU8JsAJsXwF3/xFxgdHcXOnTtRUlIy77WClnaKB81l8aBlslXGpdrP53p+rm2ulEsVYF9qbAsZ/0Jft5DiaKfTyQMYtuR1qdfl83mEw2Fks1no9XquYaTVarnGEjO61Gg0EAQBTqcTgiBgdHQUo6OjM6QBWN1OS0sLurq6UFdXx5fPmBM365zTarVwOp3Q6XTQarVIJpN8XOFwGKOjo4jH48jn8/zuvaSkhHf5eL1e5HI59PX1IZFI8ALrkpISjI6OQqFQ4IMPPoDdbkcymYRCoYBer+dznUqleCBGrAwmJyeh1+uhUqm4FYbT6YRMJuN+ZHq9Hkqlkgc5FosFRqMRa9euxcjICHw+H2w2GwYGBlBbW4u7774bLS0teP7557Fp0yY8/PDDsFgstAxGrGpWZv54lTHbXf1Kn78a5nOCn++9L3XXPdf4Ch+7lixWYUAE4JLdddPT0wiHw1zVujBgYd1kzL09kUigu7sbTU1NfCkukUggn89zxW32/jqdjrfQ9/X1oampacZ75vN5GAwGnhWy2+3o7e2FzWZDT08PGhoaEI/HMTk5CYlEApVKhUAgAIfDAb/fD7lczn2k8vn8DAdws9nMvdJCoRAv9BYEASUlJfD7/dBqtbBYLBgdHYVOp0MqlVrxQoSriWw2i3Q6DalUCplMhkAgAKvVysU7U6kU8vk895nL5/OYmJhAJBJBU1MTxGIx7rnnHqjVaqRSKTQ0NKCiooKyEgRRAAVDxJwUBkCLEWwVUqhszYKLKwmKRCLRjC60S70HKyDV6/WIxWL82ArVp0OhECYmJlBfX8/HZLfb4Xa7eW0RWzIbHx/nRdL5fB433XTTRe8ZDod5oGUymbiLPVP5ZaKMVVVV6Ovrw/DwMBQKBTo6OpDL5RAIBFBWVsbrq6anp7m55gcffIBcLofKykq88cYbqK2thc/ng16vx9mzZ1FWVoZgMMhriCYmJmZ0vCmVyhkZqhuNfD7PM2srCVbPlclkkMlkoFKpMD09jWQyCZVKhbGxMTgcDn5eMhsNQRAQjUZRUVGB2tpa6HQ6PPnkkygrK1vqQyKIZQ3dGhBzcq3LbFcCW8ZhmZSxsbGi/3gVCisy81a1Wj0jkxSJRHhbMgsGmYVFNBqFy+XiFgMsEGJZIalUygUTs9ksOjs7oVarkc1muXK3zWbD/v37oVQqEY/HUVlZyd8jFAqho6MDoVAIZWVl8Hg8sFqtmJ6ehkKhQGlpKWw2G2w2GxKJBFwuF7q7u6FQKFBRUYHe3l5s3LgRXq8XarWaq2YPDw/DYDAgHo/zQKiwMPZGDoQYsVhsqYdwRVRXV8NiscBkMkGj0cDlcqGkpIQXgicSCWSzWUxOTuL999+HSqVCNBqFRCKByWRCfX097rvvPjz66KP4whe+gNLS0iU+IoJY/lBmiLhuzLccxgKvcDg8o/vqarJRcwlIFgorDgwMALhQhMp+JHU6HXp6eqDVaqHRaHjNjlQq5VIErOOM7YeNr6enBy0tLRgaGoJOp4NYLMbp06dhMpnQ09MDkUgEo9GIbDaLM2fOwGg0YmhoCE6nE9lsFgqFAolEAr29vfD7/RgYGOAO3wMDA5icnITdbofFYkEikcDvfvc7NDU14eTJk7jttttw5MgRhMNhqNVqTExMoKamBmNjY7yw3mAwcC+zTCbDVbilUin/f2L5wGq6crkcr/GSy+WIRCIzPrNkMolUKgWHw4Hp6WnccccdAIDy8nJ87nOfg1qtXsrDIIgVBwVDxHWjsA5prkCn8LHZtT8LrStiLesMkUjEhRIzmQzPCuXzeUgkEpw5c4a3qo+OjsJut/OuHK/Xy+t0DAYDurq6eBfaxMQESkpKuPP7hg0buGVHW1sbenp6oNFoYDQa4Xa70dDQgFwux4tYRSIRzyIplUp0dXVhaGgILS0t8Hq9sFgs3FZDJBLB5XLh3/7t36BQKLBnzx6sWbMGhw8fhkwmQ3d3NzKZDEwmE1/6E4vFKCsr44XUU1NTvLA7Ho9zbSRieSEIAkKh0AyV8LkK3uVyOUpKSmC1WvHVr34VgiDgtttug0wmu57DJYgbhmW9THbgwAE8+OCDcDgcEIlE+OUvfznjeUEQ8Nxzz8HhcEClUuH222/H+fPnl2awxGW5VAdZYbZlLq+jhXqx6XQ6aDQa3gk2PT3NdYhYbZHL5UJTUxMikQjsdju0Wi1vn2fZILZ8xby9QqEQgAtdX/39/dDr9YjH4xCLxTOsOIALStRsX+FwGA6Hg+s+xeNxXi80MTEBsViM/fv3Ix6PQ6fTobe3F9u3b4fBYOAdcmq1Gl1dXZBIJBgYGEB5eTkmJiZw8803I5vNQqvVQqFQQK1WIxqNwu/3Q6lU8nZ6m83GXcrT6TQkEglZcixj5vtsFAoFampq8NBDD+EjH/kInnjiCbz++uvYtWsX7rrrLgqECOIaWNaZoVgshtbWVnzyk5/ERz7ykYue/+53v4vvfe97eOmll9DQ0IC//du/xd13343u7u6iqCkTxeVShdizs0azM0GX6mhj22q1Wu4/xvSBotEot9Fgj7P/bt68mdt0AOBu9QC4aq9EIkEikYBGo4FYLIZYLEZtbS1isRg2bdqEaDTKl9Ci0SjEYjHXC2Jt9symo7e3F3V1dXj99dexdu1aeDwehEIhOBwO9PT0QC6Xw2KxcCPNsbExriIej8d5nZFOp0NVVRWmp6dx8803o6+vDx6Ph3cayeVyhMNhXhc1Pj7OHevT6TQFQisEqVQKo9HIg9mbb74ZH/nIR9Dc3EyK0ARRZJZ1MHTffffhvvvum/M5QRDw/PPP49lnn8WHP/xhAMDLL78Mq9WKn/3sZ/jLv/zL6zlU4hqZHezMDo7mCqQKa4EkEgncbjeMRiN/zezWfYlEwjNErOuGiSmGw2FuU6LT6bg1gdfrhdVqhcFgwPT0NNRqNcRiMfR6PVf5lUql6OrqgsPhQD6fx5kzZ2AymdDf348dO3bg0KFD2LlzJzZu3IgDBw5g69atGBwchEgk4oFJW1sbhoeHEQgEoFKpMDIyAq/Xi5KSEiiVSlRWVmJsbIy3xKdSKcjlcp4pUqlU6Ovr463zBoMBk5OT6O7uhtVq5a71TICxcCnRYDBw1WxiaVAqlchms1w6QaPRwG6347777oPNZsOuXbtQU1ND7fAEsUgs62DoUgwODsLr9WL37t38MYVCgdtuuw2HDx+eNxhKpVJcyRX4vWlpPp9fkQq1ywXWDXYtc6jVaiEIArfJYMHRfPssVIsWBAE2m40bUbLXMMNVvV7PszD5fJ6/limXssdUKhXC4TC3yWDdY2xfTFGaFXwzrSCdTodYLIZ8Po+2tjacPn0aO3fu5EXTBw4cwMaNG7Fz5054PB5s27YNY2NjCAQCUCqVMBqNcLlc6OrqQiAQ4MGbUqlEW1sbAMBms/EsF9MVqqurQyqVgtlshs1mw9TUFKqqqiASiXD06FG0trYiHA6jtrYWnZ2dqKioQCAQ4KrrJpMJEokEBoMBoVAISqUS0WgUqVRqxbWjz4adSyyjt9yOh527EokECoUCJpMJCoUCVVVV2LFjB+6++25s27Zthp3IUl2jivH9Ji5Ac1k8ijmHKzYY8nq9AACr1TrjcavViuHh4Xlf961vfQtf//rXL3p8YmKC+/4QVw5TdmY/PsXiUq3fgiAgkUhApVJBJBLxbWe/pnC7iYmJix5LJpM8kJmamgIAXmSdTCYhFotn7FMqlWJycpK/1mQyIR6PAwBUKhWCwSCampowNTUFp9OJ8+fPw263w+PxQKlUQq1WI51Ow2KxQCwWcw8ypibMlscymQzWr1/PhRhdLhdGRkbgcrl4LVN/fz/q6+t5J1k0GuUeZXfddRd6enrQ1taG9vZ2bNiwgQdAbNmNGb1OTU0hl8uhpKQE0WgUAwMDPCBlgVk+n0cikUA8HodMJkM+n0cmk1nWF3WRSIS6ujr09fVdl2CIZThZ/Y4gCDCZTJBKpUgkEtDr9TAajUilUqisrERnZyfS6TT0ej00Gg1aW1uxbds22Gw2iMVifj4uNYv1/V6N0FwWj2JmtFdsMMSYvW7OlkHm46/+6q/wzDPP8L8jkQhcLhdKS0uXrTfZSiCfz0MkEnGX9JVGYY0ScGlvsyvFZrNd1O5f+NzscTgcDvT19WHDhg0XFcW2trby7ZjCcCwWw+23346+vj7ewabRaNDX14cHHngAEokEt9xyC15//XU0NDTAbrdj//79aGtr4+3bDQ0N8Hq9yGaz8Pl8XOOIeah5vV7E43FEIhHE43Fu8FpbW4toNIqOjg5uMLtu3ToMDAzw49br9QgEAujs7ERXVxe2b9+O+vp6HD9+HDabDR6PB0NDQxCLxaiursYHH3yAkZERHogaDAb09fVxXSYWiFosFuTzeYyOjiKTySCVSsFkMkGlUkEmk2FsbAxOpxN6vR5utxuZTAbV1dUYGRmBWq1Ga2sr7HY7jh49Co/HA7PZDK1Wi02bNkGlUkGr1UIkEmHXrl346le/ivr6ei6GmEwmsXnzZqxZswaHDh1COByGy+WCTCbjulR33nknRkZGMDY2hpaWFvT396O8vJzbwEgkEojFYnz/+9/H9u3b8eCDDy5bc9SV/v1eTtBcFo9ifl9WjFGrSCTCa6+9hocffhgAeIvyqVOn+DICADz00EMwGo14+eWXF7TflWDUuhIg88HiQXNZPGguiwPNY/GguSweZNSKCyqtNpsNe/bs4Y+l02ns378f27dvX8KREQSxHEin03j66afxN3/zN7QEThDEJVnWy2TRaBR9fX3878HBQZw5cwZmsxkVFRV4+umn8c1vfhP19fWor6/HN7/5TajVavzZn/3ZEo6aIIjlQC6Xw+HDh5HJZGb4sREEQcxmWQdDJ06c4DLzAHitz2OPPYaXXnoJX/7yl5FIJPCZz3wGwWAQW7duxVtvvUUaQwRBEARBLJhlHQzdfvvtl+wAEYlEeO655/Dcc89dv0ERBEEQBHFDsWJrhgiCIAiCIIoBBUMEQRAEQaxqKBgiCIIgCGJVs6xrhq4HrCaJ2TMQV0c+n8f09DSUSiXN4zVCc1kcEokEcrkccrkcIpEIdZRdA3ROFg+ay+LBxGyLIZe46oOhyclJAEBlZeUSj4QgiMXC4XAs9RAIglgkJicnYTAYrmkfqz4YMpvNAICRkZFrnszVDLM1GR0dvWYl0NUOzWXxoLksDjSPxYPmsniEw2FUVFTw3/FrYdUHQyxNaTAY6MQsAnq9nuaxSNBcFg+ay+JA81g8aC6LRzGWG2nBkiAIgiCIVQ0FQwRBEARBrGpWfTCkUCjwta99DQqFYqmHsqKheSweNJfFg+ayONA8Fg+ay+JRzLkUCcXoSSMIgiAIglihrPrMEEEQBEEQqxsKhgiCIAiCWNVQMEQQBEEQxKqGgiGCIAiCIFY1FAwRBEEQBLGqoWCIIAiCIIhVDQVDBEEQBEGsaigYIgiCIAhiVUPBEEEQBEEQqxoKhgiCIAiCWNVQMEQQBEEQxKqGgiGCIAiCIFY1FAwRBEEQBLGqoWCIIAiCIIhVDQVDBEEQBEGsaigYIgiCIAhiVUPBEEEQBEEQqxoKhgiCIAiCWNVQMEQQBEEQxKqGgiGCIAiCIFY1FAwRBEEQBLGqoWCIIAiCIIhVDQVDBEEQBEGsaigYIgiCIAhiVUPBEEEQBEEQqxoKhgiCIAiCWNVQMEQQBEEQxKqGgiGCIG5IEokENm/ejM2bNyORSCz1cAiCWMZQMEQQBEEQxKqGgiGCIAiCIFY1FAwRBEEQBLGqEQmCICz1IAiCIIqJSCS66DG61BEEMR+UGSIIgiAIYlVDwRBBEARBEKsa6VIPgCAI4mqZazmMIAjiSqFgiCCIVcF8gRPVEhEEQctkBEEQBEGsaigYIgiCIAhiVUPBEEEQBEEQqxoKhgiCIAiCWNVQMEQQBEEQxKqGgiGCIAiCIFY1FAwRBEEQBLGqIZ0hgiBWNeRjRhAEZYYIgiAIgljVUGaIIIgVAVlvEASxWFBmiCAIgiCIVQ0FQwRBEARBrGooGCIIgiAIYlVDwRBBEARBEKsaCoYIgiAIgljVUDBEEARBEMSqhoIhgiAIgiBWNaQzRBAEMYv5NI1ImZogbkwoM0QQBEEQxKqGgiGCIAiCIFY1FAwRBEEQBLGqoWCIIAiCIIhVDRVQEwSxrCBDVoIgrjeLnhl64YUXkEqlFvttCIIgCIIgrgqRsMi9ohKJBB6PB2VlZQAAh8OBw4cPo6qqajHfliCIFcpyzgxRaz1B3JgsemZo9sVjenoa+Xx+sd+WIAiCIAhiQVDNEEEQxAIhMUaCuDFZ9MyQSCSacQGZ/TdBEARBEMRSsug1Q2KxGAaDgQdAoVAIer0eYvHMOGxqamoxh0EQxAphJd4sUWaIIFY2i75M9uKLLy72WxAEQRAEQVw1i54ZIgiCuBIoM0QQxPXmuhVQC4KAkydPYmhoCCKRCNXV1Whra1uRFz6CIAiCIG4crkswtHfvXnz605/G8PAwv4NiAdELL7yAW2+99XoMgyAIgiAI4iIWvZusr68PDzzwAKqqqvDqq6+is7MTHR0d+I//+A+Ul5fjQx/6EAYGBhZ7GARBEARBEHOy6DVDTz75JDo7O/HOO+9c9JwgCLjrrruwdu1a/PCHP1zMYRAEsQy5UZbJqWaIIFY2i54Z2rdvH55++uk5nxOJRHj66aexd+/exR4GQRAEQRDEnCx6MDQyMoL169fP+3xzczOGh4cXexgEQRAEQRBzsugF1NFoFGq1et7n1Wo14vH4Yg+DIAhi0ZhruY+Wzghi5XBdusk6Ojrg9XrnfC4QCFyPIRAEQRAEQczJdbHjmPfNRSIIggCRSIRcLreYwyAIYhlyoxRQzwVlhghi5bDomaHBwcHFfguCIAiCIIirZtEzQ4lEAl/84hfxy1/+EplMBnfddRf+5//8n7BYLIv5tgRBrAAoM0QQxHJg0bvJ/st/+S946aWXcP/99+OjH/0o9uzZgyeeeGKx35YgCIIgCGJBLHpmqLa2Ft/4xjfw0Y9+FABw/Phx7NixA8lkEhKJZDHfmiCIZQ5lhgiCWA4sejAkl8sxODgIp9PJH1OpVOjp6YHL5VrMtyYIYplwIwc980HBEEGsHBZ9mSyXy0Eul894TCqVIpvNLvZbEwRBEARBXJZF7yYTBAGf+MQnoFAo+GPJZBKPP/44NBoNf+zVV19d7KEQBEEQBEFcxKIHQ4899thFj33sYx9b7LclCIJYUuZbGqTlM4JYfix6zRBBEMRqrBmaD7rkEsTyY9FrhgiCIAiCIJYzFAwRBEEQBLGqoWCIIAiCIIhVzXVxrScIYvVA9UEEQaw0KDNEEARBEMSqhjJDBEEQ15G5MmfUYUYQSwtlhgiCIAiCWNVQMEQQBEEQxKqGlskIgrgqqFCaIIgbBcoMEQRBEASxqqHMEEEQxBJDPmYEsbRQZoggCIIgiFUNBUMEQRAEQaxqaJmMIIhLQoXSBEHc6FAwRBAEsUwhgUaCuD7QMhlBEARBEKsaygwRBMGhJbHlD3WeEUTxocwQQRAEQRCrGsoMEQRB3ABQfRFBXD0UDBHEKoSWwwiCIH4PBUMEQRA3KFRfRBALg4IhgrjBoSwQMRsKkghiJhQMEcQNAgU9xLVCdUfEaoWCIYJYgVDgQ1wvruRco8CJWKlQMEQQywQKcIiVDgVOxEpl1QdDgiBgenp6qYdBLCEGg2Gph0AQq47rHfyHw+Hr+n7E9UOn013z+SQSVnl4PjExgbKysqUeBkEQBEEQV4Hf70dpaek17WPVZ4bkcjkAYHR0FHq9folHs3KJRCJwuVw0j0WA5rJ40FwWB5rH4kFzWTzYXLLf8Wth1QdDLLWm1+vpxCwCNI/Fg+ayeNBcFgeax+JBc1k8irHkSt5kBEEQBEGsaigYIgiCIAhiVbPqgyGFQoGvfe1rUCgUSz2UFQ3NY/GguSweNJfFgeaxeNBcFo9izuWq7yYjCIIgCGJ1s+ozQwRBEARBrG4oGCIIgiAIYlVDwRBBEARBEKsaCoYIgiAIgljVrNpg6A/+4A9QUVEBpVIJu92ORx99FG63e8Y2IyMjePDBB6HRaGCxWPC5z30O6XR6iUa8PBkaGsKnP/1pVFdXQ6VSoba2Fl/72tcumieay4XxjW98A9u3b4darYbRaJxzG5rLhfHjH/8Y1dXVUCqV2LRpE957772lHtKy58CBA3jwwQfhcDggEonwy1/+csbzgiDgueeeg8PhgEqlwu23347z588vzWCXMd/61rdw0003QafToaysDA8//DC6u7tnbENzuTB+8pOfoKWlhYtUbtu2Db/73e/488Wax1UbDN1xxx34v//3/6K7uxu/+MUv0N/fjz/8wz/kz+dyOdx///2IxWI4ePAgXnnlFfziF7/Af/pP/2kJR7386OrqQj6fx09/+lOcP38e3//+9/EP//AP+Ou//mu+Dc3lwkmn0/ijP/ojPPHEE3M+T3O5MP793/8dTz/9NJ599lmcPn0at9xyC+677z6MjIws9dCWNbFYDK2trfjRj3405/Pf/e538b3vfQ8/+tGP8P7778Nms+Huu+8ms+tZ7N+/H5/97Gdx9OhR7NmzB9lsFrt370YsFuPb0FwujPLycnz729/GiRMncOLECdx555146KGHeMBTtHkUCEEQBOH1118XRCKRkE6nBUEQhN/+9reCWCwWxsfH+Tb/9m//JigUCiEcDi/VMFcE3/3ud4Xq6mr+N83llfPiiy8KBoPhosdpLhfGli1bhMcff3zGY2vWrBG++tWvLtGIVh4AhNdee43/nc/nBZvNJnz729/mjyWTScFgMAj/8A//sAQjXDn4/X4BgLB//35BEGgurxWTyST88z//c1HncdVmhgqZmprCv/7rv2L79u2QyWQAgCNHjqC5uRkOh4Nvd8899yCVSuHkyZNLNdQVQTgchtls5n/TXBYPmsvLk06ncfLkSezevXvG47t378bhw4eXaFQrn8HBQXi93hnzqlAocNttt9G8XoZwOAwA/LpIc3l15HI5vPLKK4jFYti2bVtR53FVB0Nf+cpXoNFoUFJSgpGREbz++uv8Oa/XC6vVOmN7k8kEuVwOr9d7vYe6Yujv78cPf/hDPP744/wxmsviQXN5eQKBAHK53EXzZLVaaY6uATZ3NK9XhiAIeOaZZ7Bz5040NzcDoLm8Utrb26HVaqFQKPD444/jtddew9q1a4s6jzdUMPTcc89BJBJd8t+JEyf49l/60pdw+vRpvPXWW5BIJPj4xz8OoUCQey4nXEEQiuKQu9y50rkEALfbjXvvvRd/9Ed/hD//8z+f8RzN5ZXN5aVYzXN5JcyeD5qj4kDzemU8+eSTOHfuHP7t3/7toudoLhdGY2Mjzpw5g6NHj+KJJ57AY489ho6ODv58MeZRWpSRLhOefPJJfPSjH73kNlVVVfz/LRYLLBYLGhoa0NTUBJfLhaNHj2Lbtm2w2Ww4duzYjNcGg0FkMpmLotAbkSudS7fbjTvuuAPbtm3DP/7jP87YjubyyubyUqz2uVwIFosFEonkojtDv99Pc3QN2Gw2ABeyGna7nT9O8zo/Tz31FH71q1/hwIEDKC8v54/TXF4ZcrkcdXV1AIDNmzfj/fffxw9+8AN85StfAVCcebyhgiEW3FwNLCOUSqUAANu2bcM3vvENeDwePslvvfUWFAoFNm3aVJwBL2OuZC7Hx8dxxx13YNOmTXjxxRchFs9MONJcXv15OZvVPpcLQS6XY9OmTdizZw8eeeQR/viePXvw0EMPLeHIVjbV1dWw2WzYs2cP2traAFyoz9q/fz++853vLPHolheCIOCpp57Ca6+9hn379qG6unrG8zSX14YgCEilUsWdx2JUdq80jh07Jvzwhz8UTp8+LQwNDQnvvvuusHPnTqG2tlZIJpOCIAhCNpsVmpubhV27dgmnTp0S3n77baG8vFx48sknl3j0y4vx8XGhrq5OuPPOO4WxsTHB4/Hwfwyay4UzPDwsnD59Wvj6178uaLVa4fTp08Lp06eF6elpQRBoLhfKK6+8IshkMuF//a//JXR0dAhPP/20oNFohKGhoaUe2rJmenqan3MAhO9973vC6dOnheHhYUEQBOHb3/62YDAYhFdffVVob28X/vRP/1Sw2+1CJBJZ4pEvL5544gnBYDAI+/btm3FNjMfjfBuay4XxV3/1V8KBAweEwcFB4dy5c8Jf//VfC2KxWHjrrbcEQSjePK7KYOjcuXPCHXfcIZjNZkGhUAhVVVXC448/LoyNjc3Ybnh4WLj//vsFlUolmM1m4cknn+TBEnGBF198UQAw579CaC4XxmOPPTbnXO7du5dvQ3O5MP7+7/9eqKysFORyubBx40be1kzMz969e+c8/x577DFBEC60hH/ta18TbDaboFAohFtvvVVob29f2kEvQ+a7Jr744ot8G5rLhfGpT32Kf49LS0uFXbt28UBIEIo3jyJBKKgYJgiCIAiCWGXcUN1kBEEQBEEQVwoFQwRBEARBrGooGCIIgiAIYlVDwRBBEARBEKsaCoYIgiAIgljVUDBEEARBEMSqhoIhgiAIgiBWNRQMEQRBEASxqqFgiCAIgiCIVQ0FQwRBEARBrGooGCIIgiCIK+CRRx6ByWTCH/7hHy71UIgiQcEQQRAEQVwBn/vc5/Av//IvSz0MoohQMEQsObfffjuefvrppR7GioPmjbgUN+L5cfvtt0MkEkEkEuHMmTNLNo477rgDOp1uzuc+8YlP8DH+8pe/vL4DI64aCoaIRYVdFOb794lPfGKph3jdWcofqW9961u46aaboNPpUFZWhocffhjd3d0ztvnxj3+M6upqKJVKbNq0Ce+9994V7+MnP/kJWlpaoNfrodfrsW3bNvzud79b1GMr/BGSyWSwWq24++678cILLyCfzy/qexeT5X5+AMU5Ry63j/n4i7/4C3g8HjQ3N1/9gS4iP/jBD+DxeJZ6GMQVQsEQsah4PB7+7/nnn4der5/x2A9+8IOlHuKqYv/+/fjsZz+Lo0ePYs+ePchms9i9ezdisRgA4N///d/x9NNP49lnn8Xp06dxyy234L777sPIyMiC9wEA5eXl+Pa3v40TJ07gxIkTuPPOO/HQQw/h/Pnzi3p89957LzweD4aGhvC73/0Od9xxBz7/+c/jgQceQDabXdT3vhFYyGdbjHNkIfuYD7VaDZvNBqlUWvwJ+P/ZtGkTmpubL/rndrsv+1qDwQCbzbZoYyMWCYEgrhMvvviiYDAYLnr8tttuE5566inhS1/6kmAymQSr1Sp87Wtfm7FNMpkUnnrqKaG0tFRQKBTCjh07hOPHj8/Yx5NPPil8/vOfF4xGo1BWVib89Kc/FaLRqPCJT3xC0Gq1Qk1NjfDb3/52xn5/97vfCTt27BAMBoNgNpuF+++/X+jr6+PP/8d//IfQ3NwsKJVKwWw2C7t27RKi0ei8x5jP54XvfOc7QnV1taBUKoWWlhbhP/7jP/jzjz32mABgxr/BwcGL9nO5cbFj/vznPz/vWBaC3+8XAAj79+8XBEEQtmzZIjz++OMztlmzZo3w1a9+dcH7mA+TyST88z//8zWN91I89thjwkMPPXTR4++8844AQPinf/on/tjlzidBuPx5ebnPei6KdX4IwuXPkcU4PwShOOfI1exDEOY+pqv97l/pd3s2e/fuFT7ykY/M+zwA4bXXXlvw/oilhTJDxLLg5ZdfhkajwbFjx/Dd734X//W//lfs2bOHP//lL38Zv/jFL/Dyyy/j1KlTqKurwz333IOpqakZ+7BYLDh+/DieeuopPPHEE/ijP/ojbN++HadOncI999yDRx99FPF4nL8mFovhmWeewfvvv4933nkHYrEYjzzyCPL5PDweD/70T/8Un/rUp9DZ2Yl9+/bhwx/+MARBmPc4/uZv/gYvvvgifvKTn+D8+fP4whe+gI997GPYv38/gAsp9G3btvFUv8fjgcvlumg/lxpXMQmHwwAAs9mMdDqNkydPYvfu3TO22b17Nw4fPrygfcxFLpfDK6+8glgshm3bthVp5AvnzjvvRGtrK1599VX+2ELOJ+DS5+XlPuu5KNb5AVyfc2T2Z1uMc+Rq93EprvS7fzXfbeIGZ6mjMWL1cKnM0M6dO2c8dtNNNwlf+cpXBEEQhGg0KshkMuFf//Vf+fPpdFpwOBzCd7/73Tn3kc1mBY1GIzz66KP8MY/HIwAQjhw5Mu8Y2R1se3u7cPLkSQGAMDQ0tKDji0ajglKpFA4fPjzj8U9/+tPCn/7pn8443iu9Yy8c17Xsp5B8Pi88+OCDfN7Gx8cFAMKhQ4dmbPeNb3xDaGhoWNA+Cjl37pyg0WgEiUQiGAwG4Te/+c1Vj3UhzJcZEgRB+JM/+ROhqalJEISFnU+CcOnzcqGfdSGLeX4IwsXnSLHPD0EozjlyNftgzJcZutLv/pV+t2eze/duwWKxCCqVSnA6nRdlFQWBMkMrjcVbdCWIK6ClpWXG33a7HX6/HwDQ39+PTCaDHTt28OdlMhm2bNmCzs7OOfchkUhQUlKC9evX88esVisA8P2yff/n//yfcfToUQQCAX5XPTIygnvuuQe7du3C+vXrcc8992D37t34wz/8Q5hMpjmPoaOjA8lkEnffffeMx9PpNNra2q5oPi41rmIVjj755JM4d+4cDh48OONxkUg0429BEC567HL7AIDGxkacOXMGoVAIv/jFL/DYY49h//79WLt27Zz7eu655/D1r3/9kmN+//33sXnz5ktuMxeFx7DQ8wmY/7y8ms+6mOcHO47FPEcu9dkW4xy5kn1cjiv97re2tl7Rd3s2b7755lWNk1i+UDBELAtkMtmMv0UiEb+4C/9/6vpyF8+59lH4GNu2cBnhwQcfhMvlwj/90z/B4XAgn8+jubkZ6XQaEokEe/bsweHDh/HWW2/hhz/8IZ599lkcO3YM1dXVFx0D2+9vfvMbOJ3OGc8pFIqFTcQCxlUMnnrqKfzqV7/CgQMHUF5eDgCwWCyQSCTwer0ztvX7/fzH5HL7KEQul6Ourg4AsHnzZrz//vv4wQ9+gJ/+9KdzjunJJ5/ERz/60UuOu6qqaiGHdxGdnZ38M1vo+QTMf15ezWddzPMDWNxzZL7PthjnyJXuYyFc6Xf/Sr/bxI0P1QwRy566ujrI5fIZd5aZTAYnTpxAU1PTVe93cnISnZ2d+Ju/+Rvs2rULTU1NCAaDM7YRiUTYsWMHvv71r+P06dOQy+V47bXX5tzf2rVroVAoMDIygrq6uhn/Cus+5HI5crncNY3rahEEAU8++SReffVVvPvuuzMu/HK5HJs2bZpRqwUAe/bswfbt2xe0j8u9dyqVmvd5i8WCNWvWXPKfUqm8wiMG3n33XbS3t+MjH/kIgOKcTwv9rK/mNZc7P4DFO0cu99kW4xxZ6D4Wmyv5bhM3PpQZIpY9Go0GTzzxBL70pS/BbDajoqIC3/3udxGPx/HpT3/6qvdrMplQUlKCf/zHf4TdbsfIyAi++tWv8uePHTuGd955B7t370ZZWRmOHTuGiYmJeX8wdTodvvjFL+ILX/gC8vk8du7ciUgkgsOHD0Or1eKxxx4DcCG7cezYMQwNDUGr1cJsNkMs/v19yeXGNR8/+tGP8Nprr+Gdd96Zd5vPfvaz+NnPfobXX38dOp2O350bDAaoVCo888wzePTRR7F582Zs27YN//iP/4iRkRE8/vjjC94HAPz1X/817rvvPrhcLkxPT+OVV17Bvn378MYbb1z2OK6FVCoFr9eLXC4Hn8+HN954A9/61rfwwAMP4OMf/ziA4pxPC/2sr+Y1lzs/gKs7R4pxfgAoyjmykH0sJlf63SZWAUtSqUSsSi5VQD27KPKhhx4SHnvsMf53IpEQnnrqKcFisczbWj97H5WVlcL3v//9GY9hVlHjnj17hKamJkGhUAgtLS3Cvn37+DYdHR3CPffcw9uvGxoahB/+8IeXPMZ8Pi/84Ac/EBobGwWZTCaUlpYK99xzz4zW5O7ubuHmm28WVCrVvK3TlxrXfMf8ta99TaisrLzk+DCrbZv9e/HFF/k2f//3fy9UVlYKcrlc2Lhx40Ut8wvZx6c+9Sm+j9LSUmHXrl3CW2+9dcmxXSuFbelSqVQoLS0V7rrrLuGFF14QcrncjG0vdz4JwuXPy4V81rMp1vkhCJc/Rxbr/BCE4pwjl9vHXMxXQH2l3/2r+W5fKbO/r8TyRiQI1EtIEARBLH9uv/12bNiwAc8///xSD+WyiEQivPbaa3j44YeXeijEAqCaIYIgCGLF8OMf/xharRbt7e1LPZQ5efzxx6HVapd6GMQVQpkhgiAIYkUwPj6ORCIBAKioqIBcLl/iEV2M3+9HJBIBcEGKQaPRLPGIiIVAwRBBEARBEKsaWiYjCIIgCGJVQ8EQQRAEQRCrGgqGCIIgCIJY1VAwRBAEQRDEqoaCIYIgCIIgVjUUDBEEQRAEsaqhYIggCIIgiFUNBUMEQRAEQaxqKBgiCIIgCGJVQ8EQQRAEQRCrmv8P+IaefD9ZLB4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "vmin = 10\n", - "vmax = 90\n", - "\n", - "df = pd.DataFrame({\"error\": pooled_error, \"model\": pooled_model})\n", - "df = df[df.model > vmin]\n", - "\n", - "f, (ax_scatter, ax_hist) = plt.subplots(2, 1, sharex=True, gridspec_kw={'height_ratios': [3, 1]})\n", - "\n", - "stride = 1\n", - "ax_scatter.scatter(\n", - " df.error[::stride],\n", - " df.model[::stride],\n", - " s=0.05,\n", - " c=\"k\",\n", - " alpha=0.2\n", - ")\n", - "ax_scatter.set_ylabel(\"Model wind speed [ms$^{-1}$]\")\n", - "ax_scatter.grid(alpha=0.3)\n", - "x_min = -30\n", - "x_max = 30\n", - "ax_scatter.set_xlim(x_min, x_max)\n", - "ax_scatter.axvline(0, color=\"k\", ls=\"--\", alpha=0.8)\n", - "\n", - "frequency, bin_edges, patches = ax_hist.hist(\n", - " df.error,\n", - " bins=np.linspace(-50, 50, 150),\n", - " density=True,\n", - " alpha=1,\n", - " color=\"black\"\n", - ")\n", - "ax_hist.axvline(0, color=\"k\", ls=\"--\", alpha=0.8)\n", - "ax_hist.set_xlim(x_min, x_max)\n", - "ax_hist.set_ylabel(\"PDF\", labelpad=20)\n", - "ax_hist.set_xlabel(\"Thomas et al. 2023 $-$ Done et al. 2020 [ms$^{-1}$]\")\n", - "ax_hist.spines['top'].set_visible(False)\n", - "ax_hist.spines['right'].set_visible(False)\n", - "ax_hist.spines['left'].set_visible(False)\n", - "ax_hist.get_yaxis().set_ticks([])\n", - "\n", - "n = len(df)\n", - "mean = df.error.mean()\n", - "median = df.error.median()\n", - "\n", - "f.suptitle(\n", - " f\"Wind model comparison (error within {buffer_km}km of eye over land)\\n\"\n", - " f\"$n_{{pixels}}={n}, \\ \\mu={mean:.2f} $ms$^{{-1}}, \\ q_{{50}}={median:.2f}$ms$^{{-1}}$\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "0bd3933d", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHmCAYAAABwAIpbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADqCklEQVR4nOydd3zURf7/X5/tfTebbHbTG4GEEqoiglIU7Kf4PfVUBPEO8dRTRCxYwUMsnIhnx7PgIeqd7ezSsYDIAUpLgZBCetne2/z+yO8zlyWFJLtpMM/HIw/Y2fnMvOezn3l/3jPznvdwhBACBoPBYDAYjDMUQX8LwGAwGAwGg9GfMGOIwWAwGAzGGQ0zhhgMBoPBYJzRMGOIwWAwGAzGGQ0zhhgMBoPBYJzRMGOIwWAwGAzGGQ0zhhgMBoPBYJzRMGOIwWAwGAzGGQ0zhhgMBoPBYJzRMGOI0S0++ugjcByHDz/8sM13o0ePBsdx+O6779p8l5OTg3HjxgEAtm/fDo7jsH379pjJVV5eDo7j8M4778SszN6C4zgsW7as29cNpjYOJNq7bzt37sSyZctgtVrb5M/MzMTll19+ynJj/RyHQiGsXr0aF198MVJTU6FQKJCfn48HH3ywXTkB4MUXX0ReXh6kUimysrKwfPlyBAKBNvkaGhpw8803IyEhAQqFApMmTcKWLVva5OM4DnfeeWdM2tObvPjiixgyZAgkEgk4juvw/jAYXYUZQ4xuMW3aNHAch23btkWkm81mHDx4EEqlss13VVVVOH78OKZPnw4AGDduHHbt2kWNIwajN0lKSsKuXbtw2WWX0bSdO3di+fLlUb1EY/0cezweLFu2DBkZGVizZg2+/vprLFiwAGvXrsXkyZPh8Xgi8j/55JO4++67cfXVV+O7777D7bffjpUrV+KOO+6IyOfz+XDBBRdgy5YteOGFF/Cf//wHRqMRF198MXbs2BET2fuSX3/9FXfddRemT5+OrVu3YteuXVCr1f0tFmOQI+pvARiDi4SEBIwcObLNaHjHjh0QiUT44x//2MYY4j/zxpBGo8E555zTJ/IyugchBF6vF3K5vM13Ho8HMpkMHMf1uHy32w2FQhGNiN1GKpX2yvMW6+dYLpejrKwM8fHxNG3atGlIT0/HNddcg48//hhz5swBADQ3N2PFihVYsGABVq5cSfMGAgE88sgjWLRoEYYPHw4AePPNN3Ho0CHs3LkTkyZNAtDSF0ePHo37778fu3fvjlkb+oLDhw8DABYsWICzzz67n6VhnC6wmSFGt5k+fTqKi4tRW1tL07Zv346zzjoLl156Kfbu3QuHwxHxnVAoxHnnnUc/n7y8cPPNN0OlUuHYsWO49NJLoVKpkJaWhnvvvRc+ny+i/pqaGlx77bVQq9XQarW47rrrUFdX1yXZ33nnHXAch61bt2LBggWIj4+HRqPB3Llz4XK5UFdXh2uvvRY6nQ5JSUlYsmRJm2UHs9mM22+/HSkpKZBIJMjOzsbDDz/cRk673U7rUKlUuPjii1FSUtKuXEePHsUNN9yAxMRESKVS5Ofn4+WXX+5Sm9rDbrdjyZIlyMrKgkQiQUpKChYtWgSXyxWRj18Wee2115Cfnw+pVIp169bR+7Rx40bccsstMBgMUCgU8Pl8CIfDePbZZ+nyTGJiIubOnYuqqqqIsqdNm4aRI0fi+++/x7nnnguFQoFbbrkFALB161ZMmzYN8fHxkMvlSE9Px//93//B7XZ32Kb77rsPWq0WoVCIpv3lL38Bx3FYtWoVTWtuboZAIMCLL74IoO0y2bJly3DfffcBALKyssBxXLvLXd9++y3GjRsHuVyOvLw8vPXWWxHfR/scn4xQKIwwhHj4F/6JEyciZPN6vZg/f35E3vnz54MQgs8++4ymffrppxg2bBg1hABAJBJhzpw5+OWXX1BdXd2hTIQQPPTQQxCLxXjjjTci2r1hwwY88MADSEpKgkqlwhVXXIH6+no4HA7ceuutSEhIQEJCAubPnw+n09lp23neeustjB49GjKZDHq9HrNnz0ZhYSH9ftq0adQgnDhxIjiOw80339xpmafqW06nEzqdDgsXLmxzbXl5OYRCYcTzVVdXh4ULFyI1NRUSiYQuTwaDwS61kTFAIQxGN/n0008JALJhwwaaNmrUKLJ06VLicDiISCQiX331Ff0uKyuLnHXWWfTztm3bCACybds2mjZv3jwikUhIfn4++dvf/kY2b95MHnvsMcJxHFm+fDnN53a7SX5+PtFqteTFF18k3333HbnrrrtIeno6AUDefvvtTmV/++23CQCSlZVF7r33XrJx40byzDPPEKFQSK6//noybtw4smLFCrJp0ybywAMPEADkueeeo9d7PB5SUFBAlEol+dvf/kY2btxIHn30USISicill15K84XDYTJ9+nQilUrJk08+STZu3Egef/xxkp2dTQCQxx9/nOY9fPgw0Wq1ZNSoUeTdd98lGzduJPfeey8RCARk2bJlNF9ZWVmX2uhyuciYMWNIQkICWb16Ndm8eTN54YUXiFarJTNmzCDhcJjmBUBSUlJIQUEB2bBhA9m6dSs5dOgQvU8pKSnk1ltvJd988w356KOPSDAYJLfeeisBQO68807y7bffktdee40YDAaSlpZGGhsbadlTp04ler2epKWlkRdffJFs27aN7Nixg5SVlRGZTEZmzpxJPvvsM7J9+3by3nvvkZtuuolYLJYO2/Xtt98SAGTnzp00LS8vj8jlcjJz5kya9uGHHxIA5MiRI+3etxMnTpC//OUvBAD55JNPyK5du8iuXbuIzWYjhBCSkZFBUlNTyfDhw8m7775LvvvuO3LNNdcQAGTHjh20nmie4+7A/xb/+c9/aNqDDz5IABCn09kmf0JCArn++uvpZ5PJRK655po2+b788ksCgHz33Xc0DQC54447CCGEeL1e8oc//IGo1WryzTfftGl3RkYGufnmm+kzoFKpyPTp08nMmTPJkiVLIvrWX/7yl1O2c+XKlQQAuf7668lXX31F3n33XZKdnU20Wi0pKSkhhLT0lUceeYT+nrt27SLHjh3rsMyu9q177rmHKJVKYrVaI66/7777iEwmI01NTYQQQmpra0laWhrJyMggr7/+Otm8eTP561//SqRSKbn55ptP2UbGwIUZQ4xuYzabiUAgILfeeishhJCmpibCcRz59ttvCSGEnH322WTJkiWEEEIqKysJAHL//ffT6zt6iQAg//rXvyLquvTSS8mwYcPo51dffbXNi4EQQhYsWNAtY+hk5XzVVVcRAGT16tUR6WPGjCHjxo2jn1977bV25XzmmWcIALJx40ZCCCHffPMNAUBeeOGFiHxPPvlkG2PooosuIqmpqfRlzHPnnXcSmUxGzGYzIaTrxtBTTz1FBAIB2bNnT0T6Rx99RACQr7/+mqYBIFqtltbBw9+nuXPnRqQXFhYSAOT222+PSN+9ezcBQB566CGaNnXqVAKAbNmypV05fv31107bcTIul4tIJBLyxBNPEEIIqaqqIgDIAw88QORyOfF6vYSQlmchOTmZXtfefVu1ahUBQMrKytrUk5GRQWQyGamoqKBpHo+H6PV6snDhQpoWzXPcVaqqqojRaCQTJkwgoVCIpi9YsIBIpdJ2rxk6dCiZNWsW/SwWiyPk5tm5c2ebQQ1vDDU3N5MpU6aQlJSUNr8T3+4rrrgiIn3RokUEALnrrrsi0q+66iqi1+s7bafFYiFyuTxiQEFIi/6QSqXkhhtuoGn8s3ny890eXe1bpaWlRCAQkOeff57m8Xg8JD4+nsyfP5+mLVy4kKhUqohngxBC/va3vxEA5PDhw6eUiTEwYctkjG4TFxeH0aNH0+WBHTt2QCgUYvLkyQCAqVOnUj+hk/2FOoPjOFxxxRURaQUFBaioqKCft23bBrVajd/97ncR+W644YZuteHk3UL5+fkAEOFky6e3rn/r1q1QKpX4/e9/H5GPn6rnd+jw7b7xxhs7ldPr9WLLli2YPXs2FAoFgsEg/bv00kvh9Xrx888/d6ttX375JUaOHIkxY8ZElHfRRRe1uxw0Y8YMxMXFtVvW//3f/0V85tt18tLE2Wefjfz8/DY7lOLi4jBjxoyItDFjxkAikeDWW2/FunXrcPz48S61i98FtXnzZgDApk2boNPpcN9998Hv9+PHH38EAGzevBkXXnhhl8rsiDFjxiA9PZ1+lslkGDp0aMSz0BFdeY67gtlsxqWXXgpCCD788EMIBJHqujPfrZO/607esrIyTJo0CXa7HT///DNGjx7d7nXd6UNms7nTpbJdu3bB4/G0ea7S0tIwY8aMdne+nYru9K3s7GxcfvnleOWVV0AIAQBs2LABzc3NEbvrvvzyS0yfPh3JyckR5V1yySUAMCgd0hktMGOI0SOmT5+OkpIS1NTUYNu2bRg/fjxUKhWAFmNo//79sNls2LZtG0QiEaZMmXLKMhUKBWQyWUSaVCqF1+uln5ubm2E0GttcazKZuiW/Xq+P+CyRSDpMP7l+k8nU5gWSmJgIkUiE5uZmmk8kErXxATlZzubmZgSDQbz44osQi8URf5deeikAoKmpqVttq6+vx4EDB9qUp1arQQhpU15SUlKHZZ38Hd++9q5JTk6m33dWdk5ODjZv3ozExETccccdyMnJQU5ODl544YVTtu3CCy/Ezz//DJfLhc2bN2PGjBmIj4/H+PHjsXnzZpSVlaGsrCxqY6g93x2pVNpmR1d7dOU5PhUWiwUzZ85EdXU1Nm3ahOzs7Dbyeb3edn2szGZzxHMcHx/f5nfh8wFtn/lffvkFJSUluO6665CamtqhjN3pQwA6bX93n6uu0N2+dffdd+Po0aPYtGkTAODll1/GpEmTInYL1tfX44svvmhT3ogRI9qUxxhcsN1kjB4xffp0rF69Gtu3b8f27dupcgFADZ/vv/+eOlbzhlK0xMfH45dffmmT3lUH6ljUv3v3bhBCIgyihoYGBINBJCQk0HzBYBDNzc0RL9aT5YyLi4NQKMRNN93UZks0T1ZWVrdkTEhIgFwub+Pw2/r71nRn1oBvS21tbZsXZU1NTZfLPu+883DeeechFArhv//9L1588UUsWrQIRqMRf/jDHzqU54ILLsCjjz6K77//Hlu2bMHjjz9O0zdu3Ejv1QUXXNBhGQMdi8WCCy+8EGVlZdiyZQsKCgra5Bk1ahQA4ODBg5g4cSJNr6urQ1NTE0aOHBmR9+DBg23K4NNa5wWA6667DiaTCQ8//DDC4TAeeeSRmLSrM1o/VyfT3nPVFbrbt2bMmIGRI0fipZdegkqlwr59+7B+/fqI/AkJCSgoKMCTTz7ZbnnJycndlpMxMGAzQ4wecf7550MoFOKjjz7C4cOHMW3aNPqdVqvFmDFjsG7dOpSXl3dpiayrTJ8+HQ6HA59//nlE+oYNG2JWR2dccMEFcDqdEbt1AODdd9+l3/NyAsB7770Xke9kORUKBaZPn479+/ejoKAAEyZMaPPX3ixFZ1x++eUoLS1FfHx8u+VlZmZ2q7zW8EteJ78k9uzZg8LCwm4bIUKhEBMnTqS7e/bt29dp/rPPPhsajQZr1qxBXV0dZs6cCaBlxmj//v3417/+heHDh5/ypSSVSgGgSzM9fQlvCB0/fhwbN27E2LFj28138cUXQyaTtQnAye8CvOqqq2ja7NmzUVRUFLGFPhgMYv369Zg4cWK79+qRRx7BmjVr8Nhjj2Hp0qUxaVtnTJo0CXK5vM1zVVVVha1bt/bIuO1J37rrrrvw1VdfYenSpTAajbjmmmsivr/88stx6NAh5OTktFseM4YGL2xmiNEjNBoNxo0bh88++wwCgYD6C/FMnToVa9asAdA1f6GuMnfuXDz//POYO3cunnzySeTm5uLrr79uN+p1bzB37ly8/PLLmDdvHsrLyzFq1Cj8+OOPWLlyJS699FK6PDNr1iycf/75uP/+++FyuTBhwgT89NNP+Oc//9mmzBdeeAFTpkzBeeedhz//+c/IzMyEw+HAsWPH8MUXX2Dr1q3dknHRokX4+OOPcf755+Oee+5BQUEBwuEwKisrsXHjRtx7770RswndYdiwYbj11lvx4osvQiAQ4JJLLkF5eTkeffRRpKWl4Z577jllGa+99hq2bt2Kyy67DOnp6fB6vXQW61TLW0KhEFOnTsUXX3yBrKws5OTkAAAmT54MqVSKLVu24K677jqlDPzMygsvvIB58+ZBLBZj2LBh/Rq8z+Px4KKLLsL+/fuxZs0aBIPBCH8xg8FA26vX6/HII4/g0UcfhV6vx6xZs7Bnzx4sW7YMf/rTn2iMIQC45ZZb8PLLL+Oaa67B008/jcTERLzyyisoLi6m/lftcffdd0OlUuHWW2+F0+nE3//+96hiTHWGTqfDo48+ioceeghz587F9ddfj+bmZixfvhwymYzOAHaX7vatOXPmYOnSpfj+++/xyCOP0CU+nieeeAKbNm3Cueeei7vuugvDhg2D1+tFeXk5vv76a7z22mudLi0yBi7MGGL0mOnTp2PPnj0YO3YsNBpNxHdTp07F888/D4lEgnPPPTdmdSoUCmzduhV33303HnzwQXAch1mzZuGDDz6IaT0dIZPJsG3bNjz88MNYtWoVGhsbkZKSgiVLlkQobIFAgM8//xyLFy/Gs88+C7/fj8mTJ+Prr79GXl5eRJnDhw/Hvn378Ne//hWPPPIIGhoaoNPpkJubG7H82FWUSiV++OEHPP3001i7di3KyspoLJ8LL7wwqpkhAHj11VeRk5ODN998Ey+//DK0Wi0uvvhiPPXUU12axRozZgw2btyIxx9/HHV1dVCpVBg5ciQ+//xzzJo165TXX3jhhfjiiy8iDCepVIopU6Zg06ZNXfIXmjZtGpYuXYp169bhjTfeQDgcxrZt2yJmOPua+vp67NmzB0CLIXIy8+bNi5gJevjhh6FWq/Hyyy/jb3/7G0wmEx588EE8/PDDEdfxRuL999+Pv/zlL3C73RgzZgy++eYbTJ06tVOZ/vjHP0KpVOKmm26Cy+XCP/7xj+gb2gFLly5FYmIi/v73v+PDDz+EXC7HtGnTsHLlSuTm5vaozO72LblcjiuuuALr16/Hbbfd1ub7pKQk/Pe//8Vf//pXrFq1ClVVVVCr1cjKysLFF1/c4UYExsCHI7zrPIPBYDAYZzB+vx+ZmZmYMmUK/vWvf/W3OIw+hM0MMRgMBuOMprGxEcXFxXj77bdRX1+PBx98sL9FYvQxzBhiMBgMxhnNV199hfnz5yMpKQmvvPIKO0T6DIQtkzEYDAaDwTijYVvrGQwGg8FgnNEwY4jBYDAYDMYZDTOGGAwGg8FgnNEwY4jBYDAYDMYZDTOGGAwGg3Fa8uqrr2LcuHEQi8VYtmxZf4vDGMAwY4jBYDAYpyVJSUlYvnx5xFltDEZ7sDhDDAaDwTgt4Y2g//znP/0rCGPAw2aGGIxBwD/+8Q9wHAeVStXjvFu3bsUtt9yCvLw8KJVKpKSk4Morr8TevXvblHHzzTeD47gO//gDRLtTJgDs378fV111FZKTk6FQKJCXl4cnnngCbre7B3eFAQBOpxOLFi1CcnIyZDIZxowZgw8++KBL1/7666/0wFy5XA69Xo9Jkya1OT1++/btp3wWGIzBDJsZYjAGONXV1ViyZAmSk5Nhs9l6nPfVV19Fc3Mz7r77bgwfPhyNjY147rnncM455+C7777DjBkzaN5HH3203YMqr7jiCkilUpx11lndLvPIkSM499xzMWzYMKxZswYJCQn4/vvv8cQTT2Dv3r1s9N5Drr76auzZswdPP/00hg4dig0bNuD6669HOBzGDTfc0Om1VqsVaWlpuP7665GSkgKXy4X33nsPN910E8rLy/HII49E5F+5ciWmT58ekTZy5MiYt4nB6HMIg8EY0Fx++eXkiiuuIPPmzSNKpbLHeevr69vkdzgcxGg0kgsuuOCUcmzfvp0AII888kiPynz44YcJAHLs2LGI9FtvvZUAIGaz+ZQyMCL56quvCACyYcOGiPSZM2eS5ORkEgwGe1TuxIkTSVpaGv28bds2AoD8+9//jkreWDFjxgwilUrb/Wv9fPL88Y9/JI8//njfC8oYNLBlMsaAZMaMGZg+fTp27NiBCy+8ECqVCiaTCU888UR/i9anrF+/Hjt27MArr7wSdd7ExMQ2aSqVCsOHD8eJEydOWf6bb74JjuNwyy239KhMsVgMANBqtRHpOp0OAoEAEonklDJ0haysLMybN69N+owZMzB16tSY1DFQ+PTTT6FSqXDNNddEpM+fPx81NTXYvXt3j8pNSEiASNSzhYNly5aB4zgcOHAA11xzDbRaLfR6PRYvXoxgMIji4mJcfPHFUKvVyMzMxLPPPhtxfWNjI2699VakpaVBKpXCYDBg8uTJ2Lx5M82zZcsWeL3edv/++te/9khuxpkNM4YYA5Jff/0V5eXluOeeezBv3jx8/vnnOP/88/H4449jx44d/S1epxBCEAwGu/TXGQ0NDVi0aBGefvpppKamxixva2w2G/bt24cRI0acMt9HH32ECy64AFlZWT0qc968edDpdPjzn/+M48ePw+Fw4Msvv8Trr7+OO+64A0qlsstyd0RzczPKy8sxYcKEiHRCCPbt24fx48dHXUesiMVzcujQIeTn57cxXAoKCuj3XSEcDiMYDKKxsRGvvPIKvvvuOzzwwANt8t1xxx0QiUTQaDS46KKL8OOPP3ZY5rXXXovRo0fj448/xoIFC/D888/jnnvuwVVXXYXLLrsMn376KWbMmIEHHngAn3zyCb3upptuwmeffYbHHnsMGzduxD/+8Q9ceOGFaG5u7lJbWhMMBuH1ehEKhSL+z2C0oZ9nphiMNpSWlhIAZPz48cTr9dL0qqoqAoC88sor/SjdqeGXFLryV1ZW1mE5//d//0fOPfdcEg6HCSGk02Wy7uRtzY033khEIhH573//22m+V199lQAg77//flRlFhYWkry8vIh7cNddd1G5o+Xbb78lAMjOnTsj0ouLiwkAsn79+pjUEwti8Zzk5uaSiy66qE16TU0NAUBWrlzZJVkWLlxI65JIJG362L59+8jdd99NPv30U/L999+Tt956i+Tn5xOhUEi+/fbbiLyPP/44AUCee+65iPQxY8YQAOSTTz6haYFAgBgMBnL11VfTNJVKRRYtWtQluU8FL0vrv7fffjsmZTNOL5gDNWPAsW/fPgDAE088AalUStP5kWFycvIpy/D5fMjIyEBxcXGbZZnuQAiBRqNBaWlpu0tC7TF+/Hjs2bOnS3k7asvHH3+ML774Avv37wfHcZ2W0Z28rXn00Ufx3nvv4cUXXzzljMmbb76J+Ph4zJ49u8dllpeX44orroDRaMRHH30Eg8GA3bt3Y8WKFXA6nXjzzTe7LHtH7NmzByKRCGPGjIlI53e3DaSZoVg8JwA6/c27+jw89NBD+NOf/oSGhgZ88cUXuPPOO+FyubBkyRIAwNixYzF27Fia/7zzzsPs2bMxatQo3H///bjooovalHn55ZdHfM7Pz8dvv/2GSy65hKaJRCIMGTIEFRUVNO3ss8/GO++8g/j4eFx44YUYP348XWLtLsuWLWPBFhldo7+tMQbjZJYuXUqkUinx+XwR6W+//TYBQCoqKvpMluLiYpKcnNyta8LhMAkEAl36aw/eAfnee+8lFouF/l1//fVEqVQSi8VCnE5nt/O2ZtmyZQQAefLJJ0/Znt9++40AIHfffXen+U5V5nXXXUcSExPbyPPWW28RAGT79u2nlOVUXHnllaSgoKBN+uLFi4lKpSKhUKjbZbb3O3X023WnjGifE0IIOeecc8hZZ53VJv3QoUMEAHn99de7JSfPbbfdRkQiEWloaDhlPgDE7XbTNH42prGxMSJvR7OVU6dOJSNGjKCfGxsbyd13300yMjIIAKJSqchNN91Eamtre9QWBqMrMGOIMeCYNWtWuwr+jjvuIAkJCfTza6+9Ri644AJy8cUXk7i4ODJixAhy+PBhQggha9asIX/84x9p3ttvv53ccssthBBCQqEQ+d3vfkf+8pe/0M/PPfccyc3NJTqdjsydO5caYu+//z657LLLCCEtSzwXXHABiYuLIzqdjtx5553tyh/t8kdZWdkpr7vyyiu7nZeHN1qWLVvWhV+DkLvuuosAIAcPHuwwT1fKHDZsGJk2bVqb9IMHDxIA5KWXXuqSPJ2RkpJCbr755jbp48aNI+eddx793NlvvmbNGnL11VeT66+/nqhUKvLFF1+0mxYIBMijjz5KkpKSiF6vj1juay//ycRimWzBggVEpVK1MZjef/99AoD89NNPPbqPvIH6888/d5qPX17zeDw0LVpjqDUVFRXkxRdfJEqlst3lQAYjVrBlMsaAY//+/fj973/fJn3v3r0RyxyHDh3Cnj178K9//QszZszAbbfdhkceeQSffPIJDhw4QJ1IAWDp0qXIz8/H448/jpdeegmhUAjPP/88AOCxxx7DDz/8gG3btkGr1eLKK6/EG2+8gTvuuAP79+/HuHHjAAA33ngj7r33XmzatAkOhwMlJSXtyh/t8ofJZMK2bdvapD/99NPYsWMHvvnmGyQkJHQ7LwD89a9/xbJly/DII4/g8ccfP6V8Pp8P69evx9lnn91hPJmulpmcnIxDhw7B6XRGBITctWsXAHTL8bs96urqUF1d3caZeMeOHdi3bx8WLVpE0zr7zQ8cOIAdO3bgo48+wvr16xEKhXDbbbe1Sbv33ntRVlaGQ4cOQSAQYPr06Xj//fdxww03tFvGycRimWz27Nl444038PHHH+O6666j6evWrUNycjImTpzYpfJPZtu2bRAIBMjOzu4wj8ViwZdffokxY8ZAJpP1qJ5TkZ6ejjvvvBNbtmzBTz/91Ct1MBgA2DIZY2BRWVlJAJA333wzIj0QCBC5XE4efvhhmjZt2jTy7LPP0s9btmyhI8wJEyaQrVu3RpRx++23k9GjR5PRo0cTh8NBCGlxNFWpVKS6uprme+ONN8j8+fMJIS3xWniHT51OR959990ex26Jlq46RXeU929/+xsBQC6++GKya9euNn/t8cEHHxAAZO3ate1+350y//Of/xCO48g555xDPvzwQ7Jlyxby5JNPEpVKRYYPH95mWRQAmTp1apfaSwghn3/+OQFAtFotWb16Nfn888/JE088QYxGIwFAbrjhBnLw4MFT/uYTJkwgL7zwQkTZJ6edOHGCaLXaiNhIDz30EFm8eHGHZfQWM2fOJHFxcWTt2rVk69atZMGCBW2cxbdv306EQiFZvnx5xLULFiwg9957L/nwww/J9u3byUcffUSuu+46AoDcd999NN/1119PHnjgAfLvf/+bbNu2jaxdu5YMGzaMiEQismnTpogyo5kZslqtZOzYsWTVqlXkiy++INu3byerVq0iMpmM3HDDDVHfKwajI5gxxBhQfPbZZwQA+e233yLSeb+V1jtRDAYDKS0tpZ/ff/99MnXqVBIKhYhCoSBNTU0RZaxdu7bNTqN3332XiEQiotVq6V/r3SwJCQl0ieKbb74hU6ZMIUajkSxZsoT4/f5YN79TojWGpk6d2ulSTHvMnDmTKJVKYrfb2/2+u2Vu3bqVzJo1i5hMJiKXy8nQoUPJvffe2+a3cjgcBAD5wx/+0KX2EkLIY489RkQiEfn3v/9NMjMziUwmI9OmTSO7d+8mQ4YMIUlJSWTnzp2d/ub8s1NVVUXLbS/tvffea7Nss3DhQvLMM8+0m783cTgc5K677iImk4lIJBJSUFDQZtcfvyR3cuDBt956i5x33nkkISGBiEQiotPpyNSpU8k///nPiHxPPfUUGTNmDNFqtUQoFBKDwUBmz55NfvnllzbyRGMMeb1ectttt5GCggKi0WiIXC4nw4YNI48//jhxuVw9uT0MRpdgxhBjUFJfX08A0BkeQgi59tprydNPP02Ki4tJUlJSRP7du3eTlJQUcs0115CFCxfS9DVr1rTrY0JIyyxVXFxcm/Ty8nKSnp5Ovvrqqxi1hnEyX331FeE4jhw4cKDL11xyySVk7Nixp8zX2W9eXFxMjEbjKdP+/ve/k+uuu45+9vv9JCMjg+zYsaPd/AwGY2DDgi4yBiUHDx6EUCjEBx98gEAggDfffBO7d+/Gbbfd1sZfqLKyEr///e+xfv16vPDCC9iwYQPdyjtu3Dh89913KCwsBNCyff/bb78F0OK7xG8n/uSTT1BWVgagxVfC5/MhPz+/L5t8RrFt2zb84Q9/wKhRo7p8zd69e3H22WefMl9nv/mBAwcwevToiPztpZ111ln4/vvvUV1dDavVioULF2L48OE4//zz283PYDAGNswYYgxKDh06hFtuuQUffPAB4uPjsX79emzatAlarRYHDx6kxpDD4cDll1+Oxx9/HNOmTUNSUhLmzJmDFStWAGiJl3LPPfdg1qxZUKlUOPvss3HgwAEAkcbQjh07MGnSJKhUKsydOxdr1649ZSRmRs9ZtWoVNmzY0OX8lZWVaGho6JIx1Nlv3vrZ4Wkv7ZxzzsEdd9yBsWPHIicnB2KxGP/61786zM9gMAY2HCGE9LcQDEZ3WbBgASZMmICFCxf2tygMBoPBGOSwmSHGoOTQoUPIy8vrbzEYDAaDcRrAZoYYgxKtVouSkhIYjcb+FoXBYDAYgxxmDDEYDAaDwTijYctkDAaDwWAwzmiYMcRgMBgMBuOMhhlDDAaDwWAwzmiYMcRgMBgMBuOM5ow/tT4cDqOmpgZqtRocx/W3OAwGg8FgMLoAIQQOhwPJyckQCKKb2znjjaGamhqkpaX1txgMBoPBYDB6wIkTJ5CamhpVGWe8MaRWqwEAFRUV0Ol0/StMB4TDYTQ2NsJgMERt/fYWg0FGYHDIyWSMHYNBTiZj7BgMcjIZY4fVakVGRgZ9j0fDGW8M8UtjGo0GGo2mn6Vpn3A4DK/XC41GM2AfzMEgIzA45GQyxo7BICeTMXYMBjmZjLEjHA4DQExcXAZuKxkMBoPBYDD6AGYMMRgMBoPBOKMZsMZQMBjEI488gqysLMjlcmRnZ+OJJ56g02JAiyf5smXLkJycDLlcjmnTpuHw4cP9KDWDwWAwGIzBxoA1hp555hm89tpreOmll1BYWIhnn30Wq1atwosvvkjzPPvss1i9ejVeeukl7NmzByaTCTNnzoTD4ehHyRkMBoPBYAwmBqwD9a5du3DllVfisssuAwBkZmbi/fffx3//+18ALbNCa9aswcMPP4yrr74aALBu3ToYjUZs2LABCxcubLdcn88Hn89HP9vtdgAtjlitZ50GEuFwGISQASsfMDhkBAaHnEzG2DEY5GQyxo7BICeTMXbEUr4BawxNmTIFr732GkpKSjB06FD89ttv+PHHH7FmzRoAQFlZGerq6jBr1ix6jVQqxdSpU7Fz584OjaGnnnoKy5cvb5Pe2NgIv9/fK22JlnA4DJvNBkLIgPXsHwwyAoNDTiZj7BgMcjIZY8dgkJPJGDtsNlvMyhqwxtADDzwAm82GvLw8CIVChEIhPPnkk7j++usBAHV1dQAAo9EYcZ3RaERFRUWH5S5duhSLFy+mn+12O9LS0mAwGAZ0nCGO4wZ0zIfBICMwOORkMsaOwSAnkzF2DAY5mYyxQyKRxKysAWsMffjhh1i/fj02bNiAESNG4Ndff8WiRYuQnJyMefPm0XwnxxcghHQac0AqlUIqlbZJFwgEA/pH5ziOyRgjBoOcTMbYMRjkZDLGjsEgJ5MxNsRStgFrDN1333148MEH8Yc//AEAMGrUKFRUVOCpp57CvHnzYDKZALTMECUlJdHrGhoa2swWMRgDiaNHj3bq5B8Oh2E2m6HX6wesIuqOjFzQC5mzEl5VOohIFnXdarUaubm5UZfDYDAYPAPWGHK73W2UrFAopA5TWVlZMJlM2LRpE8aOHQsA8Pv92LFjB5555pk+l5fB6ApHjx7F0KFD+1uMPmWsSYB9C1UY97oT++ti4/BYUlLCDCIGgxEzBqwxdMUVV+DJJ59Eeno6RowYgf3792P16tW45ZZbALRM4S1atAgrV65Ebm4ucnNzsXLlSigUCtxwww39LD2D0T78jND69euRn5/fbp7TbWZIbi0Bvl+I9957Dx5ddIZgYWEh5syZw8JnMBiMmDJgjaEXX3wRjz76KG6//XY0NDQgOTkZCxcuxGOPPUbz3H///fB4PLj99tthsVgwceJEbNy4MSaHtjEYvUl+fj7GjRvX7nfhcBgNDQ1ITEwc0MZQl2WsEQDfA/l5eUDymD6Rj8FgMLrDgDWG1Go11qxZQ7fStwfHcVi2bBmWLVvWZ3IxGAwGg8E4vRiYw04Gg8FgMBiMPoIZQ4wBh9vtxr59++B2u/tbFAYjZrDnmsEYuDBjiDHgKCoqwvjx41FUVNTfojAYMYM91wzGwIUZQwwGg8FgMM5oBqwD9WDB5/MhHA5DIBC0G9l6MOHz+eDxeAAAcrk85u05ne4Vg9EX8H0mEAjQGGu90TdPN/jDuJmuYXQVZgz1EK/XC5vNhlAoRNOEQiG0Wi1ksuij7PYlXq8X9fX1sFqttD1CoRA6nQ5GozHq9pxO94rB6Av4PuNyudDU1EQPpFSpVFAoFDHrm6cbXq8XjY2NCAaDNOQD0zWMrsCMoR7g9XphNpshk8kQFxcHsViMQCAAp9NJA9ENlo7n9XpRU1MDj8cDo9GIuLg4AIDFYkFzczNCoRCSk5N73J7T6V4xGH0B32eAlqj6CoUCJpMJYrEYXq8XHMfB6XRG3TdPN/j7JhKJkJCQAKlUynQNo8swY6gH2Gw2yGQy6PV6miaRSKDX62E2m+n3gwGbzQa/34+kpKSI9phMJkgkEjQ0NETVntPpXjEYfQHfJwKBAAAgOTmZ9h+z2YxAIACNRhN13zzd4O+FSCSCRCIBx3FM1zC6DDOGuonP50MoFKIzKCejUqnQ1NQEn8834NeqfT4f3G43ZDIZVCpVm+9VKhXsdjvcbneP2tPTe8X7LRUWFnarvq7Q30dd8G3i28joHt19Nvr7925NV357vs8oFAr68m7dN/k+o1AoIJPJetw3Tzf4+6bVamG1Wtt8P5j0MqN/YMZQN+GdGMVicbvf8+l8voFMOBxGOByGTCZrtz1isZhOzfekPT29V+Xl5QCAOXPmdLvOwUJ5eTkmT57c32IMOk6HZ6Oz357vC/yh1Cf3Tf7/QqEwqr55unE66WVG/8CMoW7Cjy4DgQAkEkmb7/mp7f4ehXYFgUAAgUCAQCDQbnv4dD5fT8rny+nOvcrMzATQ+WGmPaW/Zwr4g0b5NjK6R3efjf7+vVvTld+elzEUCrXbN/k+EwqFouqbpxutdU17DCa9zOgfmDHUTaRSKYRCIZxOZ4QfDI/T6YRQKBwUU7FSqRQKhQIWi6Xd9jidTni9XsTFxfWoPT29V3K5HEDnh5n2lIFyCCrfRkb36O6zMVB+79Z09tvzfSYQCLTbN/k+EwgEouqbpxutdU17DCa9zOgfmDHUA7RaLcxmM8xmM1QqVcQOKa/X2+6Lf6Ci1WrhcrlQW1sLv9/fZjeZXC6HVquNqvzT5V4xGH0B32d4ampq4HQ6I3aTNTU1Rd03Tze0Wi2amprgcDig0+kidpMxXcM4FcwY6gH87iibzYampiaaLhQKB932TZlMhuTkZNTX16O+vh41NTUAYhdn6HS6VwxGX9C6z0gkEtjtdtTW1gJgcYY6g79vFosFTU1NEXGGmK5hnApmDPUQmUwGmUx2WkRVlslkyMjIgMlk6pUI1KfTvWIw+oLWfSYpKYlFoO4iMpkMBoOBzpgxXcPoKswYipLTqaNJpdJebc/pdK8YjL6A7zPMx6x7SKXSAeMjxhgcsKeFwWAwGAzGGQ0zhhgDjry8POzduxd5eXn9LQqDETPYc81gDFzYMhljwKFQKGK+pZ7B6G/Yc81gDFzYzBCDwWAwGIwzGmYMMRgMBoPBOKNhxhCDwWAwGIwzmgHrM5SZmYmKioo26bfffjtefvllEEKwfPlyrF27FhaLBRMnTsTLL7+MESNG9IO0DEbXcLvdAIB9+/Z1mGcgnafVEd2RUW4tQT6AwqIieOqiOyizq6fVMxgMRncYsMbQnj17EAqF6OdDhw5h5syZuOaaawAAzz77LFavXo133nkHQ4cOxYoVKzBz5kwUFxdDrVb3l9gMRqcUFRUBABYsWNDPkvQdY00C7Fuowo033oj9URpDPKyPMxiMWDJgjSGDwRDx+emnn0ZOTg6mTp0KQgjWrFmDhx9+GFdffTUAYN26dTAajdiwYQMWLlzYHyIzGKfkqquuAtCyzVqhULSb53SbGeKCXhQ6K/HmpekgouiPRFCr1cjNzY26HAaDweDpkTH0+eefd/uamTNn9jiKqt/vx/r167F48WJwHIfjx4+jrq4Os2bNonmkUimmTp2KnTt3dmoM+Xw++Hw++tlutwNoUe58uPuBRjgcBiFkwMoHDA4Zgf6XU6/X45Zbbuk0TzgcRmNjIwwGw4A2hron4zkxr7+r+Qb6c8lkjB2DQU4mY+yIpXw9Mob40W1X4TgOR48eRXZ2dk+qw2effQar1Yqbb74ZAFBXVwcAMBqNEfmMRmO7fkateeqpp7B8+fI26Y2NjfD7/T2Sr7cJh8Ow2WwghAzol+NAlxEYHHIyGWPHYJCTyRg7BoOcTMbYYbPZYlZWj5fJ6urqkJiY2KW80a7vv/nmm7jkkkuQnJwckc5xXMRnQkibtJNZunQpFi9eTD/b7XakpaXBYDBAp9NFJWdvEQ6HwXHcgJ8pGOgyAoNDTiZj7BgMcjIZY8dgkJPJGDskEknMyuqRMTRv3rxuLXnNmTMHGo2mJ1WhoqICmzdvxieffELTTCYTgBaDLCkpiaY3NDS0mS06mY4OIxUIBAP6R+c4jskYIwaDnGeKjEePHoXD4YihVJF017dJ5qyEVxUb36bWnMrP6Uz5vfuCwSAnkzE2xFK2HhlDb7/9drfyv/rqqz2phtaVmJiIyy67jKZlZWXBZDJh06ZNGDt2LIAWv6IdO3bgmWee6XFdDAaj7zh69CiGDh3a32JQ+F1v4153xmzXW2tKSkqY4zeDMUCJ2W6yvXv3Yvz48bEqDkDLqO7tt9/GvHnzIBL9T1SO47Bo0SKsXLkSubm5yM3NxcqVK6FQKHDDDTfEVAYGg9E78DNC69evR35+fq/U0d14SPh+Id577z14dLEz0goLCzFnzpxenQFjMBjRETNjaPbs2aisrIxVcQCAzZs3o7Kyst3dN/fffz88Hg9uv/12GnRx48aNLP4IgzHIyM/P77UDTMPhMBoaGpCYmHjqKfUaAfA9kJ+XBySP6RV5GAzGwKRbxtC1117bbjohBGazOSYCtWbWrFkghLT7HcdxWLZsGZYtWxbzehkMBoPBYJw5dMsY2rx5M/75z39CpVJFpBNC8P3338dUMAaDwWAwGIy+oFvG0LRp06BSqTB16tQ23/GOzAwGg8FgMBiDiW4ZQ623t5/Mt99+G7UwDMbpgtvtRlFRUafHbjAYZwqsPzAGOlFt0ucjQTMYjEiKioowfvx4ejArg3Emw/oDY6ATlTHU+mwwBoPBYDAYjMFIVFvrO9rpxegd+ANmBQJBu1G028sfDoe7nL+717TOKxaLo6rbbrfD5XJBIBBAp9O1e01P2tOVevmdkHq9nkZK9/l88Hg89J5LpVLI5fI+k4vBON3x+XywWq0Ih8NQKpUAgGAwCJFI1OMTC/hyPR4PRCJRj/tjV/p06zwAIvL3pU7ob/3T3XsVTZ7eJCpj6FTngDFig9frRWNjI4LBIO14QqEQWq0WMlnbYwO8Xi9sNhtCoRBN6yx/d69pLy/HcfD5fPB6vXA4HF2u22q14tixY7BYLPQEYrFYjJSUFGRkZEAmk/WoPafCarWisLAQ1dXVCAaDAACRSITExETo9Xp6z/lAeWq1GgaDAUajEUaj8ZRyMRiM9vF6vaisrERVVRUCgQAcDgfMZjMUCgXS0tKgVqshkUiQmprarfMivV4vLBYLLBYLhEIhBAJBt/VEV3RN6zy8vgP+dwan2+2GQqGg+aPVVdHI2pt0915Fk6cviFnQxcGO1+vtbxHaxev1wmw2QyQSISEhAVKpFIFAAE6nk0bWbf3A8PllMhni4uIgFos7zd/dazrKa7fbUVlZiWAwCL1e36W6eYOEEIJhw4YhMTERgUAAVVVVqKmpQTgcRlJSEtxud7facypsNhuqq6vhcDiQl5eHzMxMAEBxcTH2798PoOXIl+TkZOj1egCA2WyG3+9Hc3MzQqEQ9Hp9p3LxM0oMBuN/+Hw+lJWV0XMlVSoVqqqqYDQa4fV66YDE5/Ph+PHjyM7O7pJBxOsliUQCvV6PpKQkhEKhbumJruhBADSPXC4HIYQ6hLtcLgQCAcjlcggEAsTFxUEoFEalq6KRtTcNie7eq2jy9JVBNHBPYOtj7HZ7f4vQLjabjT4oEokEHMfRDi+TyWCz2drNr9fru5S/u9d0ljcQCMDv93e57qqqKnAch7y8PKSnp0Mmk0GtViM/Px/p6elobm5GVVVVt9tzKmpra+F2uzFy5EgUFBRAo9FAo9EgPT0dGRkZIITA4/EgIyMj4k+r1UKhUMDv959SLqfT2W25GIzTHf4ll56ejvz8fNhsNiQmJuK8887D+PHjIRKJYLVakZOTA61Wi6qqqi6V2xO915MyWufxeDyQy+UwmUwwmUwIBAIAgJycHGg0Gtjt9qh1VW+2t7frj1WeviKqmSGJRBIrOfqdUCgEn883oHw+fD4fQqEQtFotrFZrm+9VKhWampqo3Hz+uLi4dss7OX/rOrpyDYAO8/JlymSydu/jyXXb7XY4nU7o9fo2QTwBwGg0oqamBmazGRkZGV1uz6mw2+2wWq3Q6/UwGo0R8rvdbhgMBjQ1NcHtdtNlO74uu90On88Hv98Pl8vVxk+qdV632w2g5Vyq7tKd87T6i1jIyN8bj8cTS9EGHHz7OnoWzoTfm297Y2MjcnJyYDQaYbfb4ff76cysSqWCXq9Hc3Mz7HY7jEYjSkpKYLfbO/Uh6one60kZ1dXVAICUlJQ2+X0+H53B8Pl8beps/bkjvdFVYtHe3q6/9b2KJk9vtuNkojKG/vvf/8ZKjgFB65ffQKC1D0178Ol8vu7m7+k17eUNh8MQiUQQi8Xt3seTywkGgwiHw1AoFO2Wp1AoIBQK4fP5IBQKuyzbqQgGgwgGg5DL5RHxTsLhMMLhMFQqFRQKBQKBQIRPnFgshlgsRjAYBMdxCIfDncp14sQJAMCcOXO6LNuZSnl5OSZPntzfYvQa5eXlANizAAAnTpzAsGHDoFAo6ACP74disRhyuRzhcBjBYJAuj/E+fR3RWoe1t6mnK3qiK3qwdR7eraJ12a3/zxtGJ5cbi3dMT3R2LOnuvYomT+v6ehvmM9SKgTYq4+Xhp19Phk/n87XO396s3cn5e3pNe3kFAgGCwSACgUC79/HkckQiEQQCAdxud7vlud1uhEIhCIXCCMe6U8l2KkQiEUQiETweD9xuN52VEggEEAgEsNlscLvdEAqFEYo1EAggEAggFAqBEAKBQNCpXGlpaQB6diL7mTBTAPzvNHd+ZuB0hW9fR8/CmfB78791WloagsEg3G43RKKW1w/fDwOBADweDwQCAUQiEZ1d5fN1RGsd1l7eruiJrujB1nlOzi8QCCLqObnOnuiqaGSNVV09rT9WeVrX19tEbQx5PJ4IJ7KKigp8+umnGD58+KCKQyQUCgfUEhnQsp2bd8BrD6fTGSF36/y8c1pn+XtyTUd5+WU6r9fb7n08uRyNRgOVSgWz2YyEhIQ25dXX14PjOMTFxXVoDLbXnlOh0Wig0+lgt9tRX19PjSGpVAqFQoGSkhI4nU4kJSVFdEKn0xkxGuSVd0dy8f2hJyeyd+uk9X4iljLK5fIYSTUw4dvX0bNwJv3eBoMBwWAQ9fX1yMnJgUQiof2Q9ydSqVTQaDQoLS2FRCI55Tb71jqsPWfrruiJruhBvk/zeVrnl0qlVD9IpVKYzeaIOlvLEO1MR0/0fCzpyb3qaZ6+fC9H3fOuvPJKvPvuuwBadgdNnDgRzz33HK688kq8+uqrUQvYV0QT16I30Wq1dMuo3+8HIQR+vx9msxler7fNNm4+P7/76VT5u3tNZ3nFYjEkEkmX605NTQUhBEVFRaisrKTbVAsLC1FZWYn4+HikpqZ2uz2nIikpCQqFAocOHcKBAwdgt9vpbriKigpwHAe5XI6KioqIP37WiN/225lc7flBMRhnOrxfUGVlJQoLC6HVatHQ0IAffvgBe/fupctjpaWlsNlsSE1N7VK5PdF7PSmjdR65XA6Px4O6ujrU1dXRZZ3S0lLq5xStrurN9vZ2/bHK01dEPTO0b98+PP/88wCAjz76CEajEfv378fHH3+Mxx57DH/+85+jFrIv6Mt4Bt2B97S3WCxoamqKiDPU3rZDPr/NZkNTUxNN7yh/d6/pKC/HcTAajUhMTITD4ehS3TqdDvn5+Th27BiKi4upk+XJcYb4XQVdbc+p0Gq1MBgMKCwsRFFREQ4dOgSgZTp+6NChNM5QTU0NiouLAfwvzlB8fDyNM9SZXOyoGgajLVKpFFlZWRAKhR3GGWpoaIBEIunytnogUk+azWa67N0dPdFVPcjn8Xq98Pl8EXGGJBIJjTNksVjavT4W9ETPx5Lu3qto8/QFURtDbrebBpvauHEjrr76aggEApxzzjmoqKiIWkBGy4NnMBiolXyqCJ38i7o7ET27c017ecViMRoaGiCTyaBQKLpct06nw4QJEzqNQN2T9pwKnU6HyZMnRxWBujfkYjBOd2QyGYYOHYqMjIyYRqCWyWQwGo3w+/2Ii4vrUQTqrvTpk/Pwu6H6OgJ1f+ufntyrnubpC6I2hoYMGYLPPvsMs2fPxnfffYd77rkHANDQ0DBgl54GK1KptFvr9T15oLpzTeu8J6+Dd7duPtZPrGSLtl6pVNrl+pgBxGB0H6lUGhHeIpbl8oEPoykjmjx9qRP6W/9Ee6+6k6c3idpn6LHHHsOSJUuQmZmJs88+G5MmTQLQMks0duzYqAVkMBgMBoPB6E2inhn6/e9/jylTpqC2thajR4+m6RdccAFmz54dbfEMxqAkLy8Pe/fuRV5eXn+LwmD0O6w/MAY6MYkzpNPpUFlZia+//jpiuaSuro49/IwzEoVC0e0t9QzG6QrrD4yBTtTG0LfffoubbroJzc3Nbb7jOK7DwHQMBoPBYDAYA4GofYbuvPNOXHvttaitraVHGvB/zBBiMBgMBoMx0Il6ZqihoQGLFy/ulV0BDAbj9IU/bmHfvn29Vkd3jpGQW0uQD6CwqAieutidh9STw3oZDEbfEhMH6u3btyMnJycW8kRQXV2NBx54AN988w08Hg+GDh2KN998E+PHjwcAEEKwfPlyrF27FhaLBRMnTsTLL7+MESNGxFwWBoMRW4qKigAACxYs6GdJWhhrEmDfQhVuvPFG7I+hMcTDx2NjMBgDj6iNoZdeegnXXHMNfvjhB4waNarNCbR33XVXj8q1WCyYPHkypk+fjm+++QaJiYkoLS2NiEj67LPPYvXq1XjnnXcwdOhQrFixAjNnzkRxcTFTPAzGAOeqq64C0LLTiD+nKNZ0Z2aIC3pR6KzEm5emg4hiG/lWrVYjNzc3pmUyGIzYEbUxtGHDBnz33XeQy+XYvn07OI6j33Ec12Nj6JlnnkFaWhrefvttmtb6dGtCCNasWYOHH34YV199NQBg3bp1MBqN2LBhAxYuXNizBjEYjD4hISEBf/rTn3q1ju4fMHpur8rDYDAGJlEbQ4888gieeOIJPPjggzE9cfnzzz/HRRddhGuuuQY7duxASkoKbr/9djqlXlZWhrq6OsyaNYteI5VKMXXqVOzcubNDY8jn89EjFgDAbrcDAHX6HoiEw2EQQgasfMDgkBEYHHIyGWPHYJCTyRg7BoOcTMbYEUv5ojaG/H4/rrvuupgaQgBw/PhxvPrqq1i8eDEeeugh/PLLL7jrrrsglUoxd+5cehDmyY7bRqOx0zPRnnrqKSxfvrxNemNjI/x+f0zbECvC4TBsNhsIITG/z7FiMMgIDA45mYyxYzDIyWSMHYNBTiZj7LDZbDErK2pjaN68efjwww/x0EMPxUIeSjgcxoQJE7By5UoAwNixY3H48GG8+uqrmDt3Ls3XelkOaFk+OzmtNUuXLsXixYvpZ7vdjrS0NBgMhi6fkNzXhMNhcBwHg8EwYB/MwSAjMDjkZDLGjsEgJ5MxdgwGOZmMsUMikcSsrKiNoVAohGeffRbfffcdCgoK2jhQr169ukflJiUlYfjw4RFp+fn5+PjjjwEAJpMJQEuU66SkJJqnoaGh023+HR3AKRAIBvSPznEckzFGDAY5TwcZjx49CofD0cdSnUTADV/1IdSmjATEveOk3RHdcZo+HX7vgcJgkJPJGBtiKVvUxtDBgwfpgayHDh2K+K6zGZpTMXnyZBQXF0eklZSUICMjAwCQlZUFk8mETZs20fr9fj927NiBZ555psf1MhiM6Dl69CiGDh3a32LQ7fLj7nD2ynb5U1FSUsJ2kTEYg4CojaFt27bFQo423HPPPTj33HOxcuVKXHvttfjll1+wdu1arF27FkCLobVo0SKsXLkSubm5yM3NxcqVK6FQKHDDDTf0ikwMBqNr8DNC69evR35+fr/JIbMUAT/8GevX/xPeuL47J7GwsBBz5szp/5kxBoPRJWJyUGtvcNZZZ+HTTz/F0qVL8cQTTyArKwtr1qzBjTfeSPPcf//98Hg8uP3222nQxY0bN7IYQwzGACE/P79fD+gMV3PAD0BeXj4EKWP7TQ4GgzGw6ZExdODAAYwcObLL63WHDx/GsGHDIBJ1r7rLL78cl19+eYffcxyHZcuWYdmyZd0ql8FgMBgMBoOnR95HY8eObfeU+o6YNGkSKisre1IVg8FgMBgMRq/So5khQggeffTRLofQH6jxexgMBoPBYDB6ZAydf/75bXZ6dcakSZMgl8t7UhWDcUbidruxb98+DB8+vNfO7WIwBhputxtFRUW9el4dg9EePTKGtm/fHmMxGAxGa44dO4aLLroIe/fu7VcHZAajLykqKsL48ePZc8/ocwZuNCUGg8FgMBiMPmDAbq3va3w+HzweDwQCQbsRqmNZTzgcjmk9vOz8AbRSqRRyubxN+T2pu71rWqcBnR+W11q2k+XivwNAl1GtVivC4TCUSiU0Gg3sdjuCwSBEIhE0Gg2tOxAIIBwO04N3xWIxvaa9sqVSKXw+H4LBIHw+H+x2O8LhMEQiEaRSKaxWKxoaGiAWi6FSqRAOhxEMBkEIgVAoBAAolUqoVCo4nU4Eg0EEAgHaFrvdjlAohFAoBJFIRP3kmpubwXEcOI6DTqeDxWKBVqsF0BKktLy8HBaLBRKJBHq9nl534sSJLv0+DMbphNPpBNDy/Ot0OnpmpFAoRDAYhMViwYkTJxAMBqFWq5GYmAgAsFgs8Pl8UCqVkEgkGDlyJFQqFSwWC5qamgAAGo0G8fHxcLvdkEgk8Pv9MJlMsFgsMJvNcDgc0Gq1SE1NRSAQgN/vh0gkgtFohFQqpbooFApBpVIhEAhALBbD6XRCKBRSHQX8T0fy3/HXCAQChMNheDweNDY2QiwWt9FtrfVqe7r6ZJ3YHq31pFgspuV0lN4R/DulK/li/V7ra5gx9P8xm80IhUIAAKFQCK1WC5lMFrPyvV4vbDYbrSMW9Xi9XtTX16O+vh6NjY00wJtarYbBYIDRaKRHk3S37vbkDQQCAACxWAyv1xtRn0QigcVigUajgUKhiJDNZrPRjqLVaqHT6UAIgdfrRSgUgs/nQ0NDA1wuF1QqFaRSKdxuN1VWarWaGj06nQ5+vx+NjY1oaGigykalUiE+Ph46nQ5qtRqEECp7MBiEQCCAXq+H1+vFkSNHoNFoIJFIYDabUVZWBqfTiXA4DLPZDKfTCaVSCbFYjFAoBLFYjISEBEilUhBCoFQqEQgE4PP5YLVa4XK5EAqF4Ha74XK54PV64fV64XK5qOIJBALgOA5qtRoWiwV1dXVwOp3w+XwR9xhoOW+H95d48sknsXLlSgwbNqxHzwiDMRiwWq2oqqrCwYMHAQAfffQR3n33XTidTjidTlitVthsNng8HgSDQXp2Fq9XhEIhhEIh7TsGgwESiQRCoRCEEBBCAAAymQzx8fFQq9WQSqVoamqi/bR1qJjU1FRkZWVBr9dDIBBApVIhISEBfr8fHo8Hfr8fMpkMXq8XEokEcrkcKpUKYrEYarUa4XAYtbW1cDqd8Hq9kMlkEQOt6upqxMXFQSQSQSKRgBBCja7WelUmk1Fd7fV6UVVVFbEhSSKRIDU1lZ6ryettl8sFh8OBUChE7wv/f7/fT/+vVquhVCrbvAu8Xi8aGxup7gTaf2f0xnutv2DG0P8nPj4eBoMBgUAATqcTZrMZer0+Jj+o1+uF2WyGTCZDXFwcxGJx1PV4vV7U1NTAarWCEILk5GTo9XoALYad3+9Hc3Mz3G43pFIpdDpdl+tuT16Hw0FnKwwGA6RSKX1hh0IhKJVKOBwOWrfZbIbVao0YpTmdTlRWVqKoqAhSqRTDhg1DXFwcysvL6UgvIyMDGo0GR44cQTAYRDAYhMlkgtPpRFNTE44fP464uDjIZDKo1WqkpqbCZDIhEAjAarWioqIChBBMmDABmZmZ8Hq9KCsrg9vtRnNzM3w+HxITE2E0Gun983q91Hisra2F1WpFfX09CCEoKCgAIYQqTJfLBY7jkJ6eTpWORCKBSCSCWq2G3+9HXV0dXC4XPTOPV6BSqRSVlZWoq6tDKBSis0VSqRR1dXUIh8NQq9XQ6XQQCoWwWq3Yv38/nn76aTz44IPMIGKcllitVhw/fhx+v58aAkKhEElJSQgEAqiurobFYgHQYszw/aO2thZutxsCgQAajQapqakQi8Woq6tDfX09lEolUlJSMGzYMCQkJOC3336Dz+eDQCBAXFwcmpub6WrA+PHjER8fj9LSUtTV1YEQgvj4eCQlJaGyshIVFRUQCoUYOXIkfD4f6uvrUV5ejszMTCQmJtJZ36amJtTW1kIul8NkMiExMZEaOFarFY2NjQiHw1CpVBg1ahQAoLy8HAKBAI2NjUhISKADWH42KRgMoqysDFarFYmJicjMzIRCoYDb7UZ9fT2OHz+O7OxsyGQymM1mAC0zOampqZBKpbDZbKiqqqK6PzU1FVqtFj6fjxpMrd8FvP4XiUR0ENjeO6M33mv9CTOG/j8SiQQcx9HlCrPZDJvNFpMfky+HN1b4+qKpx2azwe/3U4MkMTGRlq9Wq9HQ0AAAaGpqQkJCQrfqbk9ej8dDX+41NTVtjC+Px0NHOlVVVRCJRFAoFG3kstlsaG5uhlarhVwupzNMY8aMQVxcHBoaGlBeXk4NpZKSEpSUlKCgoABarRZOpxMOhwPx8fEYO3Ys4uLi6JRvYWEhdDodRCIRXcKyWq1IT08HAPz4448wGAwYMmQICCEoLS2F1+vFxRdfjGAwiN27d2Py5Mnwer3YvXs3hEIh9Ho9Ro8ejc2bNyMcDmPkyJEoKyuDRCKBTCZDXl7LEQ+VlZV0yjoUCsFgMEAul0Mul6O6uhqpqakQCoUoLCyEVquFRqOBzWbDsGHDUF1djcTERGpUGQwGulszPz8fhw4dwk8//cSMIcZpSVVVFbRaLU6cOAGVSgUAiIuLwyWXXIIffvgBDocDqamp8Pl8SEpKgt/vh0QigVarhdVqhVgshlQqxdixY6HT6fDzzz/DZrNBq9UiJSUFGRkZ4DgOV155JY4fP04NoGAwiNGjR0Ov10Or1UIoFGLo0KG47LLL8Ouvv1JjY9SoUbDZbGhqaoLX60VycjKdaUpMTERycjLVQUlJSTh+/DgCgQAMBgPEYjH0ej2KiorojHk4HEZOTg6EQiEEAgGSkpKgUqlQVlYGs9lMDyjn9arRaMSRI0cgEomQk5ND75tKpYJKpUJpaSmqqqpgMBggk8kQCASg0Wio3nW5XEhISIDH44FWq4VIJKLXchxHZef1Pv8vP2vV0XuxN95r/UmPjKHFixd3OW9PT63vb1QqFZqamqivS0/hl0Hi4uJiVo/P54Pb7aa+KBKJhCoRvky73Q6HwwFCCDiOa7f89upuT97WaT6fD36/H2KxOKIct9uNUCgEuVxOl5nUanWEXD6fDxzHQaPRQKlUwmq1Un8fo9EIiUSC6upqOBwO6HQ6qFQqKJVKNDY20qlpg8GAkpISeL1eek1TUxOEQiHC4TAdpTidTjQ2NlK57XY7ne5u7d8jlUoRHx9PR4NisRhWqxVJSUkQiUQwm81wuVxQq9Vobm6mZdTV1UEsFtMRllQqRSgUgtfrBQDk5OTg+PHjkMlkUCqV0Ov12LlzJ8LhMIRCIdxuN3Q6HeRyOaxWK8aPH48hQ4bgp59+oqdFA6AjsM8//xzx8fFIS0vr0jPS2/BLivwywskUFhYCAPXbOtPg283fh8441b0cCPSWjE6nE1VVVfSlXl9fD6DFPy8YDMLr9VLjRyqVIiEhAXV1dbBYLFAoFOA4DoQQiEQiujQvEomg1WrpMprD4YDX68VZZ50Fm82G+vp61NTUgOM4OkNdXFxMDZfU1FTU1dWhoqICXq8Xw4YNg8FggM1mQ11dHeLi4uD3+zF8+HDU1NQgHA5TfcwvnwEtfkzZ2dnw+XyQyWRwOByQSqUQi8X0GoFAAKPRiMbGRqhUKrhcLtjtdmg0Gqqfed8iXv+erMeNRiMOHToEkUiElJQUeL1eqr953a3T6WCz2ZCUlERdDqRSKa2DN9R43cgbmifD5+fzxfK91t/0yBjav39/xOe9e/ciFArRkWtJSQmEQiHGjx8fvYT9BP+y78w5uCvw17c2HqKtJxwO05cqx3EQi8UR5fOfOY6ja+ntld9e3e3J2zotGAwCAHUqPrkcvq725OK/l8lkkMlk8Pv9CAQCdBaJN+54o0YsFkMmkyEcDoMQQqeX+Xz8NQCoAcF3cN544uXgOI46S/OGkFAohFQqhVKphEgkop95g433KeI4DnK5nI5AFQoFHA4HRCIR5HJ5RFv5GSmDwYDy8nKIxWLI5XJoNBrqN6RQKOjSokKhQDgcRkZGBs466yz8/PPPkEql9D5/8sknAFqcrf/zn/90+RkZKJSXl2Py5Mn9LUafU15eDgCYM2dO/woySHE4HNTBVygU0v6n0+nQ1NQEQghUKhVEIhHVD60HEADooI3XSfHx8XRGNhwO0w0diYmJKCoqovpFp9PRTQ58uSqVChKJhG6qAICEhARqVLXWx7xvIe9v6PV6qQ6SSqVUx/A6jdcBMpmMbvIA/qdXeUduPt/J8Om8Tmt9LZ+fvyd8HSfref66k+s+GT69q/mifX/2JT0yhlqfVL969Wqo1WqsW7eOWokWiwXz58/HeeedFxsp+wHeWTjaURB/fSAQgEQiiUk9AoEAAoGAvux5B12+fP4z3yFDoVC75bdXd3vytk7jHeXac6wWCAS0LkJIG7n4771eL6RSKSQSCcRiMTweD93hwSsfXoF4vV4IBAJq7NjtduoQyV8DgCoWfs1aIBBAIpFE3At+Jxk/UuGdt10uF90l4vP5QAiB3W6nBhIhBB6PhzpN8yO6YDBId8q1vt8+n4/6BgQCAXg8HtjtdojFYiq3UCiEy+WiZVVUVFCHbZ/PR8/xu/rqq1FSUoKcnBzMnz9/UM0MzZkzB5mZmX0v3ACAb/f69euRn5/faV42MxQ5M/TMM89ArVbTHaO8zvB6vbBarQgGg+A4Di6XCx6Ph84M8YMwr9dL8/A6SyAQoLm5GXa7neoUvm82NDRQ/dLaWRsANXScTif8fj8djAGgu9R4neX3+0EIoTuwhEIhAoEArYv/jjeA+Dp5HcDrIb7v83qVN8LcbjcMBkObe8hfz+9a46+VSCT0t+JnrPl/W+t04H/6/OS6T4ZPb50vVu+1/iZqn6HnnnsOGzdujJgui4uLw4oVKzBr1izce++90VbRL/C7lKKd4pNKpRAKhXA6nRFrq9HUw89O8C9ur9cbUT6/g4EfjRBC2i2/vbrbk7d1GgBqZJxcDu+rw4/YTpaLHzHxhga/Lfbo0aOor6+nTnhqtRpWq5UqPLVaDblcDpFIhKNHj0Iul0Mmk9Fr+LV33ohqbGxEcnIyDAYD6uvrqXHEKzWDwUC3zPt8vojt74FAADKZDLW1tRAKhUhLS6PO4bzCdTqdSEpKgsPhgMvlAgBqZCmVSgBAaWkpnTVyuVwwm80YMWIEdu/eDUIIFAoFrFYrPB4PdDodSktLceLECYhEImrYAaA7UX73u9/hyiuv7PIz0tuEw2E0NDQgMTGxU4V3pkae59udn59/yuCBXb2X/Ulvynjo0CE6e3ro0CEALX4uIpEIMpkMEokEdrsdPp8PTU1NCIfDiIuLQ3V1dYTPEO9cXVZWRn2GBAIB1Go1NBoNysrK0NzcjEAgAJPJhNraWvh8PhQXF1OfIYvFgqqqKtTV1UGr1UKlUoEQgsbGRnqdXC6HRCLBkSNH6P3g9TE/gOM4ji7X87tYxWIxDflhMBigUCggEAhQX18PlUqF+vp6BINB6nvI61Xeh9BsNmPo0KFt7h9/Pe8/2Vp/87qb38xitVrpjt3WdfDXaTQaeDwequtPhs/fOl+s3mv9TdTGkN1uR319PUaMGBGR3tDQQHcGDAZ4q56fWfB6ve3+yD1Bq9XCbDbDbDbT7ZfR1qPVauFyuWC1WukIh7/f/I4usViM+Ph4utzT1brbk1cul9PdZImJifB4PKirqwPwv91ktbW1dIcXv5ussrISPp+P7iaz2WwIBoN0m2xcXBzUajV+/fVXSCQSZGRkIDMzE0eOHIHL5YJer0d+fj6amprQ1NQEp9OJuLg4eL1e7N+/H1qtlu4m47e6E0KQkZFB1+r53WT8enlJSQmMRiM1qr799lvExcUhJSUFu3btorvJhEIhlEoltm7dCo/Hg3A4jJ9//hkqlQp+v59udXW73RCJRLBarXTbP2+oAS3PVllZGTWWampqYDab4fV6YbFYOtxNBrTMsEydOvWMXGpinBmkpqZS/zr+JWyxWPD5558jEAjAbrejqqoKdrsdx44da7ObjPfdEwgEdDcZ3z95Z+GEhAT89NNPNDxHamoqRCIRfvvtNwAth4/zu8m+//576HQ6nHXWWTAajTh48CAcDgfdsVVbW0s3evDodDoEAgE0NTVR38nGxkYAoLt6+Z2r4XAYR48exbhx4xAKhVBbW0tnmnmfKKBFr6rVapjNZsTHx8NqtaK0tBRGozFiN5nNZmuzm4yfMeOX3JuamiAWi+Fyueh95neT8dvu+XeBVqtFU1MT9d1svZus9TujN95r/UnUxtDs2bMxf/58PPfcczjnnHMAAD///DPuu+8+XH311VEL2Fc0NzdH+MPEclsg73HP70jgiaYemUyG5ORkCIVC6hDI70Di4wzFx8dHxBnqat0dycs7Q/PLTa3jYfDLUHq9HgqFgsbHqK+vx6FDhyLiDOXl5YEQApvNBrPZTJeFHA4HysvLI4KDiUQi1NXVUcft7OxsanA4HA7U1tbi6NGjNM5QRkYG1Go1vF4vDh8+TOXldznwcYb4+CD8lljegGkdZ4jjOBw4cCAizhDv58OPKvngbPxSHx9niFfWJ8cZ0mq1CIfD1GHbarVGLDk6HA74fD66S3Ds2LFsWz3jtEan0yE7OxtVVVVQq9UAQI0EPs4QvzTFD0D4JTF+Gctut6O4uJjGGeI3V/j9fhw4cCAizlA4HIbFYqG7PV0uF/bs2RMx48VvvSeE0EFaXFwcysrKqD9iYmIi1Rd8nCG1Wo3k5OQO4wwZDAYaZ+jgwYN0x1YwGKRxhngncrVaTf0+s7KyaNtLSkqonBKJBNnZ2TTOEK+3w+EwqqqqqB+RRqOhRlpTUxMd7KnV6jZxgXj9z4cKaB1nqPU7ozfea/1J1MbQa6+9hiVLlmDOnDkR64l//OMfsWrVqqgF7Cv0ej00Gk2vRdDknYZjGalTJpMhIyMDJpPplBGou1t3Z/LyaSkpKQD+5yTHT2t3JFtnEaj5pYS+iEDNBxkb6BGoX3/9dTz88MPMEGKc9uh0Ouh0Ojqz8fvf/x6jRo0a1BGoMzMzO4xAXVdXB4VC0W4E6tZ6tbXe5ZcBO4tAfbLe7mkEaplMBoPBQHVVZ/li/V7rL6I2hhQKBV555RWsWrUKpaWlIIRgyJAh1HdisMC/qPuint4osyvl9qTu9q5pL62jXQOdydbed/xMFs/JnZ3Pf6rfqr2y+W2tUqmUGr6t6z257o5or+6uXtuaMWPGtJseDoexefNmvP76690uk8EYzPCzz2lpacjOzkZ2dna3rj/Ztyk1NfWU1+j1+oj4PR1xsi7i9UB7+qAzPRUOhyGXy2EwGCJ0UFf1c0dHcHSl/q7qz9b5u+IjNlgNoNbELOiiUqlEQUFBrIpjMM5ohgwZgj179tCgjgzGmUBeXh727t3LnntGnxOTbQE//PAD5syZg0mTJqG6uhoA8M9//hM//vhjLIpnMM44FAoFxo0bR32HGIwzAfbcM/qLqI2hjz/+GBdddBHkcjn2799P/VYcDgdWrlwZtYAMBoPBYDAYvUnUxtCKFSvw2muv4Y033oiIRnnuuedi37590RbPYDAYDAaD0atEbQwVFxfj/PPPb5Ou0WjaPduEwWAwGAwGYyARtQN1UlISjh071ibs/o8//tjtnQAMBuP0wO12A0C/zw7LLEUYDqCoqBDeetJn9XblgFYGgzFwiNoYWrhwIe6++2689dZb4DgONTU12LVrF5YsWYLHHnusx+UuW7YMy5cvj0gzGo00OichBMuXL8fatWthsVgwceJEvPzyy20iYTMYjL6nqKgIALBgwYJ+lWOsSYB9C1WYM+cm7K/r+0Mj+SCCDAZjYBO1MXT//ffDZrNh+vTp8Hq9OP/88yGVSrFkyRLceeedUZU9YsQIbN68mX5ufVL6s88+i9WrV+Odd97B0KFDsWLFCsycORPFxcVMATEY/cxVV10FoGWrdL/uDAq4sav6EP7x2UhA3LdyqNVq5Obm9mmdDAajZ8QkztCTTz6Jhx9+GEeOHEE4HMbw4cNp8KxoEIlEMJlMbdIJIVizZg0efvhheuTHunXrYDQasWHDBixcuLDDMvmIxTx2ux1ASyCsjgIH9jfhcDji8M6ByGCQERgccp4OMur1etxyyy19LFVbwuEwGtNz2gS468v6u5JnsP/eA4XBICeTMXbEUr6YGEM//PADXn/9dZSWluKjjz6CSqXCP//5T2RlZWHKlCk9Lvfo0aNITk6GVCrFxIkTsXLlSmRnZ6OsrAx1dXWYNWsWzSuVSjF16lTs3LmzU2PoqaeearP8BoCGfR+IhMNh2Gw2EEIG9KnWA11GYHDIyWSMHYNBTiZj7BgMcjIZY4fNZotZWVEbQx9//DFuuukm3Hjjje3GGfr66697VO7EiRPx7rvvYujQoaivr8eKFStw7rnn4vDhw9Rv6OQjEIxGIyoqKjotd+nSpVi8eDH9bLfbkZaWBoPBQA+7G2jwhxL21+i2KwwGGYHBISeTMXYMBjmZjLFjMMjJZIwdEokkZmVFbQzxcYbmzp2LDz74gKafe+65eOKJJ3pc7iWXXEL/P2rUKEyaNAk5OTlYt24dzjnnHACgJxnzEELapJ1MR2dlCQSCAf2jcxzHZIwRg0FOJmPsGAxyMhljx2CQk8kYG2IpW9TGUF/FGVIqlRg1ahSOHj1KnTPr6uqQlJRE8zQ0NPTowEwGgzGwOXr0KBwOR7evC4fDMJvN0Ov13VacXNALmbMSXlU6iEjW7bq7SldkZM7YDEbvMmjiDPl8PhQWFuK8885DVlYWTCYTNm3ahLFjxwIA/H4/duzYgWeeeSZmdTIYjP7n6NGjGDp0aJ/Xy2/LH/e6s1+25Z9MSUkJM4gYjF5iwMYZWrJkCa644gqkp6ejoaEBK1asgN1ux7x588BxHBYtWoSVK1ciNzcXubm5WLlyJRQKBW644YZom8RgMAYQ/IzQ+vXrkZ+f361ro5kZkltLgO8X4r333oNH13vG2KlkLCwsxJw5c3o0M8ZgMLrGgI0zVFVVheuvvx5NTU0wGAw455xz8PPPPyMjI4PW6/F4cPvtt9Ogixs3bmQxhhiM05T8/HyMGzeuW9eEw2E0NDQgMTGx+/4FNQLgeyA/Lw9IHtO9a7tBVDIyGIyYMGDjDLV2xm4PjuOwbNkyLFu2LKp6GAwGg8FgnNnExBgCAIVCgfHjxwNou8uLwWAwGAwGY6ASkznZN998EyNHjoRMJoNMJsPIkSPxj3/8IxZFMxgMBoPBYPQqUc8MPfroo3j++efxl7/8BZMmTQIA7Nq1C/fccw/Ky8uxYsWKqIVkMBgtJ8EXFRX1/3lfDEYvwZ5xRn8RtTH06quv4o033sD1119P0373u9+hoKAAf/nLX5gxxGDEiKKiIowfPx579+7ttiMxgzEYYM84o7+I2hgKhUKYMGFCm/Tx48cjGAxGW/yAhD/HTCKRwGAwdJq3qqoKdrsdYrEY6enpNPq13W5HMBiESCSCRqOh+e12O1wuFwKBADQaDeRyOcLhMDweD3w+HwQCATweDwBALpe3iabt8/k6/f5kWucXCAQQi8V0R0s4HEYgEIBYLIbT6YTL5QLQcggnL7PP50M4HKbl2O12NDY2wuVyQSwWQyKRQCgUQq1WQ6PR0DL5A/YCgQCCwSAqKytBCIFUKqXn0QUCAQiFQoRCIXoPAoEAVCoVLBYLzGYzCCGIj4+HUCiEz+ejbRaLxXC73bBYLGhqaoJAIAAhhJZXUFCAUCgEp9OJoqIihEIhSKVSjBw5ElarFU1NTdi8eTNsNht0Oh31h6urq0MwGEQ4HIZKpYJarYZMJkMoFIJEIoHT6YREIoHb7YbJZILNZgPHcXRzQUJCAqRSKex2O+x2O3Q6HU6cOEF/A7VaDb/fj6amJqSkpECn08Fut6O4uJjef7PZ3OlvymAMVr788ksAwLJly3D++efDYrHQ4L0ikQgWiwVerxcKhQLhcJj+PyUlBfHx8TCZTHA4HOA4Dl6vFwaDAUqlEgKBAIFAgO7Y8/l8CIVCIIQgEAhAJpNBp9NBqVSCEEL1CK+HXC4XHA4HzGYzLBYLwuEwjEYj0tLSYDQaaZ8OBoOwWCyQyWSQSCSQSqWoqKiA2+2GXq+H0WjEr7/+ihMnTiA9PR0mkwmBQABSqRQqlQoejwcWiwV+vx8KhQIZGRmQSqVU/0ulUqqnnU4ngsEgbZvf74fNZoNWq6X6lr8OaNHVYrEYoVAIQqGQRpfmdaJYLAYAOJ1OEELQ2NhIdZpYLIZSqYRUKkU4HIbT6Wz3Or/fj1AoRN8PUqmU3kv+HeHz+dDU1IRAIACfzweDwUB3gfv9fhBC6AYsvkybzQa5XA6hUEj1u0gkojoxFkRtDM2ZMwevvvoqVq9eHZG+du1a3HjjjdEWP6Coq6tDUVFRxKn3UqkUeXl5MJlMEXnLy8uxe/duNDc3gxBC82ZnZ0Or1UY4mUskEqhUKjQ3N6Ourg4Oh4OeGqxSqWA0GuH3+1FfXw+3200fLqFQCJ1OR6Nu19fXw2q1IhQKAUDE9zJZZARdr9dL87vdbjidTgCATCaLMKA8Hg/Ky8tht9shEokgl8uhUCiQkJCAlJQUiMViOBwOOJ1O/Prrr2hqaoLL5aIve4lEgoyMDCQkJECtViMxMZF2ZKvVisrKSpSXl8Pr9SIYDEIqlVLllpqaSg0Wu90OQgjcbjcqKyvhcDggFovh9/vhdruh0WjoOTpisZh2OKvVGmHIabVayOVyaDQaEEJgsVjgdrupYgwGg7Db7TCbzQiHw9Tw4e+nSNTSZfgDDEUiEcRiMVUMHMfRMPbBYJAqKYFA0Ka8nnL99dfjlltuwT333NPmuWMwBiNr167FSy+9hOPHjwMAvvjiC3zxxRfdLofjOPqiFAqFAFoGeQqFAnK5nPZNiURCB2USiQQSiQRyuRxxcXFITU2FXq+HSqUCx3Fwu92ora1FRUVFxEBYrVYjOzsbBQUFyM7OhkQiQU1NDX3JNzc3o76+HnK5HBKJBOXl5airq4NKpYLP54PP54NEIkFmZiaUSiU1bsLhMKRSKdRqNdWF6enpEIlE8Hg8IITA4/FAIBDA7Xajrq4OVqsVXq8XSqWSDrDVajXi4uLg8/lgNpsRCoXg9/shFAohFovpn1QqhUwmg9frhcvlosaVxWKBUCiE0WiEWq2GQCCAVCqFRCIBx3Gw2+3UILXb7fB6vQgEAiCEgBCC5ORkpKenQ6PRUP1YXl6OI0eOoL6+ng6YRSIR1Go14uPjodfrIRKJ4Ha74fP54Ha7YTab6T2VSCTQ6XQ0XyxPuYjJbrI333wTGzdupGeG/fzzzzhx4gTmzp0bcSjqyQbTYKKurg6//fYbEhISUFBQAK1WC5vNhrKyMvz2228AQF9M5eXl2L59O5RKJaZPn46MjAzYbDb89NNP2Lp1K8aMGYNp06ZBr9fD7XajpKQE27dvh16vh8lkwtixY0EIwdGjR9HU1AS73Q6Hw4GUlBQkJSVBJpNBr9fD4/GgubkZbrcbAOhoJS4uDgBgsVjQ3NyMUCiE5ORkahB5vV7U1NTA4/FAq9VCo9FAJpPB4XCgqqqKztCEQiFYLBYIBAIMGTKERhRvaGjAsWPHYDabkZubi4SEBDQ1NaG2thYajQZJSUlwOp3Q6/VwOp1oaGiATCaD2+1GaWkpRowYAaFQCJvNhubmZhiNRqSmpiIuLg51dXWorKxEfX09FAoFHWElJibSDioQCJCdnQ25XA6Hw0GNmlAohCFDhqCwsJBen5CQgLi4OCiVSvj9fhrgrr6+Hna7HSkpKTjrrLOgVquxbds2HD16FI2NjVAoFMjOzgYhBFVVVXA4HHQUpNPpqBIAWpRtKBSiI1C+49vtdvh8Pjp7ZLPZEA6He2QMqdVqqNVq1NTUwOl04t1330UgEMD999/PDCLGoGbt2rVYtWoVnT1xuVy0D3UXQghCoRDi4uIi+qJIJKIvcn42W61WRwS65GeFQqEQ1e9utxuBQABmsxlyuRwjRoyg13k8HtTU1OCXX35BbW0tkpOTMXHiRGg0GuzcuRNFRUV00BgKhVBcXAydTkdnlNPS0nDs2DHU1NQgNzeXGhJTp06lh443NDTg+PHjUCqVGD16NILBII4cOQKO46BSqeD1eqFSqUAIQXZ2NjIyMuB0OlFcXEwHkmlpaRgxYgROnDgBjuMgl8tht9shk8kgl8vh8/kgEokQCASgVCphMBjgcDjg8/mQnp4OoOUQdJfLhdraWmi1WqSkpECv18NsNqO0tBSEEKSlpUEoFILjOMhkMjoAbWxshMfjgdfrhdlshslkQlxcHBISEhAKhVBYWEiNPKDlVIujR4/Se56TkwOpVAqv10sHwW63G2KxuM0gPxqiNoYOHTpE13ZLS0sBAAaDAQaDAYcOHaL5Bvt2e/7B5pdLgJblIr1ej71796KoqIi+lPbt2weVSoUZM2ZAr9cDaAk9kJeXB4/HQ2ciBAIBVCoVnRkCgCFDhkCv16O+vh4FBQWwWCw4dOgQPB4PNBoN8vPzYTab4fV6YTKZIJFIcOTIEQDA8OHDaX0A6PcNDQ2w2Wz0wbHZbPD7/UhKSqLLYLxSEAqF9IHnZ3nOPfdcxMXF0byBQAAFBQUoKiqCw+GAyWTCiRMnkJmZiREjRqCkpARDhgzBiBEjYLFYsGvXLjidTuTk5MDtdqO8vBzDhw/HkSNHkJOTg3POOQfNzc3Izs7G8ePHkZKSgvr6ehw/fhyTJ09GIBBATk4O9u3bh2AwiOuuuw4ulwvFxcVITU2l15WWliIYDCI5ORlAiwGhVCohFosxYsQIJCUl4d///jcA0Hs/bNgwTJo0CTU1NbQcnU6HvLw8DBkyBIFAAHq9Hk1NTWhsbEQgEEB+fj7EYjEaGhro/dVqtfQ+hsNhNDY2QiAQQK1WIycnB2azmRpSLpcLNTU1CAaDyM3NRUNDA5xOJx2hBYNBNDU1QSgU0pEhPzKrqalBRkYGLBYLduzYgd/97nfMGGIMatatWwehUIixY8dCLBbjxIkTSE1NxejRo7Ft2zY4HA46MHI4HHSpnF+O5r+zWCwAWt4/MpkMKpUKJpMJCoWCDiLy8/MRCoVQWVmJ0aNHw2g0wufzwev1QqvVQiKR0IGPwWCA0+lEdXU1EhISoNfrMW7cOAwZMgT19fUAgB07dsBsNtOludzcXDQ2NiIUCmHUqFEYO3Ys3G43Xn31VUybNg1TpkzB2rVrIZPJMHv2bFRVVeGjjz5CWVkZLrroIjoTM3z4cPj9fiQmJtJVAb/fD61Wi7S0NGg0GhQXF0Or1UKlUiEhIQE5OTk4fPgwMjMzIZVKUV9fD5/PB6FQiIyMDIjFYmi1WtTX18NkMiEYDNKB8s6dOzF06FBotVo0NDRAr9dDIpFg6tSpOHjwIF3OUigUdKA3ZcoU/Pjjj0hOTqYzUImJiSCEICsrC1VVVTh8+DASEhIgk8lw4MABJCYmUgMxKysLX375Jc4991zqmpCcnIzy8nKMHj0ahw4dQjgcxpQpU1BaWoqcnBzYbDaUlpbC6/UiFAq1OQYsGqI2hrZt2xYLOQY0jY2N8Pl8KCgoaPf7rKws7Nmzh+az2+0YM2ZMROBJu90Ov9+PSZMm4aeffkJVVRV0Oh18Ph+cTic9doT3v+FHN/yatkAgAMdx8Pl8UKlUaGpqomvA4XCYTg+fjEqlgt1up9OOQMuODZlMBrFYDK/XSx/kUCgEnU6HpqYmunSmUCjoaIZ/Qfv9fsTHx0OpVMLhcKCwsBCBQAApKSkghIDjOGr4CAQCDB06FD/88AN8Ph/0ej3KyspQVVUFjuOQnp4OsVgMjUYDl8sFmUwGoVBIp1ytVis1IGw2GzQaDUwmE4qKiiAUCpGYmAi73U79c44ePQqTyYT4+Hg4HA7I5XKkpKRAJBJBoVBAIpHA4/EgGAwiMzMTQqEQdXV1KCsrg8PhQDAYRHp6OoRCIRoaGuiyHT+z1NjYiLq6OqSlpUGtVtNpbblcTtvr9/vpsl92djasVitcLhcUCgU4jqNLoAKBgI50+OU1fkYOaPHHS0xMpEuidrsdQIsvmNVqRXV1Nd5++20Eg8EII7gviOaYi+5SWFgIANSv6kyDbzd/H/qD3vq9v/zyS1RWVkKv18Pn81GDRqlU0lkMh8NBfUmA/83E8gOHYDAIv99PvwsGg3C73dDpdAgGg3Tp3+l0wmKxQK/X00GSx+Ohy1Ferxd6vR7BYJAOOvx+PxwOB/R6PeLi4qDVapGcnAyPx4PGxkY6k8W7ERw/fhwNDQ0QiUQYNWoUQqEQqqqq4PV6UVBQQHWgUChEcXExNBoNHUCGw2GcddZZKCwsRENDA3Q6HWw2GxISEtDQ0EB9C1NSUuBwOODxeCCXyyESiZCSkgK5XE6X+Y1GI2pra6FUKuHz+VBZWYmMjAz4fD4Eg0FotVqYzWbq1xsKhah+5GebTCYTLBYLDAYDSkpKIBKJYDKZ0NDQAJ/Ph/r6elqWVqtFTU0NJBIJlEol3G434uPjEQgEqK8nv7wYDAaRlZVFZ4NMJhOEQiGampoQDAbpYJ+foeLfQ/wSWTgcpr6t/KpILIjaGOIbxG+DrKiowKefforhw4dj1qxZUQs4EOA7mlarbfd7Pp1/CRJCoNfrI4wT/qFLT0/H7t274fV6I3xI+ClH/mUJgE4D8mu8IpEI4XCYzvCEw2EIhUK6Ns7/2xp+XZivj7+OL5fPwy/5yGQyWg8hhMaO4tvCz/DxznQA6Pq1RqOha/V6vR4NDQ0QCoVISEigL3uVSkXbLRKJEB8fD4lEQuvjneNUKhU1AKVSKV2H5o0z3pFOpVLBZrMhLi4OGo0Gfr+fOvt5PB46W8P7BPBt4TiOOr/zTt28P0FaWhpcLhfC4TCdQeJfSPyor3Vn5GeAPB4PNWb46eKMjAwcPHgQQqGQ3nOpVErvB2/E8r+jRCKhz5tQKER8fDxEIhGdxgaAX3/9lf6+7777Lt59991TPsOnA+Xl5Zg8eXJ/i9HnlJeXA2jxzzxdqaqqivjM93te7/AOv7wDMAC6xMMPFlvrQd5YEolEUCqV1G+ntXM03x/5fIFAAAqFgi6j8TqX9zniZ5r5ZW+gZbCpUCjo7BXvICwWi5GcnIyamhqqD1JSUmA2m6kvEm98paSkAGjxHU1JScGhQ4fokpXX64VOp6PyBYNBaDQauN1uEEKoLtNoNHSzCtDyTuJ9PDmOoxtybDYbbQ/vnMy3k7/fvE5Sq9UIhUJUXr69ZrOZGp1CoRBKpRIKhYL6UPL3UKPRUCdtvkzeCVqr1cLtdlN/Ia/XS+Xg75dKpaI6j9fb/PuF9xdt753XU6I2hq688kpcffXVuO2222C1WnH22WdDIpGgqakJq1evxp///OdYyNmvSCQSAC3LS+2NwG02G83Hz4zwa6P8tbzjbWVlJR2t8A+PQCCA1WpFMBikMwZAy04rfjqQ7wi8cxsAOgvBO+62t8YeCASosuDL5cvg8/PfA6AzGnyn4Nd6eaXEj85cLhfd3cDveON3R4VCIdphAoEAmpqaqDHjdDppu4PBIJqbm+nad2vl5nQ6qYHEz4bxzoy8kzg/q8ZxHCwWC3XYDgQCcLvd1IHZbDYjISGBtoVfm29sbIRWq6VKlhCCcDiMEydOQK1WUyONX9rkR61CoZCOeHhjlvdd4uXnHbIrKioAtIy8vF4v3VXB3w/eaTsUClEHx9ajNf7+yOVy+huMGTMGtbW1AICLLroIN91002k/MzRnzpyYTokPJvh29+Sg2ljRmzNDb7zxBvR6PRITE+F2u7Fz586IvgSAuhW03qHMzzjw8vF5+H+9Xi/1XfF4PPD7/VSn8UtjcrmcDmBDoRDcbjcd3PE6NxwOw+12w+Fw0F1l/ODR6XRSw6T15haLxRJhCIVCIVRXV9MZKt4ICwaDqK6uBtAymK6urqYve17H8u8G3hiw2+1U5/Ptt9vtEX5WNpsNwWAQHo8HEokEYrGYrk7w7eH/z7eT9x3iVyMcDgcSExPp7jK+vfw94Q0Xl8tFdSU/K8fLz/tI8mV6PB4oFAq6yzYYDMLhcNDlT97A4v2d+PvM621et7bWmbEiamNo3759eP755wEAH330EUwmE/bv34+PP/4Yjz322GlhDBkMBkilUpSVlbX70ikrK4NUKqUzDRqNBseOHUN6ejrNz1vuu3btAsdxSE1NpVs3VSoVioqKIJFIqMe+UCikO674mRt+5sRsNtMZBt77HwDtGK3hH6i4uDg6k6NQKGCxWOjWdd7ZWSgUwmq1IhAI0LXo5uZmWK1WcBxHR2cSiQTNzc1wuVxISEhAbm4uysvLUVNTQ5f2eEdpi8WCkpISOpNkNpsRHx+P1NRUHDt2DJWVlUhOTobdbkdCQgJ1bLbZbNTHhh8labVanDhxAnV1dXSE2NDQQH19mpqakJubC5fLhebmZupnU11dDZ1ORxUAb3RVVVXR6eBwOAyr1QqRSITKykrk5eVRp22+rXwH5n10HA4H/c14pcMrCZlMBp/Ph7KyMuTk5CAcDsNms9H8vPGqVqvR0NBADSPeUAJAl+r4EAX89lN+NjY1NRXz58/HtGnTYvvAd4H+OFxULpf3ST0DDb7dPTmoNlb01u89btw4fPfdd2hubqa6EGgZbPG7poCWgSbvM8TPiHu9XroFXSKR0Jcv3//42Wev10tdBOLi4hAMBmn4En6Zi/cZcjqd8Hg8SE5Ohkgkov2OX8Kz2WyoqamB3W6n+szn89H6srOzoVarUVVVhb1792Ls2LFITU2lPjNTpkyB2WyGQqHAsGHDqF8Nr6v27duHlJQUJCYm4tdff0UoFEJNTQ11UNZqtaiurqZhV3gjrrq6ms5waTQa1NbWQiAQwOVyQa1WIz09HdXV1XTGyGazgRBCB+lCoTDCKTkcDqOurg7Dhg3DwYMH6cxYQ0MDNfCMRiOOHj1KZ5tEIhH8fj98Ph/1GeJng/iZOb/fD41Gg7KyMmRlZYHjOLobDmiZNNDr9ZDJZDh27BgNYcL7TPF18ZMEsQzMGbUx5Ha7qZLeuHEjrr76aggEApxzzjl0VHw6kJeXh99++w179+5FVlZWxG6ypqYmjB49muYdN24ctm/fji1btmDkyJF0N1lRURGKi4sxZswYCIXCCAudN0iOHTuG1NRUEEJQWFiIpqYmaDQauhZcWFhId5PV1dWhubkZ8fHxAIDa2lr4/f42u8nkcnnEEp9Wq6U7A/j1XZ/PR3eT8Z1FIBBAqVRi586dSEhIoLvJLBYLjh07Rnc4BYNBpKWlYdu2bTCbzdDpdPj1119RWVlJd5OlpaWhvLwcoVAII0aMoDvMSktLUVtbi9TUVFgsFrqbLBAIICsrC/X19eA4Dvv27UMgEIBIJMKHH36I+Ph4yOVyFBYW4siRI7BYLJDL5TCZTKipqUF9fT0cDgcdKZaXl0fsJnO73bDb7eA4jiq848ePIxQKwWq14sCBA1Rh8LvJgJbp2sLCwojdZGKxGDabDUqlki4N8k6GLpeL+kLZbDZUV1dHjG4PHz5M/3+yT0woFILD4UBRURG910DLUrROp8PUqVORl5cXs2ecwegP5s2bh1WrVmH//v102aOqqiri/eF2uyP8Q/hQIABoP+ThHZ4dDgd9eYtEIqhUKhQWFsLn84HjOOzdu7fd3WS8f1BjYyPcbjcdlNTV1dFZ49a7yQAgLS2N7gDmt5L/9ttvqK6uRkpKCqZOnYrNmzdj27Zt1AXg008/xbFjx1BXV4fc3Fzs3r2b7iYDWvR5Q0MD3G43Ro0aRZ27+V1hGo0GZrOZxiErKipCRkYGysvLUVxcTJfXQ6EQKioqOtxN1tjYiPj4eBw7dgxisRgGgwFWqxUnTpygA2yj0YjGxsaI3WT8xp2amhpUVlYiMTGRDhirq6vhcrkQHx8Pr9cLj8cDg8GA5uZmqtP43WS//vorPB4PEhMTUVNTg8zMTPz22280LMGPP/4IqVSKmpoa6mPJr1bwMsSCqI2hIUOG4LPPPsPs2bPx3Xff4Z577gHQsv26dTDBwQ4/G1BUVIQ9e/bQdKlUitGjR0fs6MnMzMS0adOwe/dubNu2LSLO0IwZM6DValFZWYnKykoALaOeadOm0ThDx48fj4gzxG99B1o6iFwupzEgTo4zVF9fTztoR3GGZDIZkpOTTxlnSCQSIS4uDjabDceOHUN5eTmNM5SRkUHjDDU1NUEmkyEpKQlNTU00HEDrOENer5fGGeKnN7VaLeLj41FeXo6Kioo2cYb0en2bOEN80K/jx4+3iTOkUqlw/PhxqFQqKpfZbG43zpDRaERiYiLdlcUva/HxK8xmM44dO9YmzhC/jb91nCF+pOpyuSLiDPF+D/xUek+31QOgU8lAy7r93LlzWZwhxmnBrbfeCgARcYZ6uvzBz2A7HI42cYZ8Ph+N+cUbFvxsbes4Q3zYD34LPD9YrKioQGVlZadxho4cORIRTJCPp8MHYOSDttbX1+Pw4cM0zhDQMqgKBoPYsWNHRJyh7OxsxMfHo66uDh6Ph/ow8jrF6XTCZrOhvr4eFRUV7cYZOnz4cJs4Q36/n/o58stw/JIi72pw9OhRGI1Gqu8MBgMkEgnV7+FwGEqlEna7nRpPreMMxcfHw2AwdCnOEO+XxM9q8aFnSktLB0ecocceeww33HAD7rnnHlxwwQX0fLKNGzdi7NixUQs4kDCZTDCZTF2KQJ2ZmYnMzMxuRaDOzMzsMAJ1XV0dTCZTpxGoMzIyYDKZuhSBWiaTtcnfUQTqs88+u0sRqPktliwCde9FoN64cSPef/99XHjhhT15hBmMAcmtt96KW2+9FU888QQef/xxXHHFFSwC9QCIQJ2ZmRnTCNSjRo3CrFmzYhqB+umnn47NQ0hiQG1tLdm3bx8JhUI0bffu3aSwsDAWxfcqNpuNACAWi6W/RemQUChEamtrI+7vQGMwyEjI4JCzIxn37t1LAJC9e/f2k2T/oy/vYzTtjkrO6v2EPK5p+bcXOZWMA+F376vfO9q2Dub+PZAYDDISQojFYiEAiM1mi7qsmESg5mdMWnP22WfHomgGg8FgMBiMXqVvtoEwGIyoycvLw969e5nTNOO0hT3jjP4iJjNDDAaj91EoFP22tZrB6AvYM87oL9jMEIPBYDAYjDMaZgwxGAwGg8E4o+nRMtnixYu7nHf16tU9qYLBYDAYDAajT+iRMbR///6Iz3v37kUoFMKwYcMAACUlJRAKhTQ2Syx46qmn8NBDD+Huu+/GmjVrALSck7V8+XKsXbsWFosFEydOxMsvv4wRI0bErF4Gg9G/8JGH9+3b1+1rozlTS24tQT6AwqIieOp6FiyzK5xKxv48rZ7BOFPokTG0bds2+v/Vq1dDrVZj3bp1EcdAzJ8/H+edd15MhNyzZw/Wrl2LgoKCiPRnn30Wq1evxjvvvIOhQ4dixYoVmDlzJoqLi2kQJwaDMbgpKioCACxYsKBP6x1rEmDfQhVuvPFG7O9FY6irMJ3GYPQeUe8me+6557Bx40ZqCAEth+GtWLECs2bNwr333htV+U6nEzfeeCPeeOMNrFixgqYTQrBmzRo8/PDDuPrqqwEA69atg9FoxIYNG7Bw4cKo6mUwGAODq666CkDLtuvuHswYzcwQF/Si0FmJNy9NBxHJTn1BD+mKjGq1Grm5ub0mA4NxphO1MWS321FfX99maaqhoYGepRQNd9xxBy677DJceOGFEcZQWVkZ6urqMGvWLJomlUoxdepU7Ny5s0NjyOfz0fDkvPwAojo3qrfhzykbqPIBg0NGYHDIyWSMRK/X45ZbbunRteFwGI2NjTAYDD08bf2cHtXbHboqY38+D4PhmQQGh5xMxtgRS/miNoZmz56N+fPn47nnnsM557Qojp9//hn33XcfnbHpKR988AH27dsXcTAqT11dHQDQQ0p5jEZjxGnHJ/PUU09h+fLlbdL588YGIuFwmJ6g3jOF3vsMBhmBwSEnkzF2DAY5mYyxYzDIyWSMHTabLWZlRW0Mvfbaa1iyZAnmzJmDQCDQUqhIhD/+8Y9YtWpVj8s9ceIE7r77bmzcuDHixPWT4U+65SGEtElrzdKlSyN2w9ntdqSlpcFgMECn0/VY3t4kHA6D47goRre9z2CQERgccjIZY8dgkJPJGDsGg5xMxtghkUhiVlbUxpBCocArr7yCVatWobS0FIQQDBkyBEqlMqpy9+7di4aGhogdaaFQCN9//z1eeuklFBcXA2iZIUpKSqJ5Ghoa2swWtYY/ifhk+BN8ByocxzEZY8RgkJPJGB1Hjx6Fw+GIymeoI7igFzJnJbyq2PgSnUrGgeIvNJB/79YMBjmZjLEhlrLF7DgOpVLZZrdXNFxwwQU4ePBgRNr8+fORl5eHBx54ANnZ2TCZTNi0aRPGjh0LAPD7/dixYweeeeaZmMnBYDAGF0ePHsXQoUN7rXx+l9m41519tsuspKRkQBhEDMbpSkyMoS1btmDLli1oaGho49D01ltv9ahMtVqNkSNHRqQplUrEx8fT9EWLFmHlypXIzc1Fbm4uVq5cCYVCgRtuuKFnDWEwGIMefuPG+vXrMWzYsJjPDMmtJcD3C/Hee+/Bo4ve6OpsZqiwsBBz5syJyWYUBoPRMVEbQ8uXL8cTTzyBCRMmICkpqVN/nVhz//33w+Px4Pbbb6dBFzdu3MjicTAYDOTn52PMmDFoaGhAYmJi7KbUawTA90B+Xh6QPCbq4sLhcOxlZDAY3SImDtTvvPMObrrppljI0ynbt2+P+MxxHJYtW4Zly5b1et0MBoPBYDBOT6Iehvj9fpx77rmxkIXBYDAYDAajz4naGPrTn/6EDRs2xEIWBoPBYDAYjD4n6mUyr9eLtWvXYvPmzSgoKIBYLI74np1az2AMDtxuN4qKinp07AXjzIQ9M4zThaiNoQMHDmDMmDEAgEOHDkV815fO1AwGIzqKioowfvx47N27F+PGjetvcRiDAPbMME4XojaGWp9gz2AwGAwGgzHYiFnQxcGOz+eD1WqF3W6HWCyGUqmERqOh33k8HnrIq1gshkgkooe7ikQiqFQqCAQCSKVS+Hw+hMPhiM9Wq5Xm5a9rXcfJ2O12BINBuN1uyGQy2O12JCYmtimbp7GxEQ6HAyKRCEajsU2Ubf7sNYlEAoPB0Gl9LpcLhBCoVCrEx8fT7b4ejwdAS9RPPp6UQCBoszTK3zNeTqBl+7DT6UQwGERlZSX9PjMzEyKRCAqFAqFQKOI+2u12mM1m+Hw+BINBWK1W+P1+yGQyqFQqHD9+HM3NzeA4DsOGDUNqairq6urgcrlQX1+P+Ph4+P1+JCYmQiaTQSAQoLS0FNXV1ZDL5VAoFKisrER9fT1EIhGNTu7z+ZCdnY2MjAyYTCacOHECxcXFqK+vR3l5OQghkEqlGDZsGBobG+F2uyEUCpGZmYmcnBwALfFhtmzZApfLBb1ejylTpqC5uRnHjh1DTU0NCCE0bpbf7wchBHa7HXq9HmazGR6PBzU1NQgGgwgGgyCEQCKRQCAQIBQKwW63Q61W09+opqYGLpcLXq8XhBB6jVgsBiEEQqEQhBD4/X6EQqFO+8LTTz+Nf/3rX53mYTCAlkC4ACJOCugqHMdBq9VCo9FALpfD5/NBJBJBJBJBo9EgGAxCo9FAKpUiEAjA5XJBpVIhJycH1dXVcLvd0Ov1OOeccyCTyVBeXo7GxkZ6CoJCoUBNTQ3EYjHUajXS09MhEolgtVrBcRx8Ph+USiWCwSASExORkJBA9YBQKERVVRWOHz8OsViMjIwMDBkyBCdOnMChQ4dgNpuRmJgIg8EAl8uFcDgMvV5P9aVI1PJqtdlssFqtUCgU0Gq1iI+Ph8fjQW1tLfR6PYRCIRQKBbxeLw0JIxQK4XA4EAgEIBKJIBQKcezYMbjdbiiVSowePRqBQAChUAiBQAASiQRmsxkcx8HlckGn00EgECAuLg5OpxMejwccxyEQCEAgEMDn80EqlUa0NRwOIxgMwul0AgB0Oh18Ph99HwAtR18Eg0GEQiEUFRXB6/VCIpFg7NixSEpKgt1uR2NjI+x2O5RKJTiOg1qtBsdxUKlUCIVCCAaDAFqO7AoGg6itrYVcLgcAaDQahEKhNr85r/OBlveIXC6HTqdr9ySJaOiRMbR48WL89a9/hVKpjDjnqz0Gi8/Q5s2b6aF0AoEAarUaOp0OarUaXq8X1dXVqK+vpwZRIBCAXC6HRqOBSqWCVqtFUlISfbHLZDJ4vV7U1tbCbrcjEAigsbERzc3NkMvlSEpKglarRVxcHIYMGULPRbNaraiqqkJTUxMaGhoQDAapQVFdXQ2TyQStVgugpdN4PB4UFxfDYrFQA0UikWDo0KEYOnQorFYrioqK4PP5aFulUiny8vJgMplofc3NzSguLkZFRQUCgQCkUil9WaemptJO43Q64XK5IBaLIZFIIJFIaCd3u92QSCS0o3q9XjgcDmrUHDt2DAcOHIDFYoHf74dQKIRYLEZ6ejqysrKQnp6OuLg4KJVKNDQ0oKmpCXV1dSgqKkJ1dTU1GngFEwqFIBAIIBQKabuVSiUCgQD9jWQyGfVl8Hg8CAQCsNvt8Hq9cLvd7RoGYrEYMpmMtjkYDMJms9GO3Bkcx4EQ0ib9yy+/7MbT2DXcbjfq6+tRWlraYZ5TGT7t8e9//xscx2HevHl45513opCQcboyfvx47Nu3L6oyCCGwWq2wWq3dum7Lli0Rnz/++OMuXcfrCv7lz8MPgmQyGXQ6HUQiEZqamuDz+cBxHDiOQygUQigUAiGEvtRbD1Lkcjk4joNUKoVOpwPHcfB6vQgGg9RdRCKRQCwWQy6XRwxU+PcNP2BpXU9zczPVPfzLXyAQIDExEXFxcVTHhkIh+P1+cBwHoVAImUwGQghEIhFCoRDVfa3fcbye49sXCAQgFArpoIs3qORyOQKBALxeLywWC30PCgQCyOVyyOVyJCQkIC4uDoFAAA6HAx6PBzKZDGq1Gnq9nt5jqVSKUCiE+vp6uFwuCIVCuN1ucBwHpVKJ5ORkqFQqqkcJIfB6vXC5XJBIJEhOTobBYIDBYEB2djZ9F8aCHhlD+/fvp4ey7t+/v8N8g8lnKBQKIT09Hbm5ueA4DqWlpaioqIDf74fBYIBSqcS4cePQ3NyMyspKiMViCIVC6PV6pKSkwGq1orS0FFlZWVCpVJDL5WhsbERTUxM1mqRSKbKyshAKhSCRSKDX6+FwOFBYWIj8/HwAwPHjxwG0GDpjx46FWq1GQ0MD/vvf/yIcDsNut8NkMkGpVKK0tBQ///wz9Ho9JkyYgJSUFLjdbpSUlNCZDI/Hg5SUFBQUFECr1cJms6GsrAy//fYbbDYbtfotFgtEIhEmTpwYoSxKSkpw+PBhjB49GkKhEPHx8UhMTITFYoFGo4Fer4ff74ff74fb7cbx48fpA00IQSAQwIkTJ1BVVYXq6moYjUbk5ubCaDSisrISLpcLVqsVgUAAYrEYAoEAe/fuRSgUglgsRjgcpgaS1+tFU1MTmpubIRQKERcXh6FDh0IoFGLfvn1wuVzw+Xz04N1QKITGxkb4fD6YzWYoFAqIRCI6GhSLxRCLxdRg4Dsg34ktFgtVEq1nZrxeb8SzwysFj8cToWRFIhFVaoORdevWAQAziBgRxMIQ6ktkMhnC4TD8fn/ErLpEIqEvZ7lcTmeN+EGW0WhEamoqgJazMvkXsslkAiGEDupEIhGdrQ4EArDZbFCpVNQwSkhIACEE9fX1dGZFp9MhPj4eLpcLCoUC4XAYoVAI4XAYEomE6uDq6mqoVCqYTCbExcXB4XDQgSI/u2MwGGC325GamgqJRAKHwwGLxUJn7FUqFXQ6HRwOBx2A8u/mYDBIVwx0Oh2MRiMkEgnq6+ths9kQDoehUCgglUpRWlqKxsZGejpEfn4+ampq8Ntvv+HYsWNISkpCXl4eCgoK4HA4UFVVRWeYQqEQnfni3zVGoxEikQh6vR52u53ed37AajAYEB8fT1dUCCHQ6XRUt5eXl8f0cPUeGUOt/YROF5+hUaNGISMjA4FAAEajEXa7nc5qNDc3Y/LkyVCpVPD7/ZgwYQI8Hg+dCuUtVn7KUqPRoLq6Gg6HAyNHjkQgEEBJSQlGjBiBnJwcmM1mlJSUgOM45OXloaSkBFVVVQAArVYLj8cDrVZLl1wIIUhJSaFGWXV1NUaOHIn6+nqo1WoMGzYMQ4YMAQDI5XJMmjQJe/fuxbfffosJEyZETGHr9Xro9Xrs3bsXP/30E6ZOnQqPx/P/2rvz6LiqK1/831vzXKrSUJpl2bIsecQ2k4HYxoAJzRjSCSQYTCD8mExwCIEQOo3pRZjyQocOQyDNlA55zuLFTmc9ArED2MAzGFuWsbEleZI1S6Wh5nk4vz/U50SlwdZQUlW59mctL1DVrXt33bp1a99z9jkXPp8PS5YsQWlpKZRKJRwOB9ra2rBo0SK0tbXB4/GgpKREtGZZrVZEIhGYzWYolUp0d3eLxIu3WGm1WjgcDuTl5eGrr76C1WrFsmXLYLPZ4PF4MGfOHPh8Ppw8eRJerxcKhQIDAwPiKg0YbA1btGgRioqK0NnZiXfeeQfl5eUoLy+HJEmYO3cu9u/fjwsuuABHjx6Fy+VCaWkpysrKcPHFF+Mvf/kLPvvsM8ybNw8ejwcmkwnt7e2Qy+UoLS1Fe3s7AoEA8vPzodPpIJPJRIuc0WgULWomkwk1NTWQy+U4evQoHA4HdDqdOJEUFBSgra0toZl51qxZ6O7uxsDAAMLhsPgMdDqduLIcfvuadLNlyxZKhkiCVCdCOp0OkUhEdCPxH1DeksG7v8LhMEKhEAoLCxEKhUQ3cTQaxaxZs2A2m5GTk4Ouri4oFAoUFhaivr4e4XAYCxYswJIlSwAM3uuOnx94S7hGo8FZZ50FpVKJvXv3QqlUYsmSJfB4PGhpaQEAnHXWWbBYLIhGo9Dr9cjLy0MwGEQgEIDRaERRURHy8/OhVCrR0NAgWrC1Wi2USiU++eQTLF++HGVlZdBqtfB4PAgGgzj//POxe/dudHR0YM2aNYjH45DL5TAYDKL1vqWlRZQeRKNRlJaWiu6mvr4+5OXlwefzob+/X7QenXfeeQiHw+Jc39zcjPz8fHg8HuTk5MBgMKC8vBxLlixBdXU1ampq8Le//Q2SJKG9vR1er1f8bpWXl6O5uRmNjY2IxWKiVMHn88Hr9eL888+HVqvFiRMnsHjxYmg0GjgcDjQ2NiISiWDp0qXid1CpVIqR6k1NTdBoNMjLy4PT6cTAwEDSjqsp1wzddNNNWL16NVavXp3RNxLMz8+HwWBAX18f3G63aPJUq9Xwer2QyWQi2y4uLkZra6s4eAcGBmCxWFBSUiL6aPmHlJOTg87OTshkMpHFGgwGURvC+5pbW1uhUqlQVVUFl8uFWbNmAYDIqsvKyuD3+5GXlweXy4Xjx4/D4/GgqqoKGo1G9ANzBoMB0WhU9MUP71/lfdc+nw92ux06nQ7FxcWIxWKwWCxgjOHw4cMoKChAOBxGW1sbiouLIUkS/H4/bDYb+vr6RExD+6t5QmA0GkW3WjQaRX5+PtRqNXJzc9HX14fKykocOXIE8+bNQ11dHXp6euD1epGfn49QKASXyyW+5AqFImE9NpsNGo0GbW1tcDqdqK6uhtlsFlcV0WgUAwMDMBqNiMfjMJlMohaHd+dZrVaRGPH6G6VSif7+fvT19UGj0YgaG61WKxIalUoFnU4nasucTie6u7vF+wYGE9iBgQE4HI4R3WZ+vx/A4Emd/3+68ng8+Pa3v42f/OQnCY9Px93gk6WhoQHAP2rcMhl/D/w9pQr/vH/84x+nNA5gsDVDLpcjEokgGo1Co9GI7my3253Q2sC7beRyuahj4fWKOp0OgUAANpsN/f396O/vF60QarUaSqUSLpcL7e3touXE6/XC4XCIeiGj0YimpiZEIhHY7XbR9cS/1/w3hdc3ORwOEQM/j3Z2doqWD95q43a74ff7UV1dDYPBILrC1Go1GGMoKipCS0uLeG+LFy9Gd3e3OF/l5uaKWiVee2Oz2UR3m0wmE+cllUoltu33+xGJRKDX60X9Jm/dDwaDmDNnDqxWK3JyctDW1oZQKCQSuxMnTohuz4KCAixcuBAHDhyAXq+HUqmE0+lEMBgUXWvhcBhFRUVwuVyw2WwIh8OQyWQiCfL5fPD7/SgvLxe/nyaTSZRA6PV69PT0JO24mnIyZDAY8Mtf/hJ33nknCgsLsWrVKqxatQqrV69GTU1NMmKcEfzHDfjHl403pcrlcigUCvj9figUChiNRtE0Cgx2sfFiQLfbLbpGVCqV6JMdurxSqYROp0NfXx8kSRItBby/lscDQLQcmM1m8SMOQHTJ8CK84S0MvNmXNxEPp9frxf/zE4rRaBQF5Px1Op1OFLbxYj7+uFKpRDAYFPsnHo+LYm9gsNuJb5sXRfJaJACif76goEB0V0UiEdHczLum+BUP347JZBJdZz09PZDJZDCZTNDpdNDpdKIpOB6Pi754nojyfnpeH8Dfp9FohFarhV6vFycc3v/OPyP+PvixwbfrcDgS9u3QAnv+Gt4EPtTQk2Y6e+edd/DOO++kOowJO3nyJFasWJHqMKbk5MmTAIB169alNpA0IpPJoFKpRHc1/755vV7xHTMajYhEIvB6veK7PPQ8y1ufA4GASBwAiO+7Xq8X309+MWS1WhGNRkUCYrFYYLFYRH0OMFh/xJMstVoNg8GQcFHHL6gCgQDkcjlMJhPsdrtIvngiFolEIEmSuADlxcq8VrOgoAByuVzU9uTn56Ovr0/89vABKDzp4L9bPBnhF9D8NwoY/M3w+Xyi7pW3hCmVSoRCIcjlcthsNhgMBphMJnR3d4vfR7lcjtbWVlFjJZPJUFRUJGqktFotvF6vODdrNBrRdRYIBKDT6aDVaqFWq0XBNW/14+d0jUYjLlB5Y0UyS3GmnAy98sorAIDu7m7s2LEDO3bswPPPP497770XBQUF6OrqmnKQM8Hv98NgMAD4x49XKBQSmTb/EvEvQzQaFV9GXvjmcrkgk8nEjygvIuaje4LBoCjw9fv9IjvnSZZcLhdfFh4Pv+p2uVwAIJ7XarWQyWQYGBgQoweGCgQCYpujXbnzWiH+fj0ej7gzNi+Wk8lk8Pv9cLvd4r3zJI9fQfDRTbzQe+j2eLEeAHHVFgqFxLadTiei0Sjsdrso3lMqleKkJkkSwuEwvF6vSJb4ehwOhxglwWup/H4//H6/uBqSyWTiioqf7PhJJhgMiisV/pnyGideODm0mNHv98NsNot9wEcV8lbEofgV69D3PlpCOrz2KF1961vfyriWoXXr1onW1UzG38Pvf/97UVeYCkNbhg4cOJCyOHgsQ7ud+fcNgDgWeREvP1/x7/DQ728wGEQ8Hkd/f7+oV+H1fXxkJj8v8dZ+fn6LxWJwOBziHMu3z1t8GGMIhULwer2ivpa3kgeDQVGQzVuxeWsVP0/wi8HOzk5xcci7+BQKBex2u7jAkiQJvb294jwTDofFxTIvnB76uxUIBKBSqcTvG/+N4r8ZfFQxL2zm+4AXPvNES6lUinpRfi7nRc/xeBxdXV2IRCIIBAIIBALifMp/F/l5mf+e8BHbjDEx8pgXWPPX8Fh5YfVog1UmK2lD641Go8iU+RV/YWFhslY/7Xp7e0UGajKZ0NnZKUaOqVQqUcjb19eHzs5O0fQIDNbhKBQKtLS0oKSkRFxF8CZD3krhdDqRm5sLr9eLgYEBkewMDAyIfcUP1J6eHlGEJ5fL0dbWhqKiIvH8nDlz0NbWhmPHjmHhwoUjusF4DQ6/QhmOj2rT6/UoLCxET08POjs7UVpaCq/XC6fTCaPRCJfLhZ6eHthsNpEg6HQ69PT0IBKJiBEEfKi40+kU0wXIZLKEBLO3txdlZWXo7++HWq1Ge3s7GGNoamoCANhsNpjNZjgcDmg0GuTm5qK3txderxdGoxF6vV4UOfb09Iiaof7+fgwMDMDlcsHv98NkMommco/HA5lMJr68fEh9MBgUXZmxWEwkTfxEl5OTIwom+WgMfhXEi8V1Op1YpqCgQFyJAoOtYry4fHi/Nr9CzYRkyGg0jjrMPhPutM6H7GYy/h5qa2tTOqkh/7zr6+vF6M1UUSgUIsHgLbCxWEycu/mACV4wzWv/AoGAGMXKL/SG1gzl5uaitbVV1BpFIhHodDqUlpaKEbsqlQoWiwVyuRy9vb1wOp3weDxQKpUoKCgQdT38O8HPwzqdDl1dXQk1Q/w8qtFoEI1GxdB1pVIpWrqPHDkiaobkcjmCwSBMJpOImZcBHD9+HAaDASqVCuFwGP39/aKmkbd0DQwMiBYhnkQBEBf8vAaLJzler1fULxUVFcHv94vtOJ1O1NTU4PDhw+jv70dXV5c4b/IW96+++kq04EUiEXFOtdvtoqaU1wzxwTx86DxvWNDpdKKQm099YzKZRLcb7ylJynE11RU8/PDD2LlzJ7788kssXLgQK1euxCOPPIKVK1cmtdJ7uh08eBAulwtz585FZ2enOND5aLLjx4+LivxDhw4ljCZTqVSw2+3wer0Ih8Nwu90oKSlBLBbDV199Ba1Wi9zcXBw7dgwtLS3iakWv16OxsRGSJIlRC3w0GR8qbzQa0dvbi46ODpHcVFdXIxwOw2azobm5GU1NTVAoFAmjydrb23HuueciEAigrq4OlZWVCaPJ+vr6cOGFF4oWJ71ejy+//BIdHR0jRpMxxlBeXi4ycT5awWQyQSaTiRMMP4h5fzM/SfT19cFoNOL48ePYsWMHTCbTiNFkNTU1iEajsFqt6O7uht/vF82pBw8eRF1dHYLBINRqNY4dO4ampiZRBySXy/HFF1+IJt729naEQiE0NTWht7cXcrkcTU1N0Ol0Yt4il8uFjo4OABCjzoaPJuMJUiQSQV9fH7744ouE0WRD513iJznO6XTiq6++GnU0WSZ0jXHXX399qkMgaWbZsmUpLaIe+v0ZOt1FLBZDX18fAIhWbmBwEMbQ1iR+Dhk+mqynp0ckBl999RU6OjrEebm3txcul0u0MvGaSt4FpdfrxSjrcDgMg8GA+vp6Mex86GgyniDE43EcOXJEjCbjNaR8CoC8vDzU1dXhwIEDCaPJPvvsM/h8PpSUlODw4cNQqVRijrLRRpNptVoxIIi3vvMBO3w0mUKhwLZt20aMJnM6ncjPz4fT6YTX60Vrayv6+/tx/PhxnDx5Uowmc7lcov7n+PHj2L9/f8JoMrfbDZvNBmCw1evzzz+HRqOBQqHAl19+KUaT8RG+9fX1Yj68eDyOHTt2iNFkKpVKFKlbrdakHVdTToZ+8YtfID8/H4899hiuvfbalDblTgWfZIsXOxuNRlRUVCTMM3TixIkR8wzxFiJeRc+vVHj2n5eXJ0akDZ9nKBwOj5hnaPbs2Whvb4fb7UZ9fb3obuEjnUwmk2h2tFqtuPjii9HU1IS9e/fiiy++ADBYEDdv3ryEeYb27Nkj3qtarcaSJUsS5hmyWCyw2+3YvXv3qPMM8avB/v5+Mc8QL07k8wzpdDqUlJSIFhLeFG02m1FaWopgMIgDBw6gsbFxxDxDfH3xeBzLly8Xw0d54frQeYZ4N2ZfX59IhoDBhI63TvGWKz7PkNVqFc3AvBCbz4c0Fr1enzDP0NCm+aHi8bhoJRw6z9B45iVKZzTPEBlNXV1dRg2v5xcvPMngBcyhUAgej0ckRMPnGerp6YHdbhffab1en5DUDJ1nSC6Xi4EqQ+cZ4iO2gH/MMySXy+F2u0XXEW+FH22eIY1GA5fLhcbGxhHzDPEW7t7eXtHlNHSeId6lxgf1nGqeoXA4DJ/Ph4GBgYR5hngLmsvlglKpRH5+Pnp6elBXVyeSPa1Wi6qqKlgsFjgcDrS2top5hsLhsKhr5fuav6eenh7I5XKcOHEiYZ4hpVKJvLw80Ro5fJ6hSCSSPvMMDVVfX4+dO3dix44d+OUvfwm5XC4KqFevXp0xydGll16a0Bc6fAbq6urqSc1APXv27AnNQM2bGYfPQD0wMICqqiqRMAydgXrWrFljzkBdWFiIwsLCMWegHrq9RYsWTWkGapfLJeqX+D4oKSkBMJgwXHDBBTQDdQbMQP2tb32LZqAmp1RXVwcAWLJkyaRriGgG6vSfgbqgoCCtZ6Ce6ISdp8SSbP/+/ezWW29lCoWCyWSyZK8+6VwuFwPAHA5HqkMZUywWY11dXSwWi6U6lDFlQoyMZUacqYqxrq6OAWB1dXWnXTad9+PQ9zEtcXbUM/aYafC/SXCqGCfymUynsWJMl/i4dD4uOYoxeRwOBwPAXC7XlNeVlALq+vp6MZLsk08+gdvtxllnnYWLL744GasnhBBCCJk2U06GeFPckiVLsHr1atxxxx1YuXLlmDcgJYSkp5qaGtTV1WXU/GAkteiYIWeKKSdD//Vf/0XJDyFnAJ1Ol9Lh2yTz0DFDzhRTToauuuqqZMRBCCGEEJIS6TlbGiGEEELIDEnaDNSEEJIO+KR8+/btm5bbhmidR1ALoKGxEYHukbdZmahTxZjqG7QSki3SNhl6+eWX8fLLL4sbFS5YsAD/+q//iiuuuALA4H2vHn/8cbz66qtwOBw477zz8OKLL2LBggUpjJoQkmqNjY0AgDvuuGNa1r+0UIZ9dxpw0003oT4JydB48DloCCHTI22TodLSUjz99NOoqqoCALz11lu49tprUV9fjwULFuDZZ5/Fc889hzfffBPV1dV44okncNlll6GpqYlOHIRkseuuuw7A4EgnPmFpMluGpGgQDd5WvPZP5WAKzZTXd7rWK6PRiLlz5055O4SQsaVtMnT11Vcn/P3zn/8cL7/8Mj7//HPMnz8fv/rVr/Doo4+Keye99dZbsNls+MMf/oA777wzFSETQtJAXl4evv/97wOYzhvKXpC0NWXCTW8JOdNNKhl64IEHxr3sc889N5lNJIjFYnjnnXfg8/mwYsUKNDc3o7u7G2vXrhXLqNVqrFq1Crt27TplMsRvqcG53W4AELfISEfxeByMsbSND8iMGIHMiJNiTJ5MiJNiTJ5MiJNiTJ5kxjepZKi+vn5cy0mSNJnVCwcPHsSKFSsQDAZhMBiwdetWzJ8/H7t27QIAcRdczmazibvZjuWpp57C448/PuJxfu+udBSPx+FyucRN9tJRJsQIZEacFGPyZEKcFGPyZEKcFGPyuFyupK1rUsnQRx99lLQATmXevHnYv38/nE4n/vSnP2H9+vXYuXOneH54ssUYO20C9sgjjyS0bLndbpSVlSE/P1/cOT7dxONxSJKE/Pz8tD0wMyFGIDPipBiTJxPipBiTJxPipBiTR6VSJW1dSakZ+uSTT/DKK6/gxIkTeOedd1BSUoL/+q//QmVlJS666KJJr1elUokC6rPPPht79uzB888/j4cffhgA0N3djaKiIrG83W4f0Vo0HL8z+XAymSytP3RJkijGJMmEOCnG8Tt69Cg8Hs+oz41naL0UDULjbUXQkJyC6MkUPKfLvjyVTIgRyIw4KcbkSGZsU06G/vSnP+Hmm2/GTTfdhH379ol6HI/HgyeffBJ//etfpxwkxxhDKBRCZWUlCgsLsX37dixduhQAEA6HsXPnTjzzzDNJ2x4hJL0dPXoU1dXVU1oHHyq/7BVv0obKHzlyhEaAEZJBppwMPfHEE/jNb36DW265BZs3bxaPX3DBBfi3f/u3Sa/3pz/9Ka644gqUlZXB4/Fg8+bN2LFjB95//31IkoSNGzfiySefxNy5czF37lw8+eST0Ol0+O53vzvVt0QIyRC8Rej3v/89amtrRzw/npYhrfMI8PGdePvttxHImVpi1dDQgHXr1o3ZUkUISU9TToaampqwcuXKEY+bTCY4nc5Jr7enpwc333wzurq6YDabsXjxYrz//vu47LLLAAAPPfQQAoEA7rnnHjHp4rZt22iOIUKyUG1t7ag3DB3XsPVOGfAxUFtTAxSfNb2BEkLS0pSToaKiIhw7dgyzZs1KePzTTz/F7NmzJ73e11577ZTPS5KETZs2YdOmTZPeBiGEEELIlKuP7rzzTtx///3YvXs3JElCZ2cn3n77bTz44IO45557khEjIYQQQsi0mXLL0EMPPQSXy4WLL74YwWAQK1euhFqtxoMPPogNGzYkI0ZCCCGEkGmTlKH1P//5z/Hoo4/i8OHDiMfjmD9/PgwGQzJWTQhJM36/H4cPH4bVak11KGQUfr8fjY2NqKmpgU6nS3U4hGSEpA3S1+l0OPvss3HuuedSIkTIGayxsRHnnHMOjh07lupQyCgaGxuxfPlyNDY2pjoUQjJGRtybjBBCCCFkuiTl3mR1dXWIxWKYN28egMEJx+RyOZYvXz71CNOI2+1GNBqFQqGAyWQa8fd4XnMqoVAIgUAAAKDVaqFWqxEKhRCNRkfcXHboOtvb2xEMBiFJEoqLiyGTycQs23zZWCwGg8EgnguFQojH4yP+7u/vhyRJcLlcMJvN6O3thcFgQDgcRmFhIRwOBzQajZgG3ePxQKEYPIw6Oztx8uRJsW2FQoFQKIRIJAKFQgGNRgONRgOlUgmfzweZTIaOjg54PB7I5XLMmTMHeXl5aGpqgtvthtFoxJw5c+D3+xEIBOByuRAOh9Hc3Ay1Wg3GGCwWC9RqNXJycsT69Xo9otEoBgYG4HK5oNPpkJeXh2AwiKNHj6K3txd5eXlQqVTwer3Yt28furu7odFooFAoEAwGEQ6HUVZWBoPBgL6+PsjlcrGPm5qaEA6HYbVaUVlZid7eXvh8PrS1tcFoNCISiaC6uhoOhwOMMdjtdgwMDMDr9Yr9Fo/HEQgEIEkSfD4fDAaDuJUM32eBQCDhc083l19+OWKxWKrDIMPw8246nn/lcjlMJhO8Xi8YY4hGo+I5o9Eovj/8nBePxxEOhyGXy6FUKqFQKCCTyaBSqRCPxxGNRqFSqWAwGKBSqcT3JS8vD2azGQBgNpuh1WrFOUCv10On00Gv14tejEgkAqfTCcYY9Ho9ZDIZ5HI5FAoFiouLIUkSgsGgiM3pdMLv90OtViM3N1fEo9froVAooFarEQwGRfx8mxqNBpFIBAMDAwnvxWAwwGw2w2QywWQyIRKJQC6Xw+/3w+/3IxgMIicnBzabTZyvh/9WnOpcz5eVyWTi5qb8dWTQlO9N9txzz8FoNOKtt96CxWIBADgcDnzve9/D1772teREmWJOpxPt7e3iRq4ejwf9/f2wWq0iwVGpVCgtLRX3Nxv+mtGW4YLBIHp6euB0OsWPSzQahVwuh8VigUqlgsPhQCAQgNfrFfOldHZ24ujRo+KAZoxBrVZj0aJFyMnJgcfjQSQSgdfrRTweh1KphNVqhUKhEF/MYDAIv98vfsztdju6urrEe1Sr1ZAkCSqVCrFYDEVFRdBqtXC73ZAkCTqdDi6XCz09PXA4HOJLGQgERLIlk8kgSZI4YcnlckQiEXR0dMDv9yesPxKJiPfME0GTyYRYLIauri44HA5Eo1GEw2HxZdfr9TAajcjPz0deXh4YY/D7/YhEIgAGZyd3uVzi5ORyucR+4Y8l28cffzyh5ZN5w8GZJJfLAQweeyS1pnpj7JkQi8XgcDhGfc7j8Zzytir8+zwau92e8Hdzc/O4Y+IJgiRJ4jiWJEkkQ5IkQalUQpIkkQwNX54nQDyJkiRJfB78thZKpRIqlQqSJCEUCkGhUIAxBpVKBaPRiOLiYhQWFqKgoAD5+fnwer3o7+9HNBqF0WiEwWBAbm4uKioqkJOTIy5CfT4fAoEAVCoVIpFIwrk+FouJfwMDA/D5fNDr9bBardDpdCLB0mimfhuaTDflAupf/vKX2LZtm0iEAMBiseCJJ57A2rVr8aMf/Wiqm0gpp9OJEydOwGw2Y9asWQiHwzh8+LA4GGfNmgWVSoWenh6cOHFCzK009DU6nQ5+vz9hGZ4QBYNBdHZ2IhAIwGazwWKxIBgMorm5Wfyg22w2OBwOdHR0QKvVorq6Gm63G/X19aJFZPny5dBoNDh69Cjq6upgsVhQWFiI3NxczJ07FzKZTLTclJSUQCaTQavVIhwOw+v1oqmpCTk5ObBYLDAajTh27BgKCgrg8/lgsVjQ2dmJ3NxcxONxcXVlMpnQ2dkJg8EgWmBsNhtyc3PR3d0trm4KCgoQi8UQCoUQDAYRCATQ398PnU6HqqoqFBYWorW1FYcOHUIsFkNOTg5qa2sxMDCAlpYWtLa2QqvVQqVSobi4WFz98StDSZKQl5eHWCyG/v5+KJVKRCIRLFy4EGazGZ9++qmIRa1Ww2KxiP0LDJ7Ihl6hkokb+sNAZl4mJELpil+0yeVyyGQyxGIxkbzIZDLRgsUv7JRKpViWJ2kKhQJyuRwajUYkTUqlEjk5OYjH41Cr1QgEAqKVy2g0QqfTwWw2ixYvtVoNv98Pl8sFv98PmUyG0tJSzJs3DyqVCtFoFAcOHIDdbsd5552Hc845B8FgEF9++SUCgQDkcjlqa2uh0+nQ2dmJI0eOQK/Xi5Yx3msQj8eh1Wqh0Wjg9XoRi8VQXFyc9QnRlJMht9uNnp4eLFiwIOFxu91+RkxJ397eDrPZjDlz5gAAvvrqKxQVFWHOnDk4fvw4Ojs7sXDhQhgMBhw/fhzt7e0AkPAaADAYDAnL8GSId/0UFRWJ0TlOpxPl5eUABvej2+1Gf38/ysvLkZubi0gkgv3796OyshILFiwQLVDV1dUoLy9Hc3MzBgYGxH3b8vLyAAw2BYdCISiVSphMJnR0dKC4uBgnT55EWVkZnE4nqqur0dLSgqVLlyInJwdOpxPNzc1YunQpysrKsG/fPjidTlx55ZX48ssvUVhYiI6ODqxZswatra1ob2/HkiVLUFxcDLfbjZycHPh8PsyePRsNDQ1QKBQ4ceIEdDodVq5ciblz5yIajaKtrQ0LFixAbW0tGhsb4XQ6cd555yE/Px/xeBytra1YsWIFCgoK0NTUhPnz5yMQCKCtrU00Befl5aG9vR06nQ7Lly+H0WhEW1sbbDYbKioq4PF4MDAwAKVSCaVSKZrSHQ6HaK5Wq9Xo7++H2+1Gbm4uAoGASJokSYLFYkEkEoHH4xEta5xGoxH3zyOEpA9JkqBWqxGLxaBWq6HVakW3tyRJsFqtCAQC0Gg0yM3Nhc/nQyQSQTgchtFoRDgchtPphMlkgtVqhVqtFl19JpMJvb29iMViMJvNYIxBLpeLZEetViMcDiMajcLhcEChUMBisaCgoAA5OTkoLCyE3+9HZ2cnTCYTVCoV+vr6UFVVhRUrVqCyshJerxdtbW0466yz0NraikAggGAwiN7eXsyZM0d08/EWoUgkgs7OTtH609fXh/nz58NqtWJgYAB2ux1arRYmkwl2ux0ul4uSoamu4Bvf+Aa+973v4Ze//CXOP/98AMDnn3+OH//4x7j++uunHGAqud1uhMNhMbv28L9tNhuOHDkCt9sNk8kEm82Gffv2AcCotwYY/hp+JaDRaETfdSgUQiwWEy1tPNn0+XyiOfPAgQNwu91Yvnw5YrEYKisrcfLkSbjdbgAQCZHD4UBRUZH4cR66LL9KcTqdCIVCKC4uRnd3NxhjCAaDWLx4MTo6OlBYWIhDhw6huroaJ0+ehEqlgk6ng8fjgcvlQn5+Pk6cOCH6vYHBZtucnBzxPvg2tFotvF4v/H4/cnJyoNPpoFQq0dLSImKbPXs2Dh8+DJfLBbfbDZ/Ph/z8fLS0tIjusaKiIigUCuj1euTk5MBkMuHQoUMwm82QJAnhcBglJSU4ceIEWlpakJubK2I2Go1oaGhAIBBAaWmpiC0/P1/0tfv9frjd7hHdZ4wxKBQK0Vw/POkZmhhlI0mSUFdXN6PbbGhoAABRE5FqPA4e13iM5/5pp5KOtUHphl+kyOXyETWYABK69HU6HaLRqGidCYfDYIyJxIknVsFgEIwx6HQ6qFQq0eqtVqtFGYLP50NBQQG6u7sRi8Wg1WpFS1NOTo6oheI1PpIkidtY6fV6KJVK+P1+aLVaeDweFBQUoKysDC6XC8ePH4dMJkNRURE8Hg+sVqs4d/n9fpSUlKC/vx9+v19cAAKDF+Z8mby8PGg0Gvj9foRCoayuIZpyMvSb3/wGDz74INatWyd+JBQKBW6//Xb84he/mHKAqcS7TvhcHcP/Hu1xXvMz1vweQ1+jVCoRj8dFUTEA8QPM/1YqlaKPWqfTQS6XIxQKgTEGq9UKj8cjCgV5HBaLBe3t7YjFYmIbHF+Wd2nweIfWPgFAfn4+Ojo6RAtWQUEBjh07BrVandBfbjKZIJPJoNFoxElBJpPBaDQiGAzCZDKJvnetVotQKCSeNxqN4mqNX9HYbDYoFAqxDUmSkJ+fL5qR5XI5cnNzRS2TwWBAQUEBDh06BIVCIWqS8vLycOLECZHg8BMLL2AEgOLiYvh8PvG5+Hw+6HQ6aLVaABAnp6F4/QAAcWIl/5CqH+aTJ0/iwgsvTMm2h8cBAOvWrUttIGQESZJEdxYw+P3mdTv8e84vsngLOm/l4ee7oXWKvMVYp9OJ8xjvbuPJkNfrhdFoRG9vr+hi44mXwWAAY0wkSGq1WrQ48fMlL8xWqVQi8eIDXILBoBg0EgwGxYAV/nvB7w/KL+L4++aJUTAYFMnYdNVOZpIpJ0M6nQ4vvfQSfvGLX+D48eNgjKGqqgp6vT4Z8aUUL1Dz+/0wGAwj/h5ac8If5wccX2a4oa/hVyKRSASRSEQkEgDEDzbvj5bJZKIViScCvMuHF9/yOBwOh6iRiUQiCVebfFn+5efx8lYlXvDd29sLAOIqxW63iy+b3+8XJxDegsILscPhMOLxODweD3w+H9xuN2KxGKLRKAKBgCjw48WS/GqNj7Do6ekRxeOMMTDG0NvbK67meF0Q7z7zer2ieJK3HCmVSvT19Yn3xwvII5GIuEoCBgvQ+X72+/2Ix+Ni5BowmJgOr4NhjInX0EiqkVLRMrRu3boR90ZMFR7H73//e9TW1o7rNdQyNDOGjl6Ty+XinDC03i0ajcLn84kRnbz4mZ/v4vE4QqGQ6EbjgzX48kqlErFYTJxP+LmOnwP5a3gruVwuRyAQEDWVvMCany/D4bAYzStJEvx+vzgnazQayGQyMcqNn/v47wU/9/IaJn6+4r83vD6K//9kjr0zSVJmoAYGm/QWL16crNWlBd5/29PTA4PBMOLvnp4eqFQq0arS09Mj6n74MsMNf41Op4PD4YDX6xV90fwHHBjserHZbHA6nejp6UFubi7KysrQ2tqK48ePY8GCBWKoOV9na2srotGoKMbmTZ9yuVwsy686cnJyoFar0dvbK4r/NBoNjh07hpycHHR3d0On0+HIkSMoKysTI8CMRqOot+F94jxmvV4vhps7HA4olUpRQMibkPnQ1EgkgpKSEsjlcrS0tECn00Emk4lhpnxd/KpOpVKhubkZFosFgUAATqcTgUAARqNRXMmpVCp0dHQgLy8PFRUVYuoBYHDESmVlJfx+v6gH41djfKj90GGoQ/GTFMebyrlsrxlKZQE1b81LNR5HbW3tmF3lw8XjcdjtdhQUFEzqB2loywYZ3dCaoaFD3zleWMwviHjLUDgchkqlEl1l/B9vgeHJEH+et/Lwi16z2QyXyyUu7txuNxQKBRQKBZxOJ3JycsRFGr/44jU+POHS6XSihcnlcok6yDlz5qC3txdOp1PUDFVWVsJkMiEQCODo0aPQ6XTQ6XTo6+sTF3F8FC2vf+T/n81dZECSkiGn04nXXnsNDQ0NkCQJtbW1uP3220WXTCYrLS3FiRMncPz4cdhsNhQXF+Pw4cNoaWmBSqXC/Pnz4fV60dPTA5fLlTCajL9m6GiyocsAg18Wn8+Hrq4uhMNhWCwWaDQaMdopNzcXJpMJubm5aG1tRW9vL6qrq3HWWWfho48+QktLixhN1traiqNHj4o5cLq6upCbm4u+vj7IZDL09vaiq6sLJSUlcLvdKCkpEYVzfDTZkSNHEI1GRZcYH01WX1+P1tZWxONxKBQKbNu2DSaTCd3d3TAYDPjwww/hcrlgs9nw5ZdfjhhN1t3dLUaT8S//hx9+iMbGRhQWFoIxhkOHDuHAgQOorq7GrFmzsHv3brS0tKCjowMGgwEHDhwQ3YTNzc0Jo8l4P7pCoRDr5qPJenp6ROsRn+8oEomgr68PfX19Y44m6+/vT/ibMYaBgQHx9/AaoWyvGSIkXfFaSABiWo2h+FxnMpkM7e3tCaPJHA6H6Nri06CMNpqM1/eMZzRZf38/Ojs7E0aTaTQaeDweWCwWaLVadHV14bPPPsPAwEDCaLJIJIJZs2ZBo9EgPz9fjCYzGAyihb23t1cUeCsUChgMBrS0tKCtrU2MJgsEAujr64NWqz0jfqunSmJTvJzbu3cvLr/8cmi1Wpx77rlgjGHv3r0IBALYtm3buK+OUsXtdosWjuHz/3DpMM9QX1+f6IOmeYbSf56hbJOqVqF9+/Zh+fLlqKurG/VcM65Wl879wKurgP9vJ1B81rTGM5qptgxx1Do0OTTP0Mh5hpJ1TE43p9MJi8UCl8t12kmNT2fKLUM//OEPcc011+C3v/2t+HCi0Si+//3vY+PGjROefC4d5eTkICcnZ0IzUI/1mtFoNBpUVFSgsLBwzBmoY7EYysrKRF9wNBpFVVUVrrrqqqTNQL148eIpz0ANgGagzpIZqAGIolGSekN/yNMVzUBNM1CnqyknQ3v37k1IhIDBH8GHHnoIZ5999lRXn1aGJzPjyUQnkq3y0QTDH+M1N2Ots7S0dMLbH207Q9dVUlKS8F9u+J3K8/PzAUCMeJjolcRoRaY2m23crz+V0Ypqa2trR1zx3HDDDUnZXrKk+1UZb/3429/+lupQyCjq6uom3Dp1Oul+THKZEOdEYhx+vuVG+6041bmekp7Tm/LRYjKZ0NraOuJxfpVMCDmz1NTUYM+ePaiqqkp1KGQUNTU1qKurQ01NTapDISRjTDkZuuGGG3D77bfjj3/8I9ra2tDe3o7Nmzfj+9//Pr7zne8kI0ZCSBrR6XRYtmzZmHNpkdSiz4eQiZtyN9n/+l//C5Ik4ZZbbhFDDVUqFe6++248/fTTyYiREEIIIWTaTDkZUqlUeP755/HUU08lTLpIVyWEEEIIyQSTToZuu+22cS33+uuvT3YThBBCCCHTbtLJ0JtvvomKigosXbo0pTPPEkKyF5/pl98gebjx3OpC6zyCWgANjY0IdE9tzqmJ3KCVEJI+Jp0M3XXXXdi8eTNOnDiB2267DevWrRtzGOBkPPXUU9iyZQsaGxuh1WpxwQUX4JlnnsG8efPEMowxPP7443j11VfhcDhw3nnn4cUXX8SCBQuSFgchJH01NjYCAO64445Jr2NpoQz77jTgpptuQv0UkyGORtISklkmnQy99NJL+Pd//3ds2bIFr7/+Oh555BFceeWVuP3227F27dopT/y1c+dO3HvvvTjnnHMQjUbx6KOPYu3atTh8+LC4Ceyzzz6L5557Dm+++Saqq6vxxBNP4LLLLkNTUxOdjAjJAtdddx2AweHko9UpjqdlSIoG0eBtxWv/VA6m0Iy6zEQYjUbMnTt3yushhMycKd+Og2tpacGbb76J3/3ud4hEIjh8+PCoNyqdrN7eXhQUFGDnzp1YuXIlGGMoLi7Gxo0b8fDDDwMYnLnXZrPhmWeewZ133jnqekKhUMKsvm63G2VlZejv7x/zdhypFo/H0dvbi/z8/LSeSCzdYwQyI06KMXkyIU6KMXkyIU6KMXmcTidyc3PT43YcHL8XC2NsWu715HK5APxjRs7m5mZ0d3dj7dq1Yhm1Wo1Vq1Zh165dYyZDTz31FB5//PERj/f29ibcRyyd8PtpMcbS9sDMhBiBzIiTYkyeTIiTYkyeTIiTYkwenhckw5SSoVAoJLrJPv30U1x11VV44YUX8PWvfz2pO5AxhgceeAAXXXQRFi5cCADo7u4GMPLWDTabDS0tLWOu65FHHsEDDzwg/uYtQ/n5+WndMiRJUlpn6ZkQI5AZcVKMyZMJcVKMyZMJcVKMycPv9ZgMk06G7rnnHmzevBnl5eX43ve+h82bNyM3NzdpgQ21YcMGHDhwAJ9++umI54bXJjHGTlmvNNZ9Wvjd1dMVv/MxxTh1mRAnxZg8mRAnxZg8mRAnxZgcyYxt0snQb37zG5SXl6OyshI7d+7Ezp07R11uy5Ytkw4OAO677z785S9/wccff5xwQ9LCwkIAgy1ERUVF4nG73Z60G30SQlLr6NGj8Hg8E3qNFA1C421F0FCOmEx12gLqoaj4mZDsNOlk6JZbbpnyiLFTYYzhvvvuw9atW7Fjxw5UVlYmPF9ZWYnCwkJs374dS5cuBQCEw2Hs3LkTzzzzzLTFRQiZGUePHkV1dfWEX8eHyi97xTupofJHjhyhhIiQLDOlSRen07333os//OEP+O///m8YjUZRI2Q2m6HVaiFJEjZu3Ignn3wSc+fOxdy5c/Hkk09Cp9Phu9/97rTGRgiZfrxF6Pe//z1qa2vH/Tqt8wjw8Z14++234TNVjbtlqKGhAevWrZtwSxQhJPMlbTRZsr388ssAgNWrVyc8/sYbb+DWW28FADz00EMIBAK45557xKSL27ZtozmGCDmD1NbWYtmyZeN/QacM+BioralBvHAx7HY7CgoK0rr2gRCSWmmbDI1n+iNJkrBp0yZs2rRp+gMihBBCyBmJLpUIIYQQktUoGSKEEEJIVqNkiBAybn6/H/v27RN3iyenR/uMkPRHyRAhZNwaGxuxfPlycbd4cnq0zwhJf2lbQH0mCoVCiMfjiEQiUCqVkMlkI2bD5svw50KhEHw+H1wul5hWIBQKIRAIAAC0Wi0AJLwGGLzNSDQahUKhgFqtFsvLZDJx7zitViu2MTSuSCSSsAwweEM8p9MJtVqNWCwGSZIQCAQQj8fhdrvF9iVJgslkgtfrhVwuh0IxeIhFo1HEYjEEAgFEo1EwxmCxWMRjfr8fgUBAzHhqNpvR39+PUCgEtVqN4uJiqNVqyGQyBAIBOJ1OdHV1IRqNIh6Pw2KxiPfDGINKpYLT6URLSws6Ojqg0+nEDOlHjx6FSqVCLBYTcTmdTni9XkQiEajVanR0dKCvrw/xeByVlZWw2WxQqVSoq6tDJBKB2WyGzWaD0+lEf38/lEol5HI5LBYLHA4HPB4PlEolPB4PJEmCx+OB0+mEy+WC1+uFSqWCJEnQ6XQIh8MIh8MIBoPTefgl1TnnnIOurq5Uh5ER1qxZAwBYvnx5iiOZPJVKBaVSCY1GA5VKJc4z8XgcCoUCBoMBRqMRoVAIcrkcgUAACoUCDocDAKBQKGA0GqHVahGNRlFYWIj8/HwUFxfD6XRCo9EgNzcXFRUViEajcDqdkMlkKCsrQ25uLiwWC5RKJSwWCxQKhbgp5/DzJSGTRcnQDAgGg3C5XPD5fPB4PIjFYpDL5TAajdDr9TCbzQAGbzoXi8XEaxwOB2KxGGQyGQYGBsTfSqUSCoVCJEUGgwF5eXnQaDTwer3iBzgUCmFgYACBQAAmkwmRSAQ+nw96vR5WqxVyuRxyuVz8IPv9fhGDSqUSCYXdbkcwGITb7UZ3dzf8fj+i0Sh8Ph+cTifkcjm0Wi0UCgXKy8tRUlKCWbNmQSaTwe/3gzGGUCiE/v5+eL1eAIMnx2AwiHg8jkAgALfbDZ/Ph1gsBsYYfD4fVCoVdDod1Go1DAYDSkpKoFKp0NHRgdbWVvT19cHr9UKSJCiVSphMJpjNZqjVavT09KCzsxNerxehUAjhcBiRSAQAxDai0Sii0ehpP7+PP/446ccET04zueuEz/w+npGf2chsNsPtdqc6jKTgCbvP55vW7fBzklqthlKpFAnQrFmzMHfuXMyePRvz58+H1WqF0WhMmEaFn1MJmQxKhqZZMBjEwMAAgMFWmdLSUtEawxOjzs5OAEBOTo5oLWltbUUoFIJOp0NFRQWMRiMcDgf6+vpQWFiIkpIS+P1+BINBhEIh8ePe0dEBtVqN8vJyBINBKBQK+P1+9PX1IS8vD2VlZaJlJxQKiSSkpKREtBqpVCoYDAa0t7fDbrfD5/MhNzcXBoMBZrMZJ0+eRGdnJ5RKJebNmwez2QyTyYSenh643W5otVpxNZeTkwOHwwG73Y6Kigqx7WAwiKamJvh8Pmg0GuTl5WHhwoXo6urC4cOHxcmuoqICVqsVLS0tOHjwIHQ6Hfx+P6xWK0pLSxGNRhEIBDAwMCCuSltaWuB0OqFUKlFWVgalUimSI7593jIznmSInJokSZQQDXMmJUIziV/s6fV65OXlQavVwuv1IhAIiNbX9vZ2cf5csGAB8vPzEYlE4PV6MTAwQN9pMimUDE0zl8sFjUaDSCQCk8kEq9UKADAYDJAkCZFIBOFwGADEcz09PWCMoaamBsBgQhUOh2EymcQXv7e3F8XFxaisrMTAwADsdjva2tpQXl4Oi8WCzs5OKBQKzJkzB5FIBPv374dcLsfixYsxMDCAw4cPIy8vD2azGS6XS5xs+Ey/nZ2diEQi0Ol0WLZsGQ4dOgSdToe5c+eKlinGGFatWgW5XI7e3l7R+qTRaNDd3Y2CggLMnj0bX3zxBWpraxGPx7FkyRL09vZiz549OO+883D48GFEo1EsXrwYKpUKkUgEtbW1mDNnjujKKioqgtlsRigUwpEjR7BkyRJYLBaYTCbMmjULJ0+eRHd3NyKRCBoaGiCXy2G1WjF37lzk5uaitbVVdLU1NzfD6/UiPz8ffr8fHo9H3NzX7XYjHA6LroBIJAKZTDbiaph3/w3tTpTL5aJVjxBKhMaHn0t49/rQVubq6mpUVFSgv79ffE9zc3PFDOHl5eViQk2VSgWr1Yp4PE7dt2RSKBmaRqFQCLFYDDqdDsFgEBaLJeF5g8GAjo4OSJIkWouAwa4TjUYDg8EAAHA4HHA6nSgpKUFBQQE6Ojrg9XqhVCrFejo7O+HxeJCTkwOlUgmv1yv62V0uF0pKSuDz+eB2u0XzcyQSgUqlgl6vx8DAAAoLC2EwGET3Gk+GeGLAl5PJZLBaraJlJTc3F3a7HZFIBOXl5eju7kYwGEQgEBCJXXl5ORobG8UswOFwWHSD+Xw+GAwGtLa2IhgMYvHixfB4PDCbzfD7/ejp6QEweBPNaDQq7qas0WhEN5rZbEYkEkFPTw8kSYLBYIBCoRDdcJFIBDabDa2trZDL5aJVTavVIh6Po7+/XySlvJbH4XCI7qyhYrGY6Ooc+lg2kyQJdXV1SV1nQ0MDAIz6GUwHvh2+3cniNULk9GKxGOLxOCRJQjweh9FohEwmA2MM4XAYXq8Xs2fPxvHjx+FyudDd3Y2cnBz4/X7IZDKEw2G43W5RQ2QwGBCLxRAKhUS9IyHjQcnQNBraagBAJC+cUqlEPB6HXC4X/89fp9FoxPLxeBzxeBxKpRI6nQ5yuVy8jq+Hn0w0Go34f97/Ho/HRctKNBqFRqMRV2N8Gf7jrlQqRVExXy8vXOYtXLyGhydVWq1WNGFbrVb09/eLQmhexM1bvRQKBeRyOSRJEslMJBIRSYlCoUBZWRmOHDkCnU6HWCwGv98PlUqVcOXI6wrUarVIHHktkEqlglarFS08vCUnNzcXGo0m4ceVF4RzcrkcKpVK7MexyGQyKBSKEa/N5qRougqET548iQsvvHBa1j18OwCwbt26ad8WGcS7WCVJgiRJMBqNiMfj4mJJkiTYbDZ0dnaK8xI/dw0dnMENPWcSMhGUDE0j3grCfyB5SwzHu2F4cS9fXiaTIRKJiIJfnlhEIhH4/X5RVD10vYwxyGQyBINBqFQq8Txf1uVyicSEj6Li3VCRSET8kEciEZEY8W4gPmIjGAxCqVQiFAqJwmWbzSZaXmKxmGhR4gmcQqFANBoVdVP8hMYYQzAYhN/vRzgcFiPJotEo2traEI1G4ff7EQqFRAuP2+0Wo8/4qLpQKIRgMChGgvGux0AgIOLl77e/vx/BYFAkesA/RqNwsVhMjOw6VR1MPB4fUZuQzYkQgGlpGVq3bh1mzZqV1PWOhW9nojeGHW7NmjVwuVxJiurMxhMh/v8ejyeh9Zgxhp6enoSaIT4alX//eFIEIOGcSchEUDI0jdRqtUgq5HI5vF6vaCEBAK/XC51OJ37Q+dBQ3kXDR17pdDrk5OQgGAyKbieDwSC++F6vVwxddTqdsFgsMBgMYIyJrq4jR45Ar9fDZDKJhEWpVIqRW7y/nW/TarXC6/XC4XAgHA6LFiObzYauri4MDAyAMYYFCxbA6XSKEV2tra3QaDTQaDTQarWw2WxoaWkRj/PEQ6VSiRFssVgMXq8XhYWFGBgYwIEDBzBnzhwxsq2oqEiMkuO1Sjw54wmTy+USXWH9/f1ixJtMJoNWq0UwGITdbhcJok6nAwBRi2AwGMQVKWNMNMPr9fpT1gwNfSybk6HpLKCeqe4Ovp0J3xh2GP59IKfHv0u869vv94uaIT6Q48SJE/B6vZg1axYKCwvh8Xig0+nEYA/eRQZATOlBw+zJRFEyNM3MZrNoFQkEAmCMJYwm40PYAWBgYAAGgwEmkwlOpxONjY1iNJlKpYLD4UBPTw8KCwsxa9YsuFwu9PT0IBQKwWg0ir71np4eMZrs+PHj8Pv98Hq90Gg0OHDgAGKxGAwGA1wuF/x+P+RyOfLy8uD3+9HQ0CBOQkqlEn6/H5988glyc3Ph9/uxf/9+MZqMMYZ33303YTSZx+OBzWbD3LlzEYlEcPz4cchkMjQ0NKCiogK7du2CJEnQarXYvXu3GE22e/duFBYWoq+vDw0NDejs7BSjyeLxOFpaWtDV1QWbzYYTJ07AYDBAp9Phyy+/TBhNlpOTI+YN2rt3r3gfQ0eT8dYu3iI1XDAYPOWcPzyhGv4YIZzJZKIi6nEY2gLOp5nQaDTIycnBkSNH0NbWBq/Xi4KCAlRWVqK/vx96vR4A0NraigULFoiLPq/Xi2AwSMPryaRQMjTNNBoNrFYrXC4X4vE42tvbE+YZksvlKC4uBjA48qyvrw/AYN+3Wq1GOBzG8ePHMTAwAJPJhLy8PEiShI6OjoR5hngfeklJCTweD+x2+4h5hrxeL3p6ehLmGTKZTNDpdPB6vWJ0FU8mVCoVCgoKYLfb4XQ6E+YZUiqV8Pl8aGpqGjHPEB8WH4/H4XQ6AQAFBQVob29PmGeIzw0UCATgcDjQ0tKCWCwGjUaDgYEBeL1euFwuUaO0aNGihHmGjhw5MmKeoVgshoqKCmg0GnR2dqKtrU0kPjxh4fMe0RDc5KBh9SPxSVIpIZoYXuPo8/lEizSfUJV3xZeWlopzTDQaFaPHeM0i7XMyGZQMzQDebXS6GaiHLiOTyTB79mwxA7XRaER5eflpZ6DmiVWqZqCuqqqiGaizYAZqAOjq6kJBQUGqw0hbvG4oJycn42uIMmUGan4+ImSiKBmaQfwEcqoaiOF93Xwm1nA4LJ7jo6hOZWg/+mjrPVVco8Vns9lgs9nGXEc8Hofdbkd+fr6o05mq8vLyUR83mUyw2WyYN2/eaddx1llnjRpnQUFB2hZZpnOM+/btw/Lly7Fnz55Uh5IxPvzwQyxfvhx1dXWj1iKl8+fNpWuMVBtEkiV9jmpCCCGEkBSgZIgQMm41NTWoq6sTs6OT06N9Rkj6o24yQsi48duzDJ2GgZwa32eEkPRFLUOEEEIIyWqUDBFCCCEkq1EyRAghhJCsltY1Qx9//DF+8YtfoK6uDl1dXdi6dSuuu+468TxjDI8//jheffVVOBwOnHfeeXjxxRexYMGC1AVNCEkKPiPxvn37JvQ6rfMIagE0NDbC1zl4Xzyr1XraIeFTvVs9ISRzpXUy5PP5sGTJEnzve9/DN7/5zRHPP/vss3juuefw5ptvorq6Gk888QQuu+wyNDU10ZTshGS4xsZGAMAdd9wxodctLZRh350G3HTTTajvnvjdy+ncQUj2Setk6IorrsAVV1wx6nOMMfzqV7/Co48+iuuvvx4A8NZbb8Fms+EPf/gD7rzzzpkMlRCSZLwVuKamRtxYdzykaBAN3la89k/liMlU424ZAgYToblz5042ZEJIhkrrZOhUmpub0d3djbVr14rH1Go1Vq1ahV27do2ZDIVCIYRCIfE3n7o9Ho+LW1Ckm3g8Lu7Unq4yIUYgM+KkGAdZrVbcdtttk3z1+QAG4+zt7RUzo4/HTO93+ryTJxPipBiTJ5nxZWwy1N3dDQAjbhFhs9nQ0tIy5uueeuopPP744yMe7+3tRTgcTm6QSRKPx+FyucAYS6up8IfKhBiBzIiTYkyeTIiTYkyeTIiTYkyeZN7zL2OTIU6SpIS/GWMjHhvqkUcewQMPPCD+drvdKCsrQ35+PnJycqYrzCmJx+OQJGlCV7czLRNiBDIjTooxeTIhTooxeTIhTooxeVQqVdLWlbHJUGFhIYDBFqKioiLxuN1uP+UNRce6ySm/W3q6kiSJYkySTIiTYkyeTIiTYkyeTIiTYkyOZMaWvu/yNCorK1FYWIjt27eLx8LhMHbu3IkLLrgghZERQgghJJOkdcuQ1+vFsWPHxN/Nzc3Yv38/rFYrysvLsXHjRjz55JOYO3cu5s6diyeffBI6nQ7f/e53Uxg1IYQQQjJJWidDe/fuxcUXXyz+5rU+69evx5tvvomHHnoIgUAA99xzj5h0cdu2bTRPCCGEEELGLa2TodWrV4MxNubzkiRh06ZN2LRp08wFRQghhJAzSlonQzOBJ1tutzttC8Xi8Tg8Hg80Gg3FOEWZECfFmDyZECfFmDyZECfFmDx8nsBTNZqMV9YnQ/39/QCAioqKFEdCCCGEkInq7++H2Wye0jqyPhmyWq0AgNbW1invzOnC50Jqa2uDyWRKdTijyoQYgcyIk2JMnkyIk2JMnkyIk2JMHpfLhfLycvE7PhVZnwzxJkCz2ZzWHzoAmEwmijFJMiFOijF5MiFOijF5MiFOijF5ktGVl76dgYQQQgghM4CSIUIIIYRktaxPhtRqNR577LFRb9GRLijG5MmEOCnG5MmEOCnG5MmEOCnG5ElmnBJLxpg0QgghhJAMlfUtQ4QQQgjJbpQMEUIIISSrUTJECCGEkKxGyRAhhBBCsholQ4QQQgjJapQMEUIIISSrUTJECCGEkKxGyRAhhBBCsholQ4QQQgjJapQMEUIIISSrUTJECCGEkKxGyRAhhBBCsholQ4QQQgjJapQMEUIIISSrUTJECCGEkKxGyRAhhBBCsholQ4QQQgjJapQMEUIIISSrUTJECCGEkKxGyRAhhBBCsholQ4QQQgjJapQMEUIIISSrUTJECCGEkKxGyRAhhBBCsholQ4QQQgjJapQMEUIIISSrUTJECCGEkKxGyRAh5MwX9QF/kAb/RX2pjoYQkmYoGSKEEEJIVqNkiBBCCCFZjZIhQgghhGQ1RaoDIISQZDv77LMT/tYoYvj0BykKhhCS9qhliBBCCCFZjZIhQgghhGQ16iYjhGSs4d1hhBAyGZQMEUKyykUXXYRgVC7+3rt3bwqjIYSkA+omI4QQQkhWo2SIEEIIIVmNkiFCCCGEZDVKhgghhBCS1SgZIoQQQkhWo2SIEEIIIVmNkiFCCCGEZDWaZ4gQktVGm7iR5h4iJLtQyxAhhBBCshq1DBFCMgLdeoMQMl2oZYgQQgghWY2SIUIIIYRkNUqGCCGEEJLVKBkihBBCSFajZIgQQgghWY2SIUIIIYRkNUqGCCGEEJLVaJ4hQggZZqw5jWhmakLOTNQyRAghhJCsRskQIYQQQrIaJUOEEEIIyWqUDBFCCCEkq1EBNSEkrdANWQkhM23aW4Zef/11hEKh6d4MIYQQQsikTHsydMcdd8Dlcom/i4uLcfLkyeneLCGEEELIuEx7MsQYS/jb4/EgHo9P92YJIYQQQsaFaoYIIWScaDJGQs5M094yJEkSJEka829CCCGEkFSa9pYhxhiqq6tFAuT1erF06VLIZIl52MDAwHSHQgghhBAywrQnQ2+88cZ0b4IQQgghZNKmPRlav379dG+CEEIIIWTSZqyAmjGGuro6nDx5EpIkobKyEkuXLqX6IUIIIYSk1IwkQx999BFuv/12tLS0iKH2PCF6/fXXsXLlypkIgxBCCCFkhGkfTXbs2DFcddVVmDVrFrZs2YKGhgYcPnwY77zzDkpLS/FP//RPOHHixHSHQQghhBAyKokNnxUxyTZs2ICGhgZ88MEHI55jjOHSSy/F/Pnz8etf/3o6wyCEpKGZug+ZRhHDpz/YDwC46D/OQjAqT+r6aZ4hQjLbtLcM7dixAxs3bhz1OUmSsHHjRnz00UfTHQYhhBBCyKimPRlqbW3FokWLxnx+4cKFaGlpme4wCCGEEEJGNe0F1F6vFzqdbszndTod/H7/dIdBCCHTZrTuPuo6IyRzzMhossOHD6O7u3vU5/r6+mYiBEIIIYSQUc1IMrRmzZpRH5ckCYwxmmuIEEIIISkz7clQc3PzdG+CEEIIIWTSpj0ZKigowIMPPog///nPiEQiuPTSS/Ef//EfyMvLm+5NE0IIIYSc1rSPJvvXf/1XvPnmm7jyyitx4403Yvv27bj77rune7OEEEIIIeMy7S1DW7ZswWuvvYYbb7wRALBu3TpceOGFiMVikMuTO/EZIYQQQshETXsy1NbWhq997Wvi73PPPRcKhQKdnZ0oKyub7s0TQtLATM00TQghkzHt3WSxWAwqlSrhMYVCgWg0Ot2bJoQQQgg5rWlvGWKM4dZbb4VarRaPBYNB3HXXXdDr9eKxLVu2THcohBBCCCEjTHsytH79+hGPrVu3bro3SwghKTVW1yDNTE1I+pn2ZOiNN96Y7k0QQgghhEzatNcMEUIIIYSkM0qGCCGEEJLVKBkihBBCSFabkRu1EkKyB80pRAjJNNQyRAghhJCsRi1DhBAyg0ZrOaPh9oSkFrUMEUIIISSrUTJECCGEkKxG3WSEkEmhQmlCyJmCWoYIIYQQktWoZYgQQlKM7mNGSGpRyxAhhBBCsholQ4QQQgjJatRNRgg5JSqUJoSc6SgZIoSQNEUTNBIyM6ibjBBCCCFZjVqGCCECdYmlPxp5RkjyUcsQIYQQQrIatQwRQsgZgOqLCJk8SoYIyULUHUYIIf9AyRAhhJyhqL6IkPGhZIiQMxy1ApHhKEkiJBElQ4ScISjpIVNFdUckW1EyREgGosSHzJSJHGuUOJFMRckQIWmCEhyS6ShxIpkq65Mhxhg8Hk+qwyAptGrVqlSHQKZZFDG4/f/z/9EYYrHUxkOApUuXzuj2du7cOaPbIzPHaDRCkqQprUNijLEkxZORent7UVBQkOowCCGEEDIJdrsd+fn5U1pH1rcMqVQqAEBbWxtMJlOKoxmd2+1GWVkZxZgEmRAnxZg8mRAnxZg8mRAnxZg8PE7+Oz4VWZ8M8aY1k8mU1h86QDEmUybESTEmTybESTEmTybESTEmz1S7yAC6NxkhhBBCshwlQ4QQQgjJalmfDKnVajz22GNQq9WpDmVMFGPyZEKcFGPyZEKcFGPyZEKcFGPyJDPOrB9NRgghhJDslvUtQ4QQQgjJbpQMEUIIISSrUTJECCGEkKxGyRAhhBBCslpWJUObNm1CTU0N9Ho9LBYLLr30UuzevTthmVAohPvuuw95eXnQ6/W45ppr0N7ePiPxRSIRPPzww1i0aBH0ej2Ki4txyy23oLOzM2G51atXQ5KkhH833njjjMQ4kThTuS8BYMuWLbj88suRl5cHSZKwf//+Ecukel+OJ8ZU78fR3HrrrSP22/nnn5/SmIZ76aWXUFlZCY1Gg+XLl+OTTz5JdUgJNm3aNGIfFhYWpjSmjz/+GFdffTWKi4shSRL+/Oc/JzzPGMOmTZtQXFwMrVaL1atX49ChQ2kVYzocm0899RTOOeccGI1GFBQU4LrrrkNTU1PCMqnel+OJMR325csvv4zFixeLCSBXrFiB9957TzyfrP2YVclQdXU1XnjhBRw8eBCffvopZs2ahbVr16K3t1css3HjRmzduhWbN2/Gp59+Cq/Xi6uuugqxGbizo9/vx759+/Czn/0M+/btw5YtW3DkyBFcc801I5a944470NXVJf698sor0x7fRONM5b4EAJ/PhwsvvBBPP/30KZdL5b4cT4yp3o9j+frXv56w3/7617+mNJ6h/vjHP2Ljxo149NFHUV9fj6997Wu44oor0NramurQEixYsCBhHx48eDCl8fh8PixZsgQvvPDCqM8/++yzeO655/DCCy9gz549KCwsxGWXXTajN7s+XYxA6o/NnTt34t5778Xnn3+O7du3IxqNYu3atfD5fGKZVO/L8cQIpH5flpaW4umnn8bevXuxd+9erFmzBtdee61IeJK2H1kWc7lcDAD7+9//zhhjzOl0MqVSyTZv3iyW6ejoYDKZjL3//vspifGLL75gAFhLS4t4bNWqVez+++9PSTxjGR5nOu3L5uZmBoDV19ePeC5d9uVYMabTfhxq/fr17Nprr03Z9k/n3HPPZXfddVfCYzU1NewnP/lJiiIa6bHHHmNLlixJdRhjAsC2bt0q/o7H46ywsJA9/fTT4rFgMMjMZjP7zW9+k4IIR8bIWHoem3a7nQFgO3fuZIyl574cHiNj6bkvGWPMYrGw//zP/0zqfsyqlqGhwuEwXn31VZjNZixZsgQAUFdXh0gkgrVr14rliouLsXDhQuzatSslcbpcLkiShJycnITH3377beTl5WHBggV48MEHZ/TKbDTD40zHfTmWdNuXQ6XzftyxYwcKCgpQXV2NO+64A3a7PaXxcOFwGHV1dQn7DADWrl2b8n023NGjR1FcXIzKykrceOONOHHiRKpDGlNzczO6u7sT9qtarcaqVavSbr+m27HpcrkAAFarFUB67svhMXLptC9jsRg2b94Mn8+HFStWJHU/Zt2NWv/v//2/uPHGG+H3+1FUVITt27cjLy8PANDd3Q2VSgWLxZLwGpvNhu7u7hmPNRgM4ic/+Qm++93vJtws76abbkJlZSUKCwvx1Vdf4ZFHHsGXX36J7du3z3iMY8WZbvtyLOm2L4dL1/14xRVX4Fvf+hYqKirQ3NyMn/3sZ1izZg3q6upSPmttX18fYrEYbDZbwuOp3mfDnXfeefjd736H6upq9PT04IknnsAFF1yAQ4cOITc3N9XhjcD33Wj7taWlJRUhjSrdjk3GGB544AFcdNFFWLhwIYD025ejxQikz748ePAgVqxYgWAwCIPBgK1bt2L+/Pki4UnGfjxjW4befvttGAwG8Y8XT1588cXYv38/du3aha9//ev49re/fdpMlzGWlLvijjdGYLBI+cYbb0Q8HsdLL72U8Lo77rgDl156KRYuXIgbb7wR/+f//B/8/e9/x759+5Ie41TiHE0q9uWpzOS+nGyMo5mu/Tia0eK+4YYbcOWVV2LhwoW4+uqr8d577+HIkSN49913ZySm8Ri+f2Zyn43HFVdcgW9+85tYtGgRLr30UrHv3nrrrRRHdmrpvl/T7djcsGEDDhw4gP/9v//3iOfSZV+OFWO67Mt58+Zh//79+Pzzz3H33Xdj/fr1OHz4sHg+GfvxjG0Zuuaaa3DeeeeJv0tKSgAAer0eVVVVqKqqwvnnn4+5c+fitddewyOPPILCwkKEw2E4HI6EK3G73Y4LLrhgxmKMRCL49re/jebmZnz44YcJrUKjWbZsGZRKJY4ePYply5alRZzpsi8najr35WRinOn9OJrxxF1UVISKigocPXp0RmI6lby8PMjl8hGtQHa7fcQVZDrR6/VYtGhRWuzD0fCRbt3d3SgqKhKPp/t+TeWxed999+Evf/kLPv74Y5SWlorH02lfjhXjaFK1L1UqFaqqqgAAZ599Nvbs2YPnn38eDz/8MIDk7McztmXIaDSKpKeqqgparXbU5RhjCIVCAIDly5dDqVQmdJF0dXXhq6++mpYfntFi5AnG0aNH8fe//31czeWHDh1CJBJJOBhSHWc67MvJmM59OZkYZ3o/jmY8cff396OtrW3ajsGJUKlUWL58+Yiuzu3bt8/YPpuMUCiEhoaGtNiHo+HdyUP3azgcxs6dO9N6v6bi2GSMYcOGDdiyZQs+/PBDVFZWJjyfDvvydDGOJl2+5/x3O6n7MQmF3RnB6/WyRx55hH322Wfs5MmTrK6ujt1+++1MrVazr776Six31113sdLSUvb3v/+d7du3j61Zs4YtWbKERaPRaY8xEomwa665hpWWlrL9+/ezrq4u8S8UCjHGGDt27Bh7/PHH2Z49e1hzczN79913WU1NDVu6dOmMxDjeOBlL7b5kjLH+/n5WX1/P3n33XQaAbd68mdXX17Ouri7GWHrsy9PFyFjq9+NwHo+H/ehHP2K7du1izc3N7KOPPmIrVqxgJSUlzO12pySm4TZv3syUSiV77bXX2OHDh9nGjRuZXq9nJ0+eTHVowo9+9CO2Y8cOduLECfb555+zq666ihmNxpTG6PF4WH19Pauvr2cA2HPPPcfq6+vFKNGnn36amc1mtmXLFnbw4EH2ne98hxUVFc3o536qGNPl2Lz77ruZ2WxmO3bsSDg/+v1+sUyq9+XpYkyXffnII4+wjz/+mDU3N7MDBw6wn/70p0wmk7Ft27YxxpK3H7MmGQoEAuwb3/gGKy4uZiqVihUVFbFrrrmGffHFFyOW27BhA7NarUyr1bKrrrqKtba2zkiMfHj1aP8++ugjxhhjra2tbOXKlcxqtTKVSsXmzJnDfvCDH7D+/v4ZiXG8cTKW2n3JGGNvvPHGqDE+9thjjLH02Jeni5Gx1O/H4fx+P1u7di3Lz89nSqWSlZeXs/Xr16c0ptG8+OKLrKKigqlUKrZs2bKEIcPp4IYbbmBFRUVMqVSy4uJidv3117NDhw6lNKaPPvpo1ONx/fr1jLHBIeGPPfYYKywsZGq1mq1cuZIdPHgwbWJMl2NzrPPjG2+8IZZJ9b48XYzpsi9vu+028T3Oz89nl1xyiUiEGEvefpQYY2xibUmEEEIIIWeOM7ZmiBBCCCFkPCgZIoQQQkhWo2SIEEIIIVmNkiFCCCGEZDVKhgghhBCS1SgZIoQQQkhWo2SIEEIIIVmNkiFCCCGEZDVKhgghhBCS1SgZIoQQQkhWo2SIEEIImYBvfOMbsFgs+Od//udUh0KShJIhQgghZAJ+8IMf4He/+12qwyBJRMkQSbnVq1dj48aNqQ4j49B+I6dyJh4fq1evhiRJkCQJ+/fvT1kcF198MYxG46jP3XrrrSLGP//5zzMbGJk0SobItOInhbH+3XrrrakOccal8kfqqaeewjnnnAOj0YiCggJcd911aGpqSljmpZdeQmVlJTQaDZYvX45PPvlkwut4+eWXsXjxYphMJphMJqxYsQLvvffetL63oT9CSqUSNpsNl112GV5//XXE4/Fp3XYypfvxASTnGDndOsZyxx13oKurCwsXLpz8G51Gzz//PLq6ulIdBpkgSobItOrq6hL/fvWrX8FkMiU89vzzz6c6xKyyc+dO3Hvvvfj888+xfft2RKNRrF27Fj6fDwDwxz/+ERs3bsSjjz6K+vp6fO1rX8MVV1yB1tbWca8DAEpLS/H0009j79692Lt3L9asWYNrr70Whw4dmtb39/Wvfx1dXV04efIk3nvvPVx88cW4//77cdVVVyEajU7rts8E4/lsk3GMjGcdY9HpdCgsLIRCoUj+Dvgfy5cvx8KFC0f86+zsPO1rzWYzCgsLpy02Mk0YITPkjTfeYGazecTjq1atYvfddx/78Y9/zCwWC7PZbOyxxx5LWCYYDLL77ruP5efnM7VazS688EL2xRdfJKxjw4YN7P7772c5OTmsoKCAvfLKK8zr9bJbb72VGQwGNnv2bPbXv/41Yb3vvfceu/DCC5nZbGZWq5VdeeWV7NixY+L5d955hy1cuJBpNBpmtVrZJZdcwrxe75jvMR6Ps2eeeYZVVlYyjUbDFi9ezN555x3x/Pr16xmAhH/Nzc0j1nO6uPh7vv/++8eMZTzsdjsDwHbu3MkYY+zcc89ld911V8IyNTU17Cc/+cm41zEWi8XC/vM//3NK8Z7K+vXr2bXXXjvi8Q8++IABYL/97W/FY6c7nhg7/XF5us96NMk6Phg7/TEyHccHY8k5RiazDsZGf0+T/e5P9Ls93EcffcS++c1vjvk8ALZ169Zxr4+kFrUMkbTw1ltvQa/XY/fu3Xj22Wfxb//2b9i+fbt4/qGHHsKf/vQnvPXWW9i3bx+qqqpw+eWXY2BgIGEdeXl5+OKLL3Dffffh7rvvxre+9S1ccMEF2LdvHy6//HLcfPPN8Pv94jU+nw8PPPAA9uzZgw8++AAymQzf+MY3EI/H0dXVhe985zu47bbb0NDQgB07duD6668HY2zM9/Ev//IveOONN/Dyyy/j0KFD+OEPf4h169Zh586dAAab0FesWCGa+ru6ulBWVjZiPaeKK5lcLhcAwGq1IhwOo66uDmvXrk1YZu3atdi1a9e41jGaWCyGzZs3w+fzYcWKFUmKfPzWrFmDJUuWYMuWLeKx8RxPwKmPy9N91qNJ1vEBzMwxMvyzTcYxMtl1nMpEv/uT+W6TM1yqszGSPU7VMnTRRRclPHbOOeewhx9+mDHGmNfrZUqlkr399tvi+XA4zIqLi9mzzz476jqi0SjT6/Xs5ptvFo91dXUxAOyzzz4bM0Z+BXvw4EFWV1fHALCTJ0+O6/15vV6m0WjYrl27Eh6//fbb2Xe+852E9zvRK/ahcU1lPUPF43F29dVXi/3W0dHBALD/9//+X8JyP//5z1l1dfW41jHUgQMHmF6vZ3K5nJnNZvbuu+9OOtbxGKtliDHGbrjhBlZbW8sYG9/xxNipj8vxftZDTefxwdjIYyTZxwdjyTlGJrMObqyWoYl+9yf63R5u7dq1LC8vj2m1WlZSUjKiVZExahnKNNPX6UrIBCxevDjh76KiItjtdgDA8ePHEYlEcOGFF4rnlUolzj33XDQ0NIy6DrlcjtzcXCxatEg8ZrPZAECsl6/7Zz/7GT7//HP09fWJq+rW1lZcfvnluOSSS7Bo0SJcfvnlWLt2Lf75n/8ZFotl1Pdw+PBhBINBXHbZZQmPh8NhLF26dEL741RxJatwdMOGDThw4AA+/fTThMclSUr4mzE24rHTrQMA5s2bh/3798PpdOJPf/oT1q9fj507d2L+/PmjrmvTpk14/PHHTxnznj17cPbZZ59ymdEMfQ/jPZ6AsY/LyXzWyTw++PuYzmPkVJ9tMo6RiazjdCb63V+yZMmEvtvD/e1vf5tUnCR9UTJE0oJSqUz4W5IkcXJn/9N0fbqT52jrGPoYX3ZoN8LVV1+NsrIy/Pa3v0VxcTHi8TgWLlyIcDgMuVyO7du3Y9euXdi2bRt+/etf49FHH8Xu3btRWVk54j3w9b777rsoKSlJeE6tVo9vR4wjrmS477778Je//AUff/wxSktLAQB5eXmQy+Xo7u5OWNZut4sfk9OtYyiVSoWqqioAwNlnn409e/bg+eefxyuvvDJqTBs2bMCNN954yrhnzZo1nrc3QkNDg/jMxns8AWMfl5P5rJN5fADTe4yM9dkm4xiZ6DrGY6Lf/Yl+t8mZj2qGSNqrqqqCSqVKuLKMRCLYu3cvamtrJ73e/v5+NDQ04F/+5V9wySWXoLa2Fg6HI2EZSZJw4YUX4vHHH0d9fT1UKhW2bt066vrmz58PtVqN1tZWVFVVJfwbWvehUqkQi8WmFNdkMcawYcMGbNmyBR9++GHCiV+lUmH58uUJtVoAsH37dlxwwQXjWsfpth0KhcZ8Pi8vDzU1Naf8p9FoJviOgQ8//BAHDx7EN7/5TQDJOZ7G+1lP5jWnOz6A6TtGTvfZJuMYGe86pttEvtvkzEctQyTt6fV63H333fjxj38Mq9WK8vJyPPvss/D7/bj99tsnvV6LxYLc3Fy8+uqrKCoqQmtrK37yk5+I53fv3o0PPvgAa9euRUFBAXbv3o3e3t4xfzCNRiMefPBB/PCHP0Q8HsdFF10Et9uNXbt2wWAwYP369QAGWzd2796NkydPwmAwwGq1Qib7x3XJ6eIaywsvvICtW7figw8+GHOZe++9F3/4wx/w3//93zAajeLq3Gw2Q6vV4oEHHsDNN9+Ms88+GytWrMCrr76K1tZW3HXXXeNeBwD89Kc/xRVXXIGysjJ4PB5s3rwZO3bswPvvv3/a9zEVoVAI3d3diMVi6Onpwfvvv4+nnnoKV111FW655RYAyTmexvtZT+Y1pzs+gMkdI8k4PgAk5RgZzzqm00S/2yQLpKRSiWSlUxVQDy+KvPbaa9n69evF34FAgN13330sLy9vzKH1w9dRUVHB/v3f/z3hMQwraty+fTurra1larWaLV68mO3YsUMsc/jwYXb55ZeL4dfV1dXs17/+9SnfYzweZ88//zybN28eUyqVLD8/n11++eUJQ5ObmprY+eefz7Ra7ZhDp08V11jv+bHHHmMVFRWnjA/Dhm3zf2+88YZY5sUXX2QVFRVMpVKxZcuWjRgyP5513HbbbWId+fn57JJLLmHbtm07ZWxTNXRYukKhYPn5+ezSSy9lr7/+OovFYgnLnu54Yuz0x+V4PuvhknV8MHb6Y2S6jg/GknOMnG4doxmrgHqi3/3JfLcnavj3laQ3iTEaS0gIIST9rV69GmeddRZ+9atfpTqU05IkCVu3bsV1112X6lDIOFDNECGEkIzx0ksvwWAw4ODBg6kOZVR33XUXDAZDqsMgE0QtQ4QQQjJCR0cHAoEAAKC8vBwqlSrFEY1kt9vhdrsBDE7FoNfrUxwRGQ9KhgghhBCS1aibjBBCCCFZjZIhQgghhGQ1SoYIIYQQktUoGSKEEEJIVqNkiBBCCCFZjZIhQgghhGQ1SoYIIYQQktUoGSKEEEJIVqNkiBBCCCFZjZIhQgghhGS1/x+4s0DacP+L3QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "vmin = 10\n", - "vmax = 80\n", - "\n", - "df = pd.DataFrame({\"error\": pooled_error, \"model\": pooled_model})\n", - "df = df[df.model > vmin]\n", - "\n", - "f, (ax_box, ax_hist) = plt.subplots(2, 1, sharex=True, gridspec_kw={'height_ratios': [3, 1]})\n", - "\n", - "ax_box.set_ylabel(\"Model wind speed [ms$^{-1}$]\")\n", - "ax_box.grid(alpha=0.3)\n", - "xticks = np.linspace(-30, 30, 13) \n", - "ax_box.set_xticks(xticks, labels=[f\"{int(x):d}\" for x in xticks])\n", - "\n", - "step = 10\n", - "speed_bands = np.linspace(vmin, vmax, int((vmax - vmin) / step + 1))\n", - "errors_by_band = []\n", - "for i, lower_bound in enumerate(speed_bands[:-1]):\n", - " upper_bound = speed_bands[i + 1]\n", - " mid_point = (lower_bound + upper_bound) / 2\n", - " span = upper_bound - lower_bound\n", - " band_errors = df.loc[df.model.between(lower_bound, upper_bound), \"error\"]\n", - " # boxplot routine can't handle NaN values, mask them out\n", - " errors_by_band.append(band_errors[~np.isnan(band_errors)])\n", - " \n", - "ax_box.boxplot(\n", - " errors_by_band,\n", - " vert=False,\n", - " positions=speed_bands[:-1] + step / 2,\n", - " widths=[step * 0.8] * len(errors_by_band),\n", - " whis=[5, 95], # percentiles\n", - " flierprops=dict(alpha=0.1)\n", - ")\n", - "yticks = [10, 20, 30, 40, 50, 60, 70, 80]\n", - "ax_box.set_yticks(yticks, labels=yticks)\n", - "\n", - "n = len(df)\n", - "mean = df.error.mean()\n", - "\n", - "frequency, bin_edges, patches = ax_hist.hist(\n", - " df.error,\n", - " bins=np.linspace(-50, 50, 150),\n", - " density=True,\n", - " alpha=0.8,\n", - " color=\"black\"\n", - ")\n", - "ax_hist.set_xlim(x_min, x_max)\n", - "ax_hist.set_ylabel(\"PDF\", labelpad=20)\n", - "ax_hist.set_xlabel(\"Thomas et al. 2023 $-$ Done et al. 2020 [ms$^{-1}$]\")\n", - "ax_hist.spines['top'].set_visible(False)\n", - "ax_hist.spines['right'].set_visible(False)\n", - "ax_hist.spines['left'].set_visible(False)\n", - "ax_hist.get_yaxis().set_ticks([])\n", - "ax_hist.axvline(mean, color=\"orange\", lw=1.5)\n", - "\n", - "f.suptitle(\n", - " f\"Wind model errors within {buffer_km}km of eye\\n\"\n", - " f\"$n_{{pixels}}={n}, \\ \\mu_{{error}}={mean:.2f} $ms$^{{-1}}$\"\n", - ")\n", - "\n", - "f.savefig(\n", - " os.path.join(\n", - " \"/home/fred/projects/open_gira/open-gira/validation/wind_model_comparison/\",\n", - " \"thomas_vs_done.png\"\n", - " )\n", - ")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/validation/iso_codes.csv b/validation/iso_codes.csv deleted file mode 100644 index 4a210a16..00000000 --- a/validation/iso_codes.csv +++ /dev/null @@ -1,257 +0,0 @@ -"Country","Alpha-2 code","Alpha-3 code","Numeric code","Latitude (average)","Longitude (average)" -"Afghanistan", "AF", "AFG", "4", "33", "65" -"Albania", "AL", "ALB", "8", "41", "20" -"Algeria", "DZ", "DZA", "12", "28", "3" -"American Samoa", "AS", "ASM", "16", "-14.3333", "-170" -"Andorra", "AD", "AND", "20", "42.5", "1.6" -"Angola", "AO", "AGO", "24", "-12.5", "18.5" -"Anguilla", "AI", "AIA", "660", "18.25", "-63.1667" -"Antarctica", "AQ", "ATA", "10", "-90", "0" -"Antigua and Barbuda", "AG", "ATG", "28", "17.05", "-61.8" -"Argentina", "AR", "ARG", "32", "-34", "-64" -"Armenia", "AM", "ARM", "51", "40", "45" -"Aruba", "AW", "ABW", "533", "12.5", "-69.9667" -"Australia", "AU", "AUS", "36", "-27", "133" -"Austria", "AT", "AUT", "40", "47.3333", "13.3333" -"Azerbaijan", "AZ", "AZE", "31", "40.5", "47.5" -"Bahamas", "BS", "BHS", "44", "24.25", "-76" -"Bahrain", "BH", "BHR", "48", "26", "50.55" -"Bangladesh", "BD", "BGD", "50", "24", "90" -"Barbados", "BB", "BRB", "52", "13.1667", "-59.5333" -"Belarus", "BY", "BLR", "112", "53", "28" -"Belgium", "BE", "BEL", "56", "50.8333", "4" -"Belize", "BZ", "BLZ", "84", "17.25", "-88.75" -"Benin", "BJ", "BEN", "204", "9.5", "2.25" -"Bermuda", "BM", "BMU", "60", "32.3333", "-64.75" -"Bhutan", "BT", "BTN", "64", "27.5", "90.5" -"Bolivia, Plurinational State of", "BO", "BOL", "68", "-17", "-65" -"Bolivia", "BO", "BOL", "68", "-17", "-65" -"Bosnia and Herzegovina", "BA", "BIH", "70", "44", "18" -"Botswana", "BW", "BWA", "72", "-22", "24" -"Bouvet Island", "BV", "BVT", "74", "-54.4333", "3.4" -"Brazil", "BR", "BRA", "76", "-10", "-55" -"British Indian Ocean Territory", "IO", "IOT", "86", "-6", "71.5" -"Brunei Darussalam", "BN", "BRN", "96", "4.5", "114.6667" -"Brunei", "BN", "BRN", "96", "4.5", "114.6667" -"Bulgaria", "BG", "BGR", "100", "43", "25" -"Burkina Faso", "BF", "BFA", "854", "13", "-2" -"Burundi", "BI", "BDI", "108", "-3.5", "30" -"Cambodia", "KH", "KHM", "116", "13", "105" -"Cameroon", "CM", "CMR", "120", "6", "12" -"Canada", "CA", "CAN", "124", "60", "-95" -"Cape Verde", "CV", "CPV", "132", "16", "-24" -"Cayman Islands", "KY", "CYM", "136", "19.5", "-80.5" -"Central African Republic", "CF", "CAF", "140", "7", "21" -"Chad", "TD", "TCD", "148", "15", "19" -"Chile", "CL", "CHL", "152", "-30", "-71" -"China", "CN", "CHN", "156", "35", "105" -"Christmas Island", "CX", "CXR", "162", "-10.5", "105.6667" -"Cocos (Keeling) Islands", "CC", "CCK", "166", "-12.5", "96.8333" -"Colombia", "CO", "COL", "170", "4", "-72" -"Comoros", "KM", "COM", "174", "-12.1667", "44.25" -"Congo", "CG", "COG", "178", "-1", "15" -"Congo, the Democratic Republic of the", "CD", "COD", "180", "0", "25" -"Cook Islands", "CK", "COK", "184", "-21.2333", "-159.7667" -"Costa Rica", "CR", "CRI", "188", "10", "-84" -"Cรดte d'Ivoire", "CI", "CIV", "384", "8", "-5" -"Ivory Coast", "CI", "CIV", "384", "8", "-5" -"Croatia", "HR", "HRV", "191", "45.1667", "15.5" -"Cuba", "CU", "CUB", "192", "21.5", "-80" -"Cyprus", "CY", "CYP", "196", "35", "33" -"Czech Republic", "CZ", "CZE", "203", "49.75", "15.5" -"Denmark", "DK", "DNK", "208", "56", "10" -"Djibouti", "DJ", "DJI", "262", "11.5", "43" -"Dominica", "DM", "DMA", "212", "15.4167", "-61.3333" -"Dominican Republic", "DO", "DOM", "214", "19", "-70.6667" -"Ecuador", "EC", "ECU", "218", "-2", "-77.5" -"Egypt", "EG", "EGY", "818", "27", "30" -"El Salvador", "SV", "SLV", "222", "13.8333", "-88.9167" -"Equatorial Guinea", "GQ", "GNQ", "226", "2", "10" -"Eritrea", "ER", "ERI", "232", "15", "39" -"Estonia", "EE", "EST", "233", "59", "26" -"Ethiopia", "ET", "ETH", "231", "8", "38" -"Falkland Islands (Malvinas)", "FK", "FLK", "238", "-51.75", "-59" -"Faroe Islands", "FO", "FRO", "234", "62", "-7" -"Fiji", "FJ", "FJI", "242", "-18", "175" -"Finland", "FI", "FIN", "246", "64", "26" -"France", "FR", "FRA", "250", "46", "2" -"French Guiana", "GF", "GUF", "254", "4", "-53" -"French Polynesia", "PF", "PYF", "258", "-15", "-140" -"French Southern Territories", "TF", "ATF", "260", "-43", "67" -"Gabon", "GA", "GAB", "266", "-1", "11.75" -"Gambia", "GM", "GMB", "270", "13.4667", "-16.5667" -"Georgia", "GE", "GEO", "268", "42", "43.5" -"Germany", "DE", "DEU", "276", "51", "9" -"Ghana", "GH", "GHA", "288", "8", "-2" -"Gibraltar", "GI", "GIB", "292", "36.1833", "-5.3667" -"Greece", "GR", "GRC", "300", "39", "22" -"Greenland", "GL", "GRL", "304", "72", "-40" -"Grenada", "GD", "GRD", "308", "12.1167", "-61.6667" -"Guadeloupe", "GP", "GLP", "312", "16.25", "-61.5833" -"Guam", "GU", "GUM", "316", "13.4667", "144.7833" -"Guatemala", "GT", "GTM", "320", "15.5", "-90.25" -"Guernsey", "GG", "GGY", "831", "49.5", "-2.56" -"Guinea", "GN", "GIN", "324", "11", "-10" -"Guinea-Bissau", "GW", "GNB", "624", "12", "-15" -"Guyana", "GY", "GUY", "328", "5", "-59" -"Haiti", "HT", "HTI", "332", "19", "-72.4167" -"Heard Island and McDonald Islands", "HM", "HMD", "334", "-53.1", "72.5167" -"Holy See (Vatican City State)", "VA", "VAT", "336", "41.9", "12.45" -"Honduras", "HN", "HND", "340", "15", "-86.5" -"Hong Kong", "HK", "HKG", "344", "22.25", "114.1667" -"Hungary", "HU", "HUN", "348", "47", "20" -"Iceland", "IS", "ISL", "352", "65", "-18" -"India", "IN", "IND", "356", "20", "77" -"Indonesia", "ID", "IDN", "360", "-5", "120" -"Iran, Islamic Republic of", "IR", "IRN", "364", "32", "53" -"Iraq", "IQ", "IRQ", "368", "33", "44" -"Ireland", "IE", "IRL", "372", "53", "-8" -"Isle of Man", "IM", "IMN", "833", "54.23", "-4.55" -"Israel", "IL", "ISR", "376", "31.5", "34.75" -"Italy", "IT", "ITA", "380", "42.8333", "12.8333" -"Jamaica", "JM", "JAM", "388", "18.25", "-77.5" -"Japan", "JP", "JPN", "392", "36", "138" -"Jersey", "JE", "JEY", "832", "49.21", "-2.13" -"Jordan", "JO", "JOR", "400", "31", "36" -"Kazakhstan", "KZ", "KAZ", "398", "48", "68" -"Kenya", "KE", "KEN", "404", "1", "38" -"Kiribati", "KI", "KIR", "296", "1.4167", "173" -"Korea, Democratic People's Republic of", "KP", "PRK", "408", "40", "127" -"Korea, Republic of", "KR", "KOR", "410", "37", "127.5" -"South Korea", "KR", "KOR", "410", "37", "127.5" -"Kuwait", "KW", "KWT", "414", "29.3375", "47.6581" -"Kyrgyzstan", "KG", "KGZ", "417", "41", "75" -"Lao People's Democratic Republic", "LA", "LAO", "418", "18", "105" -"Latvia", "LV", "LVA", "428", "57", "25" -"Lebanon", "LB", "LBN", "422", "33.8333", "35.8333" -"Lesotho", "LS", "LSO", "426", "-29.5", "28.5" -"Liberia", "LR", "LBR", "430", "6.5", "-9.5" -"Libyan Arab Jamahiriya", "LY", "LBY", "434", "25", "17" -"Libya", "LY", "LBY", "434", "25", "17" -"Liechtenstein", "LI", "LIE", "438", "47.1667", "9.5333" -"Lithuania", "LT", "LTU", "440", "56", "24" -"Luxembourg", "LU", "LUX", "442", "49.75", "6.1667" -"Macao", "MO", "MAC", "446", "22.1667", "113.55" -"Macedonia, the former Yugoslav Republic of", "MK", "MKD", "807", "41.8333", "22" -"Madagascar", "MG", "MDG", "450", "-20", "47" -"Malawi", "MW", "MWI", "454", "-13.5", "34" -"Malaysia", "MY", "MYS", "458", "2.5", "112.5" -"Maldives", "MV", "MDV", "462", "3.25", "73" -"Mali", "ML", "MLI", "466", "17", "-4" -"Malta", "MT", "MLT", "470", "35.8333", "14.5833" -"Marshall Islands", "MH", "MHL", "584", "9", "168" -"Martinique", "MQ", "MTQ", "474", "14.6667", "-61" -"Mauritania", "MR", "MRT", "478", "20", "-12" -"Mauritius", "MU", "MUS", "480", "-20.2833", "57.55" -"Mayotte", "YT", "MYT", "175", "-12.8333", "45.1667" -"Mexico", "MX", "MEX", "484", "23", "-102" -"Micronesia, Federated States of", "FM", "FSM", "583", "6.9167", "158.25" -"Moldova, Republic of", "MD", "MDA", "498", "47", "29" -"Monaco", "MC", "MCO", "492", "43.7333", "7.4" -"Mongolia", "MN", "MNG", "496", "46", "105" -"Montenegro", "ME", "MNE", "499", "42", "19" -"Montserrat", "MS", "MSR", "500", "16.75", "-62.2" -"Morocco", "MA", "MAR", "504", "32", "-5" -"Mozambique", "MZ", "MOZ", "508", "-18.25", "35" -"Myanmar", "MM", "MMR", "104", "22", "98" -"Burma", "MM", "MMR", "104", "22", "98" -"Namibia", "NA", "NAM", "516", "-22", "17" -"Nauru", "NR", "NRU", "520", "-0.5333", "166.9167" -"Nepal", "NP", "NPL", "524", "28", "84" -"Netherlands", "NL", "NLD", "528", "52.5", "5.75" -"Netherlands Antilles", "AN", "ANT", "530", "12.25", "-68.75" -"New Caledonia", "NC", "NCL", "540", "-21.5", "165.5" -"New Zealand", "NZ", "NZL", "554", "-41", "174" -"Nicaragua", "NI", "NIC", "558", "13", "-85" -"Niger", "NE", "NER", "562", "16", "8" -"Nigeria", "NG", "NGA", "566", "10", "8" -"Niue", "NU", "NIU", "570", "-19.0333", "-169.8667" -"Norfolk Island", "NF", "NFK", "574", "-29.0333", "167.95" -"Northern Mariana Islands", "MP", "MNP", "580", "15.2", "145.75" -"Norway", "NO", "NOR", "578", "62", "10" -"Oman", "OM", "OMN", "512", "21", "57" -"Pakistan", "PK", "PAK", "586", "30", "70" -"Palau", "PW", "PLW", "585", "7.5", "134.5" -"Palestinian Territory, Occupied", "PS", "PSE", "275", "32", "35.25" -"Panama", "PA", "PAN", "591", "9", "-80" -"Papua New Guinea", "PG", "PNG", "598", "-6", "147" -"Paraguay", "PY", "PRY", "600", "-23", "-58" -"Peru", "PE", "PER", "604", "-10", "-76" -"Philippines", "PH", "PHL", "608", "13", "122" -"Pitcairn", "PN", "PCN", "612", "-24.7", "-127.4" -"Poland", "PL", "POL", "616", "52", "20" -"Portugal", "PT", "PRT", "620", "39.5", "-8" -"Puerto Rico", "PR", "PRI", "630", "18.25", "-66.5" -"Qatar", "QA", "QAT", "634", "25.5", "51.25" -"Rรฉunion", "RE", "REU", "638", "-21.1", "55.6" -"Romania", "RO", "ROU", "642", "46", "25" -"Russian Federation", "RU", "RUS", "643", "60", "100" -"Russia", "RU", "RUS", "643", "60", "100" -"Rwanda", "RW", "RWA", "646", "-2", "30" -"Saint Helena, Ascension and Tristan da Cunha", "SH", "SHN", "654", "-15.9333", "-5.7" -"Saint Kitts and Nevis", "KN", "KNA", "659", "17.3333", "-62.75" -"Saint Lucia", "LC", "LCA", "662", "13.8833", "-61.1333" -"Saint Pierre and Miquelon", "PM", "SPM", "666", "46.8333", "-56.3333" -"Saint Vincent and the Grenadines", "VC", "VCT", "670", "13.25", "-61.2" -"Saint Vincent & the Grenadines", "VC", "VCT", "670", "13.25", "-61.2" -"St. Vincent and the Grenadines", "VC", "VCT", "670", "13.25", "-61.2" -"Samoa", "WS", "WSM", "882", "-13.5833", "-172.3333" -"San Marino", "SM", "SMR", "674", "43.7667", "12.4167" -"Sao Tome and Principe", "ST", "STP", "678", "1", "7" -"Saudi Arabia", "SA", "SAU", "682", "25", "45" -"Senegal", "SN", "SEN", "686", "14", "-14" -"Serbia", "RS", "SRB", "688", "44", "21" -"Seychelles", "SC", "SYC", "690", "-4.5833", "55.6667" -"Sierra Leone", "SL", "SLE", "694", "8.5", "-11.5" -"Singapore", "SG", "SGP", "702", "1.3667", "103.8" -"Slovakia", "SK", "SVK", "703", "48.6667", "19.5" -"Slovenia", "SI", "SVN", "705", "46", "15" -"Solomon Islands", "SB", "SLB", "90", "-8", "159" -"Somalia", "SO", "SOM", "706", "10", "49" -"South Africa", "ZA", "ZAF", "710", "-29", "24" -"South Georgia and the South Sandwich Islands", "GS", "SGS", "239", "-54.5", "-37" -"South Sudan", "SS", "SSD", "728", "8", "30" -"Spain", "ES", "ESP", "724", "40", "-4" -"Sri Lanka", "LK", "LKA", "144", "7", "81" -"Sudan", "SD", "SDN", "736", "15", "30" -"Suriname", "SR", "SUR", "740", "4", "-56" -"Svalbard and Jan Mayen", "SJ", "SJM", "744", "78", "20" -"Swaziland", "SZ", "SWZ", "748", "-26.5", "31.5" -"Sweden", "SE", "SWE", "752", "62", "15" -"Switzerland", "CH", "CHE", "756", "47", "8" -"Syrian Arab Republic", "SY", "SYR", "760", "35", "38" -"Taiwan, Province of China", "TW", "TWN", "158", "23.5", "121" -"Taiwan", "TW", "TWN", "158", "23.5", "121" -"Tajikistan", "TJ", "TJK", "762", "39", "71" -"Tanzania, United Republic of", "TZ", "TZA", "834", "-6", "35" -"Thailand", "TH", "THA", "764", "15", "100" -"Timor-Leste", "TL", "TLS", "626", "-8.55", "125.5167" -"Togo", "TG", "TGO", "768", "8", "1.1667" -"Tokelau", "TK", "TKL", "772", "-9", "-172" -"Tonga", "TO", "TON", "776", "-20", "-175" -"Trinidad and Tobago", "TT", "TTO", "780", "11", "-61" -"Tunisia", "TN", "TUN", "788", "34", "9" -"Turkey", "TR", "TUR", "792", "39", "35" -"Turkmenistan", "TM", "TKM", "795", "40", "60" -"Turks and Caicos Islands", "TC", "TCA", "796", "21.75", "-71.5833" -"Tuvalu", "TV", "TUV", "798", "-8", "178" -"Uganda", "UG", "UGA", "800", "1", "32" -"Ukraine", "UA", "UKR", "804", "49", "32" -"United Arab Emirates", "AE", "ARE", "784", "24", "54" -"United Kingdom", "GB", "GBR", "826", "54", "-2" -"United States", "US", "USA", "840", "38", "-97" -"United States Minor Outlying Islands", "UM", "UMI", "581", "19.2833", "166.6" -"Uruguay", "UY", "URY", "858", "-33", "-56" -"Uzbekistan", "UZ", "UZB", "860", "41", "64" -"Vanuatu", "VU", "VUT", "548", "-16", "167" -"Venezuela, Bolivarian Republic of", "VE", "VEN", "862", "8", "-66" -"Venezuela", "VE", "VEN", "862", "8", "-66" -"Viet Nam", "VN", "VNM", "704", "16", "106" -"Vietnam", "VN", "VNM", "704", "16", "106" -"Virgin Islands, British", "VG", "VGB", "92", "18.5", "-64.5" -"Virgin Islands, U.S.", "VI", "VIR", "850", "18.3333", "-64.8333" -"Wallis and Futuna", "WF", "WLF", "876", "-13.3", "-176.2" -"Western Sahara", "EH", "ESH", "732", "24.5", "-13" -"Yemen", "YE", "YEM", "887", "15", "48" -"Zambia", "ZM", "ZMB", "894", "-15", "30" -"Zimbabwe", "ZW", "ZWE", "716", "-20", "30" \ No newline at end of file diff --git a/validation/map_outages.ipynb b/validation/map_outages.ipynb deleted file mode 100644 index 94d64692..00000000 --- a/validation/map_outages.ipynb +++ /dev/null @@ -1,1044 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "835aff35", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_3187746/637195552.py:5: UserWarning: Shapely 2.0 is installed, but because PyGEOS is also installed, GeoPandas will still use PyGEOS by default for now. To force to use and test Shapely 2.0, you have to set the environment variable USE_PYGEOS=0. You can do this before starting the Python process, or in your code before importing geopandas:\n", - "\n", - "import os\n", - "os.environ['USE_PYGEOS'] = '0'\n", - "import geopandas\n", - "\n", - "In a future release, GeoPandas will switch to using Shapely by default. If you are using PyGEOS directly (calling PyGEOS functions on geometries from GeoPandas), this will then stop working and you are encouraged to migrate from PyGEOS to Shapely 2.0 (https://shapely.readthedocs.io/en/latest/migration_pygeos.html).\n", - " import geopandas as gpd\n" - ] - } - ], - "source": [ - "import os\n", - "from glob import glob\n", - "import multiprocessing\n", - "\n", - "import geopandas as gpd\n", - "import matplotlib.pyplot as plt\n", - "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", - "from matplotlib.lines import Line2D\n", - "import numpy as np\n", - "import pandas as pd\n", - "import xarray as xr\n", - "from shapely.geometry import box, Polygon" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "8dd0c11d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from IPython.display import display, HTML\n", - "display(HTML(\"\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "66c9459c", - "metadata": {}, - "outputs": [], - "source": [ - "def plot_outage_maps(\n", - " event_id: str,\n", - " plot_dir: str,\n", - " thresholds: list[float | int],\n", - " exposure: xr.Dataset,\n", - " aoi: Polygon,\n", - " aoi_targets: gpd.GeoDataFrame,\n", - " borders: gpd.GeoDataFrame,\n", - " track: gpd.GeoDataFrame\n", - ") -> None:\n", - " \"\"\"\n", - " Plot target outage maps for a given storm and set of thresholds.\n", - " \"\"\"\n", - " \n", - " event_dir = os.path.join(plot_dir, event_id)\n", - "\n", - " if not os.path.exists(event_dir):\n", - " os.makedirs(event_dir)\n", - " \n", - " plot_paths = []\n", - " for threshold in thresholds:\n", - " \n", - " threshold_str = f\"{threshold:.2f}\".replace(\".\", \"p\")\n", - " plot_filepath = os.path.join(event_dir, f\"{threshold_str}.png\")\n", - " \n", - " if not os.path.exists(plot_filepath):\n", - "\n", - " # draw map at given threshold\n", - " fig = plot_outage_map_threshold(event_id, threshold, exposure, aoi, aoi_targets, borders, track)\n", - " fig.savefig(plot_filepath)\n", - " \n", - " plot_paths.append(plot_filepath)\n", - "\n", - " # animate stack of maps\n", - " os.system(f\"convert -delay 50 {' '.join(sorted(plot_paths))} {os.path.join(plot_dir, event_id)}.gif\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "6e5ca09d", - "metadata": {}, - "outputs": [], - "source": [ - "def plot_outage_map_threshold(\n", - " event_id: str,\n", - " threshold: float | int,\n", - " exposure: xr.Dataset,\n", - " aoi: Polygon,\n", - " aoi_targets: gpd.GeoDataFrame,\n", - " borders: gpd.GeoDataFrame,\n", - " track: gpd.GeoDataFrame\n", - ") -> plt.Figure:\n", - " \"\"\"\n", - " Plot a target outage map for a given storm and threshold.\n", - " \"\"\"\n", - "\n", - " # preprocess data\n", - " # extract supply factor\n", - " df = exposure.supply_factor.sel(dict(event_id=event_id, threshold=threshold))\n", - " df = df.to_dataframe().reset_index()[[\"target\", \"supply_factor\"]]\n", - " df = df.rename(columns={\"target\": \"id\"})\n", - "\n", - " # drop targets with NaN supply_factor\n", - " df = df[~df.supply_factor.isna()]\n", - "\n", - " # combine target information with exposure\n", - " data = gpd.GeoDataFrame(df.merge(aoi_targets, how=\"inner\", on=\"id\"))\n", - " data.geometry = data.geometry.centroid\n", - "\n", - " # categorise supply_factor\n", - " status_cmap = {\n", - " \"DISCONNECTED\": \"firebrick\",\n", - " \"DEGRADED\": \"salmon\", \n", - " \"NOMINAL\": \"lightgrey\",\n", - " \"OVERSUPPLY\": \"darkorchid\"\n", - " }\n", - " status_labels = {\n", - " \"DISCONNECTED\": r\"Disconnected: [$s < 0.2$]\",\n", - " \"DEGRADED\": r\"Degraded: [$0.2 \\leq s < 0.8$]\",\n", - " \"NOMINAL\": r\"Nominal: [$0.8 \\leq s < 1.2$]\",\n", - " \"OVERSUPPLY\": r\"Oversupply: [$1.2 \\leq s$]\"\n", - " }\n", - " status_bin_edges = np.array([-np.inf, 0.20, 0.80, 1.2, np.inf])\n", - " data[\"connection_status\"] = pd.cut(\n", - " data.supply_factor,\n", - " bins=status_bin_edges,\n", - " labels=status_cmap.keys()\n", - " )\n", - " data[\"colour\"] = data.connection_status.map(status_cmap)\n", - "\n", - " # create figure that is correct aspect ratio, but no larger than 16\" wide or 9\" tall\n", - " min_x, min_y, max_x, max_y = aoi.bounds\n", - " x_span = max_x - min_x\n", - " y_span = max_y - min_y\n", - " aspect_ratio = y_span / x_span\n", - " max_plot_width_in = 16\n", - " max_plot_height_in = 9\n", - "\n", - " if max_plot_width_in * aspect_ratio < max_plot_height_in:\n", - " # tall\n", - " x_in = max_plot_width_in\n", - " y_in = max_plot_width_in * aspect_ratio\n", - "\n", - " else:\n", - " # wide\n", - " x_in = max_plot_height_in / aspect_ratio\n", - " y_in = max_plot_height_in\n", - " \n", - " fig, ax = plt.subplots(figsize=(x_in, y_in))\n", - " \n", - " # plot landmasses and political borders\n", - " borders.plot(ax=ax, facecolor=\"none\", edgecolor=\"grey\", alpha=0.5)\n", - "\n", - " # plot supply_factor\n", - " def population_markersize(x: np.array) -> np.array:\n", - " \"\"\"Target population -> target marker size\"\"\"\n", - " return np.log10(x) ** 4 / 10\n", - " \n", - " ax.scatter(data.geometry.x, data.geometry.y, c=data.colour, alpha=0.3, marker=\"o\", s=population_markersize(data.population))\n", - " \n", - " pop_handles = [\n", - " # N.B. need the sqrt around the markersize for equality between scatter markers and legend markers\n", - " Line2D([], [], color=status_cmap[\"NOMINAL\"], lw=0, marker=\"o\", markersize=np.sqrt(population_markersize(p)), label=f\"$10^{int(np.log10(p)):d}$\")\n", - " for p in np.logspace(4, 7, 7 - 4 + 1)\n", - " ]\n", - " pop_legend = ax.legend(handles=pop_handles, title=\"Node population\", loc=\"lower left\", ncol=len(pop_handles))\n", - " ax.add_artist(pop_legend)\n", - " \n", - " # reverse the cmap order, so it's from oversupply to undersupply\n", - " cmap = dict(reversed(status_cmap.items())).items()\n", - " status_handles = [\n", - " Line2D([0], [0], marker='o', color='w', markerfacecolor=colour, label=status_labels[status], markersize=8)\n", - " for status, colour in cmap if isinstance(status, str)\n", - " ]\n", - " status_legend = ax.legend(handles=status_handles, ncol=1, title=\"Node supply factor, $s$\", loc=\"upper right\")\n", - "\n", - " # plot tracks with colourbar for wind speed intensity\n", - " track_markersize = np.exp(track.category)\n", - " divider = make_axes_locatable(ax)\n", - " cax = divider.append_axes(\"right\", size=\"3%\", pad=0.01)\n", - " ax.plot(track.geometry.x, track.geometry.y, ls=\"--\", color=\"grey\", alpha=1)\n", - " track.plot(column=\"max_wind_speed_ms\", ax=ax, cax=cax, s=track_markersize, alpha=0.4, legend=True)\n", - " cax.set_ylabel(\"Wind speed $[m s^{-1}]$\")\n", - "\n", - " # set window to AOI (track with a buffer)\n", - " ax.set_xlim(min_x, max_x)\n", - " ax.set_ylim(min_y, max_y)\n", - " ax.set_xlabel(\"Longitude [deg]\")\n", - " ax.set_ylabel(\"Latitude [deg]\")\n", - " ax.grid()\n", - "\n", - " name, = set(track.name)\n", - " year, = set(track.year)\n", - " ax.set_title(f\"{event_id}: {name}, {year:d} @ {threshold:.1f} $[m s^{{-1}}]$\")\n", - "\n", - " return fig" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "47d1e395", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/3062914548.py:40: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n", - "/tmp/ipykernel_3187746/944994308.py:25: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", - "\n", - " data.geometry = data.geometry.centroid\n" - ] - } - ], - "source": [ - "def main():\n", - " root_path = \"/home/fred/projects/open_gira/\"\n", - "\n", - " # manually created targets file with country iso codes\n", - " #ย should probably modify target creation rule to include iso code column\n", - " targets_path = os.path.join(root_path, \"archive/2023-03-03T181500+0000/power/targets_with_iso_a3.geoparquet\")\n", - " exposure_path = os.path.join(root_path, \"archive/2023-03-03T181500+0000/power/by_storm_set/IBTrACS/exposure_by_target.nc\")\n", - " tracks_path = os.path.join(root_path, \"open-gira/results/input/IBTrACS/processed/v4.geoparquet\")\n", - " validation_data_path = os.path.join(root_path, \"open-gira/validation/outage_model_validation.csv\")\n", - "\n", - " # read in data\n", - " targets = gpd.read_parquet(targets_path)\n", - " exposure = xr.open_dataset(exposure_path)\n", - " borders = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))\n", - " tracks = gpd.read_parquet(tracks_path)\n", - " validation_data = pd.read_csv(validation_data_path)\n", - "\n", - " # do the plotting\n", - " plot_dir = os.path.join(root_path, \"open-gira/validation/plots/target_status\")\n", - " os.makedirs(plot_dir, exist_ok=True)\n", - "\n", - " events_to_plot = sorted(set(validation_data.event_id) & set(exposure.event_id.values))\n", - "\n", - " # batch the work into chunks\n", - " chunk_size = 8\n", - " for chunk_start in range(0, len(events_to_plot), chunk_size):\n", - "\n", - " args = []\n", - " for event_id in events_to_plot[chunk_start: chunk_start + chunk_size]:\n", - "\n", - " # subset tracks\n", - " track = tracks[tracks.track_id == event_id]\n", - "\n", - " # find all targets within X degrees of track\n", - " track_bbox = box(*track.geometry.total_bounds)\n", - " aoi = track_bbox.buffer(5)\n", - " aoi_targets = targets[targets.within(aoi)]\n", - " \n", - " # shrink AOI to ignore track in the open ocean\n", - " track_target_aoi = box(*aoi_targets.geometry.centroid.total_bounds)\n", - "\n", - " args.append((event_id, plot_dir, exposure.threshold.values, exposure, track_target_aoi, aoi_targets, borders, track))\n", - "\n", - " with multiprocessing.Pool(processes=chunk_size) as pool:\n", - " pool.starmap(plot_outage_maps, args)\n", - " \n", - "main()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/validation/observed_outages/2005236N23285.csv b/validation/observed_outages/2005236N23285.csv deleted file mode 100644 index 85e0386b..00000000 --- a/validation/observed_outages/2005236N23285.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,2700000,,http://www.oe.netl.doe.gov/docs/HurricaneComp0508r2.pdf diff --git a/validation/observed_outages/2005261N21290.csv b/validation/observed_outages/2005261N21290.csv deleted file mode 100644 index 3cc57cf7..00000000 --- a/validation/observed_outages/2005261N21290.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,1500000,,http://www.oe.netl.doe.gov/docs/HurricaneComp0508r2.pdf diff --git a/validation/observed_outages/2005289N18282.csv b/validation/observed_outages/2005289N18282.csv deleted file mode 100644 index 3543b101..00000000 --- a/validation/observed_outages/2005289N18282.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,3500000,,http://www.oe.netl.doe.gov/docs/HurricaneComp0508r2.pdf diff --git a/validation/observed_outages/2008238N13293.csv b/validation/observed_outages/2008238N13293.csv deleted file mode 100644 index 985d35e7..00000000 --- a/validation/observed_outages/2008238N13293.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,1100000,,http://www.oe.netl.doe.gov/docs/HurricaneComp0508r2.pdf diff --git a/validation/observed_outages/2008245N17323.csv b/validation/observed_outages/2008245N17323.csv deleted file mode 100644 index de1bb2e1..00000000 --- a/validation/observed_outages/2008245N17323.csv +++ /dev/null @@ -1,3 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,2900000,,https://hurricane.egr.uh.edu/sites/hurricane.egr.uh.edu/files/files/2009/wei.pdf -USA,3900000,,http://www.oe.netl.doe.gov/docs/HurricaneComp0508r2.pdf diff --git a/validation/observed_outages/2011028S13180.csv b/validation/observed_outages/2011028S13180.csv deleted file mode 100644 index 4517a4dc..00000000 --- a/validation/observed_outages/2011028S13180.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -AUS,170000,,https://web.archive.org/web/20110204093056/http://www.smh.com.au/environment/weather/power-down-for-weeks-after-yasi-20110203-1ae4p.html diff --git a/validation/observed_outages/2011233N15301.csv b/validation/observed_outages/2011233N15301.csv deleted file mode 100644 index 198fd301..00000000 --- a/validation/observed_outages/2011233N15301.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,6690000,,http://www.oe.netl.doe.gov/docs/Northeast%20Storm%20Comparison_FINAL_041513c.pdf diff --git a/validation/observed_outages/2012296N14283.csv b/validation/observed_outages/2012296N14283.csv deleted file mode 100644 index 680ea405..00000000 --- a/validation/observed_outages/2012296N14283.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,8511251,,https://www.oe.netl.doe.gov/docs/2012_SitRep20_Sandy_11072012_1000AM.pdf diff --git a/validation/observed_outages/2013018S14138.csv b/validation/observed_outages/2013018S14138.csv deleted file mode 100644 index 990fde9a..00000000 --- a/validation/observed_outages/2013018S14138.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -AUS,283000,,https://www.couriermail.com.au/news/almost-250000-homes-without-power-as-weather-hits-seq-electricity-grid/news-story/43f96e3940d3f1d05ee09d679bcefb09 diff --git a/validation/observed_outages/2013306N07162.csv b/validation/observed_outages/2013306N07162.csv deleted file mode 100644 index 3a4dede9..00000000 --- a/validation/observed_outages/2013306N07162.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -PHL,,12000000,https://www.ucanews.com/news/power-outages-continue-in-philippines-following-typhoon/71447 diff --git a/validation/observed_outages/2014092S11159.csv b/validation/observed_outages/2014092S11159.csv deleted file mode 100644 index a299bbdf..00000000 --- a/validation/observed_outages/2014092S11159.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -AUS,46000,,https://knowledge.aidr.org.au/resources/cyclone-cyclone-ita-queensland/ diff --git a/validation/observed_outages/2014190N08154.csv b/validation/observed_outages/2014190N08154.csv deleted file mode 100644 index bb3758e1..00000000 --- a/validation/observed_outages/2014190N08154.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -PHL,,25000000,https://www.wsj.com/articles/typhoon-rammasun-death-toll-rises-to-38-in-the-philippines-1405573803 diff --git a/validation/observed_outages/2015293N13266.csv b/validation/observed_outages/2015293N13266.csv deleted file mode 100644 index db8504a1..00000000 --- a/validation/observed_outages/2015293N13266.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -MEX,,250000,https://www.vox.com/2015/10/26/9615274/hurricane-patricia-aftermath diff --git a/validation/observed_outages/2016242N24279.csv b/validation/observed_outages/2016242N24279.csv deleted file mode 100644 index c0d947d9..00000000 --- a/validation/observed_outages/2016242N24279.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,,432000,http://web.archive.org/web/20160911072502/https://abcnews.go.com/US/wireStory/hermine-hits-florida-coast-1st-hurricane-decade-41816713 diff --git a/validation/observed_outages/2016253N13144.csv b/validation/observed_outages/2016253N13144.csv deleted file mode 100644 index 6e4cc06f..00000000 --- a/validation/observed_outages/2016253N13144.csv +++ /dev/null @@ -1,3 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -TWN,1000000,,https://www.upi.com/Top_News/World-News/2016/09/15/Typhoon-Meranti-kills-one-destroys-historic-bridge-thousands-without-power/2171473936356/ -CHN,1650000,,https://www.reuters.com/article/us-asia-storm-china-idUSKCN11L03F diff --git a/validation/observed_outages/2016273N13300.csv b/validation/observed_outages/2016273N13300.csv deleted file mode 100644 index 8fa14377..00000000 --- a/validation/observed_outages/2016273N13300.csv +++ /dev/null @@ -1,3 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,1580000,,https://poweroutage.us/about/majorevents -USA,3080000,,https://www.eia.gov/todayinenergy/detail.php?id=28372 diff --git a/validation/observed_outages/2017228N14314.csv b/validation/observed_outages/2017228N14314.csv deleted file mode 100644 index 2b79be9a..00000000 --- a/validation/observed_outages/2017228N14314.csv +++ /dev/null @@ -1,3 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,309204,,https://poweroutage.us/about/majorevents -USA,2020000,,https://www.nerc.com/pa/rrm/ea/Hurricane_Harvey_EAR_DL/NERC_Hurricane_Harvey_EAR_20180309.pdf diff --git a/validation/observed_outages/2017242N16333.csv b/validation/observed_outages/2017242N16333.csv deleted file mode 100644 index 880db952..00000000 --- a/validation/observed_outages/2017242N16333.csv +++ /dev/null @@ -1,5 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,7654461,,https://poweroutage.us/about/majorevents -PRI,,900000,https://www.marketwatch.com/story/hurricane-maria-thrashes-dominican-republic-after-leaving-puerto-rico-entirely-without-power-2017-09-21 -PRI,,1000000,https://people.com/human-interest/hurricane-irma-1-million-without-power-puerto-rico-kills-10/ -CUB,,3100000,https://reliefweb.int/report/cuba/cuba-hurricane-irma-emergency-appeal-n-mdrcu004-12-month-operations-update diff --git a/validation/observed_outages/2017260N12310.csv b/validation/observed_outages/2017260N12310.csv deleted file mode 100644 index 82662ecb..00000000 --- a/validation/observed_outages/2017260N12310.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -PRI,1500000,,https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218883 diff --git a/validation/observed_outages/2018073S09129.csv b/validation/observed_outages/2018073S09129.csv deleted file mode 100644 index 33037081..00000000 --- a/validation/observed_outages/2018073S09129.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -AUS,28500,,https://utilicom.nt.gov.au/news/2018/no-gsl-payments-relating-to-tropical-cyclone-marcus diff --git a/validation/observed_outages/2018242N13343.csv b/validation/observed_outages/2018242N13343.csv deleted file mode 100644 index fd33b825..00000000 --- a/validation/observed_outages/2018242N13343.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,1400000,,https://poweroutage.us/about/majorevents diff --git a/validation/observed_outages/2018280N18273.csv b/validation/observed_outages/2018280N18273.csv deleted file mode 100644 index ab51b08e..00000000 --- a/validation/observed_outages/2018280N18273.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,3100000,,https://poweroutage.us/about/majorevents diff --git a/validation/observed_outages/2018292N14261.csv b/validation/observed_outages/2018292N14261.csv deleted file mode 100644 index 312d4b65..00000000 --- a/validation/observed_outages/2018292N14261.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -MEX,102000,,https://apnews.com/article/caribbean-ap-top-news-international-news-hurricanes-storms-7d17de60abde4ff1997faf0dfd8c7b61 diff --git a/validation/observed_outages/2020136N10088.csv b/validation/observed_outages/2020136N10088.csv deleted file mode 100644 index 8b4f9712..00000000 --- a/validation/observed_outages/2020136N10088.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -BGD,1040000,,https://www.newindianexpress.com/world/2020/may/21/over-1-million-customers-lose-power-supply-as-cyclone-amphan-hits-bangladesh-coast-three-dead-2145936.html diff --git a/validation/observed_outages/2020211N13306.csv b/validation/observed_outages/2020211N13306.csv deleted file mode 100644 index c1d40997..00000000 --- a/validation/observed_outages/2020211N13306.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,6400000,,https://poweroutage.us/about/majorevents diff --git a/validation/observed_outages/2022255N15324.csv b/validation/observed_outages/2022255N15324.csv deleted file mode 100644 index 8411493d..00000000 --- a/validation/observed_outages/2022255N15324.csv +++ /dev/null @@ -1,3 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -DOM,,709000,https://www.reuters.com/business/environment/hurricane-fiona-slams-dominican-republic-after-leaving-puerto-rico-mostly-2022-09-19/ -PRI,1400000,,https://poweroutage.us/about/majorevents diff --git a/validation/observed_outages/2022263N10313.csv b/validation/observed_outages/2022263N10313.csv deleted file mode 100644 index 0b52ecd3..00000000 --- a/validation/observed_outages/2022263N10313.csv +++ /dev/null @@ -1,2 +0,0 @@ -country_iso_a3,customers_affected,population_affected,source -USA,4450000,,https://poweroutage.us/about/majorevents diff --git a/validation/outage_model_validation.csv b/validation/outage_model_validation.csv deleted file mode 100644 index 59405fee..00000000 --- a/validation/outage_model_validation.csv +++ /dev/null @@ -1,241 +0,0 @@ -threshold,event_id,country_iso_a3,observed,modelled,error,error_abs,ratio,error_norm,signed_ratio -27.5,2005236N23285,USA,6723000.000000001,16738276.346472204,10015276.346472204,10015276.346472204,2.4897034577528188,1.489703457752819,2.4897034577528188 -27.5,2005261N21290,USA,3735000.0000000005,10638440.823405193,6903440.823405193,6903440.823405193,2.848310796092421,1.848310796092421,2.848310796092421 -27.5,2005289N18282,USA,8715000.0,8219135.972202193,-495864.027797807,495864.027797807,0.9431022343318638,-0.0568977656681362,-0.9431022343318638 -27.5,2008238N13293,USA,2739000.0000000005,11187494.52946793,8448494.52946793,8448494.52946793,4.084517900499426,3.084517900499426,4.084517900499426 -27.5,2008245N17323,USA,9711000.0,15058429.419420619,5347429.419420619,5347429.419420619,1.5506569271363009,0.550656927136301,1.5506569271363009 -27.5,2011028S13180,AUS,433499.99999999994,539148.39237877,105648.3923787701,105648.3923787701,1.2437102477018918,0.24371024770189187,1.2437102477018918 -27.5,2011233N15301,USA,16658100.000000002,24519551.659375794,7861451.659375792,7861451.659375792,1.471929671413654,0.4719296714136541,1.471929671413654 -27.5,2012296N14283,USA,21193014.990000002,53569118.72636652,32376103.736366518,32376103.736366518,2.5276780463583544,1.5276780463583541,2.5276780463583544 -27.5,2013306N07162,PHL,12000000.0,24445838.116382968,12445838.116382968,12445838.116382968,2.0371531763652473,1.0371531763652473,2.0371531763652473 -27.5,2014092S11159,AUS,117299.99999999999,5598.7486978273955,-111701.25130217259,111701.25130217259,0.047730167926917276,-0.9522698320730827,-0.047730167926917276 -27.5,2014190N08154,PHL,25000000.0,39211681.16537349,14211681.16537349,14211681.16537349,1.5684672466149396,0.5684672466149395,1.5684672466149396 -27.5,2015293N13266,MEX,250000.0,17635145.603935644,17385145.603935644,17385145.603935644,70.54058241574258,69.54058241574258,70.54058241574258 -27.5,2016242N24279,USA,432000.0,662482.004296598,230482.00429659802,230482.00429659802,1.533523158093977,0.5335231580939769,1.533523158093977 -27.5,2016253N13144,CHN,5577000.0,23312207.682428278,17735207.682428278,17735207.682428278,4.180062342196213,3.1800623421962126,4.180062342196213 -27.5,2016253N13144,TWN,,7657106.705061596,,,,, -27.5,2016273N13300,USA,7669200.000000001,11093232.060128842,3424032.0601288406,3424032.0601288406,1.44646534972733,0.44646534972733015,1.44646534972733 -27.5,2017228N14314,USA,5029800.0,3103418.9677987513,-1926381.0322012487,1926381.0322012487,0.6170064352059229,-0.38299356479407703,-0.6170064352059229 -27.5,2017242N16333,CUB,3100000.0,9700466.681542132,6600466.681542132,6600466.681542132,3.129182800497462,2.129182800497462,3.129182800497462 -27.5,2017242N16333,PRI,1000000.0,2496175.9314255724,1496175.9314255724,1496175.9314255724,2.4961759314255723,1.4961759314255725,2.4961759314255723 -27.5,2017242N16333,USA,19059607.89,16297686.669417074,-2761921.2205829266,2761921.2205829266,0.8550903441181482,-0.14490965588185176,-0.8550903441181482 -27.5,2017260N12310,PRI,4005000.0,2738996.174740714,-1266003.825259286,1266003.825259286,0.683894175965222,-0.31610582403477805,-0.683894175965222 -27.5,2018073S09129,AUS,72675.0,136092.45767007096,63417.45767007096,63417.45767007096,1.8726172366022835,0.8726172366022835,1.8726172366022835 -27.5,2018242N13343,USA,3486000.0000000005,4407187.615016909,921187.6150169089,921187.6150169089,1.2642534753347414,0.26425347533474147,1.2642534753347414 -27.5,2018280N18273,USA,7719000.000000001,2264284.181269018,-5454715.818730983,5454715.818730983,0.2933390570370537,-0.7066609429629462,-0.2933390570370537 -27.5,2018292N14261,MEX,382500.0,7497843.86131061,7115343.86131061,7115343.86131061,19.602206173361072,18.602206173361072,19.602206173361072 -27.5,2020136N10088,BGD,4430400.0,,,,,, -27.5,2020211N13306,USA,15936000.000000002,26220948.53933749,10284948.539337488,10284948.539337488,1.645390847096981,0.6453908470969808,1.645390847096981 -27.5,2022255N15324,DOM,709000.0,2969032.1461389475,2260032.1461389475,2260032.1461389475,4.187633492438572,3.187633492438572,4.187633492438572 -27.5,2022255N15324,PRI,3738000.0,2681582.140653946,-1056417.859346054,1056417.859346054,0.7173842002819545,-0.2826157997180455,-0.7173842002819545 -27.5,2022263N10313,USA,11080500.000000002,14504561.501661018,3424061.5016610157,3424061.5016610157,1.3090168766446473,0.3090168766446474,1.3090168766446473 -30.0,2005236N23285,USA,6723000.000000001,15173168.0410332,8450168.0410332,8450168.0410332,2.2569043642768407,1.2569043642768407,2.2569043642768407 -30.0,2005261N21290,USA,3735000.0000000005,8083711.502779762,4348711.502779761,4348711.502779761,2.1643136553627205,1.1643136553627205,2.1643136553627205 -30.0,2005289N18282,USA,8715000.0,7862811.425544773,-852188.5744552268,852188.5744552268,0.9022158835966464,-0.09778411640335362,-0.9022158835966464 -30.0,2008238N13293,USA,2739000.0000000005,10757949.722221944,8018949.7222219445,8018949.7222219445,3.9276924871200958,2.927692487120096,3.9276924871200958 -30.0,2008245N17323,USA,9711000.0,12843735.274414612,3132735.274414612,3132735.274414612,1.3225965682642995,0.32259656826429944,1.3225965682642995 -30.0,2011028S13180,AUS,433499.99999999994,245709.65907393626,-187790.34092606368,187790.34092606368,0.566804288521191,-0.43319571147880903,-0.566804288521191 -30.0,2011233N15301,USA,16658100.000000002,4497856.551632486,-12160243.448367516,12160243.448367516,0.27001017832961055,-0.7299898216703894,-0.27001017832961055 -30.0,2012296N14283,USA,21193014.990000002,42771051.06684419,21578036.076844186,21578036.076844186,2.0181673578311465,1.0181673578311465,2.0181673578311465 -30.0,2013306N07162,PHL,12000000.0,14199992.715519568,2199992.715519568,2199992.715519568,1.1833327262932973,0.18333272629329733,1.1833327262932973 -30.0,2014092S11159,AUS,117299.99999999999,4598.277764518044,-112701.72223548194,112701.72223548194,0.039201003960085634,-0.9607989960399144,-0.039201003960085634 -30.0,2014190N08154,PHL,25000000.0,37165142.664293684,12165142.664293684,12165142.664293684,1.4866057065717473,0.48660570657174734,1.4866057065717473 -30.0,2015293N13266,MEX,250000.0,15778009.477554902,15528009.477554902,15528009.477554902,63.11203791021961,62.11203791021961,63.11203791021961 -30.0,2016242N24279,USA,432000.0,231589.43803452203,-200410.56196547797,200410.56196547797,0.5360866621169491,-0.46391333788305084,-0.5360866621169491 -30.0,2016253N13144,CHN,5577000.0,19632077.568377458,14055077.568377458,14055077.568377458,3.5201860441774175,2.5201860441774175,3.5201860441774175 -30.0,2016253N13144,TWN,,5598452.604703583,,,,, -30.0,2016273N13300,USA,7669200.000000001,9889402.314706009,2220202.314706008,2220202.314706008,1.2894959467357752,0.2894959467357753,1.2894959467357752 -30.0,2017228N14314,USA,5029800.0,2866480.5701207616,-2163319.4298792384,2163319.4298792384,0.5698995129271067,-0.4301004870728932,-0.5698995129271067 -30.0,2017242N16333,CUB,3100000.0,7366636.291823501,4266636.291823501,4266636.291823501,2.376334287685,1.3763342876850002,2.376334287685 -30.0,2017242N16333,PRI,1000000.0,2409137.145318125,1409137.145318125,1409137.145318125,2.409137145318125,1.409137145318125,2.409137145318125 -30.0,2017242N16333,USA,19059607.89,12292355.659589486,-6767252.230410514,6767252.230410514,0.6449427359961016,-0.35505726400389837,-0.6449427359961016 -30.0,2017260N12310,PRI,4005000.0,2738996.174740714,-1266003.825259286,1266003.825259286,0.683894175965222,-0.31610582403477805,-0.683894175965222 -30.0,2018073S09129,AUS,72675.0,15868.549024061991,-56806.45097593801,56806.45097593801,0.2183494877751908,-0.7816505122248092,-0.2183494877751908 -30.0,2018242N13343,USA,3486000.0000000005,2067919.4758032635,-1418080.524196737,1418080.524196737,0.5932069637989854,-0.4067930362010146,-0.5932069637989854 -30.0,2018280N18273,USA,7719000.000000001,1740046.553489727,-5978953.446510274,5978953.446510274,0.22542383125919507,-0.7745761687408049,-0.22542383125919507 -30.0,2018292N14261,MEX,382500.0,7477977.633250557,7095477.633250557,7095477.633250557,19.55026832222368,18.55026832222368,19.55026832222368 -30.0,2020136N10088,BGD,4430400.0,,,,,, -30.0,2020211N13306,USA,15936000.000000002,2959681.2297627986,-12976318.770237204,12976318.770237204,0.18572296873511535,-0.8142770312648847,-0.18572296873511535 -30.0,2022255N15324,DOM,709000.0,1126030.561495692,417030.561495692,417030.561495692,1.5881954322929366,0.5881954322929366,1.5881954322929366 -30.0,2022255N15324,PRI,3738000.0,1936142.6174803998,-1801857.3825196002,1801857.3825196002,0.5179621769610486,-0.4820378230389514,-0.5179621769610486 -30.0,2022263N10313,USA,11080500.000000002,9370616.974481506,-1709883.0255184956,1709883.0255184956,0.8456853909554176,-0.1543146090445824,-0.8456853909554176 -32.5,2005236N23285,USA,6723000.000000001,13490967.503142651,6767967.50314265,6767967.50314265,2.006688606744407,1.0066886067444072,2.006688606744407 -32.5,2005261N21290,USA,3735000.0000000005,4070328.782727827,335328.7827278264,335328.7827278264,1.089780129244398,0.08978012924439795,1.089780129244398 -32.5,2005289N18282,USA,8715000.0,7700070.182632778,-1014929.8173672222,1014929.8173672222,0.8835421896308409,-0.11645781036915917,-0.8835421896308409 -32.5,2008238N13293,USA,2739000.0000000005,10641418.602684578,7902418.602684578,7902418.602684578,3.885147354028688,2.885147354028688,3.885147354028688 -32.5,2008245N17323,USA,9711000.0,9470136.17427692,-240863.82572307996,240863.82572307996,0.9751968050949357,-0.024803194905064357,-0.9751968050949357 -32.5,2011028S13180,AUS,433499.99999999994,176298.28300145193,-257201.716998548,257201.716998548,0.406685773936452,-0.593314226063548,-0.406685773936452 -32.5,2011233N15301,USA,16658100.000000002,607133.1613090435,-16050966.838690959,16050966.838690959,0.036446723294315884,-0.9635532767056841,-0.036446723294315884 -32.5,2012296N14283,USA,21193014.990000002,33539233.43590925,12346218.445909247,12346218.445909247,1.582560737664502,0.5825607376645019,1.582560737664502 -32.5,2013306N07162,PHL,12000000.0,9278462.261185927,-2721537.7388140727,2721537.7388140727,0.7732051884321606,-0.2267948115678394,-0.7732051884321606 -32.5,2014092S11159,AUS,117299.99999999999,2470.01696522109,-114829.9830347789,114829.9830347789,0.021057263130614578,-0.9789427368693854,-0.021057263130614578 -32.5,2014190N08154,PHL,25000000.0,35244754.55298704,10244754.55298704,10244754.55298704,1.4097901821194816,0.40979018211948154,1.4097901821194816 -32.5,2015293N13266,MEX,250000.0,12448509.112144565,12198509.112144565,12198509.112144565,49.79403644857826,48.79403644857826,49.79403644857826 -32.5,2016242N24279,USA,432000.0,90317.91117598538,-341682.08882401465,341682.08882401465,0.2090692388332995,-0.7909307611667006,-0.2090692388332995 -32.5,2016253N13144,CHN,5577000.0,18775596.971762344,13198596.971762344,13198596.971762344,3.366612331318333,2.366612331318333,3.366612331318333 -32.5,2016253N13144,TWN,,5270655.900658039,,,,, -32.5,2016273N13300,USA,7669200.000000001,7655420.832035843,-13779.167964157648,13779.167964157648,0.9982033109106351,-0.0017966890893649464,-0.9982033109106351 -32.5,2017228N14314,USA,5029800.0,2087086.4279804686,-2942713.5720195314,2942713.5720195314,0.41494421805647713,-0.5850557819435229,-0.41494421805647713 -32.5,2017242N16333,CUB,3100000.0,5926783.37685952,2826783.3768595196,2826783.3768595196,1.9118656054385548,0.9118656054385548,1.9118656054385548 -32.5,2017242N16333,PRI,1000000.0,2156092.381721014,1156092.3817210142,1156092.3817210142,2.156092381721014,1.1560923817210143,2.156092381721014 -32.5,2017242N16333,USA,19059607.89,6808930.949121994,-12250676.940878008,12250676.940878008,0.35724402036069347,-0.6427559796393066,-0.35724402036069347 -32.5,2017260N12310,PRI,4005000.0,2738996.174740714,-1266003.825259286,1266003.825259286,0.683894175965222,-0.31610582403477805,-0.683894175965222 -32.5,2018073S09129,AUS,72675.0,0.0,-72675.0,72675.0,0.0,-1.0,-0.0 -32.5,2018242N13343,USA,3486000.0000000005,1441512.6809031912,-2044487.3190968093,2044487.3190968093,0.41351482527343403,-0.586485174726566,-0.41351482527343403 -32.5,2018280N18273,USA,7719000.000000001,1531375.2023135507,-6187624.79768645,6187624.79768645,0.19839036174550467,-0.8016096382544954,-0.19839036174550467 -32.5,2018292N14261,MEX,382500.0,7470910.307118268,7088410.307118268,7088410.307118268,19.531791652596777,18.531791652596777,19.531791652596777 -32.5,2020136N10088,BGD,4430400.0,,,,,, -32.5,2020211N13306,USA,15936000.000000002,693594.5706402876,-15242405.429359714,15242405.429359714,0.04352375568776905,-0.9564762443122309,-0.04352375568776905 -32.5,2022255N15324,DOM,709000.0,814121.0212068777,105121.02120687766,105121.02120687766,1.1482666025484876,0.14826660254848753,1.1482666025484876 -32.5,2022255N15324,PRI,3738000.0,1917598.2474198127,-1820401.7525801873,1820401.7525801873,0.5130011362813838,-0.48699886371861617,-0.5130011362813838 -32.5,2022263N10313,USA,11080500.000000002,7018805.530141354,-4061694.4698586483,4061694.4698586483,0.6334376183512795,-0.3665623816487205,-0.6334376183512795 -35.0,2005236N23285,USA,6723000.000000001,12137117.565497521,5414117.56549752,5414117.56549752,1.8053127421534314,0.8053127421534314,1.8053127421534314 -35.0,2005261N21290,USA,3735000.0000000005,2905242.6747855498,-829757.3252144507,829757.3252144507,0.7778427509465996,-0.22215724905340042,-0.7778427509465996 -35.0,2005289N18282,USA,8715000.0,7535556.841080281,-1179443.158919719,1179443.158919719,0.8646651567504625,-0.13533484324953746,-0.8646651567504625 -35.0,2008238N13293,USA,2739000.0000000005,10531501.781494558,7792501.781494558,7792501.781494558,3.8450170797716523,2.8450170797716527,3.8450170797716523 -35.0,2008245N17323,USA,9711000.0,8574818.227907304,-1136181.7720926963,1136181.7720926963,0.8830005383490169,-0.11699946165098304,-0.8830005383490169 -35.0,2011028S13180,AUS,433499.99999999994,176079.75851768014,-257420.2414823198,257420.2414823198,0.4061816805482818,-0.5938183194517181,-0.4061816805482818 -35.0,2011233N15301,USA,16658100.000000002,104998.1003208971,-16553101.899679104,16553101.899679104,0.006303125825928352,-0.9936968741740716,-0.006303125825928352 -35.0,2012296N14283,USA,21193014.990000002,27895107.2663323,6702092.276332296,6702092.276332296,1.3162406235967228,0.3162406235967229,1.3162406235967228 -35.0,2013306N07162,PHL,12000000.0,6658443.067997539,-5341556.932002461,5341556.932002461,0.5548702556664616,-0.44512974433353836,-0.5548702556664616 -35.0,2014092S11159,AUS,117299.99999999999,2470.01696522109,-114829.9830347789,114829.9830347789,0.021057263130614578,-0.9789427368693854,-0.021057263130614578 -35.0,2014190N08154,PHL,25000000.0,34026803.70371407,9026803.703714073,9026803.703714073,1.3610721481485628,0.3610721481485629,1.3610721481485628 -35.0,2015293N13266,MEX,250000.0,10423524.184967754,10173524.184967754,10173524.184967754,41.694096739871014,40.694096739871014,41.694096739871014 -35.0,2016242N24279,USA,432000.0,21250.62619056289,-410749.3738094371,410749.3738094371,0.04919126433000669,-0.9508087356699932,-0.04919126433000669 -35.0,2016253N13144,CHN,5577000.0,17795173.289190616,12218173.289190616,12218173.289190616,3.1908146475149035,2.1908146475149035,3.1908146475149035 -35.0,2016253N13144,TWN,,5040160.830749946,,,,, -35.0,2016273N13300,USA,7669200.000000001,4639077.86604785,-3030122.133952151,3030122.133952151,0.6048972338767863,-0.3951027661232137,-0.6048972338767863 -35.0,2017228N14314,USA,5029800.0,2014437.5863623663,-3015362.4136376334,3015362.4136376334,0.40050053408930103,-0.5994994659106989,-0.40050053408930103 -35.0,2017242N16333,CUB,3100000.0,5401242.422230767,2301242.422230767,2301242.422230767,1.7423362652357313,0.7423362652357313,1.7423362652357313 -35.0,2017242N16333,PRI,1000000.0,1858773.5216642637,858773.5216642637,858773.5216642637,1.8587735216642636,0.8587735216642637,1.8587735216642636 -35.0,2017242N16333,USA,19059607.89,2060274.6278040952,-16999333.262195904,16999333.262195904,0.10809638056011944,-0.8919036194398805,-0.10809638056011944 -35.0,2017260N12310,PRI,4005000.0,2738996.174740714,-1266003.825259286,1266003.825259286,0.683894175965222,-0.31610582403477805,-0.683894175965222 -35.0,2018073S09129,AUS,72675.0,0.0,-72675.0,72675.0,0.0,-1.0,-0.0 -35.0,2018242N13343,USA,3486000.0000000005,1012263.5202819047,-2473736.4797180956,2473736.4797180956,0.29037966732125775,-0.7096203326787422,-0.29037966732125775 -35.0,2018280N18273,USA,7719000.000000001,1443049.7349254994,-6275950.265074502,6275950.265074502,0.18694775682413514,-0.8130522431758649,-0.18694775682413514 -35.0,2018292N14261,MEX,382500.0,7468345.523865516,7085845.523865516,7085845.523865516,19.52508633690331,18.52508633690331,19.52508633690331 -35.0,2020136N10088,BGD,4430400.0,,,,,, -35.0,2020211N13306,USA,15936000.000000002,496574.47985970153,-15439425.5201403,15439425.5201403,0.031160547179951148,-0.9688394528200488,-0.031160547179951148 -35.0,2022255N15324,DOM,709000.0,686573.306739327,-22426.693260672968,22426.693260672968,0.9683685567550452,-0.03163144324495482,-0.9683685567550452 -35.0,2022255N15324,PRI,3738000.0,1574174.1752025622,-2163825.8247974375,2163825.8247974375,0.4211273876946394,-0.5788726123053605,-0.4211273876946394 -35.0,2022263N10313,USA,11080500.000000002,4369281.90737151,-6711218.092628492,6711218.092628492,0.39432172802414234,-0.6056782719758577,-0.39432172802414234 -37.5,2005236N23285,USA,6723000.000000001,3776237.5045937006,-2946762.4954063003,2946762.4954063003,0.5616893506758441,-0.43831064932415587,-0.5616893506758441 -37.5,2005261N21290,USA,3735000.0000000005,2473521.7582681105,-1261478.24173189,1261478.24173189,0.6622548214907925,-0.33774517850920743,-0.6622548214907925 -37.5,2005289N18282,USA,8715000.0,7159872.442364581,-1555127.557635419,1555127.557635419,0.8215573657331705,-0.1784426342668295,-0.8215573657331705 -37.5,2008238N13293,USA,2739000.0000000005,10120233.02536939,7381233.025369391,7381233.025369391,3.694864193271044,2.694864193271044,3.694864193271044 -37.5,2008245N17323,USA,9711000.0,7834396.498510906,-1876603.5014890945,1876603.5014890945,0.8067548654629704,-0.1932451345370296,-0.8067548654629704 -37.5,2011028S13180,AUS,433499.99999999994,176020.65356557787,-257479.34643442207,257479.34643442207,0.40604533694481637,-0.5939546630551836,-0.40604533694481637 -37.5,2011233N15301,USA,16658100.000000002,0.0,-16658100.000000002,16658100.000000002,0.0,-1.0,-0.0 -37.5,2012296N14283,USA,21193014.990000002,13241851.160052428,-7951163.829947574,7951163.829947574,0.6248214879431097,-0.37517851205689035,-0.6248214879431097 -37.5,2013306N07162,PHL,12000000.0,3898817.0149919065,-8101182.9850080935,8101182.9850080935,0.3249014179159922,-0.6750985820840077,-0.3249014179159922 -37.5,2014092S11159,AUS,117299.99999999999,2470.01696522109,-114829.9830347789,114829.9830347789,0.021057263130614578,-0.9789427368693854,-0.021057263130614578 -37.5,2014190N08154,PHL,25000000.0,32487614.14530432,7487614.1453043185,7487614.1453043185,1.2995045658121727,0.2995045658121727,1.2995045658121727 -37.5,2015293N13266,MEX,250000.0,365455.4505951073,115455.45059510728,115455.45059510728,1.461821802380429,0.46182180238042914,1.461821802380429 -37.5,2016242N24279,USA,432000.0,96.72714960481972,-431903.2728503952,431903.2728503952,0.00022390543890004564,-0.9997760945611,-0.00022390543890004564 -37.5,2016253N13144,CHN,5577000.0,15104101.195752477,9527101.195752477,9527101.195752477,2.708284238076471,1.7082842380764707,2.708284238076471 -37.5,2016253N13144,TWN,,4748411.452633336,,,,, -37.5,2016273N13300,USA,7669200.000000001,2400482.879127681,-5268717.120872321,5268717.120872321,0.31300303540495494,-0.6869969645950451,-0.31300303540495494 -37.5,2017228N14314,USA,5029800.0,1869977.992679694,-3159822.0073203063,3159822.0073203063,0.37177979098168795,-0.6282202090183121,-0.37177979098168795 -37.5,2017242N16333,CUB,3100000.0,5238476.292591058,2138476.2925910577,2138476.2925910577,1.6898310621261476,0.6898310621261476,1.6898310621261476 -37.5,2017242N16333,PRI,1000000.0,1650363.8732534887,650363.8732534887,650363.8732534887,1.6503638732534887,0.6503638732534887,1.6503638732534887 -37.5,2017242N16333,USA,19059607.89,1242543.899636886,-17817063.990363114,17817063.990363114,0.06519252163045869,-0.9348074783695413,-0.06519252163045869 -37.5,2017260N12310,PRI,4005000.0,2738996.174740714,-1266003.825259286,1266003.825259286,0.683894175965222,-0.31610582403477805,-0.683894175965222 -37.5,2018073S09129,AUS,72675.0,0.0,-72675.0,72675.0,0.0,-1.0,-0.0 -37.5,2018242N13343,USA,3486000.0000000005,816288.1705423492,-2669711.8294576514,2669711.8294576514,0.23416183893928547,-0.7658381610607146,-0.23416183893928547 -37.5,2018280N18273,USA,7719000.000000001,1414744.758148281,-6304255.24185172,6304255.24185172,0.1832808340650707,-0.8167191659349293,-0.1832808340650707 -37.5,2018292N14261,MEX,382500.0,7466301.221661283,7083801.221661283,7083801.221661283,19.51974175597721,18.51974175597721,19.51974175597721 -37.5,2020136N10088,BGD,4430400.0,,,,,, -37.5,2020211N13306,USA,15936000.000000002,354732.0857584462,-15581267.914241556,15581267.914241556,0.022259794538055103,-0.977740205461945,-0.022259794538055103 -37.5,2022255N15324,DOM,709000.0,363990.11382293,-345009.88617707,345009.88617707,0.513385209905402,-0.48661479009459796,-0.513385209905402 -37.5,2022255N15324,PRI,3738000.0,711740.4846016348,-3026259.5153983654,3026259.5153983654,0.1904067642058948,-0.8095932357941052,-0.1904067642058948 -37.5,2022263N10313,USA,11080500.000000002,3773238.895889833,-7307261.104110168,7307261.104110168,0.34052965984295225,-0.6594703401570478,-0.34052965984295225 -40.0,2005236N23285,USA,6723000.000000001,3580838.4014723077,-3142161.598527693,3142161.598527693,0.5326250783091339,-0.4673749216908661,-0.5326250783091339 -40.0,2005261N21290,USA,3735000.0000000005,2358363.687759586,-1376636.3122404143,1376636.3122404143,0.631422674098952,-0.36857732590104797,-0.631422674098952 -40.0,2005289N18282,USA,8715000.0,6597977.948545269,-2117022.0514547313,2117022.0514547313,0.7570829545089236,-0.24291704549107646,-0.7570829545089236 -40.0,2008238N13293,USA,2739000.0000000005,8476682.648530945,5737682.648530945,5737682.648530945,3.094809291175956,2.0948092911759564,3.094809291175956 -40.0,2008245N17323,USA,9711000.0,6642718.15685389,-3068281.84314611,3068281.84314611,0.6840405886987838,-0.31595941130121613,-0.6840405886987838 -40.0,2011028S13180,AUS,433499.99999999994,176020.65356557784,-257479.3464344221,257479.3464344221,0.4060453369448163,-0.5939546630551837,-0.4060453369448163 -40.0,2011233N15301,USA,16658100.000000002,0.0,-16658100.000000002,16658100.000000002,0.0,-1.0,-0.0 -40.0,2012296N14283,USA,21193014.990000002,775705.9554092945,-20417309.034590706,20417309.034590706,0.03660196323058867,-0.9633980367694113,-0.03660196323058867 -40.0,2013306N07162,PHL,12000000.0,3734191.5403453736,-8265808.459654626,8265808.459654626,0.31118262836211447,-0.6888173716378856,-0.31118262836211447 -40.0,2014092S11159,AUS,117299.99999999999,2470.01696522109,-114829.9830347789,114829.9830347789,0.021057263130614578,-0.9789427368693854,-0.021057263130614578 -40.0,2014190N08154,PHL,25000000.0,31184451.357707135,6184451.357707135,6184451.357707135,1.2473780543082855,0.2473780543082854,1.2473780543082855 -40.0,2015293N13266,MEX,250000.0,284638.1228175409,34638.12281754089,34638.12281754089,1.1385524912701637,0.13855249127016356,1.1385524912701637 -40.0,2016242N24279,USA,432000.0,0.0,-432000.0,432000.0,0.0,-1.0,-0.0 -40.0,2016253N13144,CHN,5577000.0,14112962.050470911,8535962.050470911,8535962.050470911,2.530565187461164,1.5305651874611639,2.530565187461164 -40.0,2016253N13144,TWN,,4502136.25692417,,,,, -40.0,2016273N13300,USA,7669200.000000001,1448527.9892006437,-6220672.010799358,6220672.010799358,0.18887602216667235,-0.8111239778333277,-0.18887602216667235 -40.0,2017228N14314,USA,5029800.0,1462703.7422402708,-3567096.2577597294,3567096.2577597294,0.29080753553625804,-0.709192464463742,-0.29080753553625804 -40.0,2017242N16333,CUB,3100000.0,4720651.744226065,1620651.7442260655,1620651.7442260655,1.5227908852342147,0.5227908852342147,1.5227908852342147 -40.0,2017242N16333,PRI,1000000.0,1029261.8675874977,29261.86758749769,29261.86758749769,1.0292618675874976,0.02926186758749769,1.0292618675874976 -40.0,2017242N16333,USA,19059607.89,1113315.6259570185,-17946292.26404298,17946292.26404298,0.05841230482717021,-0.9415876951728297,-0.05841230482717021 -40.0,2017260N12310,PRI,4005000.0,2738996.174740714,-1266003.825259286,1266003.825259286,0.683894175965222,-0.31610582403477805,-0.683894175965222 -40.0,2018073S09129,AUS,72675.0,0.0,-72675.0,72675.0,0.0,-1.0,-0.0 -40.0,2018242N13343,USA,3486000.0000000005,602132.7269951008,-2883867.2730048997,2883867.2730048997,0.1727288373479922,-0.8272711626520078,-0.1727288373479922 -40.0,2018280N18273,USA,7719000.000000001,1362411.3954815057,-6356588.6045184955,6356588.6045184955,0.1765010228632602,-0.8234989771367398,-0.1765010228632602 -40.0,2018292N14261,MEX,382500.0,7416402.129689564,7033902.129689564,7033902.129689564,19.38928661356749,18.38928661356749,19.38928661356749 -40.0,2020136N10088,BGD,4430400.0,,,,,, -40.0,2020211N13306,USA,15936000.000000002,37751.20062952943,-15898248.799370473,15898248.799370473,0.0023689257423148485,-0.9976310742576852,-0.0023689257423148485 -40.0,2022255N15324,DOM,709000.0,11133.450470032636,-697866.5495299674,697866.5495299674,0.01570303310300795,-0.9842969668969921,-0.01570303310300795 -40.0,2022255N15324,PRI,3738000.0,0.0,-3738000.0,3738000.0,0.0,-1.0,-0.0 -40.0,2022263N10313,USA,11080500.000000002,3563280.475646048,-7517219.524353954,7517219.524353954,0.32158119901142074,-0.6784188009885793,-0.32158119901142074 -42.5,2005236N23285,USA,6723000.000000001,1806273.301277318,-4916726.698722683,4916726.698722683,0.26867072754385213,-0.7313292724561479,-0.26867072754385213 -42.5,2005261N21290,USA,3735000.0000000005,2305543.101928947,-1429456.8980710534,1429456.8980710534,0.617280616312971,-0.38271938368702896,-0.617280616312971 -42.5,2005289N18282,USA,8715000.0,6230297.1085617235,-2484702.8914382765,2484702.8914382765,0.7148935293817239,-0.28510647061827615,-0.7148935293817239 -42.5,2008238N13293,USA,2739000.0000000005,2002211.1497639823,-736788.8502360182,736788.8502360182,0.7310007848718445,-0.26899921512815556,-0.7310007848718445 -42.5,2008245N17323,USA,9711000.0,3955551.6671512336,-5755448.332848767,5755448.332848767,0.407326914545488,-0.592673085454512,-0.407326914545488 -42.5,2011028S13180,AUS,433499.99999999994,175810.9790519295,-257689.02094807045,257689.02094807045,0.40556165871264016,-0.5944383412873598,-0.40556165871264016 -42.5,2011233N15301,USA,16658100.000000002,0.0,-16658100.000000002,16658100.000000002,0.0,-1.0,-0.0 -42.5,2012296N14283,USA,21193014.990000002,0.0,-21193014.990000002,21193014.990000002,0.0,-1.0,-0.0 -42.5,2013306N07162,PHL,12000000.0,3472031.9643323077,-8527968.035667691,8527968.035667691,0.2893359970276923,-0.7106640029723076,-0.2893359970276923 -42.5,2014092S11159,AUS,117299.99999999999,0.0,-117299.99999999999,117299.99999999999,0.0,-1.0,-0.0 -42.5,2014190N08154,PHL,25000000.0,27213402.81032541,2213402.81032541,2213402.81032541,1.0885361124130164,0.08853611241301641,1.0885361124130164 -42.5,2015293N13266,MEX,250000.0,227750.70826454015,-22249.291735459847,22249.291735459847,0.9110028330581607,-0.08899716694183939,-0.9110028330581607 -42.5,2016242N24279,USA,432000.0,0.0,-432000.0,432000.0,0.0,-1.0,-0.0 -42.5,2016253N13144,CHN,5577000.0,13311656.0943535,7734656.094353501,7734656.094353501,2.3868847219568767,1.3868847219568765,2.3868847219568767 -42.5,2016253N13144,TWN,,3345084.398655085,,,,, -42.5,2016273N13300,USA,7669200.000000001,984663.5666183126,-6684536.433381688,6684536.433381688,0.12839195308745535,-0.8716080469125446,-0.12839195308745535 -42.5,2017228N14314,USA,5029800.0,1165562.6923321136,-3864237.3076678864,3864237.3076678864,0.23173141920794338,-0.7682685807920566,-0.23173141920794338 -42.5,2017242N16333,CUB,3100000.0,4226281.510958074,1126281.5109580737,1126281.5109580737,1.3633166164380883,0.36331661643808827,1.3633166164380883 -42.5,2017242N16333,PRI,1000000.0,750002.1025876412,-249997.89741235878,249997.89741235878,0.7500021025876412,-0.24999789741235878,-0.7500021025876412 -42.5,2017242N16333,USA,19059607.89,875538.6423818255,-18184069.247618176,18184069.247618176,0.04593686540850581,-0.9540631345914943,-0.04593686540850581 -42.5,2017260N12310,PRI,4005000.0,2738996.174740714,-1266003.825259286,1266003.825259286,0.683894175965222,-0.31610582403477805,-0.683894175965222 -42.5,2018073S09129,AUS,72675.0,0.0,-72675.0,72675.0,0.0,-1.0,-0.0 -42.5,2018242N13343,USA,3486000.0000000005,9470.177931413611,-3476529.822068587,3476529.822068587,0.0027166316498604733,-0.9972833683501395,-0.0027166316498604733 -42.5,2018280N18273,USA,7719000.000000001,1174595.4687537043,-6544404.531246297,6544404.531246297,0.15216938317835266,-0.8478306168216474,-0.15216938317835266 -42.5,2018292N14261,MEX,382500.0,7410418.041960548,7027918.041960548,7027918.041960548,19.373641939766138,18.373641939766138,19.373641939766138 -42.5,2020136N10088,BGD,4430400.0,,,,,, -42.5,2020211N13306,USA,15936000.000000002,0.0,-15936000.000000002,15936000.000000002,0.0,-1.0,-0.0 -42.5,2022255N15324,DOM,709000.0,0.0,-709000.0,709000.0,0.0,-1.0,-0.0 -42.5,2022255N15324,PRI,3738000.0,0.0,-3738000.0,3738000.0,0.0,-1.0,-0.0 -42.5,2022263N10313,USA,11080500.000000002,1989842.0170101067,-9090657.982989896,9090657.982989896,0.17958052587970816,-0.8204194741202919,-0.17958052587970816 -45.0,2005236N23285,USA,6723000.000000001,1762634.7616511239,-4960365.238348877,4960365.238348877,0.2621797949800868,-0.7378202050199132,-0.2621797949800868 -45.0,2005261N21290,USA,3735000.0000000005,2270202.8135429155,-1464797.186457085,1464797.186457085,0.6078186917116238,-0.3921813082883761,-0.6078186917116238 -45.0,2005289N18282,USA,8715000.0,5900987.774419695,-2814012.225580305,2814012.225580305,0.6771070309144802,-0.3228929690855198,-0.6771070309144802 -45.0,2008238N13293,USA,2739000.0000000005,183786.20571273114,-2555213.7942872695,2555213.7942872695,0.06709974651797412,-0.932900253482026,-0.06709974651797412 -45.0,2008245N17323,USA,9711000.0,2446404.804252225,-7264595.195747775,7264595.195747775,0.25192099724562095,-0.7480790027543791,-0.25192099724562095 -45.0,2011028S13180,AUS,433499.99999999994,166016.69033257937,-267483.3096674206,267483.3096674206,0.3829681437891105,-0.6170318562108895,-0.3829681437891105 -45.0,2011233N15301,USA,16658100.000000002,0.0,-16658100.000000002,16658100.000000002,0.0,-1.0,-0.0 -45.0,2012296N14283,USA,21193014.990000002,0.0,-21193014.990000002,21193014.990000002,0.0,-1.0,-0.0 -45.0,2013306N07162,PHL,12000000.0,3377318.8584245397,-8622681.14157546,8622681.14157546,0.281443238202045,-0.7185567617979549,-0.281443238202045 -45.0,2014092S11159,AUS,117299.99999999999,0.0,-117299.99999999999,117299.99999999999,0.0,-1.0,-0.0 -45.0,2014190N08154,PHL,25000000.0,24947841.286639474,-52158.71336052567,52158.71336052567,0.997913651465579,-0.0020863485344210266,-0.997913651465579 -45.0,2015293N13266,MEX,250000.0,141596.45169224692,-108403.54830775308,108403.54830775308,0.5663858067689876,-0.4336141932310123,-0.5663858067689876 -45.0,2016242N24279,USA,432000.0,0.0,-432000.0,432000.0,0.0,-1.0,-0.0 -45.0,2016253N13144,CHN,5577000.0,6737051.976459128,1160051.9764591279,1160051.9764591279,1.2080064508623145,0.20800645086231448,1.2080064508623145 -45.0,2016253N13144,TWN,,2801621.0394942164,,,,, -45.0,2016273N13300,USA,7669200.000000001,425853.1152500508,-7243346.88474995,7243346.88474995,0.055527710224019554,-0.9444722897759804,-0.055527710224019554 -45.0,2017228N14314,USA,5029800.0,1132803.0834181567,-3896996.916581843,3896996.916581843,0.22521831552311358,-0.7747816844768863,-0.22521831552311358 -45.0,2017242N16333,CUB,3100000.0,4161172.011268383,1061172.011268383,1061172.011268383,1.342313552022059,0.342313552022059,1.342313552022059 -45.0,2017242N16333,PRI,1000000.0,66967.06887854419,-933032.9311214559,933032.9311214559,0.06696706887854419,-0.9330329311214558,-0.06696706887854419 -45.0,2017242N16333,USA,19059607.89,474825.6833663062,-18584782.206633694,18584782.206633694,0.02491266798911602,-0.9750873320108839,-0.02491266798911602 -45.0,2017260N12310,PRI,4005000.0,2738996.174740714,-1266003.825259286,1266003.825259286,0.683894175965222,-0.31610582403477805,-0.683894175965222 -45.0,2018073S09129,AUS,72675.0,0.0,-72675.0,72675.0,0.0,-1.0,-0.0 -45.0,2018242N13343,USA,3486000.0000000005,0.0,-3486000.0000000005,3486000.0000000005,0.0,-1.0,-0.0 -45.0,2018280N18273,USA,7719000.000000001,1134417.6847038788,-6584582.315296122,6584582.315296122,0.14696433277676885,-0.8530356672232311,-0.14696433277676885 -45.0,2018292N14261,MEX,382500.0,7409491.45374268,7026991.45374268,7026991.45374268,19.371219486908966,18.371219486908966,19.371219486908966 -45.0,2020136N10088,BGD,4430400.0,,,,,, -45.0,2020211N13306,USA,15936000.000000002,0.0,-15936000.000000002,15936000.000000002,0.0,-1.0,-0.0 -45.0,2022255N15324,DOM,709000.0,0.0,-709000.0,709000.0,0.0,-1.0,-0.0 -45.0,2022255N15324,PRI,3738000.0,0.0,-3738000.0,3738000.0,0.0,-1.0,-0.0 -45.0,2022263N10313,USA,11080500.000000002,1864210.4122445772,-9216289.587755425,9216289.587755425,0.16824244503809185,-0.8317575549619082,-0.16824244503809185 diff --git a/validation/outage_model_validation.ipynb b/validation/outage_model_validation.ipynb deleted file mode 100644 index 3427393a..00000000 --- a/validation/outage_model_validation.ipynb +++ /dev/null @@ -1,1166 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "96c6c070", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'\\nValidation of open-gira power outage model\\nThis notebook compares modelled and observed customer disconnected estimates\\nObserved data are collated media and goverment reports (CSV files in validation/)\\nModelled data are exposure_by_country.nc for the whole IBTrACS storm set\\n'" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"\"\"\n", - "Validation of open-gira power outage model\n", - "This notebook compares modelled and observed customer disconnected estimates\n", - "Observed data are collated media and goverment reports (CSV files in validation/)\n", - "Modelled data are exposure_by_country.nc for the whole IBTrACS storm set\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "9a6b87f8", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_3184390/2742257982.py:4: UserWarning: Shapely 2.0 is installed, but because PyGEOS is also installed, GeoPandas will still use PyGEOS by default for now. To force to use and test Shapely 2.0, you have to set the environment variable USE_PYGEOS=0. You can do this before starting the Python process, or in your code before importing geopandas:\n", - "\n", - "import os\n", - "os.environ['USE_PYGEOS'] = '0'\n", - "import geopandas\n", - "\n", - "In a future release, GeoPandas will switch to using Shapely by default. If you are using PyGEOS directly (calling PyGEOS functions on geometries from GeoPandas), this will then stop working and you are encouraged to migrate from PyGEOS to Shapely 2.0 (https://shapely.readthedocs.io/en/latest/migration_pygeos.html).\n", - " import geopandas as gpd\n" - ] - } - ], - "source": [ - "import os\n", - "from glob import glob\n", - "\n", - "import geopandas as gpd\n", - "import matplotlib\n", - "from matplotlib.lines import Line2D\n", - "import matplotlib.pyplot as plt\n", - "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", - "import numpy as np\n", - "import pandas as pd\n", - "import xarray as xr" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "be058577", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from IPython.display import display, HTML\n", - "display(HTML(\"\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "d69837a2", - "metadata": {}, - "outputs": [], - "source": [ - "# model outputs\n", - "root_path = \"/home/fred/projects/open_gira/\"\n", - "tracks_path = os.path.join(root_path, \"open-gira/results/input/IBTrACS/processed/v4.geoparquet\")\n", - "targets_path = os.path.join(root_path, \"archive/2023-03-03T181500+0000/power/targets_with_iso_a3.geoparquet\")\n", - "exposure_path = os.path.join(root_path, \"archive/2023-03-03T181500+0000/power/by_storm_set/IBTrACS/exposure_by_country.nc\")\n", - "\n", - "# validation data\n", - "# https://www.un.org/development/desa/pd/data/household-size-and-composition\n", - "household_path = os.path.join(root_path, \"open-gira/validation/undesa_pd_2022_hh-size-composition.xlsx\")\n", - "# https://gist.githubusercontent.com/tadast/8827699/raw/f5cac3d42d16b78348610fc4ec301e9234f82821/countries_codes_and_coordinates.csv\n", - "iso_codes = os.path.join(root_path, \"open-gira/validation/iso_codes.csv\")\n", - "# see source column\n", - "outage_paths = glob(os.path.join(root_path, \"open-gira/validation/observed_outages/*.csv\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "c37b9522", - "metadata": {}, - "outputs": [], - "source": [ - "# read iso numeric to alpha table\n", - "rename_dict = {\n", - " \"Country\": \"name\",\n", - " \"Alpha-2 code\": \"iso_a2\",\n", - " \"Alpha-3 code\": \"iso_a3\",\n", - " \"Numeric code\": \"iso_num\"\n", - "}\n", - "iso = pd.read_csv(iso_codes, usecols=rename_dict.keys())\n", - "iso = iso.rename(columns=rename_dict)\n", - "# strip out quotes\n", - "for c in iso.columns:\n", - " iso[c] = iso[c].str.replace('\"', \"\").str.strip()\n", - "iso.iso_num = iso.iso_num.astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "9551117c", - "metadata": {}, - "outputs": [], - "source": [ - "# read household size data\n", - "rename_dict = {\n", - " \"ISO Code\": \"iso_num\",\n", - " \"Reference date (dd/mm/yyyy)\": \"ref_date\",\n", - " \"Average household size (number of members)\": \"mean_household_pop\"\n", - "}\n", - "hh = pd.read_excel(household_path, sheet_name=\"HH size and composition 2022\", header=4, usecols=rename_dict.keys())\n", - "hh = hh.rename(columns=rename_dict)\n", - "hh.ref_date = pd.to_datetime(hh.ref_date, dayfirst=True)\n", - "\n", - "# any non-numeric value -> NaN (some '..' placeholders in excel data)\n", - "hh[\"mean_household_pop\"] = pd.to_numeric(hh[\"mean_household_pop\"], errors=\"coerce\")\n", - "\n", - "# drop any rows without a valid mean household pop\n", - "hh = hh[~hh.mean_household_pop.isna()]\n", - "\n", - "# discard all but most recent entry for each territory\n", - "hh = hh.sort_values([\"ref_date\"], ascending=False).drop_duplicates(\"iso_num\", keep=\"first\")\n", - "\n", - "# merge in iso alpha ids (will permit join with outage data)\n", - "hh = hh.merge(iso, how=\"left\", on=\"iso_num\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "45ae7771", - "metadata": {}, - "outputs": [], - "source": [ - "# now compare population_affected with the exposure_by_country.nc data\n", - "ds = xr.open_dataset(exposure_path).rename({\"country\": \"country_iso_a3\"})\n", - "\n", - "by_threshold = {}\n", - "for threshold in ds.threshold.values:\n", - "\n", - " # storm loop\n", - " obs_data = {os.path.basename(p).split(\".\")[0]: pd.read_csv(p) for p in sorted(outage_paths)}\n", - " by_storm = {}\n", - " for event_id, obs in obs_data.items():\n", - " \n", - " try:\n", - " # select model data for given storm and threshold\n", - " mod = ds.customers_affected.sel(dict(event_id=event_id, threshold=threshold)).to_pandas()\n", - " except KeyError:\n", - " # storm has no modelled results for any threshold\n", - " continue\n", - " \n", - " # create a duplicate dataframe for modelled and derived measures (as well as obs)\n", - " by_storm[event_id] = obs.copy()\n", - " \n", - " # bring in demographic data to obs dataframe\n", - " obs = obs.rename(columns={\"country_iso_a3\": \"iso_a3\"}).merge(hh, how=\"left\", on=\"iso_a3\")\n", - "\n", - " for i in range(len(obs)):\n", - " # gap-fill the population_affected numbers where we have customers_affected only\n", - " if pd.isna(obs.loc[i, \"population_affected\"]):\n", - " by_storm[event_id].loc[i, \"population_affected\"] = \\\n", - " obs.loc[i, \"customers_affected\"] * obs.loc[i, \"mean_household_pop\"]\n", - "\n", - " # take the largest estimate for each country (we assume reports underestimate outages)\n", - " by_storm[event_id] = by_storm[event_id].groupby(\"country_iso_a3\").max()\n", - " by_storm[event_id] = by_storm[event_id][[\"population_affected\"]]\n", - " by_storm[event_id] = by_storm[event_id].rename(columns={\"population_affected\": \"observed\"})\n", - "\n", - " # modelled customers_affected (really population affected, should change this name!)\n", - " mod.name = \"modelled\"\n", - " by_storm[event_id] = by_storm[event_id].join(mod)\n", - " by_storm[event_id][\"error\"] = \\\n", - " by_storm[event_id].modelled - by_storm[event_id].observed\n", - " by_storm[event_id][\"error_abs\"] = \\\n", - " np.abs(by_storm[event_id][\"error\"])\n", - " by_storm[event_id][\"ratio\"] = \\\n", - " by_storm[event_id].modelled / by_storm[event_id].observed\n", - " by_storm[event_id][\"error_norm\"] = \\\n", - " by_storm[event_id].error / by_storm[event_id].observed\n", - " by_storm[event_id][\"signed_ratio\"] = \\\n", - " np.sign(by_storm[event_id].error) * by_storm[event_id].ratio\n", - "\n", - " concat = pd.concat(by_storm)\n", - " concat.index.names = [\"event_id\", \"country_iso_a3\"]\n", - " by_threshold[threshold] = concat\n", - "\n", - "# all data with a 3 level multi-index\n", - "data = pd.concat(by_threshold, names=[\"threshold\", \"event_id\", \"country_iso_a3\"])\n", - "\n", - "# write to disk\n", - "data.to_csv(\"outage_model_validation.csv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "3ae309c5", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
observedmodellederrorerror_absratioerror_normsigned_ratio
event_idcountry_iso_a3
2005236N23285USA6723000.001.349097e+076.767968e+066.767968e+062.0066891.0066892.006689
2005261N21290USA3735000.004.070329e+063.353288e+053.353288e+051.0897800.0897801.089780
2005289N18282USA8715000.007.700070e+06-1.014930e+061.014930e+060.883542-0.116458-0.883542
2008238N13293USA2739000.001.064142e+077.902419e+067.902419e+063.8851472.8851473.885147
2008245N17323USA9711000.009.470136e+06-2.408638e+052.408638e+050.975197-0.024803-0.975197
2011028S13180AUS433500.001.762983e+05-2.572017e+052.572017e+050.406686-0.593314-0.406686
2011233N15301USA16658100.006.071332e+05-1.605097e+071.605097e+070.036447-0.963553-0.036447
2012296N14283USA21193014.993.353923e+071.234622e+071.234622e+071.5825610.5825611.582561
2013306N07162PHL12000000.009.278462e+06-2.721538e+062.721538e+060.773205-0.226795-0.773205
2014092S11159AUS117300.002.470017e+03-1.148300e+051.148300e+050.021057-0.978943-0.021057
2014190N08154PHL25000000.003.524475e+071.024475e+071.024475e+071.4097900.4097901.409790
2015293N13266MEX250000.001.244851e+071.219851e+071.219851e+0749.79403648.79403649.794036
2016242N24279USA432000.009.031791e+04-3.416821e+053.416821e+050.209069-0.790931-0.209069
2016253N13144CHN5577000.001.877560e+071.319860e+071.319860e+073.3666122.3666123.366612
TWNNaN5.270656e+06NaNNaNNaNNaNNaN
2016273N13300USA7669200.007.655421e+06-1.377917e+041.377917e+040.998203-0.001797-0.998203
2017228N14314USA5029800.002.087086e+06-2.942714e+062.942714e+060.414944-0.585056-0.414944
2017242N16333CUB3100000.005.926783e+062.826783e+062.826783e+061.9118660.9118661.911866
PRI1000000.002.156092e+061.156092e+061.156092e+062.1560921.1560922.156092
USA19059607.896.808931e+06-1.225068e+071.225068e+070.357244-0.642756-0.357244
2017260N12310PRI4005000.002.738996e+06-1.266004e+061.266004e+060.683894-0.316106-0.683894
2018073S09129AUS72675.000.000000e+00-7.267500e+047.267500e+040.000000-1.000000-0.000000
2018242N13343USA3486000.001.441513e+06-2.044487e+062.044487e+060.413515-0.586485-0.413515
2018280N18273USA7719000.001.531375e+06-6.187625e+066.187625e+060.198390-0.801610-0.198390
2018292N14261MEX382500.007.470910e+067.088410e+067.088410e+0619.53179218.53179219.531792
2020136N10088BGD4430400.00NaNNaNNaNNaNNaNNaN
2020211N13306USA15936000.006.935946e+05-1.524241e+071.524241e+070.043524-0.956476-0.043524
2022255N15324DOM709000.008.141210e+051.051210e+051.051210e+051.1482670.1482671.148267
PRI3738000.001.917598e+06-1.820402e+061.820402e+060.513001-0.486999-0.513001
2022263N10313USA11080500.007.018806e+06-4.061694e+064.061694e+060.633438-0.366562-0.633438
\n", - "
" - ], - "text/plain": [ - " observed modelled error \\\n", - "event_id country_iso_a3 \n", - "2005236N23285 USA 6723000.00 1.349097e+07 6.767968e+06 \n", - "2005261N21290 USA 3735000.00 4.070329e+06 3.353288e+05 \n", - "2005289N18282 USA 8715000.00 7.700070e+06 -1.014930e+06 \n", - "2008238N13293 USA 2739000.00 1.064142e+07 7.902419e+06 \n", - "2008245N17323 USA 9711000.00 9.470136e+06 -2.408638e+05 \n", - "2011028S13180 AUS 433500.00 1.762983e+05 -2.572017e+05 \n", - "2011233N15301 USA 16658100.00 6.071332e+05 -1.605097e+07 \n", - "2012296N14283 USA 21193014.99 3.353923e+07 1.234622e+07 \n", - "2013306N07162 PHL 12000000.00 9.278462e+06 -2.721538e+06 \n", - "2014092S11159 AUS 117300.00 2.470017e+03 -1.148300e+05 \n", - "2014190N08154 PHL 25000000.00 3.524475e+07 1.024475e+07 \n", - "2015293N13266 MEX 250000.00 1.244851e+07 1.219851e+07 \n", - "2016242N24279 USA 432000.00 9.031791e+04 -3.416821e+05 \n", - "2016253N13144 CHN 5577000.00 1.877560e+07 1.319860e+07 \n", - " TWN NaN 5.270656e+06 NaN \n", - "2016273N13300 USA 7669200.00 7.655421e+06 -1.377917e+04 \n", - "2017228N14314 USA 5029800.00 2.087086e+06 -2.942714e+06 \n", - "2017242N16333 CUB 3100000.00 5.926783e+06 2.826783e+06 \n", - " PRI 1000000.00 2.156092e+06 1.156092e+06 \n", - " USA 19059607.89 6.808931e+06 -1.225068e+07 \n", - "2017260N12310 PRI 4005000.00 2.738996e+06 -1.266004e+06 \n", - "2018073S09129 AUS 72675.00 0.000000e+00 -7.267500e+04 \n", - "2018242N13343 USA 3486000.00 1.441513e+06 -2.044487e+06 \n", - "2018280N18273 USA 7719000.00 1.531375e+06 -6.187625e+06 \n", - "2018292N14261 MEX 382500.00 7.470910e+06 7.088410e+06 \n", - "2020136N10088 BGD 4430400.00 NaN NaN \n", - "2020211N13306 USA 15936000.00 6.935946e+05 -1.524241e+07 \n", - "2022255N15324 DOM 709000.00 8.141210e+05 1.051210e+05 \n", - " PRI 3738000.00 1.917598e+06 -1.820402e+06 \n", - "2022263N10313 USA 11080500.00 7.018806e+06 -4.061694e+06 \n", - "\n", - " error_abs ratio error_norm \\\n", - "event_id country_iso_a3 \n", - "2005236N23285 USA 6.767968e+06 2.006689 1.006689 \n", - "2005261N21290 USA 3.353288e+05 1.089780 0.089780 \n", - "2005289N18282 USA 1.014930e+06 0.883542 -0.116458 \n", - "2008238N13293 USA 7.902419e+06 3.885147 2.885147 \n", - "2008245N17323 USA 2.408638e+05 0.975197 -0.024803 \n", - "2011028S13180 AUS 2.572017e+05 0.406686 -0.593314 \n", - "2011233N15301 USA 1.605097e+07 0.036447 -0.963553 \n", - "2012296N14283 USA 1.234622e+07 1.582561 0.582561 \n", - "2013306N07162 PHL 2.721538e+06 0.773205 -0.226795 \n", - "2014092S11159 AUS 1.148300e+05 0.021057 -0.978943 \n", - "2014190N08154 PHL 1.024475e+07 1.409790 0.409790 \n", - "2015293N13266 MEX 1.219851e+07 49.794036 48.794036 \n", - "2016242N24279 USA 3.416821e+05 0.209069 -0.790931 \n", - "2016253N13144 CHN 1.319860e+07 3.366612 2.366612 \n", - " TWN NaN NaN NaN \n", - "2016273N13300 USA 1.377917e+04 0.998203 -0.001797 \n", - "2017228N14314 USA 2.942714e+06 0.414944 -0.585056 \n", - "2017242N16333 CUB 2.826783e+06 1.911866 0.911866 \n", - " PRI 1.156092e+06 2.156092 1.156092 \n", - " USA 1.225068e+07 0.357244 -0.642756 \n", - "2017260N12310 PRI 1.266004e+06 0.683894 -0.316106 \n", - "2018073S09129 AUS 7.267500e+04 0.000000 -1.000000 \n", - "2018242N13343 USA 2.044487e+06 0.413515 -0.586485 \n", - "2018280N18273 USA 6.187625e+06 0.198390 -0.801610 \n", - "2018292N14261 MEX 7.088410e+06 19.531792 18.531792 \n", - "2020136N10088 BGD NaN NaN NaN \n", - "2020211N13306 USA 1.524241e+07 0.043524 -0.956476 \n", - "2022255N15324 DOM 1.051210e+05 1.148267 0.148267 \n", - " PRI 1.820402e+06 0.513001 -0.486999 \n", - "2022263N10313 USA 4.061694e+06 0.633438 -0.366562 \n", - "\n", - " signed_ratio \n", - "event_id country_iso_a3 \n", - "2005236N23285 USA 2.006689 \n", - "2005261N21290 USA 1.089780 \n", - "2005289N18282 USA -0.883542 \n", - "2008238N13293 USA 3.885147 \n", - "2008245N17323 USA -0.975197 \n", - "2011028S13180 AUS -0.406686 \n", - "2011233N15301 USA -0.036447 \n", - "2012296N14283 USA 1.582561 \n", - "2013306N07162 PHL -0.773205 \n", - "2014092S11159 AUS -0.021057 \n", - "2014190N08154 PHL 1.409790 \n", - "2015293N13266 MEX 49.794036 \n", - "2016242N24279 USA -0.209069 \n", - "2016253N13144 CHN 3.366612 \n", - " TWN NaN \n", - "2016273N13300 USA -0.998203 \n", - "2017228N14314 USA -0.414944 \n", - "2017242N16333 CUB 1.911866 \n", - " PRI 2.156092 \n", - " USA -0.357244 \n", - "2017260N12310 PRI -0.683894 \n", - "2018073S09129 AUS -0.000000 \n", - "2018242N13343 USA -0.413515 \n", - "2018280N18273 USA -0.198390 \n", - "2018292N14261 MEX 19.531792 \n", - "2020136N10088 BGD NaN \n", - "2020211N13306 USA -0.043524 \n", - "2022255N15324 DOM 1.148267 \n", - " PRI -0.513001 \n", - "2022263N10313 USA -0.633438 " - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# example data for a given threshold\n", - "data.loc[32.5, :, :]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "fd567148", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVQAAAJPCAYAAACTsl/yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gkV3nv/63OOc90T+zJcWc2SyvJKCAJEY0Bk2Ss4Cuwr4x5gOcag0BIMiCuhC8W1xZwuRhENr42YIwNQtIKIaGweSfnme7p6emcc3fV+f2xvzpMT9qe3ZmdsOfzPP10T0111anq7qpzvud9vy9HCCFgMBgMBoPBYDAYDAaDwWAwGAzGRZFsdwMYDAaDwWAwGAwGg8FgMBgMBmO3wARVBoPBYDAYDAaDwWAwGAwGg8GoECaoMhgMBoPBYDAYDAaDwWAwGAxGhTBBlcFgMBgMBoPBYDAYDAaDwWAwKoQJqgwGg8FgMBgMBoPBYDAYDAaDUSFMUGUwGAwGg8FgMBgMBoPBYDAYjAphgiqDwWAwGAwGg8FgMBgMBoPBYFQIE1QZDAaDwWAwGAwGg8FgMBgMBqNCmKDKYDAYDAaDwWAwGAwGg8FgMBgVwgRVBoPBYDAqgOO4ih6/+c1vtrwtDz/8MDiOQygU2vJ9XYx/+Id/QFtbGxQKBTiOQywWu+Rt/fCHP8QTTzyxaW3bzTz11FPgOA5zc3N02VrnZ25uDhzH4e/+7u+2tE2/+c1vwHEc/vVf/3VL97MTueeee9DU1HTF9+v1evHwww/j3LlzV3zfm8Vq3+VK+a//+i88/PDDm94mBoPBYDAYjMuFCaoMBoPBYFTAK6+8UvZ485vfDLVavWL5oUOHtrupV4xz587hIx/5CG655RYcP34cr7zyCvR6/SVvjwmqv+ctb3kLXnnlFdTU1NBl7PxcfXi9XjzyyCO7WlC9HP7rv/4LjzzyyHY3g8FgMBgMBmMFsu1uAIPBYDAYu4Fjx46V/V1VVQWJRLJi+XIymQw0Gs1WNm3bGB4eBgB88IMfxDXXXLPNrVkdQghyuRzUavV2N2VDVFVVoaqqarubsWPZy78rBoPBYDAYDMbOh0WoMhgMBoOxSdx8883Yt28ffvvb3+L666+HRqPBn/3ZnwEAfvzjH+MNb3gDampqoFar0d3djU9+8pNIp9MrtvPaa6/hbW97G6xWK1QqFVpbW/HRj3503X2PjY2hpaUF1157LQKBAADg7NmzeOtb34rq6moolUrU1tbiLW95Czwez0WP5Vvf+hb2798PlUoFi8WCd7zjHRgdHS071g984AMAgGuvvRYcx+Gee+5Zc3vBYBAf+tCH0NDQAKVSiaqqKtxwww149tln6fb+8z//Ey6Xq8xCQSQSieD+++9HXV0dFAoFWlpa8OlPfxr5fL5sPxzH4cMf/jC+/vWvo7u7G0qlEt/5zndo2vHx48fxwQ9+EFarFQaDAXfddRfS6TR8Ph/e8573wGQyoaamBv/jf/wPFIvFsm1/7Wtfw/79+6HT6aDX69HV1YUHHnhg3fN49OhRvOUtbylb1tfXB47jcPLkSbrsJz/5CTiOw+DgIICVadIXOz8iX/7yl9Hc3AydTofrrrsOr7766rrtExkaGsLb3/52mM1mqFQqHDhwAN/5zndWXTeXy+HjH/84HA4H1Go1brrpJpw9e7ZsnZmZGbzvfe9DbW0tlEol7HY7br311hWRlj/+8Y9x3XXXQavVQqfT4Y477lixrXvuuQc6nQ6Dg4N4wxveAL1ej1tvvRUf/ehHodVqkUgkVrTxve99L+x2e9lnWMm+gAvnvrOzE0qlEt3d3fjud79b0TkEAEEQ8Pjjj6OrqwtKpRLV1dW46667VvzmmpqaVv293Hzzzbj55psBXLBYOHr0KADg3nvvpZ+5mAJ/6tQpvO9970NTUxPUajWamprw/ve/Hy6Xa8V2X3rpJVx33XVQqVSoq6vDgw8+iG9+85urpuJXep5W49VXX8UNN9wAlUqF2tpafOpTn1rxOxL3cbHr4T333IMnn3wSQLnlitjeJ598EjfeeCOqq6uh1WrR19eHxx9/fNX9MRgMBoPBYGw2LEKVwWAwGIxNZHFxER/4wAfwiU98Ao8++igkkgtzl5OTk3jzm99MRaCxsTE89thjOHHiBI4fP07f//TTT+Ntb3sburu78eUvfxmNjY2Ym5vDr3/96zX3+cILL+Ad73gHbrzxRvzwhz+ERqNBOp3G7bffjubmZjz55JOw2+3w+Xx4/vnnkUwm1z2GL37xi3jggQfw/ve/H1/84hcRDofx8MMP47rrrsPJkyfR3t6Or371q/jRj36Ez3/+8/j2t7+Nrq6udSMq//RP/xRnzpzBF77wBXR0dCAWi+HMmTMIh8MAgK9+9av40Ic+hOnpafz0pz8te28ul8Mtt9yC6elpPPLII+jv78eLL76IL37xizh37hz+8z//s2z9n/3sZ3jxxRfx2c9+Fg6HA9XV1VS8vO+++/DOd74T//zP/4yzZ8/igQceQKlUwvj4ON75znfiQx/6EJ599lk89thjqK2txcc//nEAwD//8z/j/vvvx1/91V/h7/7u7yCRSDA1NYWRkZF1z+Vtt92Gf/zHf0SxWIRcLoff78fQ0BDUajWeeeYZKpg9++yzsNvt6OvrW3U7650fkSeffBJdXV3UFuDBBx/Em9/8ZszOzsJoNK7ZxvHxcVx//fWorq7G//7f/xtWqxXf//73cc8998Dv9+MTn/hE2foPPPAADh06hG9+85uIx+N4+OGHcfPNN+Ps2bNoaWkBALz5zW8Gz/N4/PHH0djYiFAohJdffrnMY/fRRx/FZz7zGdx77734zGc+g0KhgC996Ut43etehxMnTqCnp4euWygU8Id/+If48z//c3zyk59EqVSCw+HAV77yFfzLv/wL7rvvPrpuLBbDv//7v+Mv//IvIZfLN7Svp556Cvfeey/e/va343/9r/9Fjy+fz9Pf8nr89//+3/GNb3wDH/7wh/HWt74Vc3NzePDBB/Gb3/wGZ86cgc1mu+g2RA4dOoRvf/vbtM2iMF9fXw/ggnduZ2cn3ve+98FisWBxcRFf+9rXcPToUYyMjNB9DQwM4Pbbb0dHRwe+853vQKPR4Otf/zq+//3vr9jnRj6T5YyMjODWW29FU1MTnnrqKWg0Gnz1q1/FD3/4wxXrVnI9fPDBB5FOp/Gv//qveOWVV+h7RRuM6elp3HnnnWhuboZCocD58+fxhS98AWNjY/jWt75V8XlmMBgMBoPBuCQIg8FgMBiMDXP33XcTrVZbtuymm24iAMhzzz237nsFQSDFYpG88MILBAA5f/48/V9raytpbW0l2Wx2zfc/9NBDBAAJBoPke9/7HlEoFOQjH/kI4XmernPq1CkCgPzsZz/b0HFFo1GiVqvJm9/85rLlbrebKJVKcuedd9Jl3/72twkAcvLkyYtuV6fTkY9+9KPrrvOWt7yFOJ3OFcu//vWvEwDkX/7lX8qWP/bYYwQA+fWvf02XASBGo5FEIpGydcW2/tVf/VXZ8j/6oz8iAMiXv/zlsuUHDhwghw4don9/+MMfJiaTad32r8azzz5LAJDf/va3hBBCvv/97xO9Xk/uv/9+csstt9D12tvbVz23s7OzdNla52d2dpYAIH19faRUKtHlJ06cIADIj370o3Xb+L73vY8olUridrvLlr/pTW8iGo2GxGIxQgghzz//PAFADh06RARBoOvNzc0RuVxO7rvvPkIIIaFQiAAgTzzxxJr7dLvdRCaTrfg8kskkcTgc5D3veQ9ddvfddxMA5Fvf+taK7Rw6dIhcf/31Zcu++tWvEgBkcHBwQ/vieZ7U1taueXyrnfuljI6OEgDk/vvvL1v+2muvEQDkgQceoMucTie5++67V2zjpptuIjfddBP9++TJkwQA+fa3v73uvgkhpFQqkVQqRbRaLfnKV75Cl7/73e8mWq2WBINBuoznedLT01P2HdvIZ7Ia733ve4larSY+n6+sTV1dXSu+y0tZ73r4l3/5l6SS4QrP86RYLJLvfve7RCqVrvj9MxgMBoPBYGw2LOWfwWAwGIxNxGw24/Wvf/2K5TMzM7jzzjvhcDgglUohl8tx0003AQBNpZ+YmMD09DT+23/7b1CpVBfd1xe+8AXcc889+J//83/iK1/5SlkEXVtbG8xmM/7mb/4GX//61y8aSSnyyiuvIJvNrkhHbmhowOtf/3o899xzFW1nOddccw2eeuopfP7zn8err766obTc48ePQ6vV4o//+I/LlottXN6m17/+9TCbzatu661vfWvZ393d3QCwIi2/u7u7LHX6mmuuQSwWw/vf/378+7//O0KhUEVtF9OfRWuDZ555BjfffDPe+MY34uWXX0Ymk8H8/DwmJydx2223VbTNtXjLW94CqVRK/+7v7weAVVPAl3L8+HHceuutaGhoKFt+zz33IJPJlEUHAsCdd95ZZjfgdDpx/fXX4/nnnwcAWCwWtLa24ktf+hK+/OUv4+zZsxAEoWwbTz/9NEqlEu666y6USiX6UKlUuOmmm/Cb3/xmRTvf9a53rVh277334uWXX8b4+Dhd9u1vfxtHjx7Fvn37NrSv8fFxeL3eNY/vYojHv/y3c80116C7u/uSfztrkUql8Dd/8zdoa2uDTCaDTCaDTqdDOp0us+d44YUX8PrXv74sOlYikeA973lP2fYu5TNZyvPPP49bb70VdrudLpNKpXjve9+7Yt1KrocX4+zZs/jDP/xDWK1Wuo277roLPM9jYmKiom0wGAwGg8FgXCpMUGUwGAwGYxNZWpVdJJVK4XWvex1ee+01fP7zn8dvfvMbnDx5Ej/5yU8AANlsFsAFn1Hg9ym9F+P73/8+6urq8L73vW/F/4xGI1544QUcOHAADzzwAHp7e1FbW4uHHnpoXTFTTMFf7Thqa2vp/zfKj3/8Y9x999345je/ieuuuw4WiwV33XUXfD7fRd8bDofhcDhWeIZWV1dDJpOtaNNqbRexWCxlfysUijWX53I5+vef/umf4lvf+hZcLhfe9a53obq6Gtdeey2eeeaZdduuUqnKvGKfe+453H777bj55pvB8zxefPFFuo3LFVStVmvZ30qlEsDvv19rEQ6H1/y8xf8vxeFwrFjX4XDQ9TiOw3PPPYc77rgDjz/+OA4dOoSqqip85CMfoXYTfr8fwAWPWblcXvb48Y9/vEKw1mg0MBgMK/b7J3/yJ1AqlXjqqacAXEg7P3nyJO699166TqX7Etu/1vFdjK367azFnXfeiX/8x3/Efffdh6effhonTpzAyZMnUVVVVfaZh8PhMpFTZPmyjX4myxF/p8tZvqzS6+F6uN1uvO51r8PCwgK+8pWv4MUXX8TJkyep52ol22AwGAwGg8G4HJiHKoPBYDAYm8hqhYKOHz8Or9eL3/zmNzQKC0CZnyQA6kFaSdEoAPjVr36F9773vXjd616H5557Dk6ns+z/fX19+Od//mcQQjAwMICnnnoKf/u3fwu1Wo1PfvKTq25TFOUWFxdX/M/r9W7IA3IpNpsNTzzxBJ544gm43W78/Oc/xyc/+UkEAgH86le/Wve9VqsVr732GgghZec3EAigVCqtaNNqn8FmcO+99+Lee+9FOp3Gb3/7Wzz00EN461vfiomJiRXnfim33norPvvZz+LEiRPweDy4/fbbodfrcfToUTzzzDPwer3o6OhYESF6pbBarWt+3gBWnN/VRHCfz1cm6DqdTvzTP/0TgAuR1//yL/+Chx9+GIVCAV//+tfpNv/1X/913XMnstZnajab8fa3vx3f/e53qZ+vSqXC+9//frpOpfsS27/W8V2Mpb+d5ZMiy387KpVqRUE1AAiFQhX9xuLxOH7xi1/goYceKvst5/N5RCKRFe0SxdKlLD+mjX4my7FarRWdu0qvh+vxs5/9DOl0Gj/5yU/K2rq86BmDwWAwGAzGVsEiVBkMBoPB2GJEMUiMGBT5P//n/5T93dHRgdbWVnzrW99aVWxZjtPpxIsvvgilUonXve51mJycXHP/+/fvx9///d/DZDLhzJkza27zuuuug1qtXlGwxuPx0NTwy6WxsREf/vCHcfvtt5e1RalUrhpZduuttyKVSuFnP/tZ2XKx+vpmtGkjaLVavOlNb8KnP/1pFAoFDA8Pr7v+bbfdhlKphAcffBD19fXo6uqiy5999lkcP368oujUtc7P5XLrrbdSkWsp3/3ud6HRaHDs2LGy5T/60Y9ACKF/u1wuvPzyy7Q6/XI6Ojrwmc98Bn19ffTzvuOOOyCTyTA9PY0jR46s+qiUe++9F16vF//1X/+F73//+3jHO94Bk8lE/1/pvjo7O1FTU7Pm8V0M0epj+W/n5MmTGB0dLfueNjU1YWBgoGy9iYmJMusCYO0oY47jQAhZcU355je/CZ7ny5bddNNNOH78eFmEqSAI+H//7/+VrXe5n8ktt9yC5557rky85XkeP/7xj1e0femxiSy/Hl7s+JdvgxCC//t//++6bWQwGAwGg8HYLFiEKoPBYDAYW8z1118Ps9mMv/iLv8BDDz0EuVyOH/zgBzh//vyKdZ988km87W1vw7Fjx/Cxj30MjY2NcLvdePrpp/GDH/xgxfo1NTV44YUXcMcdd+DGG2/EM888g3379uEXv/gFvvrVr+KP/uiP0NLSAkIIfvKTnyAWi+H2229fs60mkwkPPvggHnjgAdx11114//vfj3A4jEceeQQqlQoPPfTQho8/Ho/jlltuwZ133omuri7o9XqcPHkSv/rVr/DOd76TrtfX14ef/OQn+NrXvobDhw9DIpHgyJEjuOuuu/Dkk0/i7rvvxtzcHPr6+vDSSy/h0UcfxZvf/ObLTpWvhA9+8INQq9W44YYbUFNTA5/Phy9+8YswGo04evTouu89fPgwzGYzfv3rX5elot9222343Oc+R19fjLXOz+Xy0EMP4Re/+AVuueUWfPazn4XFYsEPfvAD/Od//icef/xxGI3GsvUDgQDe8Y534IMf/CDi8TgeeughqFQqfOpTnwJwoar8hz/8Ybz73e9Ge3s7FAoFjh8/joGBARpN2dTUhL/927/Fpz/9aczMzOCNb3wjzGYz/H4/Tpw4Aa1Wi0ceeaSi9r/hDW9AfX097r//fvh8vrJzvJF9SSQSfO5zn8N9991Hjy8Wi+Hhhx+uKOW/s7MTH/rQh/AP//APkEgkeNOb3oS5uTk8+OCDaGhowMc+9jG67p/+6Z/iAx/4AO6//368613vgsvlwuOPP06j1EVaW1uhVqvxgx/8AN3d3dDpdKitrUVtbS1uvPFGfOlLX4LNZkNTUxNeeOEF/NM//VOZmAwAn/70p/Ef//EfuPXWW/HpT38aarUaX//615FOpwGAei9f7mfymc98Bj//+c/x+te/Hp/97Geh0Wjw5JNP0v2IbOR62NfXBwB47LHH8KY3vQlSqRT9/f24/fbboVAo8P73vx+f+MQnkMvl8LWvfQ3RaPSinxODwWAwGAzGprCNBbEYDAaDwdi13H333USr1ZYtu+mmm0hvb++q67/88svkuuuuIxqNhlRVVZH77ruPnDlzZtUK3q+88gp505veRIxGI1EqlaS1tZV87GMfo/9/6KGHCICyqt2xWIzccMMNxGKxkJMnT5KxsTHy/ve/n7S2thK1Wk2MRiO55ppryFNPPVXR8X3zm98k/f39RKFQEKPRSN7+9reT4eHhsnXESvQnT55cd1u5XI78xV/8Benv7ycGg4Go1WrS2dlJHnroIZJOp+l6kUiE/PEf/zExmUyE47iy6t7hcJj8xV/8BampqSEymYw4nU7yqU99iuRyubJ9ASB/+Zd/uaINa7V1tXNJyMrP9zvf+Q655ZZbiN1uJwqFgtTW1pL3vOc9ZGBgYN1jF3nHO95BAJAf/OAHdFmhUCBarZZIJBISjUZXbe/SyuhrnZ/Z2VkCgHzpS19asV8A5KGHHrpo+wYHB8nb3vY2YjQaiUKhIPv371/xvXz++ecJAPK9732PfOQjHyFVVVVEqVSS173udeTUqVN0Pb/fT+655x7S1dVFtFot0el0pL+/n/z93/89KZVKZdv82c9+Rm655RZiMBiIUqkkTqeT/PEf/zF59tln6Tqr/daW88ADDxAApKGhgfA8v+o6leyLkAvf/fb2dqJQKEhHRwf51re+Re6++27idDoveh55niePPfYY6ejoIHK5nNhsNvKBD3yAzM/Pl60nCAJ5/PHHSUtLC1GpVOTIkSPk+PHj5KabbiI33XRT2bo/+tGPSFdXF5HL5WWfp8fjIe9617uI2Wwmer2evPGNbyRDQ0PE6XSSu+++u2wbL774Irn22muJUqkkDoeD/PVf/zV57LHHCAASi8Uu6Tytxu9+9zty7Nixsv184xvfWPFdrvR6mM/nyX333Ueqqqrod17czn/8x3+Q/fv3E5VKRerq6shf//Vfk1/+8pcEAHn++ecv2lYGg8FgMBiMy4EjZElOE4PBYDAYDAaDwdjzvOENb8Dc3BwmJia2uykMBoPBYDAYuw6W8s9gMBgMBoPBYOxhPv7xj+PgwYNoaGhAJBLBD37wAzzzzDO0cBiDwWAwGAwGY2MwQZXBYDAYDAaDwdjD8DyPz372s/D5fOA4Dj09Pfje976HD3zgA9vdNAaDwWAwGIxdCUv5ZzAYDAaDwWAwGAwGg8FgMBiMCpFsdwMYDAaDwWAwGAwGg8FgMBgMBmO3wARVBoPBYDAYDAaDwWAwGAwGg8GoECaoMhgMBoPBYDAYDAaDwWAwGAxGhbCiVMsQBAFerxd6vR4cx213cxgMBoPBYDAYDAaDwWAwGJsAIQTJZBK1tbWQSDY/xjCXy6FQKGz6dnciCoUCKpVqu5uxbTBBdRlerxcNDQ3b3QwGg8FgMBgMBoPBYDAYDMYWMD8/j/r6+k3dZi6XQ7NTB1+A39Tt7lQcDgdmZ2evWlGVCarL0Ov1AC78uAwGwyVvhxCCUCiEQqEAnufB8zwEQaCvlz6WLpfL5VAoFNBoNFCpVNBoNFAqlZBIJOA4DhzH0ddLl11KNG2pVMJrr70GjuPKfgCEEAiCgFwuR5eJbdFqtdBqtdBoNFCr1Vsyo3OlKZVKSCQSSCaTyOVy9LMolUrg+QsXwqamJthsthXv5XkeuVwO+Xwe+XyevhafV5uZkslkkMvlkEqlkEgkIIQAwIpnQRDod6NUKm3omDiOo9sBfj9zpNPpYLfbodPpNrQ9xurwPI9wOIypqSmoVCrs27cPCoViu5vF2GYKhQJKpRL9/QqCgEKhgNnZWRSLRVRXV6OtrQ1SqXS7m8pgMHYx2WwWfr8fwWAQuVwOarUaR44cWfc9mUwGi4uLCIfDyOfzkMlkMJvNsFqtMJvNkMnY0GA7iEQiGB4ehlKpRHd3Nx2PMC4fQgji8Tj8fj9CoRAEQYBUKoVOp4Ner4fBYIBer2f9tx0AIQSpVAqhUAjxeBxKpRIqlQpqtZqOReVyeUXj3qXjIELIhsfLhBA6lhPHhOKYrFQqQavVwmKxsL7cLiWRSKChoWFLrrWFQgG+AA/X6SYY9LtfK1mPRFKA8/AcCoUCE1QZFxAvtAaD4bIE1UKhAI/HQy/gSqUSUqkUUqmUimnLHxzHUYEum80iEokgGAxW3G6dTgebzQar1QqtVlvRTePAgQOIx+Nlwqz4WCqg7vWbhcVioa+LxSKi0SgikQgVxEXBdfk5ksvlUKlU0Gq1sFqtUKlUkMvldFuiMF0sFlc8RMFF/JxWe5bJZJBKpRd9JoSgUCigUCggn8+jWCxCLpdDrVZDrVazAdIWYjab4XA4MDAwgKmpKfT390Oj0Wx3sxjbRCaTwZkzZ1b9n0KhgEKhQCaTgVQqvax7DIPBuDoplUoIBALw+/2Ix+OQSqWor6+Hw+GAwWBYs+9HCIHH48Hs7CxkMhmcTidsNhuMRuOemBzf7ajVaiSTSYTDYcRiMVRVVTGBb5OYnJzEwsICAECj0cBsNsNsNtMxjkKhWPG7ESdDl/bpGVcGo9GIurq67W4G4yphKy0edXoOOv3etpAUsLePrxI4snT6hoFEIgGj0Yh4PH7Zg91UKoWJiQkkEgnU1taipaVlQ8IWIQTFYhG5XI5GjRJCyl6LzzzPIx6PIxKJgOd5qFQqOBwO1NTUQKlUXtZx7GQEQUA4HEYoFIJSqYROp6MRtGKUpiheis+EEFgslhUDiHQ6jYmJCcTjcQCgUbgymYye9+WPQqFAo1pFZDIZVCoVHeBUCs/zVBAVZ0QlEknFnQqe55HJZFAqlWAymcpuEDzPI51O06hjUYhd/hCjnhkbJ5fLYWBgAMViEX19fUwsu0oRsxN8Ph8ikQgIIVCr1ejq6oJGo4FEImG/MwaDsWESiQQ8Hg+NsLNYLLDb7bDZbBed9M5kMhgbG0MikUB9fT2am5v3/ET5lYDn+bIMJTE7qVgsrhqosDS7TOy7i9Fu4kPsp+l0uotGGzMqI5FI0IjspVlkgiAAAORyORVXBUFAMplEOp0GAOzfvx8mk6lse2LWidhn5ziO9qOX9683+14vCAISiQTNdpPL5VfdhEgul0MikUA2my0LVFEoFFQsZ5MRjIuxmZrPWtsOTzRfFRGq1o7ZLTmPuwUWtraF6HQ6HDx4ELOzs3C73SgWi+jt7a34/RzH0YimSqivr4cgCIjFYggEAnC73Zibm4PVakV9fT3MZvOlHsplUSqV4PF4kEqlkMvlaCq7IAiQSCQwmUywWq0bSpvI5/NYXFyE1+tFoVCAVqtFLBaD2+0GACparJUqb7fb0dXVRTs64XAYIyMjUKlU6OzshNlsrjhsnRCCUqmEbDaL+fl5BINBZDKZNTtRhUIBfr8f6XS6TEBdra1qtRq1tbVl2yqVSshkMkin02XPSy0aDAYDOjo6aGr/+fPnkUgkKjoelUoFm81GI1eY8FMZKpUKBw8exODgIM6dO4fe3l5YrdbtbhbjCsNxHKqqqmCxWOikWjqdphHtDAaDcSlMTU3R+7jYP7Tb7eu+hxCC+fl5zM3NQalU4uDBgzAajVeiuXuekZERBAKBsmWivZJcLqdBD0uDIZYGQoginEwmo1ZfMpmMPpg10+axWtYhIQS5XA6pVArpdBrpdBrRaBQcx8FgMKC2thaBQAAjIyPo6+uD1+tFIpFAoVBAsViseN/LhVa5XI7W1lZotdpLOha/34/x8fGyZeJ3SBRYxeCd5TFTSqUSNpttVxZeFm0bFhYWEAqFQAihxyseczKZhM/nA3BhDG6xWFBVVcXsMxjbBk8E8Hs8dJEnwnY3YdthguoWE4vFsLi4CKVSeUWKXYmdN4VCAa1WS28+LpcLzc3NUKvV1DNIpVJtyQ1VEARks1lkMhkAF3yhvF4vtSUQo0NFwVOM5rJarejr67vo9oPBIEZGRsBxHOx2O+rq6mjHs1gsIp1OI5VKgRBCZ3DF51gsBpfLBb/fj9bWVigUCpRKJQwNDcFisaCnp2fDURscx6FYLGJ2dhbRaBQ2mw1tbW0rfGljsRi8Xi9CoRA4joNWq4VSqYTJZIJCoYBSqYRSqUQ2m8XU1BQ0Gg36+vpoJMPMzAwCgQDy+Tzdrmg3UFVVRSNzeZ7H5OQkTp8+jbq6OjQ1NSGTycBkMqG7uxtSqbTMw3epLxDP80ilUggEAvB4PFAoFFRcNZlMV90s+EaRy+XYv38/RkdHMTg4iI6ODtTW1m53sxibTDweh8fjoX8v9T1ebYKko6Pjqp21ZTAYlw8hBHV1dfT6olQqLzpJvjRLikWlbj65XA5GoxHNzc20/8b6SLsHjuOoLVZVVdWq69hsNpw6dQqnT5+GXC5HVVUVlEol7bMvDXpZrU+92utIJIKpqSns37//ktqdz+chl8vR19eHYrFIBV7xuVgs0vHX8jFeJBKB2+2GSqVCVVUVFRt3g7g6OjpaNoFRW1tL7fREsVoikaBQKCASiSAajcLtdsPtduP6669nEasMBmPLYILqFjI/P4/p6WmYzWZ0d3dvycWcEIJMJoNIJIJwOIxwOEyjQAFQcVWv16NQKCCRSNAozuXpRDzPI5vNIpfLQafTrRuhmU6nUSqVVvh1DQ8P05nDpW1MpVLI5/OIRCIolUpobW2FzWZDLBaD3++HQqFAY2NjRccspuJns1lIpdKydsrlcphMphXpOclkEmNjY0gmkzCbzWXFg4rFIgghqK+v39BgQ+y0hMNhzM/PQ6lUoq+vb0VUoiAIGBoaQiQSgUajQWtrK+x2+6rRaoQQDA8PQyKRoL+/HwqFAjzPY2RkBJFIBHV1ddDr9dBoNNBoNGu298iRI/B4PJibm0MwGIRarUYsFsPJkyfR0NCAurq6FVYQYuSEw+FAe3s7EokEQqEQgsEgvF4vFAoFDh06dNUaTleKVCpFb28vpqamMDExgXw+j6ampl3RYWVURqlUovYqAOhkA8dxMBqNtIiC+Mx+MwwG41IoFotYXFzEwsIC8vk8jEYj2traYLPZ1ryn8DyPubk5eDweqNXqXRmVms/nEY1Gqcf/chFLqVRCJpNt631VoVBAEIQV/U3G3kGhUKCvrw/hcBj19fWbUo8gGAxieHgYL730EiQSCRUCl79e63+xWAxyufySJmnF4I5gMAifz0fHLk6nc8dP/ldXVyMWi9HAkWg0SoVqccy7Ful0mgmqjG1BAIGAvR2iutePrxKYoLpFeDweTE9Po6GhAS0tLZva6eN5HrFYDJFIBKFQiPoCiTdcsZiU0WikD7FIFSEE09PT8Hg8KBaLGB0dpSLq8or0JpMJDocDVVVVtPBRLBbD/Pw8IpEIgAvpI3a7HXa7naavEELQ09NDO5liWnosFsPCwgLm5uYwMzMDi8UChUIBq9W6ruBMCMG5c+dQKpVoKpRWq0Umk4HH44HH40F3d/e6qW+xWAzJZBLABTEkHA6DEAKDwUAjCkSxdS0IIVhcXEQwGKTp+sAFe4HGxkY0NjauEDgJIZicnEQ0GsW+fftgtVrX/S5wHIe2tjZMTExgaGgIHR0dNGVYfH8liG2qrq7G5OQkwuEw9Ho91Go1XC4X5ubmUFVVBYlEUub7JXqtij68arWaHlOhUEAwGLwikda7HfFzVCqVmJmZQSQSQUdHB0s72iNYrVZce+21cLlc8Hq9yGazaGlpQXV1NRPOGQzGpuByueByuUAIodk4F7uHhMNhTE5OolAooKmpCQ0NDbsqapIQgpGREVqQVey7ir6kS1kqtGq1WrS2tq4qeIVCIUxMTIDneZjNZvT09GzKOVEoFBVbKTF2L3q9flP7bjabDT09PWUWaGIBrKWvxYjW1dZZK6L2YnAcRz1G29vbaRblxMQENBrNjp4c0Gq1qK+vRzAYRC6Xo0WBxULP4hh4qQWAaIOgVqupzQaDwWBsNkxQ3QJ8Ph+mpqY2XUxNJpNwuVyIRCL05ipGaTY0NMBsNlMBda1CVIVCgaaqiqn5arUaFosFarWaRlXFYjH4fD6MjY1hcnISNpsNmUwGyWQSWq0W3d3dUKlU8Pv98Hq9cLvd2LdvH71B+/1+VFVVUZ8vk8mEuro6dHd3IxKJYHZ2Fi6Xi6b5r9e5LRaLiMfjkEgkNMpC9E0VTeMv1jluaGiA3W5HNBpFOBymNghiinZDQwNmZ2dhsVhW9a0qFAoYGxtDJBKB1WpFTU0NTbEXC82shsfjweLiIrq6umCz2dZto4jD4YBGo8Hw8DBOnToFhUKBAwcOXFKHTqVSoa+vj/pA1dXVobW1FT6fD+FwGABoqloikaD+UQqFgqYPqVQqepxMEKwcjuPQ2NgIo9GIsbExnD59GocPH2bncBdSKBSoVYharYZer6cea3V1dZidncXo6CgIIRsqRMdgMBhr4ff7YTAY0NPTc9Hoqnw+j6mpKQSDQZjNZuzfvx9qtfoKtXTz8Hg8CAaD6OjoQFVVVVkmz/JCQEuffT4f9Hr9qlF24vtqa2vh8/kwMjKC3t7ey+6bKxQKGpDAshAYlcJxHKqrq7e7GVRcNZlMKBQKGB0dxZEjR3aU13upVILX60UwGEQymYREIoHFYoHNZisrOJzL5VYUH16ORCIpK+RV6evdNCHF2HkIELDXHUb3/hFeHCaobjLBYBDj4+OoqanZNDG1UChgdnYWi4uL0Gg0cDqdiEQiiMViqK+vR1tbW8Xm9UqlEseOHaORnmvhcDjgcDiQy+Xg9/sRCASgUCjQ398Ps9lMj0tMPxsdHcXo6CgOHjyIzs5ODA0Nwe/3rxAXJBIJ9eRsamrC8PAwwuHwurOtMpkMFosF0WgU0WgUBoOBbkOj0VR03ABoAQe73Q5CCPx+P8bGxlAqldDc3IxIJILR0VEcPny47AYaDocxNjYGAKum9K9FNBrF9PQ0GhsbNyyyGAwGHD58GPPz86itrb3sgZE4GOM4DvF4HACobUI0GqXRv+3t7dQOIJ1OIx6PIx6PI5FIIB6P49y5c1Cr1TCZTKiqqir7LjBWR/S8MxgMu3KAe7XD8zxOnDhBPVGTySSSySS8Xi+ACxYPer2eRnszGAzG5ZDP55FIJGimSCWpqiMjI8hkMuju7t61kfKpVAozMzNoaGhYVRiVSCRrWqiIoupq77NYLOA4DhqNBj09PRgeHsbc3Byam5sBXIiKXdrfEau/i8WjlheW0uv1sNlssFgs8Pl8OHv2LPbv37+h/iiDsZMQC/tGIpGLFrq7kgQCAczMzNCJJavVelFrNkIIeJ6nfrKi0Lra61QqRV+vVcRYjHpdKrTK5XIoFArU1NQwKwEGg8EE1c1ELJZUVVWFjo6Oy+7QCoIAj8cDl8sFjuPQ3t6OqqoqjI6OIpFIoKen55I6zhuZSVepVHA6nXA6nWuuI5FI0NXVhbNnz2JoaAiHDh2CXq/H1NQU7Hb7mu2rqqqCzWbD5OQkzGbzmgKv6CdaLBYRDocRCoWobYBGo4HNZkNVVRV0Ol3F52LpejqdDhKJBN3d3Th16hR++ctflqWKFItF2Gw2dHZ2bujGKUbPrnfu1kOhUKC1tfWS3rucVCoF4IKpOwCaAqPRaGC1WqHX62E0Gss6KjqdDjqdDnV1dQAuDPLEAUckEsHi4iIUCgWqqqpgt9t3jbH9lYIQQu0V7HY7Ojs72Uz3LkQikaC9vR3xeBypVAqpVIr6dUmlUmoTIlZpZjAYjEshEolgfHycFp5UKBQVe5+q1WrwPL+jxJCNkMvlMDIyAq1WS4XOSgmHw4jH4yuyPwghiEQitOp3MpmkkYHFYhFutxuxWAyJRAKlUgkcx1GPeo7jqHfl0tei9dXU1BQIIVAqlcjn8zh37hz2799/yZXbGYztgBCC8+fPIxaLoampaUORszzP09/HVuFwOOD1elEsFmGxWCqqc8FxHA0a2kgQg2izsFR0XU2ELRQKSKfTyOVyWFhYQFdXFywWy+UcJmMPwxMCfpWI6b3EXj++SmCC6iYiel0lEgmMjY3R9Huxc7ZRpqen4fV6UVtbi6amJhBCMDAwgGw2i/379+8orxupVIp9+/bh9OnTNJqrkgjd9vZ2nDhxAjMzM+jo6Fh3XblcTiNnRUPyUChELQeUSiXq6upQX1+/rnBFCEEul0MoFIJaraZCbqFQAMdx1OQ8m83SDnMmk4HP50NNTU3F6TDiDTYajVac7r9VVFdXUxFVrVZfUkqPUqlEdXU1qqurQQhBMplEIBBAIBDAwsICdDodDh06tOq553n+qqouTAjB2NgY/H4/mpqa4HQ66W9BTEVi4vPugOM4GtkOXPj8stksYrEYPB4PQqEQTCYTOjs7d9Q1mcFg7C7EbIbOzk5YLJY1rZtWw2g0wufz0WyT3UIul4Pb7cbi4iJkMhkOHDiwoYlHr9eLyclJWCwW9PT0AADtr/l8PmoPJRYDXVxcBMdxiEQiyOVyMJvNqK+vh8lkgl6vr6if4nQ6USwWaR2DSCSCQqGAs2fP4tprr91RKdMMxnqIEdjAhUkGnucrun5EIhEMDQ1BKpXCYrHAarXCbDav+t0vFotIp9PIZDKQSCTULm2135o4YSEWVJbL5eju7sbZs2cxNja2KVYdayGRSKBQKCoOnBGt4AYGBlBXV4empib222cwrlI4sprRyFVMIpGA0WhEPB7fcAXFYrGIWCxGo/hSqRQIIZDJZDAajTAYDLBYLBf1UCSEIJPJYHx8HDKZDP39/QAupHQFAgFa3VGMMNRoNFCpVLTolLiNUqm0biX4rSAej2NsbAwtLS0Vm6bPz89jZmYGx44d29AAQkS8AQcCAfh8PlqxUqPR0BtyPp8v+2zECJDGxkbU19djamoKgUAAJpMJHR0dUCgUtFhTLpej4qFEIoHD4UB9fX1FM58nTpyAwWBAV1fXho9rt0AIodHZTU1NkEqlZYWuRG8ji8WC9vb2qyLtned5vPbaaygUClAqlbBYLNTzOJvN0qICNTU1MBqNTFzdgXi9Xkil0nWzAAghCIVCcLvdSCaTMBgM6O/v31WCBoPB2Bnkcjm8+uqrMJvNK/p4F7umZLNZvPbaa7BYLGhoaIDJZNrR95XlQmpDQwPq6uo21F+dm5vD3Nwc6urq0NbWhlKphOHhYcRiMchkMlRXV6OmpoZmLxFCcOLECeh0OlitVoyNjaG/v/+yo8sEQUA0GkUymURjYyPLRGHsKgghWFhYwOzsLLX+Wi8IJJFI4Pz587TgcSQSoRl5BoMBJpMJxWIRmUwGmUxmRTE5EaVSWVaLIp/Pw+fz0fHZanR1de0on3rx3M3MzEAQBBiNRlitVlit1ksOpmJsLYQQRKNRBAIBxONxHDt27JI0n4sh6kmusVoY9Hv7npBICnB2ebfkPO4WmKC6jMsRVJfD8zz1nhR9KHmeR0tLCxoaGsBxHEqlEtLpNE0lTaVSSKfTdMZQ9EgFQP0uM5kMstksfV4Pk8mEAwcOXNZxbDWlUgmvvPIK6uvrN5zqtZxMJoPp6WlacGkpYjqXGDlsNBqRzWYxMDAAjuNoBMNaN8BCoYCFhQV4vV7wPI+urq6LpsfMzMzA4/GUiYgcx0EqlaKnp+eSBOSdiDhQyWazZT5n4kMqlcLtdqNYLMLpdO66ysOXgiAIiMViCIfDdIAnDpAFQYDf76dF4RwOB+x2OytssYM4d+4cYrEYVCoV9UFe6zsrdtAGBwfR3NyMxsbGK9xaBuPSEAe7Ylozx3Fl0fTFYpFGTooTZPl8nqajG41G5iG3iczNzSEWiyGTyaBQKNDl4kR6d3f3muJqIBCAy+VCOp2mFbGrq6t3VHZILpeDy+WCz+e7ZCFVZGBgAJFIBBaLBa2trVAoFDh9+jRyudyKzBDgQh/u5ZdfBgBq56RSqXDNNdfs+f4Ig3ExcrkcJiYm6G/KZrPBbDbTgB3gwhjr7NmzUKvV2L9/P/3d5vN5RCIRRCIRxONxaoEkPrRaLdRqNQRBoEJrJpOhkatigWW73Q6HwwGlUkkL4y59ttvtFdcMuZIUCgWEw2GEw2FEo1Hqfy2KqyaT6ZKvMaInrCAIkMvlTKS9RFKpFBYWFhAKhVAsFiGRSJBMJvHWt76VCaqXCRNUmaC6gs0UVJdDCMHc3BxcLhcMBgOKxSIVRDmOg1arpb6V4uu10gcEQcDk5CRisdgKUZXjOLodp9O5K0SayclJLC4uUl/V9TxVK0G8+Yo3YnEwsrzTPjMzg8XFRVxzzTUVp2rwPI+JiYlV07mXk8/nMT8/j3w+j1AoRCOIbTYburq69lQkW6lUWveGz/M85ubmqMBstVrp7LRWq91Rg76tQiw2Iha3EP1oxWJGZrMZDocDNpvtqjgfO5lIJIKBgQGoVCrkcjkoFArU19evO/gfGxtDJBLBsWPH2ACdsaPJZDKYmZlBKBRa8T9RXBUL8SxdrlQqoVQqqbAKABqNhoqrJpMJSqWSDfo2AdF6SJxAn5+fh8PhQHNzM6RS6arnWMzYEQeOcrkcNTU1tNjkdkIIwUsvvQSJRHJZQurS7QWDQczMzAAArr32WgiCgNnZWXg8Huh0OnR2dpZlhWWzWRq4kE6nUSgU0NfXt6f6YgzGpSL+pjweD5LJJLU9M5vNMJlMmJubg0QiwcGDBzc1vV0MItoL/aalwRThcBi5XA4SiYSeQ+DCeKjSh3huRJbW+BCLY8nlcthstotmwF7NnD9/HtFoFGazGRaLBXK5HKdPn95yQXV2rAb6PS6oJpMCmrsWmaC63Y3YSawnqBJCNmWQ4Pf74ff7odFoqPCp0Wg2dCPheR6nT59GJpOBTqejRZlEMYvjOFqZVLwgi8/iQy6X0whCpVK5rTeyUqkEt9uNcDiMdDoNjuNgMpno7N5WpYlPTEwgkUjgyJEjG3ofIQRutxuzs7Oorq5GV1fXuufv1VdfRS6Xg0qlQl9f31VduCCVSmFubg6pVKqsKrpKpaLi6tLfxl4ZmBeLRZw6dWrddCYRMdW8sbHxqrBI2GnwPA+/34/JyUnYbDY0Nzdjfn6eRlWJEaulUqksei+RSCAUCu24tDQGQ6RQKMDlcsHr9UKhUMDpdEIul1MvvaXPwIW0TLGPsHyyLJfL0QwcMapSfM/STBCtVrtnruPbidvtpuIhAFooSSqV0uelrwuFAhKJBF3/4MGDFRe52goIIXjxxRfR2NiIpqamTdtuMpnE6dOnaaFW4EJffnx8HOl0Gs3NzZdcHJTBuFoplUqIx+OIRqOIRqNIp9NQKpU4ePDgrgjU2QmIFn6iuJpIJMqu1Rd7yGQy+prjOFocSwwWEl/n83laQLmpqWlHRvFuN2KQxFIymQze8pa3MEH1MmGCKhNUV7CWoJrJZHDq1CnIZDIajdHQ0LCts9o8z2NqagqLi4sbfq8YfbIWR48e3TbRL5fLIRwOIxQKIRaLgRACtVoNs9lMZ/g2a2Z0eHgYpVIJ+/fvv6T3BwIBjI2NQafTYd++fWumPsZiMczPzyMcDkMul0Ov10OpVFIDdPGhUqmgUCiumsEnz/M07UdM/RGrZwKATqdDY2MjqqqqdvU5IYRgZGQE0WgUBw8epBFchBDk83lks1nkcrkVz/X19Whpadnu5l81FItFeL1eeDwe2jltbm6m18Kl6arLb50ymYxG7zU1NV21nQrG9iEWXCSEULFtaXXyhYUFuFwuABcK61xuhOByisUi4vE4AoEAgsFgmSh7zTXXsKj7y0SMPhWLx4gT5csnzZcuEyfPZTIZ2tratr1oyvj4OAKBAI4ePbqposy5c+cgCAIOHTpEl+VyOZw4cQJmsxl9fX2bti8G42qkUChQcY+xsyCEwO/3w+VyIZvNskn9NchkMhAEgX6P0+k0LBbLlgqq02OOq0JQbe3yXdWCKstxWYPFxUXo9XoqerhcLshkMtTU1NDUq4WFBTooWS06sVQqYWFhAel0Gt3d3ZsuCEmlUnR2dqKpqQk8z6NYLNJUpmw2WzaDtXzwv56YCoBWRt0OVCoV6urqUFdXh1KphFgshkgkgmg0Cq/XCwDQ6/Uwm82orq6+6ExcOBzG4uIidDodLfYgfhZimrpoC7BRqqurIZFIMDQ0hMHBQRw+fHjV9UwmE0wmE7LZLLxeLzKZDFKpFLUlWPr5SCQSqNXqVR9yuZz63G0GiUQCLpcLcrkc9fX1V3xWUyqVQq/Xr0hT4Xke8Xgc8/PzGBkZgUqlQldX166tol4oFBAMBtHR0bHidyWTyVb9rW1WRDyjcs6fP49UKkX/DoVCCIVCNOpffCz9vUqlUqjVaqhUKrS3t297Wi3j6oAQgmw2i2QySR+pVAo8z6/5Ho7jUFtbu6FqxIVCAT6fD36/H8FgEMViEQ6HAy0tLbBarWV9H7lcTrMPgAtCqniv3gupnNsNx3Ewm83b3YzLorW1FZFIBGNjY9i/f/+m3eP0ej2CwSD9WxAEjI6OQiaTobOzc1P2wWBczTCv7J0Lx3FwOByorq7Giy++uG4/YDsRCzyLtgWiXYH4eqv7CRqNpuzvpVmSDMblwATVNZiamkIqlYJOp6MGxm1tbaivrwdwwQvR5XLRokPNzc20oBHP8/B6vbQIDwA0NzeXpe6KfpL5fL4srF+hUMBsNm8ozVepVILneZw6dYoKpWKKnlarLUvZA1CW9i/O1IiC3U6LjpTJZLDZbLTiZC6Xo+knokfYNddcs+p78/k8pqamEAwGodPpEIvFMDc3B6lUCrPZDKvVCpVKhcXFRbz88suwWCyw2+2wWq0VzcDyPA+PxwO32w25XI66urqLvketVqO1tbVsGSEEpVIJhUKBRieKD7/fD4/HA0EQytL7xJvR0s9WjG6VyWRlD+CCcFwsFumzmCYSi8Wg1WqRSqXg8/lgMplgMBggk8mo7+x2COtSqRQWiwUWiwXJZBLT09MYGBhAX1/frhxQip9DpTP7hBCaPh4Oh+kEA2Nr6erqQjabpR63S9Oflz5EgTyfz4PneaRSKRa1wdhystksFhcXkUgkkEqlUCqVAFy43+v1ejidTuh0Okil0hUWP4IgVNy3KBQKePXVVxEMBpFKpUAIgVQqhclkgkKhwMTEBEZHR6HRaFBbW4t9+/bRyS673Y5MJgOJRIKmpiYaJZNMJhEMBhGNRmEymeBwOFha4g6E53nq+y5G3It9DaVSCZlMdll9RLGK+NDQEEKhEKqqqjal3ZlMpmywPDMzg0QigQMHDjAhiMFgXBWIGSrLhcOdQCKRwPnz56loKuojSxF1kKVC61I/9+V9GtHjV7SL02q1ZUXUdgI8IeD3eDL4Xj++SmCC6hr09/fD7/cjFovRIjFLw5iVSiU6OjpQX1+P2dlZjI2NYX5+HlVVVfB6vTSKo6amBmfOnEEikaAFBnK5HHw+H/L5PPR6PU3PEsUuQghUKhUVlEwm00WtBaRSKdra2jA9PQ2pVIr29nZYrdatPk1XhHg8jnQ6XWbSLYqFywdkPM8jHA7D7/cjEolAJpOhu7ub+molk0lEo1FEIhGMj48DuBBlqtVqEQ6HMTIyAplMhubmZtTW1q57UZ6enqYRs3K5HIFAAPF4nIqbFouloo48x3HUXHy5eBmPx5HP56HT6Vb45mQyGWoaL95cJBIJraq5XOCRSCQ09U987uzshMPhACEEoVAIXq8XgUAApVKJDtZra2vR3Ny8bamCer0e/f39NAp4N4qqYnqJz+ej5vTLf9OlUol+N8PhMAqFAmQyGY2iZmw9om/vahSLRQSDQQSDQWpFYjKZaCE9FpnK2CqSySTm5+cRDAapsNnQ0ECj+zf72vy73/0O8/PzqK2tRVtbGxwOB6qqquhAqFQqYW5uDrOzs5iamkKxWMQtt9wCAGhoaEB1dTXGxsZw9uxZ5HI51NTUIJ/PQy6Xw2w2IxAI0KJBYlQNE722n0QigZGRERQKBWg0GnofWopEIqECq/is1WphNBqhVqsrGsiGQiFIJJJNFdTT6TQVZ2OxGDweD9ra2rbVM5bBYDCuJOL1enh4uMzHXCKRIJPJlD1KpdKKYAEx+2r5NV58yOVyCIJAx4jig+d5EELgcDhWvebyPI+BgQEoFAocPnwYMpmMZoeK49qlhaTF14lEgo5txWKZ4kOc3MtmswiHw3TMKo6DRYFVrMux04RWxt6CCaprIHqkXgyNRoPe3l4kEgnMzMxgbm4OdrsdTU1NUKvVIIRAJpNhdHSUvkdM8e3t7V0hoK2W4s5xXNlFQXyo1eqy8Pja2lpYLBZMTExgcHCQFrURIx+LxSK0Wi30ev22RKIu9faSy+UVR3SNj4/TYhcKhYJGaKrVatTW1pZt/7XXXkOhUADHcWhqakJtbW3ZYNNgMMBgMMDpdNJURpfLhXg8jo6ODmg0GrjdbkxOTsLr9aK9vX3NNHOn0wmj0UgL0uRyOSSTSRrR3NDQQKNRCSGIRqN08FEpPM+D4zj09fWt8BsTI1vz+Tw1JU8kEggGgyiVStDr9aiqqqKRuOudb47jUF1dTYVn8Xx6vV7Mzs4iGAyiubkZNTU123JDkkgk2LdvHwYHBzE4OIj+/v5dl/7vdDqxuLiI4eFhABe+izqdjlZwFotVqdVq2O122Gw22gnZbQLyXiGfzyMcDq8QUdva2lBVVcVEIMaWIfplut1uRKNRqFQqKm6udi0PBoMYHBxEOp1GV1cXWltbLyl9zu12w+VyYf/+/Th48OCq64h+nOFwGF6vF/v27UMqlcLCwgJ8Ph9CoRCSySSA32cbVFdXw2Qy0YKZ0WgUPp8P09PTmJ6ehsVigVarXTUN8HKjIhmVEQgEkMvlYDKZ0NXVBZVKBUEQ6OBW7OuIrwuFAlKpFDweDwDQrBaj0Qiz2bxqUclSqQSfzwcAeO211+gEb319/SVnYfA8j1wuR6OyxH3uxCgtBoPB2CqMRiMOHDiAWCyGeDwOl8tVlv6vUChoHZilRayXPgCUXe/T6TTNxloKx3E0uEnMillcXITFYkFzc3OZlZtEIoHNZoPP58Pc3Bztn4hC7eUiZo4tr8cRCoVou2UyGSwWC2w2GywWyxWrgSP8/4+9zF4/vkpgRamWsVZRqkoQIwWXD3ZisRgKhQJUKhX1wayUbDaLSCSCZDJZNqsEXLiYqdVqKrCqVCqa/h2PxzEzM1M2AyXOCAEXLqp6vR4GgwH19fWblq4qCALS6TRSqRT1cxXbvDzKbnlVd1EkXl5JuFAoYHp6Gn6/H7W1tejo6Fh134QQLC4uwu/3Ix6Pg+M4evEUi3Xkcjmo1WoqrMrlcmSzWYyMjCCZTFJbh0QigampKSQSCdTV1aG9vX1D5+HkyZMwmUxob29HKpXC5OQk4vE4AKCmpgZNTU0V3USCwSCGh4dxww03VPy94XkeoVAIPp8P0WgUOp0OR44c2VD7l5JMJnH+/HmUSiW0tLSgsbHxkrd1KRBCkEwmEYvFEA6HEY/HodVqcfTo0Svajs1CtK2IRCLIZDJlv2Exygf4fSGrWCyG66+/ngkKVwDRakGsyJpOp8FxXFkkKhNRGVsJIQTBYBDz8/NIJpPQ6XQ06nPpNUAQBLzwwgtIJBKIRqNIpVJQq9UwmUz0ffv27UNHRwcVVpdmMiwXWwVBwOTkJM6ePQu1Wo23ve1t6wqysVgMP/rRjyCTyaBSqeigRa1Ww2q1wm63o7a29qL+qcViEYFAAIFAgIp0y/sKYhaHKLQaDAZYrVbqc8/YHAgh8Pl8mJ2dRalUQn19PZxO50X7h6VSCYlEAvF4HIlEAolEAjzPQ6lU0uum0Wikn5Xo8y9m27hcLkgkErS1ta34nldCMpnE6dOnsX//fpjNZhBCqAWW0Wikoq3JZGIRqwwG46qBEEJtezQazWWJiGIWrRgduryeh9h3mZ2dRTabRVVVFZqammgQESEE8/PzmJmZgclkQn9//5Z7poqFf9PpNA14SqVSNFNQpVKho6NjS4tSDY9WXxVFqXq7A1d1USomqC7jcgTVKwEhhKZ7iw9RtBQj3ESkUildJnaIDQYD9Ho9rW4nemj29fWtEApEgVi0I1gtxF98LRbEEjvJgiDQ1HcxslJcT4zQFduXyWSQzWbL9r108KRQKCAIAkKhELq7u2G32y96nvL5PILBIAKBABKJBIDf+8pmMhnq3aLVaqFWqxEOh6FUKtHd3U073IQQnDhxAiqVCvv379/Q53TixAkYDAZIpVIsLCxAo9Ggra0NmUyGzhg2NDSgoaFh3Ruc1+vFxMQEbrzxxku68Vzu+3mex8svv0wHy+LMnhgxvVUzfIQQeL1eRCIRxGIx8DwPqVRKI19sNtuGfIZ3E4QQZDIZeDweLC4uoqenpyxymLG5FItFRKNRhMNhRCIRWqDOYrHAarVe0ZlsxtULz/Pw+/2Yn59HNpuFyWRCY2MjzGbzqgJTJBLBz3/+c5qKH4vFkMvlIJfLoVarkcvlUCgU6H19qeeYRCKB0Wikwmcul8PY2BiteHvjjTdeNAPg3LlzePnll9HV1UX7FTU1NZfdbyKE0CKbq6UAit7fpVIJCoUCVqsVVqsVZrN5T/oYE0JoXy0WiyGZTFKBWaPRoKurq2IBUpycjEQidEKvrq5uRT8kn8/jzJkzyOfz6OzsRE1NzYbbHIvFEAqFEAwGUSgUIJfLYbPZUFVVBZPJVNYfyeVymJycRDgchlarRUtLCywWS8XHlc1mcfr0aRBC4HQ6UV9fT20yxO+O+Js6cODAho6FwWAwGJUjTsy5XC7kcjnY7XZoNBoaNSvqA4cPH96WAIVsNkvvTYuLi3jrW9/KBNXLhAmqTFBdwU4XVNdDEASaep7L5ZDP52lIvlwuR7FYhN/vRyKRgFwuh91uh16vx/T0NDiOg0qlKhNKRU+UtRDD/MXtS6VSxGIxZDIZWo1+KaLAKnZuJRIJncEShU5xELjcV6VYLKKmpoYWBdvIOQkGgzQNIJvNlnmpiOK01WpFQ0NDWZvj8TjOnj2Lffv20aJYlXLixAlkMhlIpVI0NTWhrq6uzH/O7XbD4/FAo9GsGT0qDmqUSiUOHTq0of0DF4SisbExRCIRXH/99ZfksydaFSQSibJzKH4vxCrOorXAZglPuVwOJ06coJFKYsGVvThoFgVUccAci8VQLBbBcRza29vLbC0Yl46YEiReI8Xo/0QiAUIIdDodFVENBgOLfGNcEYrFIrxeLzweD4rFIqqqqtDY2Ai9Xo+RkRGMjY2VFSAUM13i8TgmJyfxnve8h6Y2h8NhjI2Nwe120/u/Wq1GfX09LSgkk8nohONSj0y73Y7+/v6K066ff/55hEIhvPvd796yc7MWhBDE43GEw2GEQiHanxAn26xW62UN1EqlEgYGBiCVSlcUfhRTFLfqPrRcQBXFY47jYDAYoFQqEQgEAFzwf+/u7gbHcTSLaTVPPFFIjUajdFLbbDZDoVBgcXERUqkUjY2NqK2tRTAYxPT0NARBoOLk5UQRifsOBoP0s5JKpbTYqMVioedS/E6nUil0dHRs6N5XLBYxNzcHr9cLpVKJ1tZW6qk6NzcHl8uFgwcP7rp+PYPBYOxGBEHA4uIiDSISA2LMZjO0Wu2297Hz+TyeffbZLRdUB0auDkG1v+fqFlRZ2M0eQiKRQK1Wrxu5V1tbC5/Ph8nJSXg8Hsjlchw6dAgulwvA74vnLBVLxeelD6lUWnYxDAaDGBkZAQDs27cPBoOBVqRfmh4gkslkEAqF4PF4EAgEUFdXRysUi/A8vyKlYKMsLCxgenoaMpkMer0eJpMJ6XQakUgEgiCA4zgasSuRSKhQyHEcPB4PTV/cKGazGXq9Hi0tLStS+8WiV+FweM3Piud5DA0NAQB6e3s3vP94PI6RkRHwPI+enp5LLloiDsjFNEyxYJrBYIBCoUAul0MsFsPo6Cg4jqMD2stNjVapVLj++uupn3AkEsHQ0BBNvxYLtmk0mm2/KV8OhBCMjo4iEAjQ72JNTQ1NTdxr4vFmUygUqK3J0mXihNLSySWx+qmIWNynvb0dFotlhUcxg7GVZLNZGoUOAA6HAw0NDfSeUCqVcP78eeobnslkEI1G6XceuFBEbalPpNVqxQ033IDrrrsOLpeLXltmZ2fR2tqKzs7OsnusIAh0QmGjPs3JZBKFQgFnz55Fb2/vFY00Ee8DJpMJra2ttD8RDodpsUnRFsBms234PiH2B6LRKO2/LC/OJJfLqchaU1NzyUVALyag1tXVwWQywWAwUM9ZAGhsbERNTQ3i8Tjcbjcikciq50l8aDQa6rO/dMKosbERc3NzmJmZwezsLARBQHV1NVpbWzfF2048DoPBgJaWFuprFwwG4ff7IZFIqDWTWGBEq9XCYrFsaD9yuRzt7e2oq6vDyMgIhoeHcd1114EQApfLtSnR0wwGg8GoDIlEgrq6OjoxtpvHagzGxWARqsvYzRGq61EsFuHxeOD3+5HL5aBUKlFdXQ2Hw1FxkSTRiySRSCCZTNKBhFg9cGpqCpFIBHK5nEaTXmyQxfM8PB4P3G43OI6DUqmk1gCCINBICpPJBLPZXHEVWZFAIICRkZEVHqSCICCVSiGRSNBzsm/fPgwMDNBCUIQQ2kHfbMTo1/7+/hUDB1FkC4VCOHjwYJmxdyUQQvDqq6+iUCjg0KFDG37/UtLpNE6fPk1TNDQaDXieRyKRoNG3DQ0NyOfzdJAUi8UAXCjC1NTUtCk3UUIIjSgUbQAEQaDprcsfoqXETmd2dhYulwudnZ2orq7eFW3ebnieRzAYhM/no9+11Vge1bf8NSt0w9gOkskk3G43gsEg5HI5amtrUVdXh1KphBdffJHa9Ii+lG95y1topJ1IqVRCJpOBQqG46ERAOBzGwMAA5ufnAQB1dXW49tprL7vCut/vx/nz52mEY1NTE/r6+rbdo7JQKCASiSAUCiEajYLneahUKthsNtTW1lZcqEgQBExMTMDn86G5uZne58TJGfFZ9Ivv6elZ8Tmttd1UKoV4PI54PL5CQBWFYtEyaCmnT5+mxb6WotVq4XQ6YbVaVxQXqZRMJoPFxUVYrdYrVvAxm83SyFXRmqm6uhqdnZ2XfC8sFos4ceIETCYTent7IQgCBgYGkEwm0dfXt+uKWTIYDAZj87lSEarnrpII1QNXeYQqE1SXsVcFVY/Hg6mpKfq3WEhCFBc4jgPP89Qzda2HmIKtVCqRz+eh0WjQ2tpKozMCgQBGR0dBCCmrcn8xCoUCPB4PeJ6nFgIymQzZbBaxWIxG0SiVSjrYWF7hPp/P04HJ0gFFsVjEgQMH1uxIu1wuuN1uSKVSKhKLxykKxpuNy+XC7OwsTekW25rNZjE6OopEInFZ3pnRaBQjIyOQSCTo6em5pEEuz/M4ffo0OI7DwYMHy9L5s9ksxsbGQAhZYUdQKBTg9XoxNze3bhGxy4HneVoAI5vN0ofojSuXy9HR0VHRAHe7EMX+5uZmOJ3O7W7OjkcQBMzMzGBxcRE8z8NkMsHhcFD7DhG5XA6VSrXlZvcMxkbgeR4TExPw+/1QqVRoaGiAw+GAVCpFoVDAL37xC1rIQcRsNm9a8b1MJoPh4WEMDw/j4MGDG/YFX4t4PI6BgQGa1ldTU4Obb755RxRvEwSBenmGQiEUi0U4nU40NjZWdH0olUp49dVXodFoVtznisUiFVUnJydRKBTQ29u7wh6oWCzSgk3xeBzJZJIWBjMYDDAajWsKqGsdU6lUolZIHMeVFXzareTzeWSz2cs6Fp7nMTo6ilgshqNHj9IIW57ncebMGWSzWRw9enTP+q8zGAwGozKYoLp5bFRQTSaTePDBB/HTn/4UgUAABw8exFe+8hXa3yWE4JFHHsE3vvENRKNRXHvttXjyyScvKWP3SsFS/q8S6urqYLPZVk2DjUajAH6f5iam+Is+YeJDIpFAo9FAr9dDoVAglUphamoKg4ODNMoyEonQweJGChkoFAq0tLSs+X9RQItGo4hGo/D7/TTlTqFQUP9DuVy+wjuM47h1o3HEIhhSqRS9vb2bkuZ2Merr65HP5zE5OYlIJILOzk6Ew2FMTU1BLpfj4MGDlxXpYzabceTIEQwODmJoaAg33HDDhrcRDAaRyWRw+PDhVb1RxQr1y1EoFGhqaoJCocDExAQtGrKZSKVSmva/FDFyy+12Y3h4GDabDe3t7VfkM90IiUQCY2NjsNvtaGxs3O7m7Hiy2SyGh4eRyWTotYWl6DN2C/l8HkNDQ0in0+js7ITD4aCiUalUwtNPP410Oo3bbrttwwWAKkWj0eDo0aMYHR2lE4abgdFoxOte9zp0dHTg6aefphkfO0FQFdPJLRYLWltb4XK54HK5EAgEsH///nXvC4QQamPU3d1d9r9wOIzBwcGyZXK5HJlMpmzZ2NgYfD4fgAv3RaPRiObmZhiNRuh0ukua9JFIJFAoFDvi/G4mojftpZJOpzEyMoJsNovu7m66rXQ6jenpaaTTaRiNRlZgkMFgMBhXDAEceOzuCc+LIWzw+O677z4MDQ3he9/7Hmpra/H9738ft912G0ZGRlBXV4fHH38cX/7yl/HUU0+ho6MDn//853H77bdjfHz8srJutxLWs7hKEItOqVSqTUvJ0+l02L9/P0KhEGZnZ8FxHLq7u1FdXb3p0RLLBTRRKN0MxGjWKyWmAheOp6OjAxaLBePj43j11VchCAIcDgfa2to2pdMvpjxfauqcyWQCx3FYXFxEOp2mUcpigQm1Wo22trY132+32zE3N4e5ublNF1TXQiaTwWAwoLe3F8FgEJOTkzh58iRaW1vLRIztpFQqYWhoCBqNBp2dnTuiTTuZcDiM0dFRyGQyHDp06LJTlRmMK0kikaD+z8stXARBwPHjxxGJRHDTTTdtmZi6FNHOZjNxu9148cUXoVQqceutt+7I7B6pVIqWlhbY7XacPHkSkUhk3fOdyWQQiURgMplWeJCLfqoHDx6kk7rLxdFsNgufz0e9TpdH0jM2B7Gi9OTkJFQqVdk9IhaL4fz581AqlTR6mH0GDAaDwWBsD9lsFv/2b/+Gf//3f8eNN94IAHj44Yfxs5/9DF/72tfwuc99Dk888QQ+/elP453vfCcA4Dvf+Q7sdjt++MMf4s///M+3s/lrwgRVxmXBcRyqqqqueGr1ZnaKxUIN2zHrYbPZYDAYMDs7C4vFctnnUSxw4fP5EAgEUCgU1hU910OlUqG2thYLCwvwer3gOI5WPW5vb6fpqquRTqcxPDwMnue3JQKT4zhUV1fDbDZjamoK4+PjWFxchEajKYu4lkqltFjZlUIQBEilUqRSKYyPj69auIxx4bs8OzsLt9sNm82Grq4uFl3E2FX4fD6Mj4/TSZ7lUYUvv/wyvF4vjh07hqampivSJtHeZ7OYmZnBiy++CLPZjNtuu61ij9LlLC0IuZVotVrI5fIVRaZWW6+7uxsTExM4ffo0uru7qVAsiqfhcBh1dXX0b0EQkMvlkM1m4ff7IZVK4XQ6mTf2FlEqlTAxMYFAIICamhq0tbXRc00IwfT0NPR6PQ4cOMAsYBgMBoNxxRHIhcdeRjw+0QtdZLXMk1KpRL3tl6JWq/HSSy9hdnYWPp8Pb3jDG8q2c9NNN+Hll19mgiqDsVORy+UrIlCuJAqFAp2dnav+L5VKQaVSXVRIyufz8Pv98Pv9SKfTkMvltOjY5UT0tbW1oampiQqQleD3+zE+Pg61Wo3Dhw9f8gB7M5DL5eju7obdbofH40EmkynzCi4UCtDpdDhy5MgVa5NCocDRo0fh9XoxNTUFpVK5rt3F1UapVEIoFILX60UikUBLSwsaGhqu2sgisRggx3F0EoCJAzsbUczxeDyoqalBe3v7is/szJkzmJqaQn9/P7q6uq5Y2zY7QlU8LjEDZiPwPI+5uTkkk0maBaHRaKDVasseos/75ZLP5zE/P49SqYRSqXTR9e12OwwGA4aGhnD27Flcd911UCgUsFqtqK+vx8LCAubn52EwGKiFkohEIqH3Tsbmk0wmMTIygkKhQDOjlnrVxuNxlEol7N+/n10vGQwGg8HYYhoaGsr+fuihh/Dwww+XLdPr9bjuuuvwuc99jo7Pf/SjH+G1115De3s7tUmy2+1l77Pb7XC5XFva/suBCaoMxg4lGo3i/Pnz4DgOJpMJVqsVRqORFuMSfXAzmQzi8TgkEglsNhtaWlpgNps3ZRDBcVzFYrMgCJiamoLX64XdbkdHR8emDCYJIchms8jlcigUCrQImVwuR0NDQ0X7WM1vtVAo4JVXXllx0b4SSCQS+vk4HI4rvv+dRrFYRDgcRjAYRCQSASEEBoNh3WJy20mxWEQmk6HfRfF7yfM87HY7rba9Hvl8HhKJZNXflxhpHgwGqZfxUkRxVSaT4dixY1et2LwTKRaLGBkZQSwWW1F0UGR8fBwDAwNobW1dUexoq+E4riIxsVKampqQz+fx6quv4tlnn8Vtt91W8b2H53n4/X4aLVpVVQWZTIZ0Oo1QKEQjaaVS6QqRVavVVuQjSghBJpPBwsICFhcXIZVK0djYiIaGBqRSKSwsLCAYDNLfk2gbI05GihMaS1P/ZTIZnWxcXFxEIpGAwWCAWq2GWq2GRqOBQqFgv8stYmFhgU5GHj58GCqVCmNjYzQq2GAwoL6+HhaLZUfaTzAYDAbj6oC/CjxUxeMTJ5hF1sq+/N73voc/+7M/Q11dHaRSKQ4dOoQ777wTZ86coess7z9tptXjVsAEVQZjByIIAiYnJ2E0GlFdXY1wOIzp6emyyCKxKJdKpUJnZycdjG4Xs7OzWFxcREdHB2pqajbtwheJRMoKgMhkMigUCuRyOSwuLqK9vX1FZeWLIVaMl0gk2yJoEkJoKvt2RvBuF4QQFAoFRCIRBINBRKNREEJgNBrR2tqKqqqqHWuDkEgkMDAwQEWppUViBEHA0NAQ1Go16uvrV9hiFItFBINB+Hw+mhqjVqthNBphNBqhVqsRjUYRCASQzWYhk8lgs9nQ3NwMqVRKfYx5nkcwGEQsFkM6nWa+sjuEdDqNoaEhFItF9Pf3w2w2r1hnenoar732Gmpray+pWODlYrPZMD09jba2NlRXV2/KNsUMi1dffRXPPPMMbr/99opEVYVCgWPHjsHv92N+fh7BYBAGgwENDQ20iGY6naaPZDIJn89H74NyuRw6nY4KrBqNBsViEel0GplMhj4LggC5XI7m5mbU1NQgFothcHAQ8XgcSqUStbW1kEgkKJVKKBaL8Pv98Hg80Ol0KJVKUCgU6O3tXXFPk8lkKyIyGFsLIQQulwuEEORyOZw4cQJyuRylUgldXV2w2+07etDFYDAYDMZexGAwVDSJ2draihdeeAHpdBqJRAI1NTV473vfi+bmZjom9/l8ZT73gUBgWwKgKoUJqgzGDqNUKmF4eBjpdBr79u2DxWJBXV0deJ5HKpWixaZ2UhpbPB7H/Pw8WlpaUFtbu6nbjsViUCgUOHToUFnxj1wuh4mJCQwNDcFqtaK9vb2ilNNkMonR0VFks1m0t7dvi92DKAhEo1EsLi7umIJZm02xWEQqlSp75HK5Mg9Ho9GItrY22Gy2HSuiisTjcQwMDECr1aKjowNKpRIymazss0skEvB4PJiamsLs7Cxqamqg1+sRCAQQDocBAGazmVYOF9NUxTQXUURta2tbN9I8kUjQ9GjG9hMKhTA6OgqVSoXDhw9DrVavWGdkZAQnT55EVVUVXv/612/5NbxQKCCVSpUJjGKhwt/+9rdUVK2qqrrs6+CliqoSiQQ1NTVwOBwIh8OYn5/H8PAwNBoNDh06BKvVWlbUUMxYEI8rnU4jHA7D4/HQdWQyGTQaDfR6Pex2OxVb/X4/Tp06hXw+D6PRiJ6eHthsthXtFAQBkUgEPp8P6XQafX19zL95h8BxHI4dO0azdMTsFYvFsiOzGRgMBoNx9XI1RahuFHEyPBqN4umnn8bjjz9ORdVnnnkGBw8eBHChL/vCCy/gscce28xmbyqsh8hg7CDy+TwGBweRy+VgNpsxPDwM4EIkTnt7+6ZFFG02S6PtNpt0Og2O41AoFMoEU5VKhb6+PoRCIUxOTuLkyZNoampCfX39quKkIAhwuVxwu93QarU4fPjwtkX2SSQSHDlyhBbMCgaD6Ozs3PGC4lqIYr8ocIjijZjKK5FIoNPpYDQa4XA4IJfLIZPJoNfrd80xp9NpDAwMgOd5mM1mpNNplEolqFSqMqHfYDCgp6cHuVyOphnPz89Dp9OhtbUV1dXVZanK4oxrqVRCNpuFVqutSIgS15+enkZTUxMTfLYJQghmZmYwPz+/bvG0M2fOYGBgAPX19VsuphJCsLCwQLMaJBIJFd/FNooR4hMTE5icnITFYkF9ff2qUbWV0tnZienpaZrGvxFPVY7jYLPZYLPZEIlEMDAwgEQiscKqheM4aDSaFZH9PM8jm81CLpeXpdtnMhm43W4EAgEAQHV1Nerr69e99ov2ORvNfGBcGSQSCbVXuJzvK4PBYDAYjCvL008/DUIIOjs7MTU1hb/+679GZ2cn7r33XnAch49+9KN49NFH0d7ejvb2djz66KPQaDS48847t7vpa8JGYAzGDiGTyWBgYACEEPT392NgYAB2ux1msxk+nw8zMzNIJBJIp9Oorq6G3W7f9EE5IQRerxeZTIZGURJCyl7zPE+Leix9ABe8AW0226ZGWzY1NWFiYgJnzpxBdXU1Wlpa6ECd4zhUVVXBbDZjdnYW09PTWFhYoOdHjN5LJpMYGxtDJpOB0+lEY2Pjtkf4ymQydHV1oaqqCuPj4zh58iQVzXdTtGokEsHY2BgKhQI4jqMegjU1NdBqtdDpdFCr1bvqmFZD9DIWhdLlPpQKhQIOh4MWGFOpVGhtbUVTUxMKhcJFJxtEgblSent7MT8/D5fLhWAwSKN8d/t53k0UCgWMjIwgHo+jtbV11ckcQRDw2muvYXx8HK2trbjhhhu29NpTLBYxNjaGcDiM+vp61NXVQaVSrfq9aGhoQKFQQDAYxOLiIgYHB/EHf/AHl9y+wcFBBAIBHDlyZMMFqpZiNpvBcRyy2WzF75FKpauKpBMTE4jFYnA6naivr9/WApQMBoPBYDCuHgTCQSB7u1++0eOLx+P41Kc+BY/HA4vFgne96134whe+QPtnn/jEJ5DNZnH//fcjGo3i2muvxa9//esNjZGuNBzZzHKve4BEIgGj0Yh4PM7M7BlXjFKphJMnT0Imk6Gvrw+pVApDQ0M4evQotFotEokEzpw5A4VCAY1Gg1gsBplMBofDAZvNBqPRuClCytzcHObm5qDVasFxHN3m0tdi4Y7VHiqVaksueIQQ+Hw+zM7OolQqobq6GtXV1XTgLZJMJuH1ehEMBlEqlaDVamEwGODz+aDRaNDd3b0j/SaLxSImJycRCATQ09OzYyORlyIIAubm5uB2u2E2m9Ha2gqNRrPtQvVWQwihRani8TgSiQQSiQSKxSJUKhWOHTt2RduTy+UwOjqKeDyOpqYmNDU1XdH9X63E43GaQdDT07NqurEgCHjhhRfgcrnQ29uLo0ePbmmbEokEhoaGQAhBV1dXWar8WhBCaHEmn8+HQ4cOXVLfZ3FxEc888wyNwL1cfve736G+vh5Op3PF/4rFImZmZhCNRmE0GmEymWA2m1cVcVOpFM6ePQuDwYC+vr49f31iMBgMBoOxPtlsFsePH8db3/rWLdF8RD3ppaFa6PR7u9+RSgr4g33eq1o7YxGqDMY2IxagKpVKOHjwIFQqFaampmixDeBCGvH1118PuVwOjuOQTqexuLiIQCAAj8cDuVwOm80Gi8UCs9l8Sem/i4uLmJubQ3Nz86qD2LXaLhbt2Eo4jkNNTQ2qq6vh8Xjg8/ng8/kgl8tRVVWF6upqGI1G6PV6dHZ2or29HZFIhPpWNjY2wul07tjBtFwuR09PD5LJJJLJ5K4QVIeGhhCNRtHS0oKGhoarJjLy5MmTyGQyZctUKhU0Gs0VTz8VBAE+nw/JZBJKpZJ5CF4BCCHweDyYmZmh9g5r2VYcP34cHo8Hhw8fRl9f35a3TZxIuvbaay9qpUEIQTAYhNvtRiqVohN0l2rbMjQ0BEEQqJfq5SKTyVZEgQMXjnF8fBzAhfT9ZDIJv98PADQFXBRYxaJVPT09GBwcxMTEBLq6ujalfQwGg8FgMHYPgiDQwq+iDdBWwzxUrw6YoMpgbCPhcBiTk5PI5/Po7OykETZi1bulLBUttVot2tra0NraikQigVAohFAohMXFRXAcB4PBALPZjJqamoo8KlOpFCYmJqDX6yuuWkwIwezsLObn52E0GlFVVbXl1dmlUilN2U+lUvSm6PV6YTAY0NnZST0od6MHnlqtXiHW7VSi0Siam5vR2Ni43U25orS2tiIUClH7DeCCf6NcLodEIqEztFstMIdCIUxNTSGfz6OhoQFOpxNSqXRL93m1UygUMDk5iWAwiIaGBjQ3N687SZNOpyGVSiuKFN0MjEYj5ufnIQjCmusIgoBAIAC3241MJgOz2Yz+/n6YTKbLmnC69tpr8cwzz+D48eM4duwY2tvbL3lbwIVJpmKxuGJ5NBpFqVRCbW0t2traIJFIUCwWEYvFEI1GEYvF4PV6AQA6nQ5yuRzxeBwANmQhwGAwGAwGY/fhcrmwsLAAmUwGqVQKmUwGiURCs8k0Gg2cTudlWRMxGEthgiqDsQ1kMhlMTU0hEonAbDajr6+PRqOWSiUUCoUVRTdWg+M4GI1GGAwGtLa2IpvNIhqNIhKJwO12U6H2YsjlcphMJkSjUbz88svUx1P0S13+XCqVygbtMpkM09PTmJqagslkouLqVkWuchwHvV4PvV6PlpYWxGIxTE5O4vTp0zhy5EhF524notFoEAqFQAjZ8RGfhJCrshDS0qrjxWKRpvz7fD6EQiEA2HTbBkIIcrkcYrEY4vE44vE4stksFcN26/d9t1AqlTA/Pw+PxwOO49Db24uqqqqLvu+GG27AL37xCwwNDaG2tnZL25hKpbC4uAjgwv1leaSpGM3sdruRy+VgtVrR1dW1aelZBoMBb3vb2/Dcc8/hd7/7HZLJJA4dOnTJ21MoFPD5fIjH4zSt32g0or29HUqlEnNzcyiVSujp6aGZCuJnks/nqbhaKBTQ3NwMq9XKficMBoPBYOxxxNojYoCKxWIBIQQOh4PW1+A4jhZU3kp4SMBjZ2ZHbhb8djdgB3D1jYYZjCsEz/NYWFhAKBQCz/NlD0EQoFKp0NvbW1ZIRvQKBVDR4C+fz2Nubg6BQADt7e00ZbO2tpYWJhkYGKACbUNDw6oep0qlEvv370cmk8Hi4iJCoRAkEgmd2RP9UZfO9onPWq0WGo0GxWIRoVAIwWAQU1NTmJqagtlsRnV1NWw225aJbxzHwWw24/Dhwzh16hTGx8dx4MCBHS9IrobNZoPH44Hb7a7YdmE7SCaTAHDVR0TK5XKoVCrMz88jn89DIpGgvr7+siOjCSFIp9NUPBWFIeBC1J3FYoHVal3hIczYXARBwMLCAlwuFwRBQH19PRoaGtYsbHTy5ElMT09Tz+lisQiFQrGlvrrpdBpzc3MIBoNQqVTo6uqCxWKh/+d5Hl6vF/Pz8ygUCqiursa+ffu2xEtaoVDgjjvuwE9/+lOMj49flqDa1dWFSCRCv/9L74vV1dXr3h+VSiUcDgccDscl75/BYDAYDMbuw2Aw4OjRo7RwazqdxuHDh7fcno5x9cIEVQZjkxFF0bm5ORQKBRqpKZVK6UMmk8Fms5UJUolEAlNTU0gkEtDpdOB5HrlcbtWUhFKpBLfbDY/HA6lUCqPRiLGxMaRSKSqqVlVVIZ1OUwuASCSC06dPw2KxoLu7e1VRQKPRoLW1Fa2trRs+brlcjpqaGtTU1KBYLCIYDMLv92NsbAwSiQRWqxVOp7OigbwgCJienoZGo6k40lUqlaKzsxPnzp2D1+tFXV3dho9huzGZTHA6nZidnaW2DTuNUqmE4eFh6PX6iqL09jqJRIIKzIIgwO12Y35+Hkqlkj5UKtWK1zKZjIqhPM8jlUohkUjQKNRSqUQjsR0OB4xGI4xG41UZFXylWX4Nr6mpgdPpXNfOxO12Y3h4GLW1tdBqtTSCfzOjQJeSzWYxNzcHv98PpVKJzs5O2O32srT9UCiE8fFxlEol2O12NDY2bnmUpsvlQjKZvOwCXDKZjBYfBC5Eg8fjcQSDQczPz4PnedTX129GkxkMBoPBYOwhJBIJnE4n7HY7Tp8+jbGxMfT19V3xIARCOAhkbwc+kD1+fJXARmYMxiYTCAQwPj6O6upqNDc3V1TkIxQKYWhoiP6dSqVw7tw5SCQSXHPNNVCpVCCE0NTiQCAAQgjq6+vR2NgIqVSKhYUFTE9Pw+PxAPh9oRxx/+IAP5fLreuxtxnI5XLU1taitrYWuVwOY2NjCAaDUCqVaGtrq2gbyWQSCwsLmJycpB6tNpttXc8bk8mE2tpazMzMwGq17kp/nKamJiQSCQwODtKo450ShZjNZjExMYFSqYT9+/fv2CJfV5Kamho4HA46AZLP5+mz+DqRSCCfz4MQQt8nkUigVCohkUiQyWRACIFEIoHBYEB9fT218rjao4CvJIVCAcFgEAsLC8hkMqiurkZTU9NFRchCoYBXXnkFZrMZt91225b+LhKJBObn5xEMBqFQKNDe3o6ampqyffI8j6mpKSwuLsJqtaK9vf2KXQvPnj0LqVS66SKyWHjRZrNBEAQkk8mrtposg8FgMBiMiyNm7gwODu7aYBvGzocJqgzGJpPJZKBUKtHT01Pxe/R6PVpbWyGTySCXy2lK/eDgIKampqDT6eD3+5HNZqFUKlFfX4/a2tqyiKn6+no4HA5kMhlkMhmk02lkMhmEw2HwPI+qqirY7Xbo9forKtCpVCoq4KbTaYRCIVit1nXbIJFIcPDgQSwsLGB2dpamPk9NTdHIyKqqqlXF6vr6eni9XsRisV2Z8slxHPbt24epqSmMj48jGo2io6NjWyMTs9ksXC4X/H4/5HI5enp6Lrka+F6E4zjIZDLodLo1I7AJISgUCmVCaz6fB8/zqKurg16vpwXVGFeOXC6HYDCIUCiEeDwOjuNoFP9q9iir8bvf/Q75fB633377lnx+hBCEw2HMz88jHo9DrVbTyZblgns6ncbQ0BD1z77SEzJ9fX04d+4cnnvuOZjNZuzbt++ixbs2ikQigdFo3LTtMRgMBoPB2JtYrVbU1dVhenoaUqkUdrv9ivWLeHDgsTOCYraKvX58lcCRpSEzDCQSCRiNRlqpmcG4GOl0Gul0mgol4XAYMpkMhw8fvuxtLy4uYnx8HFKpFFVVVTT1d7nnqpjaD4A+W63WHTPo5HkegUAAXq8XyWSSetxZLJaLVkTP5/OYmppCMBgEAGi1WmSzWQiCAK1WS7dhMBigVCoxMzODhYUFXHfddbs+PVqMdhZFzCt9TcpkMlRIVSgUaGxsRE1NDYuaZOxqMpkM9XtOJpNURK2qqoLVal3TI3U1BEHA9773PXR2dm66VyrP8/D7/Zifn0c2m4XRaERDQ8OaE1LFYhGnT5+GRCLBvn37tq0Ik2jZMjg4iEQiAb1ej/3791ecncBgMBgMBoOxWfA8j/HxcQQCAVgsFvT19SGZTG6Z5iPqSb8edEKr39uBEumkgDf0ua5q7Wx3qw0MxjbC8zwV74ALHp6iR6Ldbt+UfTgcDmg0Guh0uhUiViqVwsTEBBKJRFm0YDabpc+XKqiKVcXFaNnLRSqVUn/VZDIJr9dLi73IZDKYzWaYzWZYLJYVqalKpRK9vb0Ih8OYnJxEJpNBbW0t9Ho9otEoAoEA5ufn6brFYhF1dXW7XkwFgOrqauj1eoyOjuLs2bNobm5GQ0PDFZlZnZ6exvz8PBQKBdra2piQytjVFItFLCwsIBgMIp1OU1/nhoYGWCyWS75eSCQScBy36cUOCoUCTp8+jXw+j6qqKnR3d6/bUSWEYGRkBDzP48CBA9tqdyKRSNDe3o7W1la43W789re/xZkzZ5igymAwGAzGDoUQglKphGKxCKVSuWv7/IIg0OKgIlKpFD09PbBYLBgbG6Nj5a2GJxLwZG8LqjwLzWSCKoNxKcTjcYyNjSGfz6O1tRU1NTVbIuBxHLeqKFoqlXDq1Cmo1WocPHiQzrC53W5ks1moVKo1fWKSySQCgQBNe1gqxuZyOXi9XgQCAeRyOQAXREqNRgOtVguNRgONRgOVSgWFQkHTOAuFAkKhEMLhMFQqFRwOB3Q63arCn16vR2dnJzo6OpBIJBCNRhGJRDAxMQEAUKvVsFgsMJlM1ANWFD9MJhPm5+fhdrsRDAbR0tKCrq4uFAoFJBIJJBIJ5HI5NDQ0XPa53ymo1WocOHAAc3NzmJmZQTQaRW9v75YLxmIk8TXXXLNrO1UMBgBEo1GMjY2hVCrBZrOhubkZZrN5077XUqkUpVJpU7YlMj8/j1KphGuuuaaiSNNisYhoNAqn07mjvKP9fj8EQcCRI0e2uykMBoPBYDCWkM1mMTw8jFwuV9aPcTgc6Orq2saWVQ4hBKlUio4n4/E4CCFlhWDFZ/EYc7ncngi8YewM2DeJwdgAPM9jdnYWHo8HBoMBfX1925JWWSgU6OvZ2VnwPI9kMgmNRoPu7m5UV1evKmYGg0GMjIxALpdDEAR4PB4cOnSIHsPMzAxCoRDsdjusVitKpRL1ZA2Hw1hYWCgrrCNGsGazWXAcB4PBQIu6aDQaGpW62k1LFIuNRiOamppQKpUQjUYRjUbpvkSWFtjSaDRob2+H1+vF2NgYgAs3ftFXdS8ikUjQ0tICs9mMoaEhTE9Po7Ozc0v36XQ6cf78ecRiMVit1i3dF4OxFQiCgNnZWczPz8NkMqG7u7vMd3qzkEqlKBaLm7a9QqGAhYUFNDQ0VHx/USgUsNvtWFxcpIUKt5NoNIrf/e53CIVCaG9vR0tLy7a2h8FgMBgMxu8RBAGjo6MolUpwOp2QyWQ0i3Cnj6fy+TwVUKPRKIrFIqRSKUwmE1pbWyGRSGi9guXFYR0OB8xmM5LJ5Ja3UwAHAXs7QlUAC1FlgiqDUSGCIFBPuNbWVtTX129b9XWNRoN9+/YhHA5DEAQQQtDY2AibzbZmmwghGB0dBSEEx44do3YFSwVSjUYDiUSCjo6OVbcjCAKy2SxyuRwKhQJ96HQ62Gw2yOVyEEIQjUbh8/kwMzMDl8uFuro61NfXr+tNKJPJqChKCEGxWEQmk0E2m6XP0WgUXq+3rM2zs7O7svjUpWA2m9Ha2oqJiQlUVVXBYrFs2b5MJhOMRiNcLhcTVBm7kunpaXi93i2/Xstksk2NUHW73ZBIJBuOtG9qakIgEMDCwgIaGxs3rT0boVQq4dy5cxgZGYFCocAf/MEfsFR/BoPBYDC2AHG8lMvloNFoNhR16XK5kEwmcfDgQRgMBgiCALfbTS3YdgqEEOTzeaTTaRp4k06nAVzIeqypqaH1NNYrgCmeq822aGIwmKDKYFSAIAgYHh5GIpFAf38/TCbTdjcJNpsNNput4vU5jkNzczOmp6fx6quvolAooK2tDVqtlq6j1+tRKpWQy+VWreIukUig1WrL3rPafiwWCywWC/L5PObn5+mjtrYWTqfzokVfRE9ChUKx4lyL/q5i5OxWRJztZGpqahAMBjE+Po6jR49uacpKqVRiHQ/GroXneej1+i23ANFqtZifn8f09DRaW1sva1v5fB5erxeNjY0b/m2r1WrU1NRgfn5+WwRVt9uNEydOIJVKoaWlBceOHWPXDwaDwWAwLgNBEJDL5WhAy/JnnucBXAiE2L9//0Unj4vFIrxeL1wuF5qbm6k/u9frRTabRW9v77YFDInkcjnMz88jEokgl8vRQBqlUgmz2Qyn0wmz2byhIqJb4Xd/MXhw4LG953Kr2evHVwlMUGUwLgIhBGNjY4hEIujr69sRYuqlUl9fD41Gg3g8Do7jVvisijfV5YWuLhWlUom2tjY4nU54PB4sLCwgkUjgwIED684irgfHcVCr1VCr1Vdl5CTHcejs7MTJkycxNDSEjo6OLbGdCAQCSKfTW24twGBsFSqVCuFweMv3c8stt+D48eN48cUXEY1GL8svVIxOra+vv6T3cxx3xX3BUqkUXnnlFSwsLMBoNOKOO+5ATU3NFW0Dg8FgMBh7CbH48dLMPI7joFKpoFarYTQa4XA4oFKpwPM8xsbG4PV616yhkU6n4fF44Pf7AQB1dXV08rVYLGJubg41NTXQ6XRX5gBXIZVKYX5+vqzWh2j5plaroVKptl3sZTCWwwRVBmMdCCGYmJhAMBik1QF3MxzHwWq1rilEyuVyqFQqJJNJ2O32TduvXC5Hc3MzrFYrzp49i9deew1yuRxSqZQ+JBIJFAoFmpqatt3/b6ejUqnQ29uLiYkJnDx5EnV1dWhqato0IUX0nrTZbOtWFmcwdjJqtRrFYhGlUmlLRUaVSoU3vvGN+NWvfoWJiYnLElQlEglKpRIikQiqq6s3/P54PL5qIcOtQBAEnD9/HsPDwwCAw4cPo7e395InyxgMBoPBYJQXP25qaoLBYIBarYZSqVxTUIzH45iZmYHVaqXFKUUbNo/Hg0gkAoVCAafTiZqaGigUChBCEIvFMDc3B0IImpubr+Rh0jbG43HMz88jHA5DqVTSgs+7fTzIEwl4srf7RDxhHqq7SlBdWFjA3/zN3+CXv/wlstksOjo68E//9E84fPgwgAs/yEceeQTf+MY3EI1Gce211+LJJ59Eb2/vNrecsVvxeDxYXFxEV1fXjjfo3iwMBgMSicSWbbuvrw+RSASCIIDnefrIZrPw+/2w2WxXTBDYzVgsFhw9ehQejwdutxs+n4/aH6zW2dLr9WhqaqrIImFxcRG5XA59fX2b3m4G40ohRtnncrktj7iQSCTI5XIbsmFZjZaWFhQKBYyMjADAhkRVnueRTqevSHTowsICXn31VSSTSTQ2NuLYsWPbUqCRwWAwGIy9wtJimhstftza2opIJILx8XHs27cPfr8fHo8HmUwGOp0OXV1dqK6uhkQiASEEgUAA8/PztKhxT0/PFU2JFwSB+r4nk0lotdqyNjIYu4VdI6hGo1HccMMNuOWWW/DLX/4S1dXVmJ6eLku/fvzxx/HlL38ZTz31FDo6OvD5z38et99+O8bHx6HX67ev8YxdCc/zcLvdqK2tvWqKHgEXPHgmJyeRy+XoDOdmIvqrLieZTOL06dPsJroBpFIpnE4nHA4HFhYWqI8SWTZbSAhBKBSC3+9HY2MjGhoa1pz15XkeLpcLdrt9Xa9cBmOnI16/stnslguqmUwGiUQCHR0dl7UdjuPQ1dUFABgZGUEymaTVdy9GsVgEAMzMzCAej6O6uhoWi2XD11TRp7pYLJZNevE8j1KphKGhIQQCAej1etx+++1rphcyGAwGg8GojGQyidHRUWSzWbS0tKChoWFD6e0ymQwdHR0YHBzEyy+/DJ7nYbPZ0NHRAaPRCI7jUCqVsLCwgIWFBeRyOZjNZvT398NsNl92Kj0hBOl0GqFQCOl0Gna7HVardcV2Ra94r9eLYrEIi8WCvr4+WCyWPZfOL4CDsMc9Rvf68VXCrhFUH3vsMTQ0NODb3/42XdbU1ERfE0LwxBNP4NOf/jTe+c53AgC+853vwG6344c//CH+/M///Eo3mbHL8Xq9KJVK21Ytebuw2+10drS9vf2K7VcQBAC47PQOnucxOzuLUqmEzs7OPXdzXg2lUomWlpZ112ltbYXL5YLL5YLX60VLSwvsdvuK8yN2cJZeXxmM3YhoK5LL5bZ8X3NzcwCwKfcLUVTVaDRwuVzw+/1obW1FdXX1utczlUqFa665BoFAAIFAAENDQ9BoNNi/f/+6kemFQgHJZBKJRII+l0qlVdcVI0pMJhPa29tZNgGDwWAwGJeBIAhwu91wuVzQarU4cuTIJQc0WK1WNDU1oVQqoa6ujmbqCIIAj8cDl8sFnudRXV2Nffv2VTzZLAZsLB+jCYKAeDyOUCiEcDiMXC4HqVQKtVqNoaEhaLVaOJ1OVFVVgeM4uN1uzM7OQiKRwOFwoK6ujmW3MHY9u0ZQ/fnPf4477rgD7373u/HCCy+grq4O999/Pz74wQ8CAGZnZ+Hz+fCGN7yBvkepVOKmm27Cyy+/vKagms/nkc/n6d9blerM2H14PB7Y7fYtidLcyUilUtTV1cHtdsPpdF6x9A9RKFhrIF8JqVQKIyMjtCKkRCJBe3v7VSGqXgyZTIbW1lbU1tZiZmYGY2NjcLvdkMlk4HmeWjAUi0U4HI5NKUrGYGwnYvGGbDa7pfvJZDIYGxuDTqfbNM9hjuPgdDpht9sxPT2N0dFRxOPxi0bAqtVqOJ1OOJ1OJJNJDA0N4ezZs+jr66ORp0srBGcyGSo4y+VyGAwG1NfXw2AwQKFQrPC5FiNcfD4f5ufncerUKdhsth1RFZjBYDAYjN1EOp3G6Ogo0uk0nE4nGhsbLztTb3lARCwWw+TkJNLpNC1EtXySled5eo9fSj6fx8LCArxeLwCgt7cXer0ekUgEoVAIkUgEpVIJSqUSNpsNVqsVJpMJEokEsVgMLpcLIyMj0Gg0sNlscLvdqK+v39S6DzsZARLw2NuZlwKYh+qu+SbPzMzga1/7Gj7+8Y/jgQcewIkTJ/CRj3wESqUSd911F3w+HwCsKKRjt9vhcrnW3O4Xv/hFPPLII1vadsbugxCCfD5/1RbksVgsmJubg9/vR0NDwxXZp06ng1QqRSwWu6TznkgkcO7cOajVahw+fBjxeBwTExPQaDSXXDF7L6JWq9Hb24t4PA6v1wuO48oEE7lcvqkFyRiM7UStVm+poBoIBPD888+jVCrh5ptv3vTtq1Qq2Gw2BIPBDUes6PV6HDx4EOfPn8fJkyfpcqlUCpVKBZVKhaqqKuj1ehgMBiiVSjqxIpfL1xRIpVIpjf4FVlqMMBgMBoOxlyGEIJFIgOM4KJVKKBSKDU8qBoNBjIyMQK1W49ChQ5tuT1goFDAzMwOfzweDwYDDhw+vuo9MJoOTJ0+CEAKFQgGlUkkF13A4DIlEgtraWqRSKQwMDAC4cPw6nQ719fWwWq3Q6XQrjt9kMsFkMiEej8PlcsHtdsNms6G1tZVNwDL2FLtGUBUEAUeOHMGjjz4KADh48CCGh4fxta99DXfddRddb/kPlBCy7o/2U5/6FD7+8Y/TvxOJxBUTkBg7l81KP9+NJBIJDA4OQqPRXFKV6UtFIpHAaDQiGo1uOG02m81icHAQer0e/f39kEql0Gq1yGazmJqaglKpvGqKilWK0Whk6bqMPY9Go8Hi4uJF+wIXg+d5eL1e6PV66t0+OzuLl156CWq1GnfccUeZp/tmkUwmMT4+DofDgdra2g2/X6VS4dChQ4jFYlAqlVCpVJDL5cjn80gkEkgkErQwheibCly492k0Gmg0GiiVShBCQAhBMBhEPB6HUqmE1WpFV1fXVTvxyGAwGIzdCSEEpVIJEolk1cjMtcjlcvD5fFhcXCzLcAUuZHkolUrodLqKLMcEQSgTMTcLQgi8Xi9mZ2cBAJ2dnXA4HGu2x+12Qy6Xo6mpCYVCgWbvlkoltLS0oKamBjKZDIQQLCwsgOM4WK3WijM4jUYj+vv7kclkoFKprioxlScS8GRvR6jybFJ99wiqNTU16OnpKVvW3d2Nf/u3fwMAWjTI5/OVVbgNBALrRlstnYVhMETW8orZ64TDYQwPD0On06Gvrw9yufyK7t9sNmN2dhaCIFSc8lIqlTA4OAipVIp9+/aVfWYtLS3I5XIYGRnBvn37YLVat6rpDAZjB2K1WuF2uxGPxy9J8CSEIBwOY2pqCrlcDhzHoaenBxKJBC+99BLMZjNuu+22LbGGKRQK1IOso6PjkgchcrkcVVVViEajmJycRCKRoANBlUoFjUYDnU4Hm80GpVIJqVSKbDZLLQFisRgddPr9fsRiMRw6dAj9/f2bebgMBoPBYFwyokhaKBRQKBRQLBbp6+WPYrFIsyvETC2ZTEafV3udSCQQDochlUpRXV2NmpoacBxHt5nP5xGLxeDz+Sq6Z4vV7EdHR3Hq1Cn09vZedqBDNpvF6OgoEokEampq0NLSsu5YLp1OU5/2i03achx3WRl/zCuVsVfZNYLqDTfcgPHx8bJlExMTcDqdAIDm5mY4HA4888wzOHjwIIALg5EXXngBjz322BVvL2N3IwqqgUAA+XweKpWKRvdIpdI9Obvm8/kwPj4Oi8WCnp6ebRGTTSYTBEHA5OQkTCYTtFotNBrNmuKqIAgYHh5GoVDAoUOHVnQaOI5Dd3c3RkZGMDQ0hN7eXthstitxKAwGYwcgeoGGQqENC6qZTAZTU1OIRCK0Cq3L5cLg4CBCoRCUSuWmi6mEEGQyGcTjcSwuLkIQBPT29l62pxpwoeBcNBpFTU0NjEYjPTeVMjY2hkQiAb1ef9EieAwGg8FgXAnEok7z8/N0/CYikUigUCjow2AwQC6XQ6FQQC6XgxACnudRKpVQKpXKXhcKBWQyGbpMpVKho6MD1dXVa/p/zs3NIZ1Oo1gs0u2Ir8XIz1wuR5/F9hYKBSwsLFyyoEoIgd/vx+TkJORyOQ4ePHjRbYXDYepvujQYjbF5CJBAYB6qe55dI6h+7GMfw/XXX49HH30U73nPe3DixAl84xvfwDe+8Q0AF4STj370o3j00UfR3t6O9vZ2PProo9BoNLjzzju3ufWM3YZCoYDFYkEikUAwGCzziKutrb1oYZDdRi6Xw9jYGJRKJbq7u7ctMlen08FutyMSiWBxcRHABQ/Evr6+splNnucRDAaxsLCAVCqF/v7+NWc+JRIJenp6MDIyguHhYSaqMhhbQCKRQCaToYMWAGUDCZlMti22GxzHoaqqCsFgEC0tLRUJkzzPw+VyYX5+Hkqlkka3ixM0hBDMz8/jxhtv3FQxdWpqCj6fjxbm0+v12Ldv36btQ6VSQSaToaWlZcOTgkNDQzh16hRqa2tx8803X7FihQwGg8FgrEUkEsHk5CRyuRzq6upgNBqpWCoWVrySQTBiv+eVV15Z8T+ZTEb9y00mU1mwjmjHc6n7nJiYoFm57e3t6xZ8EvswMzMzsFqt2zruYzD2ArtGUD169Ch++tOf4lOf+hT+9m//Fs3NzXjiiSfwJ3/yJ3SdT3ziE8hms7j//vsRjUZx7bXX4te//vWmmzwz9j5SqZSmMxJCaCpHMBjE/Pw86uvr91TqglKpRGtrK2ZnZ3Hy5Em0t7dvi+goChbAhQ5CKpXCxMQEzpw5g56eHshkMiwuLiIQCIDneZjNZvT398NsNq+7XVFUHR0dZaIqg7HJhEIhDA8Pr1ucSCyutB3R/Xa7HQsLC3jllVdgt9vhcDig0+lWrFcsFhGJRDAzM4NisQin04mGhoaygYZ4jUomk0ilUpvWRkEQsLCwgKqqKtTU1MBgMGz6AMdoNGJ+fh5nz55Fc3MzCoUCNBpNRX0k0e6AiakMBoPB2G7y+Tymp6cRCARgMpmwb9++DRdu3AoaGhqg0+kgl8upXYD4ejMyTZYTj8cxOjqKYrGI7u7uixaVFQQB4+Pj8Pv9aGxsRHNz857Mutwp8IQDT/b2+d3rx1cJHGHlWctIJBIwGo2Ix+Os0AJjBYIg4NVXX4XVakVnZ+d2N2fTyeVymJiYQCQSgc1mQ3t7+7Z7DJdKJYyMjCASiQC4IP46HA7U1NRsOHJLEASMjo4iFAoxUZXB2ASi0SgGBwdhsVjQ3d2NYrGIfD4PjuPAcRxGRkZQKpVw4MCBbR3spFIp+Hw++P1+FItF6HQ6VFVVged5pFIppNNp6isqVqFVq9Vrbs/v92N0dLSitLpKiMfjOHv27JpVeDeLWCyGqakpKgY7HA50dXVd9H3hcBj/8R//geuuu25P3vsYDAaDsfMRCyPNzs5CIpGgtbUVdrv9qhIFBUFALpeD3++Hy+WC0WhEd3d3RWMiUUzt7Oy8qPi619lKzUfc9vfO9kGj39vRv5kkjz89OHhVa2e7JkKVwdgJSCQS1NfXY3Z2Fk6nc0sKkWwnKpUKfX19CAaDmJqawvnz53Ho0KF1U0e2GplMhr6+Pvh8PmrFcKkdJ4lEQj1VR0ZG0N/fvyWVuRmMq4FEIoGhoSEYjUZaqEkqlUKlUqFUKuH8+fMoFovbLqYCF+xE2tra0NLSgmg0Cp/Ph7m5OSgUCmo1otPpoNPpKso+qK6upilzBw4cuOzBXCKRgEQi2fTzJAgCFbeBCz7Vhw8fRjQaxcmTJ+F2uzEzM4N4PA6NRoPa2lp0d3eviOC1Wq3Q6XRwu91MUGUwGAzGFSeRSGBiYgKpVAq1tbVobm6+4sVzt4NAIEBtlbLZLHK5HM0IampqgtPprLgPUigUoNVqodVqN1QAmHFp8JCA3+MeqjzzUGWCKoOxUWprazE/P4/Z2Vmanr6X4DgO1dXV0Ol0OH36NMbGxtDb27uts78cx22aYbqY/j8wMIChoSEcOHBg1fRfBoOxPlNTU9BoNNi3b19Zp5zneQwODiKZTEKj0WBsbAzFYrHsvWazuaLIyM1GIpHAarXCarWCEFLRdU0QBEQiEfj9fkQiEezbtw9msxnNzc0YHBxEJBKB1Wq9rHaJM/ubMbghhFDROBQKQaPRoL+/n6bqcxwHuVwOn88HqVQKk8mExsZGJBIJjI6OYnR0FPX19eju7qbRsuFwGMViEYlE4rLbx2AwGAxGpRSLRczMzGBxcRE6nQ6HDh26aiLhisUiRkZGoPr/2Pvv+LbS/L4Xf6NXopAA2HsVKZKSqDajmZF2dnrZtXft9e4mNxs7jv1zcnPjXxwnvjfFduLyc27i6+QX11Tba8de7+6MZ2enz07TqBf23gkQhQSIDhAEzrl/yDgrDimJEjt13q8XX5RIlOeAwDnP83m+389Hr8dkMlFUVITRaMRgMGAyme7bgsdqtTI5Ocm1a9ekTdyioiJqamq25wBkZB4CZEFVRuY+yYd6jIyMUFpais1mQxRFstksyWSS5eVlKZ1+P7egGI1GDh06RH9/P3Nzc1RVVe32kLYMpVLJ4cOH6e7upre3l2PHjh24amMZme0klUoRjUZpbW1d4/WZTCaJxWJS4ILBYECr1UoVFfPz82Qymd0Y9io2cn4Oh8MMDg5KfqP5tF+AwsJCaXFit9sfWAwVRZFoNEpJSckD3f92YrEY/f39LC8vYzQaqaysxOv10t3dTWdnp2ThEo1Gqaqq4vHHH1/VgZBMJhkYGGB8fJzZ2VlpfLFYDJ1OxxNPPLHpMcrIyMjIyNyLfHL9xMQEgiDQ2NhIWVnZvl5b3S+xWAyA1tbWLRGRq6qqKC8vJx6PE4vFCAQCzM3NyYLqNiGISgTxYFeoCrJ7qCyoysg8CCUlJXi9XgYHB9HpdKRSKWmRnUetVmO1WqWvgoKCfdda4XA4qK6uZnJyEpfLdaBER7VaTUdHBzdu3KCnp4ejR4/KYSsyMhskEAhI1Z6fpaCggMcff3zdRc/Kygqzs7N71r84EAgwPz8vJfUuLy9js9no7OwkkUgwODi4qtKzsbGRGzduMDExQWNj4wM95/LyMplMZtOLpZWVFQYGBtBoNBw+fBiz2YxCoaC4uJienh66u7ulRVMgEMBqta6xczEajZw4cYKjR4/idrulyuLFxUXcbjdXrlyRQjdkZGRkZGS2g0QiwejoKJFIBJfLRX19/a5nOuwkea/YyclJzGbzltoBqVQqaW2ayWT2xAa3jMx+RhZUZWQeAIVCQXNzMxMTE2i1WpxOJwaDQarESiQSRCIRIpEI09PTkk+NxWKhuLgYp9O5q76k90NpaSkzMzMkEokDJagCaLVa2tvbuXr1Km63m7q6ut0ekozMviAQCOBwOO6YRH+nChKfz4coiptukd8OFhcXGRwcxGazYbFY0Gg06PV6SkpKWF5eZnh4GKfTuUr4NJvN1NfXMzY2ht1ufyCh2OPxoFQqNx1uNTIyQjabpbOzc1WgltFo5OjRo/T09DA0NCT9vL6+/o6PpVarV1WsNDY2EgqFeO2111hYWJAFVRkZGRmZLSeXyzE7O8vs7Cx6vZ7Ozk7sdvtuD2tHuT2Mt6Kigrq6um0ryMlkMnIxyTYie6g+HOwPRUdGZg9iMpno6OhY93darVaaAAiCQDweJxKJEAqFGBkZYXx8HKfTSXl5+bYmOm8FOp0OhUIhJWAfNPx+PwqFYkvabWVkHhZEUSQej9/XZDzfuldWVrbnKk2y2SwjIyM4HI51PaPVajUKhYJMJoPX68XlckmbYmVlZdK5vaCg4L6OLZFI4Ha7qa6u3lS4xsrKCouLizQ1Na0SU/Po9XpOnjxJLpdDqVSuCqraKDabDY1Gw9TUFLW1tQ88VhkZGRkZmc8SCoUYGxsjnU5TXV1NVVXVvuvs2wrcbjfhcJj29vZt33yWBVUZmc0jC6oyMttMvjLVYrFQWVlJOp3G5/NJXxUVFdTW1t6x0mu3yVeUHcQLbjqdZm5uDpvNtucEHhmZvUzeg7inp4djx47d8/zl9/sZGhqipKTkgVvjt5NEIsHKygo1NTXrCo1qtZra2lrcbjejo6NkMhmpglOhUNDS0sLVq1cZHh6ms7Nz3edIp9Ok02m0Wi0ajQa1Ws34+Dh6vX7THtW5XA64tQHm8XiYm5sjEAhI3RFqtRqVSiV95XI5UqkUy8vL5HI5jh8/Tm1t7V0Xr0qlkpaWFvr6+vD5fPImlIyMjIzMpslkMkxMTOD3+7HZbLS3t2M0Gnd7WLtGIBDA6XRum5gqiiKCIJDL5VheXt50d4zMnRGAnHiwPX+F3R7AHkAWVGVkdhi9Xk9NTQ3V1dW43W6mpqYIBoNUVlZisVgwmUx7xnA9FosxNjZGSUnJnmzR3SxqtRqHw8HCwgIXL16ktLSUsrKydSu8ZGRkfojRaOTw4cPcuHGDaDR615a8hYUFhoaGMBgMuFwu4vG45O+5V7jXWGKxGNPT02SzWVQqFaWlpSwvLxONRiV7F5VKxeLiIslkcs1iMJVKce3aNUn4vJ329vZNV+FkMhkWFhZ44403yOVyqNVqioqK0Gq1UpBWJpMhl8tJVaoGgwGLxUIwGOSTTz7h/PnzWK1WOjo6qKmpWTWm/IJ3fn6eaDTKq6++itPpxOl0UlxcTH19/b6xsZGRkZGR2X1EUcTn8zExMSFtTBYXF++pucFOk0gkSCaTd7Xk2QyhUIj+/n4E4YcymMvl2pbnkpF5WJBnvzIyu4RCoaCyspKioiJGR0cZGxtDFEVUKhUWiwWr1UpxcfGuiXv5FlaTyURTU9OBnOCo1Wra2tpIp9N4PB68Xi9zc3M4HA4aGhoOnGesjMxWkj83LS8vMzo6SmFh4boeoqFQCLglKvb29gK3vJmbm5t3brD3IC8e3r7IyBOPx+np6cFoNFJSUsLS0hI3b94knU4DtzbJDAaDJKwuLCxQXV0t3V8URYaGhtBqtbS1tUmBVysrK2g0mi3ZrMrbBVRWVtLQ0EBZWdmGRdpMJsPs7CyxWIyZmRk+/vhj+vr6aGtrI5PJ4PF48Pl85HI5bDYbp06dQqvVsri4yPz8PJOTk0xMTGAwGEin0zgcDsrLyykpKXko2zVlZGRkZO7O7aFTJSUl1NfXb8r25qAQCARQq9Xb4hsriiITExOYzWbKy8uljpXNBmLK3BkBJcIB91A96Me3EWRBVUZmlzEajRw5coRcLkc0GpW+3G4309PT2O12ysrKKCoq2pHFaSaTYXx8nEAggM1m49ChQwd+UazX66mvr6empoZAIMD09DRXr16ltraW8vLyAykmy8hslnyb/9jYGLlcjvn5eVpaWta0gjc3N9PU1CRVSvr9fqamprDZbBQXF+/G0NeQP8d9toI0mUzS09ODwWCgo6MDtVpNKBQim83S1taGxWKR7EKmpqa4du0aHo+HoqIiqaVucXGRWCzG0aNHty3MyWAwUFVVhd1up6Ki4r7uq9VqaWhoAKCzs5OpqSl6enr4/ve/j8lkwmaz0dDQQFNT07rib3d3N93d3ZhMJnQ6HUNDQwwMDKBSqThy5Ajt7e1bcowyBx9BEFhYWMBgMGA2mw/83ENG5mFDDp26M6IoSoGf23HuW1xcJJFIcPToUbnNX0ZmC5EFVRmZPYJKpcJut0sTi1wux8LCAvPz89LiVKPRoFQqUSqVqFQq6btGo5F8+fR6PUVFRfctAuZyOfx+P5OTkw9t602+ldfpdDI1NSUJy8XFxZhMJoxG44H0kpWRuROCIOD3+1Gr1eRyOURRxOl0olarpfOPSqWioqKCmZkZstnsuo+jUChQq9Wo1Wqqqqqk6pSCgoI94ZWm1+vR6/VMTU1htVqlxUw8HmdlZYVDhw5JLe0ul4vFxUUWFxelUMFMJsP8/DxlZWUsLy9z7dq1VY9fW1u7rVUgmUwGhULB5OQkSqUSh8OBxWK570WZUqmUNpe++c1vUlFRwec///m73ufIkSO0trZK58ZsNovP5+Pq1atMT0/LgqrMPclmswwNDTE8PEwikQBuvRd1Oh1GoxGj0YjJZKKyspLy8vJdHq2MjMyDIIdO3Z1MJkMqldq20MfZ2VmpA1JmZ8iJSnLiwX6PH/Tj2wiyoCojs0dRqVSUlJRQUlJCPB4nGAySy+UQBEGqfMp/z6dtZzIZRFHkxIkTmEymez5HOp0mGAwSDAYJh8MIgiC33nDLCqCxsRGXy8X4+Djj4+OIogjcaq3NL+5KS0slQUVG5qARjUbp7e1lfHycsrIySTCbmpqirq6O4uJiWltbMZlMXLt2DavVuiGxQ6FQ0NTUxPXr1xkcHOTYsWO7vqhSKpW0trZy8eJFfvCDH1BcXExhYSGJRIJQKMTNmzclYdHpdNLU1MT09DQLCwuUl5cTj8dRKBR0dXWRTqdRKBSrBOf72YgRRZF0Oo1SqUSr1a67qZXfcMvbDCSTSVKpFIuLi/h8PuDWNcRqtVJbW7tKEL4byWSSgYEBpqamEEVxw76otx+fWq2moqKCoaEhgsHgBo9a5mFBEASi0ShLS0uEw2EikQher5fl5WWKi4vp6uoil8sRi8VIJBIkEgnpNpOTk3z1q1/d9fOFjIzMxpFDpzaGVqtFrVZLm0pbjc1mY25uDr/fv2e6g2RkDgKyoCojsw8wm80bahX1er2MjIzc1ftTFEXpgppIJFAoFNKiu6ioSJ7k3IbVaqWrqwtBEEilUiSTSckwPhQKMT8/j8PhoK6uTn7dZA4M2WyWqakpPB4PJpNJqoB/4oknpIXR8PAw8/PzNDY2otfrcblczM/Pc+XKFYxGIwaDAaPRiN1uX9cHOu9ffOPGDUZHR6mtrZVa53eLfOXGxMQEbrdb+rlCocBkMiEIAkqlEoVCQVlZGS6XC7fbzezsLIIg0NHRgU6ne6DjWFlZYWlpiVAoxNLSEsvLy8Ct18lkMmG1WlcFRY2OjuL3+6WW/OrqaqxWK1qtllgsxuLiIqFQCK/Xy/Xr18lmsxw9evSe43j33XeJRCKUlpZy+vTp+7YPyLO0tITH41nlJSvz8JEX+CORCNFoVLp+5r2KFQoFRqOR4uJi2tvbcTqdd3ys6elpPvzwQ/x+P6WlpTt1CDIyMpsgHo/T3d1NNptFp9Nhs9lYWloiHo9jsVjkrILbUCgU2Gw2wuHwlj5uvngmHo8DtzbFZUF1ZxBQIHCwOz0P+vFtBFlQlZE5QCQSCQwGg+RteCfm5+dJp9OUlZVRV1cnpzPfA6VSiclkwmQySQs+URTx+/1MT08zMDDA8ePHHyp7BJmDhyiKeL1epqamEASB+vp6KioqJHFOqVSi1+tpa2sjHA4zPDzMjRs3ePTRR2lsbKSgoEASTILBIG63G7VaTXt7+7otZmazmYaGBkZHR/H5fJKX8d1Ele3G5XIhiiJdXV0Eg0EMBgOZTIbBwUHOnz9PQUGBFBhoMpmoqamhtLSUYDCI3+9ncXERl8uF1Wq96/lAFEUSiQTBYFDyWAWkc4zdbpduE4/HpdAorVYr+VxbLBY0Gg2iKLKyskIkEpGEKr1eT2lpKUqlkkAgsKENOb/fz9LSEo888simA8OsVislJSXMzs4yPT1NTU3Nph5PZu8jCALxeFyqKp2YmMDr9QK33o8mk4mioiLq6uqw2WzY7fZV9hr3oqKiArVazczMDKWlpVKYZCaTobKy8oH8iRcWFvjoo4/IZrN86Utfki19ZGS2GJVKRWFhIZlMhpWVFebn51lZWZE6ILq6urYsfFcUReLxOKIo7tugJZvNxuTkpLSB+6AkEgn8fj/BYFAqnsn7oa8XHiojI/PgyCqKjMwBIplM3nNiolAoOHbsGENDQ8zPz6PX66mqqtqhER4cFAoFJSUl6HQ6enp6WFpaorCwcLeHJSPzQEQiEcbGxojH4xQXF1NXV4dOpyOTybC4uIjD4WBqagqn04nZbEar1bKysoLD4UCtVqNQKNZUjWWzWfr7++np6eHw4cPrfj7KyspwOBxEIhE8Hg+jo6MUFhbec1NouzCbzczOzpJKpaTjyQus+fZ6j8dDOBymoqKCeDxONBolHA6j1+sRRZH5+Xl0Oh3FxcWUlpZK52RRFFlaWmJxcZFgMMjy8rK02CwvL8dut6+pbs0vfMbGxkgkEqTTaZaXl1EoFCwuLjI/Py/ZkaxHXpT98MMPuXHjBmfOnFlVdZr3yB0fH2dubg6dTkd9ff2mX0elUslTTz3FW2+9xSeffEIymaSlpUVu1d6HpNNp4vE48XhcspbIf+Xfj8vLy6ysrKy6n16vp6uri+bm5i0RKtVqNS6Xi8nJSdxut1RtBXD58mXMZjPFxcWUl5dTVVV1x43idDrNyMgIk5OTRCKRVY8vIyOztRgMBlpbW1f9TBRFMpkMN2/eZGBgYI3tTzqdZmhoiEQiIXmvq1QqioqKqKysvKMNzvXr10kmk6hUKh555JF9+Zm22WySLYrNZnugxxBFkZ6eHkRRpKioiJqaGux2+758PfY7sofqw4H8yboDn036lZHZD5jNZrxeL6Io3rU6SqvV0tHRwfj4OFNTU5SWlj7UnqmbwWazUVBQwOzsLDabTRYMZPYVoigyMjKCz+ejoKBgTfrr0tKSFFjn9/sBKCgoQKfT4XQ6aW5uvuO5Jl+dOjg4SF9fH6dPn163HV6r1eJ0OikoKODy5cu43e4dbxXPV4Pkk8Xn5uak10GhUFBQUEBBQQEVFRUMDg4SCAQYHBxEq9ViNpulED+4JU4HAgHm5+dxu91UVlaiVCqZn59neXkZvV6Pw+GgqKhow+eMxsbGO447lUqRSCSkeUv+8RQKBQqFQqpeHRoa4q233qKiokL6m+XbsDUaDeXl5bS1tW3ZokutVvPMM8/w/vvvc+XKFfr6+vjxH/9x+Ry5T0gmk3z44YcEAoFVP8+HRen1enQ6HQUFBZLFh8FgkLo58p+lraSpqYlYLIbdbqelpUXydp6dnWV+fp65uTkmJiZobGzkzJkz0v0EQcDtdjMyMoLX60UQBJxOJ+Xl5Xg8HvR6vXQ/GRmZ7UWhUKDT6Th8+DA3btzg2rVr2O12KUhxdHQUlUpFZWUluVyObDbLysoKk5OThMNhDh06tGbNkvcshx96jO9HaxCTyYRarSYcDj+woBqNRslkMmvmczIyMtuDLKjegevXr3Ps2DG54kxmX+FwOJidnSUajd7zIqpQKKiursbj8bC4uLgvJx57AYVCQVVVFQMDA3zyyScYDAasViv19fXybrDMnkcQBAKBAEVFRRw+fHiNOFpcXMyP/uiPIggCoiji8/mYmZkhmUxSXl6+5j2ezWalQCaFQoFKpcLlchEMBu9piaHX6ykvL2d2dpaysrIt3+TJZrNkMhmUSiWiKEoVudlsFkEQsNvtRKNRdDrdXVvU6+rqKCkpkSp1P4vNZsNms1FfX8/U1BQXL17EYrHQ0NBAeXk5ZrN5y+xBbrcjuRtlZWWYTCa+973vEY1GpapZu91OV1fXKn/WrUSr1fL888/z5ptv4vf7+da3voXL5eL48eP7tiXzYSCZTPLaa69J3rt2u13yct/Ntviampp1P5utra20trYiCAJ/9md/Ri6XY35+nkwmI1nzpFIpDAYDLS0ttLS0SO+/paUlLly4wKeffsrY2BiPPvroAwsZMjIyG8dsNtPR0YHP5yMUCuHxeIBb16XW1tY1c4BQKMTQ0BDXrl2jra1t1TUkfw3P2+d4vd59ua7J51psxkc1GAyi0Wjka+weIIeSHAd7E/mgH99GkFf7d0Cv1zMwMMBjjz0m+yLK7BsKCgrQaDQsLi5uaFdSq9VitVplQXWTOJ1Ourq6pFRin89HIpGgvb1drvyV2dOoVCrKy8uZn58nm82u+369/VxSWFjIoUOHuHDhwpoW33g8zrVr14Bbi4J8q14qlcJoNG5IiKmqqsLr9TIzM0NDQ8Mmj+5W6+Di4iKLi4tEIhGpPT4UCqFQKDhy5AgajYZcLsfU1BQul4umpqa7bobo9foNBWmoVCoaGhpwu9243W7q6up2VYxyuVyYTCbq6uo4fvz4jj73008/zfT0tFS1++abb/Lyyy/LYX57FLVaLVV8lZeX7xvPvWw2Sy6XY3JyksnJSeDWpkNZWRlNTU1UVFSs2Tiw2+08//zzjI2NcePGDV577TVOnDjBoUOHduMQZB5ykskkPp+PcDhMNBolFotJQW75jc38daygoAC73Y7D4cDlclFUVLTvOgDyG5AAmUyGVCqFxWJZd+1dWFhIV1cXAwMD3Lx5k8bGRkpLS/F6vUxPT7OyskJJSQkmk4mJiQlpE2W/YbPZJC/7B/l7BoNBCgsLZf1CRmaHkAXVO1BdXc3ExASJROKBjO5lZHYDhUKB0+nE5/NRVVW1ITHP6XQyMTFBNpuVKyo3Qb4lGKCkpITu7m48Ho8cxiKz56mqqpLaZevq6u55+3zqfb4SJM/i4iJqtZrGxkapTS/fqldUVLShsWi1Wqqqqpiensblcj1whYXf72dubo54PI5CocBut9PY2IjRaEQQBGZmZiSPsbynaFlZmeQHu5XYbDamp6clUXW3yPtlDw4OUldXtyMdONlslk8++QS/3y/54OVyOcmqQBZU9yZarZbnnnuOt99+m3feeYennnoKl8u128O6J1qtlqeffppcLodGo5HCsO61kaFUKmlubqa6upqPP/6YK1euYDAY5Ou3zI4hCALd3d0MDAyQy+VQKpUYjUZMJpN0bVIqldKXIAgsLS3h9/uZmpoCkHxGDx06RHV19b4TV7Va7T0/q3q9nqNHjzI+Ps7o6CjBYJBgMIjT6aSurg6DwUAul2N6eppAILDj9kFbwUZ9VPMe6clkUgoDTCaTJJNJ+dy1RxBEBYJ4sIXtg358G0FWT+5AviUvHA7LgqrMvqK6uhq/38/k5OSGkpodDgfj4+MEg0HJA1Bmc+Q95TKZzG4PRUbmnuT9M/N+n/faiFlYWCAcDq8RB0OhEDabbdPnkcrKShYXF+nu7sZsNmM0GqWF5UaqLpLJJMPDw1LbYGFh4ZrNIoVCQU9Pzyq/9O2oJhcEgb6+PgwGw54I/3v00Uf5i7/4Czwez44IqplMhpmZGeBWu3Yul8PlcnH06FFZTN3DLCwsMD09jUqlIpFIcO3aNV544YXdHtaGKC8vf+D76vV6nnzySd58803Onz+PyWTC6XRu4ehkZNbi9Xq5cOECsViM6upqjhw5gtVq3bAgmk6n8fl8LCwsMDMzw0cffYTJZKK1tZW2trZtHv3Oo1QqaWpqQqvVMjIygkajoaqqSqpGValUOBwO/H4/VVVV+65S02w2o9FopDnVnRgeHpa87bVaLSaTCbvdTlVV1b7pKpCROQjIguodUKlU2Gw2xsfH8fl8OJ1OXC7XvmwdkHm4yKc0j46OUlxcfE8vML1ej8ViYWFhQRZUtxC1Wk02m93tYcjI3BNBEAiHw2g0mnsuPGKxGENDQ7hcLiorK1f9zmAwsLCwwNLSEna7/YHHo1QqaW9vx+fzSZUXCwsL5HI52tra7ipwiKLI+Pi4FHhxpwXp7OwswJpj2GqUSiVHjhzh+vXrXLlyhUcffXRbn+9OCILA8PCw1AadD+/YboxGI+3t7fT19dHR0SH70u8Dstksb7zxBgqFAofDQU1NzZbYb+wX1Go1Tz/9NK+//jrvv/8+L730klxYIbOt9Pb2EovFKCgooL29/b6vn3q9XvIX7urqwu1209/fz9WrV7FYLNt+ndstzGazZIPw2U1Tm81GIBC4o5XRXkahUFBYWEgoFLpjV4sgCCwuLlJRUUF1dfW+O8aHBeEh8FAVDvjxbQT5FbgL7e3ttLW1YTQamZmZ4fLly1y/fp10Or3bQ5ORuSulpaVYrVZGRkZWVWCthyiKsvC3DciCqsx+YXJyklgsdteEd1EUiUQi9Pf3YzKZaG5uXiO+NjU1odfr6evrW2MHcL/kW/9bWlro6uqis7MT4J7epcFgkFAoRENDw12re3w+H1ardUNeqJulvb2dxsZGxsfHSSaT2/586xEOh7ly5QqJRIIjR47Q1NS0Y8/d3t6OSqViZGSETCbDlStXpGTnTz75hHfffZc333wTr9e7Y2OSWR9BEBgfH0elUqHT6XjhhRc4duzYQxduotfrefrppxEEgXfeeUfuNpHZVj73uc9x5MgRUqkUvb29m3ospVJJVVUVzz33HBaLhcuXLyMIwhaNdG+Rtz5YT1DVarWr/Gb3G4WFhcTjcZaXl9f9fSQSIZfLUVxcLIupMvuKbDbLv/yX/5La2loMBgN1dXX8m3/zb1adp0RR5Fd+5VcoKyvDYDBw7tw5BgYGdnHUd0euUL0LSqUSp9OJ0+kkl8vhdruZmpoik8nsyCJMRuZBUSgUNDU1ce3aNfr6+mhubr5jdbXf7yeZTNLS0rLDozyYiKJIKBQiHo+j0+l2ezgyMndlYWEBt9tNQ0PDGtFEFEVisRgLCwsEAgGWl5cxGAwcPnx4VYVjNBrF7XYTCoXIZrNotdp7buTcD9lslvn5eRQKxV3bxPNikN1uv6tnazAYxO/3b8gSZavo7OxkYmKCwcHBHQ+EgluLs7KyMgKBwKrQrUwmQyaTIZvNIooiBoMBrVa7ae+9fEXs7OysFDRy7do1JiYmpPeGUqlEp9Oh0+nIZDK89957PP7447L32y4xNTXFjRs3iMViOJ1Ojh07tttD2lWsViuf+9zneO+993j//fd59tln950n5U4hCALXr18HoLm5+aET4DeLVqvlyJEjzMzMbNm1U6lU8sgjj/D222/T3d19ID/PwWAQURSlEMzbyYsz+63dP0++myMUCq0bGhwKhdBqtXL1/B5HEJUI4sG+btzv8f3Wb/0Wf/AHf8Af//Ef09bWxrVr1/jJn/xJrFYr//gf/2MA/t2/+3f89m//Nv/zf/5Pmpqa+LVf+zWefvppRkZGpLySvYQsqG4QlUolGYHLJy+Z/YDJZKKjo4Ph4WGuXr1KbW0tFRUVqyYXgiAwPT2Nw+GQJ8CbRBRFwuEw09PTRCIRzGYz9fX1uz0sGZk7ks1mGR4eRqlUkkwmmZmZQafTodFoCIfDLCwskE6n0Wg0ku2N1Wpds0CZn58nEAhQXl5OSUmJ5EG+FaRSKW7evEk2m6W+vv6urepzc3MsLy/T3t6+5vkFQeDVV18llUqRy+XQ6XQcPXp0S8a4EYxGIwqFYlerZU6ePMmrr76K2+3GZrPR3d3N/Pz8mtspFAo0Gg1Go5HCwkJcLhelpaUUFBRsWFC6dOkSo6Oj2O12DAYD1dXVZDIZbDYbDQ0NFBcXr3qsTCbDO++8w0cffYQgCLsa3rWTCILA7OwsqVQKURSlaqt8unNVVRVWq3VHxnL16lWSySQFBQUcO3Zs3UX8w0ZpaSmPPPII58+f5/z58zzxxBO7PaQ9hyAInD9/nsnJSZRKJQMDAzgcDurr66mtrZULUDZAPB7nypUrLC0tban3ZWlpKdXV1QwMDFBfX79j55KdIBAI4PF4qKysZGlpieXl5VXvtbygul83QTQaDRaLhWAwuOpcLAgCc3NzuN1uSktL961gLPPwcvHiRb74xS/y4osvArf89f/X//pfXLt2Dbi1nv6d3/kd/sW/+Bd86UtfAuCP//iPKS4u5s///M/52Z/92V0b+52QBdX7IJfLoVAoWFlZkSvPZPYFdrudEydOMDU1xcTEBAsLCzQ3N2MymVheXmZmZoZ0Os3hw4d3e6j7lmw2SyQSYXZ2lqWlJan1KBaLcePGDcrLy2lsbNztYcrIrEGpVFJWVkYymSQajbK8vMzKygpwazLvcDhwuVzYbLa7Ttpra2tZXFwkEAgQjUalqkO1Wo1CoaCysvKBPTuVSiW5XI7CwsI7hs2srKxIC4zy8nJ0Oh1er1fyP6+oqABuhVVZLBZKS0upr6+/Z5rwViIIghR0uVsYjUbi8TgffvghWq0WvV5PR0cHBQUFUnVPOp0mnU6zvLxMNBrF6/Wu8l3NbywbjUaKi4uZm5ujoKCAEydOkM1mWV5eRqlU4vF4qKio4KmnntrQ2LRaLQ6Hg8XFRRKJxLa9BnsFQRCYmpqiu7t7XXuMvPh+/fp1yQOxtrZ2W4NGXnrpJQYGBpiYmODtt9/GbrfT3NxMU1PTvhUltoKGhgbi8bgUkpev9MtXdj/M4WqCIPDpp58yOTnJkSNHaGlpYWxsjMnJSS5fvszly5elzRmz2UxRURElJSW4XK472ss8bMTjcV5//XWy2SydnZ2Svc1WcerUKfx+P++++y4vvfTSgRC4k8kkIyMjuFwuGhsbuXr1KhMTE6sCuPLX93g8vm+FZIfDwfT0NMvLy+h0OuLxOMPDw8Tjcaqqqqiurt7tIcrcgxwKchxs0Tt/fNFodNXP82uBz/LYY4/xB3/wB4yOjtLU1ERPTw/nz5/nd37nd4Bb3TI+n49nnnlm1WOdPXuWCxcuyILqfqe8vByPx8P4+PiBTE2UOZio1WoaGxtxuVyMjIxw7do1bDYb4XAYpVJJXV2dXHW9QURRlMSn/Fd+8Z/L5chms+h0Oux2OyqVioWFhQMxeZU5mCiVyjVV1IIgkMlk7qvtW6fTceTIERYXF4nH4ywuLq76vV6vp6Sk5IHGqNPpqKmpkTaEXC4XgiCwsLAgfRb7+vqk4InFxUUuXLiwyoupoaGB06dPYzabMRgMnDhx4oHGshnyi+Vr164xPT29K23tWq0Wp9NJPB7n1KlTNDY2bkjUiMfjeL1eybNNEASCwSAjIyM4HA4CgQDf+9731tzvfqtMV1ZWpPPmJ598QmFh4YGca3k8Hq5fv04oFMJut/Pkk0/icrkksTr/lU6nmZycZHZ2lqGhIQYGBjCZTJSXl1NbW7umynezGI1GTpw4QVdXF2NjY4yMjHDp0iVu3rzJk08++VCHVh45coRYLEZvby8FBQWUl5fzxhtvkEgkKCsro62tjbKyst0e5o4iCAIXL15kYmKCjo4Ojhw5AtzyTG5vbycUCuHz+YjFYsTjcWKxGF6vl97eXpRKJVarlUcfffSuIYMHnWw2y7vvvosgCLz88svbIvwZjUaefPJJ3n77bT755BOefvrpLX+OnUQQBPr7+9HpdDQ3N6NSqaivr2doaGhVIKbNZkOv1zM/P79vBdWysjLm5uaYmppCp9MxOzuL0Wikq6trT7Y9yzzcfDb87pd/+Zf5lV/5lTW3++f//J8TiURoaWlBpVKRy+X49V//db72ta8BtzIOgDVzjuLiYmZmZrZn8JtEFlTvA41GQ0NDA0NDQ4RCITmtVmZfYbVaOX78ODMzMywtLVFfX09JSYlcJbABRFEkEAgwPj4uVfCZTCYsFgvl5eVSJVdNTQ3V1dXkcjlu3LiBw+GQquNkZPYDSqXygTYBzGYz2WwWr9eLSqWiqKgIq9WK1WrFZDI90Fiy2SwzMzO43W70ej3BYBCPx0MsFmNubg6j0Uh9fT2HDx8mkUiQzWbJZDJUVVVJVVA9PT0MDg7i9XoRBGFLvV3vRV74HRwcZGZmBoPBQCKR4J133uHs2bM76uGa59y5c7z55pukUqkNn/vNZvO6Vfb5tvSlpSUikQg6nQ6tVksmkyEQCNx3ZX5zczORSIRwOMzKygoTExOSEH0QWFxc5OrVq/j9fsxmM4899hh1dXV3FEX1ej2tra20traSyWSYmZlhZmaGyclJRkdH0ev1VFRUUF9fv0pczWQyjI6OMjExQTKZlIJZbg9oyVef1tfXS/dLp9Nks1nUajW1tbU0NjZy/fp1BgYGdvRzs1c5c+YMiUSCixcvYjAYyGQyNDc3Mz09zTvvvIPFYqGlpYWKigpCoRDBYFD6bKRSKYqKiqipqaG5uflAVPx2d3czNjZGe3v7uv6chYWFa9ZJ2WwWv9+P3+9neHiY/v5+Pve5z+3UkPcUgiDwwQcfEIvFeOqpp7ZV9HO5XBw5coTr168zPz+/r8X/VCpFMpmks7NT6nxxuVxSwdPx48dRKBQoFArKysqYnp6moaFhXwY3qdVqqqqqmJiYQKFQUF1dTVVV1YE4fzwsPEweqnNzc6vsA+/Uzf2Xf/mXfPOb3+TP//zPaWtro7u7m5//+Z+nrKyMb3zjG9LtPtsZl/dL3ovISsoGEEWR/v5+RFGkoKAAjUZDd3e3tFjMf+1k+6CMzIOgVCqpra2ltrZ2t4eyb1heXmZsbIzFxUWcTidlZWWrWmQnJyfx+XzU1dVRVVVFNpulu7sbvV5PS0vLnj35y8hsFaIoMjMzw/T0NFarlUOHDq0SZZeXl/H7/dhsNiwWC9lslmQySSKRkL7nPSTznxeFQkEmk0EQBKqrqzEYDAwNDeFwOKirq5P8n/v6+nA6nZw7d27da/CJEyeoqKjg5s2bzM7O7sjnMZPJcOnSJdxuN5lMBqVSSVNTE+l0mqqqKvx+PxcvXqS3txeDwYDJZOLEiRM70ilQXFxMVVUVg4ODtLa2bqqCPr+os9vtUlVQngfx33S5XLz00kvS/z/44ANu3rxJZWXlvt7AjkajXLt2jdnZWfR6PSdOnODQoUP3tSjWarU0NjbS2NhINpuVQlJnZmYYHx/HZDJRWVlJJpNhdnaWbDYrCXgKhQKlUimJDKIoMjc3x6effsr169epra3FaDRy48aNdT1+XS7XvhZgtgqlUsmTTz7J97//fZLJJM888wxOp5OTJ08yMTHB8PAwV65c4cqVK9LtzWYzdrudsrIyfD4fly9fJhgM8thjj+3ImMPhMJOTk7jdbuLxOKWlpTQ0NFBeXr5pUSYvZt0tAPCzqNVqysvLKS8vJxwOr+lmeJi4evUqHo+H06dP78jnq62tjZGREa5evcoXv/jFbX++7SJf1HC7WJO3FhoYGCCTyUi/KykpkdqHP1s9t18oLy9nZWUFl8sldxPK7GksFsuG8lh+8Rd/kV/6pV/iq1/9KnCrq2FmZobf/M3f5Bvf+IbU0ebz+VbNJQOBwJ7tlJEF1Q2QSCQIBoMYjUZisRjLy8vE43Hi8bgU6KBSqSR/oPLycmw22+4OWkbmIeOz1We3CzP5xeT9kK9KHRsbQ6FQ0NbWtqY1LRwOMzs7K4mpoigyPDxMLpfjyJEjcvWvzIEnnU4zNDREJBKhpqYGh8OxKlQnGAwyPDy8yps1/2+4VYVnMpkoKipCqVSuEnTyFSZ6vZ7+/n7MZrPk91xYWIjFYmF5eZnx8XFef/11nnrqqXUnc6WlpZSWlvLmm29u2wJeEAT8fr8kLGcyGWpqaqiqqqKiomLVuUAQBMbGxvD7/YTDYWZmZnA6naysrBAIBLBarTidzi0PtctXzCqVSqmady9bkuQn2a+99hrV1dVUVFRQWVmJXq8nHo/j8/kwmUx7Kjwp3wbtcrmk6s9PPvmEpaUlOjo66Ojo2PR1Qa1WU1NTQ01NDdlsltnZWSYmJhgbG5M2TQ8dOnRXEfrEiRN4vV4GBwcZGRlBEATJWziXy636elgCwjaCVqvl5ZdfJpvNSp8dpVIpid0LCwuEQiGKioooLCxcI1pev36dvr4+7Hb7ttlZBAIBJicnpWp+hUIhdcvMz89L4YNarVaaH2m1Wo4fP47L5drw8+Q/n5cuXaKsrOy+i0pKSkqYnZ3lgw8+oLKykqqqqnUfI5vNSrYB8XicZDKJWq3GYrFgtVqxWCz7bq4VjUYZGhqiqamJlpaWHXlOpVJJe3s7Fy9eJBAI3Nffei+RzWYB7vg3v/0zp9VqKS4uZnZ2ltLS0n33PgEkazaZ/UkOHgIP1fsjmUyuuTaqVCrJqqu2tpaSkhLeffddKTw2k8nw0Ucf8Vu/9VtbMeQtZ/+dWXYBg8GAwWBApVJx/PhxKawhHA4TDoeJx+Ok02kWFhbweDzMzs5SU1Oz46EXMjIPE8FgkKmpKSkY4nbPxM+iUCjQarXSIuKz/87lcmQyGZaXl8lkMtK/k8mkZHr/2XYhQRAYGRnBarVKO99ut5tgMIjdbpfC6+QKVZmDSiQSoa+vD5VKRWNjI8FgkOnpaen3+fbvoqIimpubiUajxGIxjEaj9LWRsKr8pubtiwqj0Si1mdbV1fH+++/z2muvcfz48XUXqKFQiGg0um2Vju+88w4+nw+VSkVxcTHHjx+/43MplUqam5tpbm4mHA7zxhtvSOmmJpOJxcVFhoeHyWazNDY2bkl7nyAI/OAHP8DtdqNQKKipqdlQJcFuUlhYyNmzZ5mdnZXEaoVCgUajIZPJSLdra2ujq6trT7RBXrlyhbGxMcbGxhgeHubkyZOEw2EaGhrWbYveLGq1mrq6Ourq6shms5L/6kbIbzQkk0k8Hg+1tbX7UnDYadRq9R1fJ6fTeVdP0KNHj7K0tMTVq1cZGhqiuLiY1tbW+6ryXI98xf7AwADBYFA6D7W1tVFTUyOJv4Ig4Ha7mZmZIZvNSjYQoVCIt956i8OHD3PkyJENvYfcbjeJREKaP93veqepqYlQKITH42FmZgalUonD4aC8vJxMJkMoFCIcDpNKpVbdL7/xlt98y2+8HTt2bNOv492IRqPcvHmTQCAgVR53dHQ8UChZ3nt/pyu/6+vruXbtGqOjo/tWUM1vyH72M5hfA3z2vVtbW0sgEGBmZmbLNyllZGTun5dffplf//Vfp6qqira2Nm7evMlv//Zv81M/9VPArXP6z//8z/Mbv/Eb0mblb/zGb2A0Gvn617++y6NfH4W4Xn/PQ0w0GsVqtRKJRFYtNvIXUr1eT0FBASaTiYKCAqnNbXl5meXlZaanp3G73eh0OvR6PZWVlVRUVDxwwrGMjMxaPB4PY2Nj2O12rFartMC5/XM2PT1NIpFYlTieN7/OC6e3V8rlqzRuF1oLCwvvOEGfnJxkbm6O48ePYzKZCAaD9PX1rbqNXq+nubl5TTusjMxBwOfzMTIyAtyq6DYYDNTW1qLRaKS0eIPBQHFx8aqNhXwF692ui6lUikAgQCAQIJFISBVUd1q0J5NJPv74Y3w+H4WFhVIVS1tbG42NjXz3u9/F7/djNBr5iZ/4iS1P5v70008ZHx/nR3/0R+9bqMxms0xNTREIBDhx4gRqtZpvf/vbJJNJ4JYw3dXV9cCeq9lslnfeeYeFhQWOHTtGc3PzvtzsDYVCzM7OkkgkKCoqori4mKGhIUZHR7Hb7ej1ehQKBTabjZKSEkpKSnb0ON1uN++99x4tLS04HA5u3Lgh/Q1Pnz69Y5VoMnsbQRAYHR3F7Xbj9/sBeOqppyguLiabzZJIJIjFYuh0unsGNmWzWUZHRxkaGiIWi2GxWDh06NCGA+duf5wLFy4wOTkpVa0qlUrUajUmkwmbzYbdbsfhcGC327lx4wbDw8PY7XbOnTu3Kf/PfMjd9PQ08/PzLC0toVKpsFgskp2I2WzGbDZTUFAgfabzhS0LCwuMjY2RyWQoLy/fcmE1HA5LljEqlYqysjISiYQU7NrR0YHBYJDWgaFQCJvNRmtr65rrzMLCAr29vbjdbpRKJc8//zwOh2PLxroRPvzwQ+bn5/nqV7+6Jzah7peZmRnm5ubW2GZ4vV5GRkY4e/bsmkKG6elpZmZmOHnyJAaDYSeHK7OHuZPms5WP/S8vPYPevP/8e++HdHyFXzv9zoZfx1gsxr/6V/+KV155hUAgQFlZGV/72tf41//6X0vnd1EU+dVf/VX+8A//kKWlJU6dOsXv/u7vSl1qew1ZUP0Md/twhUIhFhcXSSQSUgBGdXX1Kj/KXC5Hf38/S0tLWK1WotGoZCpdVlYmC6syMptAFEVJyMyHcdypAvTDDz9c9+d5gae0tFRqP1apVKhUqg1Xk8bjca5fv051dbWU1j00NITf76e+vp6ysjJ6e3uJRCJ0dHRQWFiIKIrE43EMBoNcBSRzYMgHECmVSkpKSja0QAsGg/T39+NyuaiqqpJCq9LpNIFAgIWFBWKxmFSx5HK51m2f/SyCIDA8PMzExARGo5FkMkkwGKSgoEAK4puZmeHJJ5+kqqpqS44/Tzwe59vf/jYnT56ktbV1048XiUQIBAKk02nm5ubw+/088cQTmM1m1Gr1hgWDdDrNO++8Qzgc5syZMweyQmd8fJyhoSHg1nsgGo2Sy+VQKBSSFdOhQ4e21XsrnU7z6quvotfr+cIXviDZKvT29jI1NcXTTz+95yuCZXaeZDLJm2++STKZRKVSraq8BnjsscdoaGhYc790Os3AwABjY2Ok02mcTidtbW2bDqxxu90sLi6Sy+XIZrOsrKwQjUaJRqOk0+lVt21paeHkyZNbLsplMhnUavV9PW42m6Wvr0+ylzl58uSmNjDS6TShUIjh4WHm5uZQq9U0NjbS0dEhVfvG43HOnz8vJVLDrfNPPB6XimrsdjuVlZVYLBZGRkYIBAKSH3J7e/uuWK54vV7efvtttFotVqsVm81GUVERTqcTu92+50XW7u5uSci+nXwo1dmzZ9fcJ5fLcfnyZUnolpEBWVDdKu5XUD2IyILqZ9joh0sURWnHy2KxUFZWhtPplCrgBgYGWFpaorCwkFwuRyQSQaPRUF1dTWlp6Z6/YD3M3Lhxg8XFRcrLy7fN40rm/ojH4wQCAfx+P8vLyzQ0NFBRUbHmdvk2MKVSSTqdZmZmBp/Ph1qtpqCgQNrQCAaDiKKIw+GQJrsbRRRFbty4QS6X4/jx49Jn+fZ2o7yP3srKCiaTicLCQpaWlojH4ygUCqnSw+Fw7MtKMRmZzZBIJLh69aoUkJOvKI1GoyiVSmlxV1RUtOlNyNnZWa5cuYLb7cZkMpFOpzlx4sS2CAHf/e53SSQS1NTU0NXVtSVVsPF4nCtXrjA4OEg2m8VqtaJUKmlpaaG4uJjx8XGSySRFRUVks1nC4TCJRAKXy8WhQ4cYGBjA5/Nx7ty5LReR9yp5r1ifzyd9dzgcPPfcc9v2nO+99x5er5eXXnpJ7kiQuS+SySQ3b95EpVJhMpmkr/xc9OzZs6RSKSKRiCRuxuNxRFGkrKyMjo6OHQnqSKfTLC4uEgwGpYDOvUYmk5EqMFtaWigpKUEQBERRRKfTYbPZMBqNq+Zt8/PzuN1ulpaWSCaTpFIpqcNBq9XS1NRER0fHHedq+UpVvV7Pm2++yfLyMs8884xUSZmfb5rNZg4dOkRzc/Oub6pPT0/j8XgIh8NEo1GWl5eBWz6GTqeT06dP78kskFwux/nz56mvr1+zBsiHxz7yyCPArfdCIpGQQmTzFazHjh17aEUfmdXshKD6f1587qEQVH/zkbdkQXW3B7GXuJ8PlyiKLC4uSi0qarWa1tZWCgsLEQSBubk55ufnWV5exmAwoFAoSCaT6HQ6qqurUavV6yaqytwfd/POfBB+8IMfkM1mUavVfO1rX5PF710i7/Xl9/tJJBKo1WpcLpeU/uf1eqWJb76SIpfLoVQqqaiooKqqCrVaTSqVYnZ2llAoJE0a9Xr9qmqLJ554YkN/59s3Uo4ePXrXNrdcLidVtYdCIQwGA9XV1aRSKRYXF4lEIuj1ek6dOrXJV0rmTgiCSDKdwWzU3fvGwIxvib/+qI+a0kJefrztrhXLoiiysBTHaTfLPrn3iSiKXLx4EafTSUFBAfPz82g0GlwuF0VFRVu+2BQEgYmJCfx+P16vl3g8jkajWSVemM3mTYsEyWSS7u5uJiYm0Gg0PP7445SXl6+6TSaTwefzodPp7imCxONxXn31VbLZLA0NDaysrFBdXY3P52N0dBS45SVbUFAgLertdjtGoxG32006nSaVSqHVannppZf2bDrqdhKPx3nttddwuVw89dRT2/Y8r732GktLSzzxxBOrupZkZB6UdDrNn/7pn0pzG61Wi9PpxGKxYLPZaGxs3FSr/UFFEASuXLnC8PDwur9XKpUYjUa0Wi3RaFSa71ut1lXWAhaLBZfLteHrUXd3N93d3Ws6IJLJJJFIhOLi4j27nojH4ywuLrKwsMD4+DgrKyu0tLRw7NixXRd/bydvrXXy5MlVG5aiKHL58mUKCwtpamoCoLe3l1AoBNzyJrdYLPj9fsxmM0ePHpXnbTKyoLpFyIKqHEq1KRQKhWRAn0qlGBsbY2BggMbGRoqKiqiurqaqqorFxUXcbjfRaJTm5mZCoRADAwN4PJ7dPgSZO1BWVsb8/DwjIyMcOnRot4fz0HF7lbfT6aSurg6LxUIgEGBkZIREIoFer8disWA0GlGr1Wg0GklAdbvdeL1eamtrKS0tpbm5GVEUSafThMNhqdJDEARps+NerKysMDw8TDAYpKam5p4LmfxO/3oeaOXl5Vy+fPmhvfA8COnlFTQaFaoNLkhC0SR//9f+gjl/mGdONfNvf+6Fu/6ds9kcP/Prf0kknkIQRBTAy0/c2avnV3/vTd7+dIgf+XwH//zvPX3Hxzx/fZLayiKqy7YnDGmvkcvlSCaTJBIJ6fvKygoGg2FVGJXNZiMcDtPY2ChtkmwXt6dwA/j9fqampojH4yQSCUKhkLTB8pWvfOWBK0uNRiOPPvoohw8f5v333+f111+nvr6e06dPYzabGRoa4tq1a+RytzJRLRYLjY2NFBQUkEqlKC8vZ3FxkcXFRQRBYGxsjFwuxzPPPLNK6K2rq6O+vp5sNnvHjhdBEDh//jy9vb0IgsDs7OxDJ6gKgsAHH3yAKIqcPHlyW5+ruLiYUCgk2zrJbAmZTIYPPvgAtVpNS0sLkUiEZDLJj/zIj+xZUW6voFQqOX36NIcPHyabzaJQKFAoFKRSqVUVvslkkoaGBiorKzfdORgKhejt7aWqqmpNJ0D+mreXyQvJNTU1tLe3S6FpMzMznDhxQrK22m1CoRB6vX6ND2oymSSdTktWOKlUilAoRG1trSScRyIRyRImHo9TUFCwG4cg85AhokDgYIv34gE/vo0gC6pbhMFgoLW1lf7+fmlXtKCggMLCQgoLC+ns7OT69euMjIzw2GOPUVpaiiAIlJWV7bghucy9cTqdvPHGG1y+fJmbN29KfkgFBQVYrVapZXuvT5L2I3kvrHg8Tnt7OxqNhvn5eQYGBhBFkaKiIurr67Hb7XcUyEpKSrhx4wajo6MUFBRQUFCAQqHAYDBgMBgoLS29rzFFo1H6+/sRRZHDhw9v+jObF3AUCgWffPIJLS0t9wyfeJj5b399iT/67gXsFiO/90s/Tl35vf0j37k0zJw/fOvfl0f4qS+evuv9EukMS9FbATJKhYIZ39JdH79n5NaGWO/InTfG/ud3L/Hfv30JvU7D9/7wZzFtsFJ2v5JMJrl27ZrUNaDT6TCZTBgMBlKpFMFgUGqlzLOysoJGs7O798XFxavERb/fz9tvv011dfWWnNMtFotUSTozM4PH48Fms7G0tERZWRmdnZ1Eo1FGR0e5fv26dL98Wnb+fOVwODh27Ni6Qmj+Z5FIhJs3bxKLxSgsLKSyslISX+fn56murubpp5/etLVIvto1bzmwH8h76HZ0dGzr5tXs7CzDw8M0NTU9NLYKMltPMBgkEomQSCSYmJggGo3y2GOP0djYyNTUFB999BGjo6NyuNkGMZvNq/5vsVi2ZVNJEAQ++ugjdDrdmqCk/Yher+fxxx+nqamJS5cu8eGHH/L8888/0GsnCAKhUAiLxbIl9lahUGjduX8+YDYvtHo8HtRqtRQKnZ/zr6yskEwm17w3ZGRkZDaDLKhuIWq1miNHjrC8vMzS0hLBYJAbN26QzWYxGo1oNBp0Oh0qlYrCwkIp0fN+xR2ZneGll15iYmKCYDBIKpUilUrh8/mYmpqSrBryC9j6+nrUajXBYJBwOIxWq6W0tHTdRVwwGGRqagqdTrdv05a3i0wmQ29vL+l0mvLyciYnJyWD/6qqKkpLS9Hp7i5KJRIJBgcHEQSBhoaGLZk4+Xw+MpkMpaWlW5Iemw9dMBqNUsLtwyCoDk35+YPvfIrdYuSf/K1zWEz3DmRYyeb4o1cuIALheIq/eq+bf/6Nz9/zflXFt3wMlUoFGrWKIuvdhTKr2cBXnjrCt97rxm4x8MWzd0+S/OV/8DxvfDzAF5/8YTBCIp5GrVah098SCHPCrfPE7dYukyM+REGg/tAt0ev8lXHePT/MV1/u4lDj/r8WCIJAY2MjxcXFa1oFRVGUFjTJZJJcLrfr7YSCIPDxxx9jNBo5c+bMph9vaWmJK1eu4PP5aG1t5dSpU/T39+N2u+nq6qKtrQ2lUklxcTGNjY1Sy6lWq+WVV14hl8vx1a9+9Y6viyAI+P1+ycIkX8Vqs9mYnp5mbGwMlUqFRqNhYWFBsiC6XxHU6/WSTCYZHh4mHA5LC9aCggKam5tpaWnZ9b/dvTCbzdhsNjweD8eOHduW58j7Zev1ek6fPr0tzyFz8BkfH+f8+fPS/41GI5///Ocly5Dq6mqcTieXLl1ibm6OM2fOyBv6e4QrV64QiUR46qmnDtR8vri4mJdffpm//Mu/ZGBg4J6CajqdxufzEQqFWFpakvy8BUGgublZ8jZ9UPx+P6lUat1gxfzrnslk0Ol0+Hw+SktL13QMaDQa2SZDZkfJiUpy4v7YhH5QDvrxbYS9PRvep+h0OkpKSjAYDAQCAVQqFZFIhEwmg0ajoaenh5KSEsrKyhgcHCSdTu9K0qPM3flsm2iebDbL0tIS8/PzzM3N0dvbS09Pz7qPodPpsNvt2Gw2stksPp+PeDwuBRd1d3dTXl4umefvl8qf7SCdTtPT00Mul8NutzM7O4vdbqe9vZ3CwsINteWHQiH6+/vR6/UcO3Zsw2Kq8DfCl1K59jlEUcRut+P1evH5fNTU1NxT1L0XpaWl0kZK3khfFMV95emUzqyg06jva8z/7D+9RmApjgIw6jX8s79zb2FUrVLishewEI4jCCIVro1Nhh/trOXXfu4F+ie8PP9oK1az4Z73+af/25P87JcexaDXolat/iwGfBGufjrGmc+1YCs0c6SlgiMtPwxFGBnw8At//7+j02n4g7/4OZzFVn7qxx6hrtJBXaUDk1HHcO8cP//1PwAR/v2f/H0Od9Xwb//TGySSGfwLUf7gN78OwKX3BviT//AGP/crX6L91P5JZb/9Orae2KZQKNBqtWi12j0TeLGwsEAikeDcuXNbIhDOzs7i9XppbW2V/OeOHz/O8ePH17397ZtudXV1dHd309fXR3t7+6rxjIyMMDQ0RCqVkrygFQoFhYWFPP7449hsNklsnZmZIRgMotVq8fl8/NVf/RW1tbWSv5XNZkOtvvXZLS4upqioSEqnjkQiTE1NMTk5iSiKRKNRTCYTnZ2dWCwWxsfHuXbtGtevX0er1VJVVcWJEyf2rJBQVFTE9PT0tj2+UqmkqqqKkZER3n//fc6ePbtnXwuZvUsikQDgi1/8ohSicztKpZLnn3+ewcFBuru7eeWVV6ipqaG8vJyKioo9v7lxUIlGo4yMjKwbkpQnnU7T29sr+ZJuxab8TqFUKqmrq2NkZIRkMrmuiB8MBunp6cHtdkubd/nNLLjlz5r3NX1QfD4fw8PDlJSUrPv65efky8vLUrbCXgxNk5GROZjIV+BtxGw2Sy3Gjz/+OPF4nHA4TCgUYnh4mM7OTuDWBVkWVPcParVa8sbs7OwkmUwyPT2NUqmULB6SySRer5eFhQVCoRATExOoVCqKioro7OyUwomGhoaYnp5mdnaWgoICGhoaaG5ufujeD4lEgt7eXimJdWFhgdraWqqqqu5LsMvvhh89enTDbcSf9kzyf/3u9xGzAqoMdLSU8dv/15clr87FxUUGBgaw2+00NDTcU0zNVyOuN+6VlRUWFxcpLCyUHqe0tBSPx4Pf7992L8mtQBRFfvkP3+Sti8M0VDj4/f/zxzckVgKkllduCcdKBanllQ3dR6FQ8Hu/9GP81Xs9lDkt/PhTRzY81mdOt/DM6Y21R0YjSRYDUWobitf92/3L/+ObzEwu8OE7/fzff/h31/x+bGielUyOlUyOuelFnMVWNGoVT5/54fMnYmn4m2LVeDQFwInOGj68OMqpozXS7a59NMTSQowb50fQOc2Ul9j2hV1APuxjbGwMt9stbSbZbLY9KzIFg0EA6bN348YNAoEApaWlG/JKhlsLxkAggFqtls7d9yNyRCIRPB4PyWQShUJBT08PQ0NDFBcXk8vliMViUqV+ZWUl5eXlFBYWYjAYVr2uSqVS2qwRBIGZmRn6+/uZnJxkdHSUsrIyAoEAU1NT0n0UCgUlJSUsLS1JPrIKhYK2tjbq6+tZXFzk+vXrTE1N8dJLL9Hc3EwwGMTtdhMOh5mYmMDtdvPlL39510WddDpNd3c38/PzZDIZKcynurp6W5/3kUcewWq1cu3aNV5//XUaGxsla4tDhw49dNdzmfsnm82iUqmw2+13vI1SqeTw4cPU1NRw5coVqSI9P/csKSmhoaFhz2xWPQwYjUapeOadd96RwkYtFgtWq5VEIiFtTimVSsbGxigsLKSjo2PP+JLei7a2NoaHh3n33XfXCKqZTIaFhQW0Wi0tLS3U1dVRWFiIUqkkGo3y6quvUldXtykReX5+ntHRUUpLS2lqalp3fqZSqVCpVCwvL7O4uEhBQcEan1UZmd1AEBUI4v4plnkQDvrxbQSFKMfMr2KrE98WFxfp7+9flQguCAJXr17FYDAQj8cpKSmhrq5u088lsz8RBIGpqSlGR0fx+/2oVCrKy8tpa2t7KEJEgsEgg4ODKBQKlEqltJv9IJPNRCLB1atXaW9v39AELicIfOEX/isLoTjKjIjyVlYMr/7+z+AqumVYn0qluHLlCkqlEpVKJQUc3P4lCAK5XI5sNosgCKjVamw2G3a7XUrdjkQiDA4Osry8jFKp5JFHHpFE376+PlKp1LYHp2wFE+5FvvYv/kT6/z/7O0/yY58/sqH7fnJzgn//zQ+wFxj49X/4EuXOvdF6lU5n+MYX/iPhUIKf+6fP8SNfXdu6+4/+zh8xOjjPyTON/Nv/+LfWPkYqwx///g8wFej52k89gUq1ttpcFEU+eacfISdy9vl2FAoFoiiSSGYwm34omMajKa59NMzYUow//c5lSout/Pnv//S6j7nXWFlZkdr9wuEwyeQtX1qz2Sx5H+82yWSSCxcuYDabJVuX/PVZFEUKCgqIx+OIoohWq8VgMKDT6Th06JDkpaxWq1GpVESjUam67Ha6urpob2/f0Hg+/vhjJicngVsVladPn2ZoaIhAIIBGo5ESpw8fPrxhce7q1asMDAxgNBopKiqiq6tLEloEQUAQBLLZLAMDA4yPj0tBmlardY0AvrS0xPe//30KCwt57rnnVnVSXLlyhcHBQX7sx35sV33p/H4/77//vmSjZDQapfCSpqamHRF7vV4vH330Eel0GqVSKXU3PPfcc3t2Q0Fmb3Dp0iUmJyf5+te/vuH7CILAwsICs7Oz+Hw+lpaWUKlUvPDCC3viPPuwMDs7y8cffyxVZaZSKSn0SqlUUltby5EjR9Dr9YyOjjIyMkIkEqGlpYWTJ0/ui860q1evMj8/v+bn+Qr9tra2VefYbDbLO++8w9LSEl/+8pcfeFPJ4/EwNjZGeXk5DQ0Ndy2wOH/+PJWVlSiVSiYmJqivr6eysvKBnlfm4WCrNZ/1HvsXPn0JnXlncwJ2muX4Cv/hzOvb8jruF+QK1W2mqKgInU6H3++XFmz5FoqBgQFUKhWpVGqXRymzmyiVSurr66mvrycajTI4OMjU1JTU8t7Y2LhjC8KdRBRFZmdnmZqaQqvVksvlCIfDLCwssLCwgMfjIRgMEo1Gqa2t5dSpU/d8DfKL6FAotCFB9Y/fukZgKQ6AoAa72cCPfL4DZ+EPhQGDwUBHRwexWAxRFNf9UigUqFQqSWRZXl4mGAwyNjYGQHl5OfPz81gsFhwOBz6fb5W3U37xvdP8yfev8l9fvUhNWSH/zz/5UYqspnvex24xolGryOUEBFGkzLFxUfTxo/U8fnTnW9jT6RX+5L98iNms56vfeGyNtcNyeoVo+Jbw5/OE132MX////236b85w5MT6m196g5af/SfP3XUcCoWCJ55tX/Oz28VUALPFwLmXj/Lp77wBwGIwTjYn7AtBVaPR4HK5cLlcwK0WvHA4jNfrpaenh4qKCurq6nZ1ETk/P4/b7QZuea91dXVhNpsRRRGz2UxDQwPJZJKZmRk+/fRTKfDpo48+QqVSSf7ny8vLFBUV0draisPhQK1WMzIygtvtvq+qyKqqKiYnJzl58iQtLS0olcpNeSr7/X4GBwdpaGjg0UcfXfNaK5VKlEolarWarq4uurq67vp4drudU6dO8emnn3Lx4kUeeeQR6THzIVWvvPIKL7/88q5Vx01NTZHL5XjsscdQKpWsrKxQX1+/o++z0tJSvvKVrwC3XuO5uTk++OAD3nvvPZ555pkDdw2XuTeCIPD666+TzWYlu418qGlBQQFKpRK3283ExMR9b0jkvZjzG+/JZJLvfe97vPfee7z88styZfQOUVVVxd/+2397zc/zG+y3b6a0trbS0tLC1atXGRoaIhgM8rnPfW7P++GeOHFiw7cVBIF33nmHhYUFzpw588Dvw7m5OSYmJqioqKC+vv6uYmq+oCFvubeyssLExARqtVrOKZHZVXIoybH35+6b4aAf30aQZ3fbTN6jbH5+noaGBmly73A4sFqtRKNR2edFRsJisXD69GmOHz/OxMQEIyMjXLlyhe7ubmpqajhy5Mien3jdiXQyg2dmkdrmEkRRZGRkRPIYXllZIZFIsLCwgMvlIpvNMjU1RWFhIRUVFYyPjxMKhXj55Zfv+hwKhYKioiKCwSD19fVSG25RUdG6k7FJbxBRq4CsiFKt5C/+n58kl0kxNze3Kq05X2m6UWKxGH6/X/q/x+OhsrKS2tpa+vr6ViVlJ5NJFhYW1nj1bjfRRJrf/dYniMDozALffr+bn/3SvUN5Ci1Gfv+Xfpw3LwzR0VDKo5212z/YTfLeGz18+88uAnDocDlHPyOKWm0m/s3vfJ2xwXm+8BPrVwlbrEYePXdo28d6O//g756lrMTKkbZKdNrbqz9yXO+dpaHWSZF9b6fV6nQ6iouLcblcuN1upqamCIfDdHZ2btiWYysZHh7m6tWrmEwmvvjFL6JWq9cV3YxGI42NjVy5cgWz2UxTUxM+n4+CggJOnz7N7OwsMzMzRCIR5ufnyWaznDt3jkcfffS+x9TT04PBYJDE1M2QyWT45JNPMJlMnD59essExXyAVl9fH2q1mlOnTgHQ3NxMeXk5r7zyCsPDwzsWzJTNZnG73QSDQTKZDH6/H6VSyezsrHSb4uLiHa+WuP31rqys5LHHHuOTTz7h2rVr6742oigSiUTwer2k02nsdjtFRUWSuJbvfrjT+1RmbzM9PU0oFKKkpIRoNIrX6yWXu9UKo1KpMJlMxGIxbDYbn//8vT3F70Y+yOqtt97ivffe44UXXpDfM7vInTZQlEolp06dwul0cuHCBb73ve/x4z/+4wfmbzU5OUkgEODMmTM0NDQ80GN4PB4mJiaoqqqitrb2ntZfeV/xvHhbW1tLNptlZGREsmmTkZGR2S5kQXUHKC4uZnZ2lnA4TGFhIfBDj7JMJrOrbXIyexO1Wk1zczPNzc0EAgEGBgaYmJggGo3yzDPP7LuJlyiK/OOv/T4z4wG+8tNP8Ojz1QQCAeDW5DLvw+RyuXj66adRq9WrkqkvXbrExMTEhp7L4XDg8Xjo7+8nFAoBUFNTs66FwFfOdfJR9wRJVvh7X3gEchn6+/tRqVSrBNX7xePxSJXnarWalpYWHA6HFPKi0+lwu92YTCY8Hg9arXZTu+iL4QSvfNCL027iC0+0rxuu9Vm0GhV6nYZ0JosgitgLNi7UdzSW0dG4dzaCQsE4P3h/gNOPNFBRubYyuaG5FI1GhVanobxq/crlE482cuLRnRW174XdZuInv7pW5P7d//Eh33n9Bo5CM3/1X392X1SuKhQKKisrsdvt9PT00NPTs+Oiar49vaysjHPnzt2zDVutVnP69GmGh4e5efMmmUyG5eVlxsbGEEURg8GAzWajsbERr9fLhQsXpI0gh8OB0+lc8xyZTIbJyUmWl5fJ5XJSCFQ+VGoz53ZBEHj//fdJJpM8++yzW14R2dXVRTabZWhoCIfDIaUtm81mysvLpcVrPoArk8mQTCZJpVKk02mcTucDzXeWl5eJRCJks1mpMtjn80kt9blcjoKCAmmzUafTUVRUtCc2H2tqarh48eKan6fTafx+Pz6fj1QqhcFgwGQyMTc3J3my5zsgAMl3UWZ/MTo6itlsluZtgiAQiUQIBoOSNUpxcfGGOnA2gsPh4Pjx41y6dIn5+fk7BiXJbD/pdJqxsTFisRjpdFr6ymQyAJhMJgwGgyQGHhRmZ2cxGAzS9eF+WVlZYXJykrKysg2JqfBDQVWr1ZLJZJienqa8vJxsNsvg4CCPPvrormzgysjIHqoPB7KgugMYjUYUCsWa1v582rGMzN3It892d3fT3d3Nn/zJn1BUVMSjjz66b9JCBUHE71kCwDMTpLLyManlTaPR8J3vfIfCwkJJTIXVlT73E0xls9kwGo3Mz89LnlbT09MEg0HMZjN6vV7yEDQrFPy9HznJ73z/U/7kwg3MYoRKm5GVlZVNiRvNzc3U19dLlUX5Y1IoFDQ2NuL3+5mYmJAWy01NTZsSUv7R//0dpjxBBFEkllzmf3vh3u1Zeq2G//RPv8RfvnuT2rIivvRk5wM//27zW7/+GtevTfHKX13lz/7qf1/z+5a2cr715i+gVCkxGPb/OTeRvLV4SKUz7DcTdLPZTGdnJ93d3fT29tLZ2bljrdB54TKfan83MpkMN27cwGAw0NXVxfLyMleuXMFqtVJXV0cikeDRRx+VruGRSIQrV66wuLjI7OysJIYplUoKCgqk5O75+XlWVlYk/2VRFLFaraRSKb7//e/zyCOPSHYJ94MgCHz88cf4/X4ee+yxbfPfPnHiBGNjY4RCISorKzl//jzJZJLm5mZmZ2fp7++nqamJ5eVlBgYGpPvl50CHDh3a8Pk8FovhdrsJBALSuTJ/Pi0tLaWqqor5+XmCwSBarZaamhoKCwulOddeIJ1Os7Kygsfj4fr16+h0OmKxmOSl7XQ6aW5uxmq1Sn7c0WiUWCwm2TJEo1GpClq2Ddg/xONx/H4/7e3t0vVdqVTed8fL/ZJIJFAqlTgcjm17Dpk7k0+993g85HI5dDodOp0OvV6PzWaT5qD588Dt3Yv7HUEQ8Pl8VFRUPPAxzc/PI4oiNTU1Gz6P50Nek8kkc3NzRCIRKehVFMV7Xu9lZGRkNoM8M9sBFAoFer1e9kqV2RQdHR34fD58Ph/BYJBr165RV1dHbW3tnl9kqVRKfu0P/y7XPx3jxZ84iclkwmS65dfpdrtJJBKcOHFiS45DoVBQXl5OLBaTJqwqlYpYLCaFBIiiSDabRalU8gfv9CKIEEst84PxAL/+9WcYGhpibm5OMrh/kDFoNJp1d8RLSkooKSkhl8uRyWTQaDSbOm5RFJmevyWmKhUKJj3BDd+3s6mczqbyB37uvYLFalj1fT1M5oPjJ/d//PTnOdRYSkdrBeq/qU7NrGSZ84SoqXTs+YrVvKja09NDX18fHR0dqzyFtwtRFKWwrEAgwLPPPrvq8x0IBPD7/bS1tdHd3c3w8PCq+xsMBh555JF1q9etVitPP/00cKsdfWFhgYmJCfr6+jAYDCSTSTKZDBUVFXR0dGC327l06RIjIyMoFAqMRiPRaJQ33niD6upqTp06tW6FZTqdZnx8nEgkglarJZVKkUwmCYVCZDIZjh49+sBtlvdDLpeTAnHgVgBnnvzr6HA4qK2txWAwMD4+zvz8PKFQCKPRiMlkkr5brdY1f/+ZmRmmpqbQ6/XU1dVRUlKCWq1es8Cuqqoil8sxNzdHIpHYcyEker2eEydOMDQ0xMDAAG1tbbhcLin867PnfqVSic1mW+VFa7Va8Xg8hMNhWSTbRwwNDaFQKGhpadnR552bm8PhcMgeqrvA3NwcH330EUqlksbGRlpbWx+qkBav10smk3mgUFm4tTE5OztLSUnJfRUcGQwGycM8l8vR0dHB/Pw8Ho8HYEfmFzIy6yGgRDjgHqMH/fg2wt5WYQ4QBoOBdDq928OQ2ccolUqee+5W6E1fXx83b97E6/UyPT0tLeT3Moe7ajjcVbPm58PDw+j1+k212H+WkpISYrEYPp9PElEVCgVarVba3FAoFNTU1OCyjjO7GEEUobWuEpfLRTQaZXp6Gq/XS3t7uyT+biUqlQqDYbUA+Pr5AS71TvP5k0187vjG2s8VCgV/9+WT/Le/voxep+bL+7jSdD0EQeSVb18llVrmJ77+KBrN2onxL/7Syzz3QifNh/aODcF2Yjbp+NEXjq762T/9lW/T3T/Hy8908Iv/8NldGtnGKSgooKOjg56eHsbHx2lubt7258x7WC4vL/P+++/z2muvSZ6no6OjUtX4zZs3EQSB2tpazpw5QzAYlNLjN7LBkq+gDAQCGAwGvvCFL6wRNzKZDGNjY5SVlXHq1CksFgvZbJbe3l4GBgbweDxUVFRQUlJCaWkpfr+fnp4ekskkoiii0+mkwK98e2VDQ8MDL2Q3ytLSEtlsFofDwbVr19BoNDz//POoVCoymQwFBQWSEN3U1CQtiuvq6igsLCSRSJBMJiWf6XwnwIkTJ1adD5eXlzEYDJw8efKuVUpKpVK6314UkBQKhRRC1NTU9ECe+fnj343gQpkHQxAEJicnKS0t3VHriWg0Sjgcvq8QIZmtYXx8nAsXLmC1Wnn22Wf35PloOxEEgd7eXrRa7QNZTQQCAYaHh7FYLNTVrR/+eScUCgUWi4VQKMShQ4coLCzEbrczMzNDKBSSBVUZGZltRRZUdwi9Xk8kEtntYcgcENrb2zl06BDf/OY38Xg83Lhxg8OHD+9JC4ngQhTffJjWjso1C+OJiQncbjcdHR33FCoEQSCdTm9okqpSqWhpaZGCqbxeL9FolHQ6TSgUQqPRYDKZmJyc5CePVvDBpB61yURjtYt4ehm9Xi8JBJlMZlsE1c/SM+rh3/yXt1Eo4N3LI/zFb36D2rKNWTr87JfO8JWnjmLQadDrDpZP1M0b0/z+f34XgCJHAc+/eGTNbbQ6NV0n7m8CftCY89zyC55xh3Z5JBvHYrFIQuJOkBcbBUHgo48+IhAI8MYbbwC3hLmWlhZcLhdLS0vo9XqamppQq9Ubbp/PeyTnqyUFQUAURfr7++no6KCvr4/q6mpisRiffPIJoihy+PBhqYJJrVZz7NgxmpqauH79Oj6fj+npaeBWRWgymaSuro7HH39cus/U1BQXL14kEAg8UCDW/ZKvuh8dHWVpaYlz585J3vDZbJa+vj7i8Tjt7e2rrkdqtRqHwyFVWCYSCfx+P7OzswiCQCAQoLq6Wrp9vvp2ZWXlrtc1r9fL6OgoFRUVq+6/m8RiMTweD4lEQnoflJaWPrBPdiKRANgSv31BEFhYWCCVSlFVVXVgWo33GrOzs6RSqR2vTp2ZmQHYM5+Fg4wgCASDQdxuNz6fj0AgsCoH4GFjaGgIv9/PmTNn7uu8Iooic3NzTE5OUlxcTHNz8wOdl8rLy3G5XNL1Ol80sd2bjDIydyMnKsgdcI/Rg358G+HhO+PvEvlqEhmZrUKtVvP888/T29tLX18fg4OD1NfXc+rUqT2zSEomlvn7X/k9ErE0P/tPnuVLX39ECqCamZlhcnISl8vFkSNH7vo4NTU1jI2N8frrr/P0009jtVqBWxOxlZUVcrmc5FmYFzHgVhVceXk5ZWVlxONxwuGw1Iqf9zBOZnP8l+FvMe3189b4JE6jjn92opnG6kqqq6slb6btJhhJ/M0x3fr/UjS5YUEVwG7Z/QCW7aC0zIZOp2ZlJUd1tdzueid+8198iY8ujvLi0+0A5HICn14ap6zURkPd/Xty7hSZTGbHw4OUSiXl5eWEQiE6OzspLCyUvDfhVkLw/RKLxRgdHSUWi2E0GiksLGRycpJoNMrly5cZGhoil8vR19eHWq1GFEVefPHFNS3cgiBgNps5e/YsgJQMXlBQwPXr14lEIqRSKUlQra2tpbCwkFdeeYVLly5x/PjxbW0xtVgsGI1GRkdHJX/qa9eu4XK50Gq1rKys0NHRIZ2j18PtdjM+Pi5V8hYXF6+5fWFhIXNzc1y6dAmbzUYulyObzZLL5aisrESr1RIOh/F4PJSVlVFfX78nfFNjsRjd3d1otVqsVisul4uCgoJVLfx3IpfLEYvFiMfjxONx1Gq1lAKvUqkeqOItk8ng8/nwer0sLCwQDoelDQyTyURLSwuHDh16KAWgreZ2q4/p6WkprG0ncblcKJVKLl68yJkzZ9Dr9XtmPngQyCfHezweFhcXyWQyKBQKbDYbra2tdHV1HfjXOxqN4vf7sVqtFBYWolariUQi3Lhxg/LychobNx7uKYoiY2NjzM/PU11dfV++qbeTTqfp7+/H4XBInwEZGRmZnUKeQe0Q96qykJF5EIqLi3n66aeJRCJ0d3czMjJCcXHxfbfLPCiZTIZYLAb8sB3x9rbEaDhFKnFrI2HevUAgEODjjz+WFovl5eUbEoCLi4t59tlnef/99/n+979PfX09oiiyvLx81zbIzs5O7HY7CoVCCobJI4oi6XSa//6DC8yGlqSfB1PLjAkaXmxquv8X5G/IrGR55cM+cjmBL32uY0NVo48dqePRzlou903z1MnmA+FtuhEEQeQH7/Vjt5vWrTItK7Pz59/+R2RXchQ5CtZ5BBmAlsYSWhpLpP9/56+v83v/5QNUKiXf+pP/D0WFm69u2w4ymcyOXxsFQcBqtbKwsPDA7YmfJRgMkkgkaG9vp7CwEIVCQS6XkxLcU6mUVOmu1+uxWCxotVr+1//6X5SUlBAKhaRqRrPZLC1WVSqVFKL3xBNP8P3vf5/333+fr371q9J502q10tLSwtjYGLOzszQ1NW1rteqTTz7JRx99RDwex+v1UlRUxNzcHEqlkhdffPGegm4gEJD+ncvlSKfTWCyWVQtpi8XC6dOncbvdLCwskMlkyGazZDIZent7MRgM6HQ6qqqqNpwEvd0kEgl6e3sxGo33HbYmCAIXL16UvL2NRiO5XA632w3cClvcyDHmQ1kCgQCLi4tEo1FEUUSlUmG322lsbKS0tBSFQkF/fz/Xr1+XgsQ+W1Usc2fylb7513lpaYlYLCa91jU1NXR2du64sFNcXMzx48e5cuUK3/rWt1Cr1RiNRgoKClb5FpvNZum7LD7dwu/3Mzc3h9VqxeFwYLVapddGEATGxsYk2xWLxUJ1dTVlZWWUl5cf+M+NIAjMzs4yPDyM3+9fNe/Ob/So1Woef/zxDT9mLpdjcHCQUChEc3PzA1fwA/h8PhQKBcFgkN7eXg4fPixvEsnsCQRRgXDAKzgP+vFtBPlss0OkUqmHzk9HZuewWq08/vjjUuvRdguq0WiUGzduMDc3Ry6Xu+ttz33BRTi4gt6+KLXXnjlz5r7DtJxOJy+88AI/+MEPiEQi1NfXo9fr0el0qFQqlpaWpCRks9lMdXX1mqqgbDbL0tISS0tLhEIh0uk0bn8AUMDf5KUrFAqWc5vzqvsP3/yAVz/sAwUMTHr59X/w0j3vo9Wo+Z1/8qObet79yNtv9PAf/t33Afij//HT1NWvba+2Wg9m9e3DjiAIu7LZuLS0xPj4OHV1dTRtYuPkdrRaLYIgSBs4gBQ8pFAoJBErGAzS0NBAaWkpH330Edlslrm5OXQ6HYcPH0ahUBAOh1laWsLr9SKKopT+ns1mSSaTlJSUrBFBTp8+zZEjR/jkk0+Ympri9OnT2yaUOBwOvvzlL7O0tMTMzAwGg0GySdlIdeyRI0eIRCIsLS0RDAYJBAIIgiD5i4qiSCgUwu12Ew6HpcV7vqJVpVLhdrsxGAyUlZXtCTE1lUrR09ODVqulo6Pjvhfz2WyWbDYrCZ75v13e6mGjn5HXXntNssYpLCyktraW0tJSnE7nmvdDZWUlCwsL9PT00N/fz9DQEPX19XR2du541fh+4uOPP2Z6elpKDjebzdhsNmpra6WW490Uc1pbWykuLmZxcZFIJCJVPQeDwTWb0PmAwPr6+odaWF1aWuLdd9+Vup3g1vnGarVit9sJBAJEo1GcTidnz57dsA3MQeHq1asMDQ1hMpno6OigtraWWCxGOBwmEokQj8dpbW3d8Dp3eXmZvr4+UqmUtAn5oIiiiM/nw+VyUVpaKmVMdHR07FiHmYyMzMONLKjuEOl0+q4tcDIym0WpVFJYWLgqbXk7GBoa4vr16ygUCurr6ykrK1s1EVcoFHdd4Gq1Wlyu+29BznsT2mw2zGazVKW6uLjIxMQE8XhcqhrIV4gB0m3m5+dZWrpViWowGCgqKsJut2OtaeDd//ZtFH+jqQqiyFOtm0vJHp4J3JJnRRieDtzr5g81RtOtCa9SqUCrPVj+r7vJl7/YRUmxlbJSG0WFZj76ZISJyQBf+fIJzOa9sbm3srICsOOCqt1ul55zq0SEWCyGTqdbde4rKSkhmUwSDodpa2tDpVJx4cIFyWsvHo+jUCg4c+YMZWVld12MBgIBfvCDH5DL5e44Zr1eT2NjIx6Ph7/+67+mqqqK4eFhTCYTL7zwwpa/zuFwWPKmLi8v33Clr1KpxG63Y7fbUavVTE5OYrfbyWaz+Hw+PB4PqVSKgoIC6uvrpco6rVYrvb5FRUUMDw9z9epViouLcblcWK3WXRFXs9ksPT09qFQqOjs7JZ/Ze+Hz+QiHw6veN0ajcdXfV6VSreqs2MhYWlpapAC2e+F0OnnqqaeIRCL09PQwNjbG2NiYVGEpz1vXsrKygiiKPPHEE1RUVOzJ6sSioiKKitZaBgmCIIXCRaNRRkdH+fTTT+nv7+fo0aMPpd9kJpPh/fffR6PR8KUvfUmyblhYWGBpaYm5uTn0ej3nzp17KF8f+GEV6osvvihttthsNiorK+/7sfKV/ABHjx7dtDd0IpEgnU5L1jFHjx6lt7eXmzdvbluorIzMRhFFJYJ4sDerxAN+fBtBFlR3AFEUSaVSlJSU3PvGMjKbwOl0Mjg4SDab3fIKiWQyyfnz55mfn6e0tJTHH3/8rlUsy8sr6HQaRFHkj37/fQb63Pz8P32eioqNi6nZbJZgMIjX65XSrJuamqTPkt/vZ3h4GJvNRmdn56q2yGw2i9vtxuv1sry8jMVioampicLCwlXChcMB/+Xvfonfee9TJhaD6PQaPp2d5Wh1GcrbFufexSjXh+c40lhORbHtruP+W8918a//8E1EUeTvvCin7Q4OeOjrmeW5FzvXVJue/dwhCov+DhaLnorKB69SkFmNSqXkiTO3qi8XFqL8yr99FYBsNsfP/L1zuzew28hkMsDOC6pKpZKysjLm5+eJRqOrqirj8TgLCwskEgmcTue6lX3rkW/xv73iNr/pdDstLS309vZy48YNPve5z/HWW29x4cIFnnnmmbsKqi6Xi9OnT/Phhx+ueczbqamp4ezZs3R3d9PX14coimQyGRKJxKZeZ0EQ1rwOkUiEwsJCDh8+vKnHBbh27Zr0f6fTSUtLyxobgNux2+2cOHGCmZkZAoEA8/PzaLVanE4n5eXlO1phmffu1mg09yXo3i6o5j8LW9HJ9CCJ1larlSeeeILjx4/T29vL+Pg4U1NTtLW1cfz48U2P6SBx7Ngx3G43oVBox+yVtgqlUonZbMZsNlNaWkpzczPT09PcvHmTDz/8ELvdjtPppKioiMbGxoeiajUfpHfu3DnpvGGxWO56nn3YqK2t5ebNm0xPT9Pa2vrAj7O0tER/fz8Gg4H29vYtqSCNRqMoFArpOm4ymSRR9erVqzgcDioqKlZtuK2srDA9PS3ZxsjIyMhsBllQ3QFWVlYQBEFu+ZfZdkpKSujv72dhYWFTfkSfZXp6mosXL5LL5Th58iQtLS13nWj/9//yAX/+pxd48eWj/O1vPMZf/cVlAP76u9f5//7iC3d9rmw2SygUYmFhgWAwKPkdtrW14XA4Vi1Y84vxzs7OVT8PBoOMjIyQzWYpLi6mvLz8rrvgZXYL/UsBsghE0yv8508uYdZp+alTXQAshuP8rX/5J8RTGfRaNX/xG9+gzHnnyp1nTrdw8nA1oiAe2LCojZLJZPmnP/9NMstZZmcW+cX/8+U1t2nvuP8qB5mNYzLpsNmMhMNJqio3HnS23eyWoArQ1NTEzMwM3/3udzGbzXzhC1/A5/MxOTkp+Q4ODQ0xPj5OcXExhYWFWK3WO4pVNTU1BAIBhoeHaW5uvuNCMd/amEgkUCqVvPDCC7z++ut8/PHHvPTSS3edJ5SUlGC32+nt7UWn091xYVtbW0t1dTWxWIxXXnmFcDiM1+vFbrdv6LXJZDLMz8+zsLBAKBQiHA6zvLxMVVUVx44dw2KxIIoisVhs02niNTU1FBcXS758ZWVlG15kq9Vq6uvrqaurIxaLEQgECAQCeL1e6urqKC8v35GKVY1GQ2dnJzdv3qSvr4/Ozs4NiZo2m41wOIxaraapqQmbzfZAYujtKBSKu/qK3wuj0cjp06c5duwYly9fpr+/n2w2y8mTJx8KcW0j2O12KisrGRkZoaOjY09WqN4PNTU1VFVVMTExwcjICNPT04yOjhIKhXjkkUd2e3jbTmNjIyMjI/T09FBVVSW/z9fBYrFgsVhwu90PLKj6fD5GRkaw2+20trZuWdFHPgjy9nOnXq+nq6uLQCDA3Nwc3d3dGAwGHA4Hoiji9/tZWVmRBVWZbSeHghy7b0u0nRz049sIsqC6A6TTaeBWm7GMzHZSUlKCQqHA6/VumaDq9Xr5+OOPsdlsnD17dkMtgBfOjwFw8cIY//gXnuf0Iw0MDc5z7sn1J2KJRIJgMEgwGJRCNAoKCqitrcXpdN5RZMhPoARBQKVSsbKywvj4OH6/n8LCQpqamja0kXFtzsNKTlj1s48npiVBdWQmQDx1S/xJZ7IMTPruKqgC2Mzy5x1uVUparUYWAlGKHHszGOmgYzTq+NP/8TOEwwkKTHr+2++9T3NrOY+da7njfURRZGlpiWw2i8FgWLNg2SyCIDAzM4NWq90VQaKsrIwvf/nLXLx4kfn5eYaHhwmFQquShpPJJPPz8/j9ftxuN3q9/o7Cklar5dChQwwPD3P58mUqKiqoqqpad9F47Ngx+vr66OnpoaOjg8cff5x33nmH119/nc9//vN3FD71ej0vvvgir7zyCpOTk3dd2CqVSlQqFaIoYrPZuH79Ojdv3kSlUmG1WikqKsJoNKJWq1GpVGg0GtRqNYFAgKGhIVZWViRP1NLSUqk1f3Z2ltLSUiwWC6lUaktawg0Gw6ZaafPVSRaLhdraWqamphgfH2dhYYGWlpYdmXuZTCY6OzulyuCOjo57CjN5n++pqSmGhoY23KZ/N/J+u5tFq9Xy+OOPo9frGRgYYGVlhTNnzqw6pkwmI32trKxI31dWVigqKsLhcGx6HHuVrq4uXn31Vbq7uzl58uRuD2fTKJVKGhsbpYT2jz/+mImJCY4ePXrgi0EsFguPPvooH374IWNjYzQ3N+/2kPYkWq32npkJd2Jubo6JiQlKS0u3vPI5Fout692tUqkoLS2lpKSEpaUlFhYWJCHV5XJRUFDA+Pj4rgRjysjIHCxkQXUHyLcjHPRJiczuo1arsVgsG/ZRDYfD3Lx5E6/XSzabBVhT3SKKIhaLheeee27Dk47//eef5ZVvX0Fv0PKnf3KeX/61H0OjWV+MWVhYYGBgAJVKhc1mo6GhgaKiog19XvICz/Xr19HpdMTjcURRpKWlheLi4g1VJwmCiI7VkzuVQkFJwQ/Fv/aGMlx2M4GlOHaLkWMtm08FP2i8+Xo3r3/vJn/775zhkTM/DPpRqZT84X//aeZmghxqK9/FET7cmE06zCYdv/vv3+Svv30VhULBt978Bay21RXUeSF1amqKWCy26ndarXaNOCWKIkqlEoPBIHld6vV6qf09l8tJvspKpVL6TE5PTxOPxzly5MiWVxGKoijZntzpsfMVlolEAr1eL4Vq3O7vbDQaaWhooL6+nqWlJXp7ewmHw3cM0CgqKuLUqVPMzs5KdiOdnZ1rquMtFgvHjh2TWv8bGxt55pln+PDDD3n99ddpbW3l6NGjaxad8XicTz75RArluxdGoxGdTif9bQoKCsjlcoRCIUZGRu64OK6srOTw4cNr7A6OHTtGd3c3c3NzeDweNBrNffl77gQqlYqGhgYcDofksSqKIrlcjqKiIlwuF06nc1tCgwoKCmhvb6enpwePx3NPf0GFQoHNZqOtrY1Lly7hdrs37dG41Z+lEydOoFKp6O3tJRaLoVKpSCQSpFIpyQP5TuOoq6vj1KlTB1KssFqtVFVVMTo6SkdHx4Gb3x85coTp6Wl6eno4derUbg9n2xAEgcnJScnTMxKJ7PKI9i6pVOq+w7hEUWRqaorZ2dlVm5VbRTabJZFISIGG66FQKCgsLKSwsBBRFKU5SyqVYnx8nHg8vqlQLBmZuyGIIIgHu4JT2FyO84FAFlS3GVEU8Xq9OByOXU39lHk4SCaTxOPxDYc+9ff3MzMzQ0lJCS6XS5ro3D7hUSgUNDY23tei6MjRauKJZX75X30HgIqKQj7/VNua20UiEYaGhnC5XPe0EVgPu91OfX09y8vLLC8v43A4qK2t3fBYlzNZfu7/91f0TXgpqtMRVN+qQi2xFPDzZx+Vbmcx6fmL3/gGwzN+GiudWOXq0zX80e+/TyyW5n/+t49XCaoAFouBtnZZhN4LVNc5AShyFmAwrP6cRCIRJicniUQiWCwWSQxMpVIkk0lSqZTUcZEnXxEXi8Xw+/0bqo7Lt5Q3NTVtKBX+XuRyOaLRKNFolEgkQjQaJZvNSkLvZ79UKhWTk5OEw2Gampqorq7GaDTecaGnUCiw2+3odDqCweBdF19qtVpqN+/t7WV0dJSjR4+ueWyDwcDRo0cZHBxkcHAQpVJJQ0MDHo+Hvr4+otEoZ8+elc6J4+PjXLp0iXA4LC0G82nuXq+XyclJDh06tGpsSqWSkydPcuHCBZRKJefOnVt1bswny2ezWVZWVshms+h0ujv+TfR6PZ2dndLfuLW1dc+2x9psNk6cOMHExASXL9+ynJmdnZV+r9Vq0ev1kthsMpmorq7edFVlvmL3fl4XrVZLWVkZbrebioqKTc0VN9vyvx7Hjh1Do9EwPDyMTqfDZrNJNjo6nQ6tVotGo0Gj0aDValGr1QwMDDA0NITH46Grq0uqfNwp0uk0IyMjeL1eioqKpL/tVr5fu7q6pHbiragu3ktYLBaqqqoYGxujpaXlQIaTpdNpPvjgA/x+P3a7nbNnz27awuSgIggCqVRKCnhKpVK43W4cDse6HRWCILCwsMDc3BzxeJz6+voHCrD6LMlkksHBQZaXl8nlctK1aKPziPx1OJFIEI/HgVsVrrKgKiMjsxlkhW+biUQiJBIJGho2lxouI7MRenp6EEWRzs7ODd3++PHjTE1NYbfbOXbs2JaOpaqqCK1OjSiI1NSsXaSm02n6+vqwWCwPJKbCrWqkzUzSbo646Z/wAiLRVBp1mZp0NktIneRbQ/38wxOnUP3NuMxGHccPyV5LszOLTIz7OfN4M1rtDy8hL37hGH/93Wu88NKR3RuczD156UvHOXqijrnxAH/5Xz/iC18/jcVmZHBwkIWFBcxmM+3t7RQWFkqLD41Gs6EFiyiKpNNplpeXpTbyfNt5Prgn//3GjRuMjo6SSCSkhPgHEVcnJiaYm5sDflihX1FRgdFoZHl5mVQqRSqVYnFxkXQ6LYlNBoOBzs7Ou/qKBoNBkskklZWVKBQKHA4Hi4uLNDQ03LPKRqfT0djYSHd3Nz6fb10LFq1Wy5EjR0ilUlKqdD6IaWZmhg8//JCjR49SUFDAxYsXsdvtfPGLX+TmzZuMjY0xMTFBbW0tMzMzZLNZJiYmOHToEF1dXdL5tKamhqGhIYLBIIuLi6sqedRq9X2Ld1NTUygUCrq6uvZ85aFKpaKpqYmCggLGxsbIZrNkMhk0Gg1Go5FkMkkymcTv95NKpaTrUXV1NY2NjQ/0fsy/x+7XZqCyspL5+XkuX74sJbTb7fYHEle3ouX/s7S3t9Pe3r7h2584cYKGhgYuXLjAp59+yuTkJE8//fSWCprrBaXBrbDKt99+W/JfHx4eZmBgAIPBQElJCZWVlcRiMSKRiFQ5n6+ez1tl6HQ6dDoder1eEt6NRqP0fHmbhrwf40Hk+PHj+Hw+3nrrLZ5//vkt2fzaK+StrFZWVnjkkUcemgCujbK0tMTs7Czt7e0sLi4SCoUQBAGDwcD4+DgejweFQoHH46Gurk66Rq6srOD1evF4PCwvL1NYWHjP6+xGEUWR0dFRstmstPGkUqnQarV3zUgAWF5eZmZmRupKyZ8jdTrdjgYYyjx8CKISQTzY55aDfnwbQRZUtxmv14vBYMBms+32UGQOOPkggYaGhntOLgRBYH5+ntHRUXK5HMlkclPPLYoiN27OYDBoaD1UTjicpG/Aze//4U9SaDdhsaxdXE5NTaFSqWhra9u1iWxlsQ21Skm4LEfaCZAFNcQyGf7j5QsspVP88tknd2Vse5F0eoV/+DP/g1Qqw1e+dpqf+bnPS7/76Z/9HD/9s5/bxdHJbJTCQhM/8/N/Ri4rEApE+ce/+qNkMhmUSiWHDh2SqlDuF4VCIVWB3ovHHnsMg8HAzMwMHo+HK1euYDAYcDqdlJSU4HA4GBgYIJVK0djYSH19/brniUAggNPppKam5q5VpnDrvJevZi8oKLijJ2w6nWZsbIxgMAjc8qbWaDS4XC48Hg9DQ0Mb2gSy2WwUFxczOTmJ1Wq948LNYDBQVVVFVVUVi4uLjI2NIYoibreb2dlZdDody8vLHDt2jIKCAh577DGsVitzc3PcuHEDvV7Ps88+y9TUFAMDA8zNzXHq1CnKy8u5cOECS0tLnD59+q5tkRshkUgQCARoamra82Lq7ZSWlmK1WgmFQkQiERYWFtBqtXR0dEjv9bwgPTk5SX9/P319fRQVFXHy5EkSiQSLi4tYrdZ7BhzmF/lzc3PYbLYNX9t0Oh3Hjh3D7/cTDAbx+XwoFAoqKyvvK0l+I+206XSa69evYzAYaGlp2TZBwW638/zzz3P9+nUGBgaIx+ObFuXi8Tg3btwgFAoRjUbRarXYbDaKioooLi6mpKSEyclJlEolP/IjP4LFYiGbzTI7O8vMzAxer5epqSnglu9tfrPnsxs+69lhOJ1Ozp49i16v56OPPpJ8c1ta7uxFvZ8xm808++yzvPXWW7z11ls4HA7pNRJFEa1WK1V3m81mCgoKKCgokDYBBEEgk8kQi8WIx+Nks1nsdjs2m23HO/byFZNTU1PMz88TjUaxWCw888wzWyL2HSSy2Szvv/8+8Xgcr9eLz+cDkARUvV5PTU0N5eXlzM3NMTk5icfjAW6FMIuiSElJCRUVFQ88l1gPn89HOBymo6NjVUVpLpdjcXGRwsLCdc+32WyWvr4+SeB1uVyYzWbMZjMajWbLxicjI/PwIguq24xSqdzy9isZmc8SDAY5f/48hYWFd0xlFQSBUCjE9PQ0U1NTkndgS0sLHR0dm3r+Ty+M8a9+9RUA/vB3v8Hv/eEP6Omdo7bGwX//o7+37n1WVlYoKCjY1QlNucvGb/7Cy/zU+6+u+Z0IfLO3m39w4hRO49ZNCvcLKys5xkpGCgABAABJREFU+nvnaGopxWRam7qtkFMd9y0arZoiZwEBb4TSyiIADh8+zM2bNxkZGdnyavX1UCqVnDhxghMnThCPx/F4PHi9XhYXF6XWbLVajdFo5NNPP+XatWtSen3e2iQej+P3+6mpqdnQwu12C4A7kcvlGBwcJBqNUldXx+TkJPF4HLvdjtVqpbW1leHhYXp6ejh8+PA9z1/19fXEYjGuXbtGY2OjFBx4JxwOBzabDa/Xy+zsLKFQCLfbjUKhwOm8Zddw6dIlRkdHicViaLVann32WSmpe2Zmho8++ogrV67wwgsvMDExQXFx8ZaIPl6vF7VaTUlJyaYfa6cxGo0YjUYqKiqIRCKMjIzQ19fHqVOnUCgUqNVqmpubaW5uJplMMjY2xvDwMG+++SZwq9o1L7IZDAaampo4evTomufRaDS0t7fT29vL0NAQra2tG/YMzC/y6+vrSaVSeDweZmdnJQEgT97OYj3x4F4t/9PT01y6dImVlRUEQaC/v5/S0lJaWlooLy/f8s1NpVIpfTa3wmf04sWL+Hw+iouLqaioIJ1OEwwGGRoaYmBgQHpOp9Mpibd5G466ujoEQSAYDEp+z3cim82STqcla41IJEJPTw+vvfYa1dXVCIJARUUFR44c2fQx7WXsdjvPPPMMn376qWQ3kn+PRKNR3G635L+fJx9wl8lk1hWm8xtvTqeTtra2DVtU3QlBEFhcXMTv97OwsMDy8rLkmywIAoIgrOqcyJ8Pm5qaZCu2zxCNRrl27RqJRIJDhw4xNDREPB6nqqoKs9lMRUUFNTU10oZabW0tVquVcDgsnUeLi4u3fMNNFEUmJycpLi5e054/NTWF2+1Go9FQXl5OWVmZ9PyiKDI4OEgqleLo0aP3LDaRkdlqBBQIB3y9dNCPbyPIV5JtprS0FK/XSygUoqioaLeHI3MAEQSB8+fPo9FoVrXUZbNZRkZGmJ2dJR6Pk0wmEUURhUJBaWkpx48fp7q6eksWULnbHKkDniUmvnMFjVaFpvHOBvYKhUKacEciEex2+5YHanx4dYzf+KO3eexYPf/6555ff+xGBXdafuZEkYFAgHM1tVs6rv3Af/it13nvnX4am0r4/f96SxTX6zX8/n/9KcbHbrX8y+xP1BoVv/fdf8Rf/9kl9EYNuZyARqPBZrMRDAa5evUqc3Nz1NfXb9g+ZDOYzWZJzIJbVWg+n4+SkhLMZjNer5ehoSFGR0cZHh6W7qfT6aQ23a3C7/cTi8U4efIkBoNBCs/KVzG5XC50Oh39/f1cu3aN1tbWu/oLarVaurq6GB8fZ2RkhKWlpXsu5NVqNZWVlVRUVBAOh+np6SGZTHL16lX0ej2jo6Po9XqKi4vx+Xz09fVRUFCA3++nv7+fWCzGysoK3/zmN0kkEmg0Gimk634RBAG32y2JFCsrKywtLe3r+YzVaqWpqYnu7m6i0eiav5/RaKSzs5P6+npmZmZwuVwUFRVJFVszMzP09PRgt9vXDZGy2WwcOnSIgYEBxsbGaGxsvO9rm8FgwOFw4Ha7mZmZkYTDhYUFstkser2e+vp6WltbVwmDeU/jzxKNRunu7mZycpLCwkLOnj2LSqViaGiIyclJ3n//fUwmE+fOnZOE+60inU6jVCofWGQRBAGPx8PExATDw8PY7XaefPLJVe/nfAViIBCQbDnWIy+23gu1Wi0J3HDLkqGqqorLly8zMTFBNBplaWnpgY5nv1FUVMQXvvCFO/4+k8kQjUalTa5EIkEmk5E2MfKvo0qlIhwOs7S0RDgcxuPxMDMzQ2FhIU1NTTQ0NGzoHCUIArOzs3g8HoLBIJFIRBJuzWYzer1eagXPWzg4HA4qKiqorKyURdTbyGazuN1u5ubm8Pv9kq9oR0cHLS0t0uubSCQ4e/bsute6fODTdpLfKPrsxmnejz3ffZGvRM9vuMzPz7O0tER7e7sspsrIyGwb8lVlmykoKJAWhPt5ASKzd5mZmWFpaYkzZ86g1+vJZDL09/czOjpKOp3GbrfjcrmwWq3YbDZcLteWtPjNjnr5g3/1V3zh753jiafb+Y1/+2MYDBpMIpjNOhwFBv7db/7EHe9fVlZGX18fo6OjzM24MRlNPPLY6S0VR94+P0Qsscybnwzyz37qKfS6tdVkhfdoT7bfpxfefqT75gyZTJYTJ+ukhf9SKHHr+1Ji1W0rKouoqJTPZfudiSEvf/qf3wPAVGDg8y8fIZFIMDExgSAI6PV6+vv7qa2tRalUMjQ0hCAI6HQ6WlpatjXV2mw2rxJESktLKS0tlUSlfHupKIp88sknW/rc+YWbWq2W0oA/W4FltVrp6upiaGiImzdvUlNTQ3V19R1FM5VKRXNzMzabjdHRUa5du4bZbEYURVQqFbW1tetWzebDsM6dO0cqlaK/v5/JyUnUajVf+cpXUCqVDA8P8/HHH/Od73wHrVaLwWCgtLSU6upq9Ho9s7OzBAIB3njjjbuKIrcjCAIjIyPMz8/j8/nWpLknEglefPHFB94AE0WRZDJJJBIhHA5LIWL5ysrb27AtFgvl5eU4nc4tvTZYrVZ0Oh1+v/+OgrjZbKat7YdhihaLBYvFQmNjI9///vf58MMPsdvtklBze6Wd0+mkubmZkZERVCoV9fX19z3GyclJqatEoVCg1WrR6XTS8+SDnz7/+c/f0c5hdnaWwcFB/H4/CoWCw4cPc+zYMem1PHHiBF1dXczOznL+/HnGxsa2XFDNZDKIosh3vvMd6uvr76uqc3p6mhs3bhCNRoFbQufKygrJZHKVfYBSqaS4uPi+U8g3Sl64yb9PrVbrjlTy7we0Wi0Oh2NDgW75sCu4JeaNjY0xOjrKpUuXuHHjBhUVFWuE9+rqakpLS6Xz0uDgoFSdb7fbaWlpkewe9pMVyU6TTqclkRmgr6+P7u5ucv8ve+cd38Z93/33HSZBACQB7gHuvbQlW5Y8ZMmWV/ZyRt20Gc1oZpMno03cpllN0zRP8qRJk8ZZjpvhOB7xkGRrWJK1KVHce++BQWzcPX9AOIkiKVESqeV7v158iQION0Dg7n6f3/f7+UQi6PV6UlNTqaqqwuFwEAgEOHbsGMnJyVgsFgwGwzUPJouLi8Pn8816rK+vD0EQyM/PR6fTkZ+fr3i4xqwKSktL1dAplWtGRBaIyDd3BefNfnyLQRVUlxlBEJR2CBWV5SAhIQFRFDly5Ajd3d2MjIwQiUTIzMykpqZm2QYYh3eepvN0PzueeI0N22q4Zf3ZAeO/P/NZEuxm4i0Li5F2u53k5GQG+gf56UefQgpLVB2vIsG+dMEH77p/NaOTbjatLpxXTAWoTUsnLzGRPqeTyDmtkhpBIDchkZrU5Xn/rhcaT/fz2U/8GoB/+cbbuGVjCQCf++KD7NrRwPpb1EC9m5GkZDMarUgkIpGSHh0oeb1etFot99xzDxqNhqeeeoonn3wSQKn0CYfDjI6Osm3btqu+z0ajkaysLCAqcMSqVZdyEJ2cnExraytjY2PK8c53DjUajaxYsYKenh66u7uZnJykpKTkglUwaWlpWK1Wurq6CIfDCILA+Pg4TqeT9evXX1AwjIuLo7q6mqmpKUKhEKOjo6Snp1NQUMCuXbvQarW8+c1vnuNRWV1dTV1dHXV1dQSDwVnvlcfjwefzzRHQTp8+zcsvv0xcXBxFRUWUlZVhsViYmppiZGRE2edL9YaPRCL09/czMDBAMBhEEATMZjMpKSnodDoEQVB+YoyPj9PU1ER7ezvp6elkZmZecuDTQkiSpFSdxv4emZmZFxVuRVHknnvuob6+nkOHDtHV1YXVaqW0tJRbbrlFeb3dbmdiYoLu7m6ASxZVA4EALpcLm81GRkYGaWlpSrXYunXr8Hq97Ny5k1deeYXt27crQXKxCtWJiQlefvllTCYT1dXVVFRUzDsRIooieXl5nDx5UqlQW0oKCgoIBAKKP/BiBNWRkRGOHDnC+Pi4ImLHAjRvv/32qxaQ1NXVRXt7O8PDw0QiEaxWK9XV1RQVFd1UIU3XAq1WS3l5OeXl5YyMjNDY2Mjg4OAsy4pIJEJLSwsOh4PR0VF8Ph92u5077rgDh8OhBkktks7OTvbt20dSUhKbN28mMTERr9dLJBJh27ZtpKenK++lx+Ph9OnTisXN9VLRazQa8Xg8TE9PK17Hg4ODZGVlKdY7Op0Oh8NBdnY24+PjSJJ0Q1rUqKio3FhcH2fJmxyNRrMsqasqKhBtt7n//vs5efIkLpeLnJwcamtrlyQILRgI8et/e47Cqmxuf+OaWc/d/1ebMBj1rNtaBUSrih791tMcONTB5z5xL3fnRQfpkiQRCoUIBAJ4PB6cTqfSoiXLMgIgigKiTotOf2l+qpIkMzLhJj3ZMm+1VE1JFj/7l3dfcB2CIPD/7nuI9/7p90z4fGhFkbAkkWiM44f3P7TkNgTXku6uMfbubuLubdVkZp0JYjjn+ATx7O/2ZAtvf9eGq72LKlcJR2Eq//T9d3N8fzsZ2dHPQlpamjIJKIoi9957r9LWmpaWRmJiIvX19Rw7dmxWm93VZmJigubmZgRBoKamZklDRXQ6HXa7nba2NrRaLTabbcGKfkEQyMvLIykpiZaWFo4dO0ZmZiZ5eXkLeqvGxcVRUVEBgNvtZmJigkAgwNTUlCKILYTRaGTTpk0cOnRIER16enowmUzce++9Cwo8saq+hoYGEhIS8Hq9dHd3MzExgSzL2O12Vq5cSWpqqrJPJpMJg8FAKBRSRGyr1Up2djZHjhyhrq4Oi8VCeno66enpCwZ8QfTaMDw8TFdXF6FQiIyMDJKTk7FarRcdrGdlZeH1ehkcHGRoaIi+vj5FYExKSrrkwb4sy0xNTdHR0UFbWxsAp06dUp63WCysWLFCqcw+l0gkQlNTEzMzM5SWllJbW0tra6sSnNbW1obX6+XOO+/E5XKxc+dO/H4/+fn59Pb2zpoQWAwOhwOPx4NOp6Oqqoq4uDhmZmY4cuQIzc3NlJWVsW3bNp599ll27tzJnXfeSTAYVETcmEiclZW1qGrK+Ph4Jicn8Xg8mM1mJEkiHA4rFeuXS2pqKqmpqTQ2NnL48GFl/fMRDAbZs2cPAwMDmEwmbrnlFtLT0/nTn/6EKIrceeedpKWlKX9Di8WybAntx48f59SpU8THx1NSUkJxcbFa6bZMLFRdHA6HOXz4MO3t7aSlpbF582YyMjKuwR7euMSqz5OSkvB6vTz11FOzzpuRSGTW9yfmR1pZWXnB8/rVxmw2MzY2Rl1dnWI/E+vyiNmZxRBF8Yq9eVVUlgJJFpHkm3vi52Y/vsUgyGpi0ixiflpOp3PJZp+7u7sZHBzk1ltvXZL1qahcLU4daOWbH/ofBFHgNye/Meu5xpZBJqZmuG19UdQPNRRm25u+iyzDulUO3vWmEqVN71wsFgsJCQnodDp6m4f4f5/4HXe9fQN/9cU3ojdeWqXZV77/HDtebebBu6r4wofvuaJj9YVC/KW9le7pKfITk9heVELcTZYA+t53/pChwWnKKzL5v//118rj9af6CAbDrF7z+vOKfT3zjtv+FeeUl9Ubi/nXnzyi+HQWFRXNK/yMjIywd+9evF4vt91222W1MV8qPp9P8eXzer3MzMwwMzOD3W6ntLR0WVo8I5EIzc3NtLa2snr1aqVF9ULEfB67u7uJRCJotVr0ej0pKSnk5eXNK5TKsszQ0BCDg4N4PB6MRqNib7DQcQ0PD9Pc3MymTZvQaDSMj4/z7LPPcssttygetLHW2P7+fjQaDT09PbhcLsXHEKJhM7m5uRgMBiWB/Vxi1gfr1q1TBOBYanesSrm/v39WUFMsjObcfzUaDSMjI8zMzJCamrqgvcFiiEQijI2NMTAwgNvtRhAErFYrNpuNpKQkxQbi3DAhiHrtGgwGPB4P/f39zMzMYDabSUxMRK/Xo9Pp0Ol0eDweTp48ydTUFGazWUk193q9+Hw+nE4nPp8Pq9WqCNFms5menh6sVitlZWUcOXIEg8GgvId33XUXycnJdHZ20tfXR3V19aLtn2RZ5siRI/h8PjZv3qx8hkZHR2lubsZsNlNVVYXH4+H5558nFArh9/uRZXnWe5yZmbmoivLu7m5effVVRWA5N1AoLS2NjRs3XtF9sdPp5E9/+hNJSUkYDAal6t1kMrF27Vq0Wi179+6lu7ub2tpaqqurEUURSZI4fvw4zc3NSJJEfHw8brdbeS4uLo7i4mKqqqou63wgSRJdXV3K3zf22RkfH6ewsJCNGzeqlZAqNxySJNHd3c3+/ftJSEjgvvvuU7IVYudxgNra2lmThq2trbhcLtasWbPQqq8JsiwzOTlJS0sLXq8XQAlJq6mpUSc7VC6Z5dB8zl/3O3e9B7355rYiCXqCPLHl18vyPt4oqBWqV4FAIHDdtEyoqFwK5WsK2P7e2yioyp71eN/AJH/3+d8gy/C5j93DA1trcLn9PHhvNSfru6ktN88rplZUVMyaNe6vn0AQBLoa+i9ZTAVoaB0C4PSZfxfiVPcQbm+ADWUONAsMjIxaLeuzs9mUm0eq6eKJ4dczkiTT3j5CTo6NuLiz72taegJDg9OkpSfOWr66Jucq76HK9UBqRiLOKS9pmYkASoDIQm2/9fX1hMNhtm/fflWqP1wuF8ePHweilaMmk4mEhARyc3NJSUlZ8urx+vp6RYyTJInU1FR6e3tJSUm5qAgoiiI5OTmkpaUxMTFBMBjE7/fT09NDMBiksLBwzn1ArMU8IyMDt9vN4OCgYiEQEx/PrwyM+eDFhNHk5GSSkpI4ePAg7e3t6HQ6pS3cYrEo23jzm9+MTqcjFAqh0WgQBAGXy4XL5SI3N5exsTFFoNTr9XR3dyPLMmVlZQBMTk7S1NQ0x081GAyi0Wiw2WzIskw4HCYYDOL1egmFQoTDYSwWC6tWrbriG22NRqNUxPp8PqamppicnKS3t5euri5FYDv3/QVmtRDb7XaKi4tJSEiY8/lJTk7G4XDQ09PDnj17GBoaIjMzE5PJRGpqKpmZmbS2tip+gsFgkIGBASBaPVVRUYHVaqWzsxOPx8PKlSsVO4WCggK8Xi/Nzc2sXbt2UcKfIAgUFhZSX1/P0NAQSUlJSjq6z+ejq6uLuro61q5dy4MPPsjY2BhxcXGKWCmKIoIgLNozPS8vj9TUVJqbmxUfYZ1ORzAYpKGhgf3797N9+/zhjoshISGB4uJinE6nUvkaCz3TarU4HA66urqoqKiguLiY3t5eJicnmZqawul0YjAYyMnJYXp6mvLycoqKipiYmKC+vp76+noaGxuprKxk5cqVl7RfDQ0NHDt2TAnOMhgMGI1GysvLWbt2rSqmqlx1YtcDr9dLRUWFMkmzGGKhXbHJIZvNxr333otWq0Wr1V4waDISiShhsdcjvb29iKJIRUUF8fHxxMfHc+LECYaGhlRBVeW6REJAusk9RiVu7uNbDDesyveNb3yDL37xi3ziE5/ge9/7HnCm5fjRR/nJT37C1NQU69ev54c//OGsUIFrwY2eiKty8yLLMi89fYLxwSne+cE75rT36PRa3vu5B+a8ThAFBARkZERBwOX28a4P/YRAMMJDW3LJzpzdzherAjo3ofPpn+3ml996hnf+/T1sf+9tl7X/X/n7+/jL7gYe2lK94DJPHqjn0Sei4TsPrC3nX99775xlXu7p4NH9r9DjmgZgVVomX9+8lTL70oZzXC1+9tPdPPHb18jNTeZnP/9bRTj4+rfeSXv7CCWlqqeUCvzbLz5Ad/sIxRVnW/dj3mTzEasOuxpiqizLDA4OotVqWbduneKxuZyEw2H8fj85OTlKBePx48epr69n1apVi5oY1ev1s1pSExISaGlpYXh4GKvVSm5u7pyBX0zItFqtFBYWMjw8TF9fH+Pj4+Tl5ZGdna0ceyAQmCPGbd++naeeeoqOjg4cDgc2m421a9cqCfQxQVEQBLxeL8ePH1eqk+Lj47FarYqQHgqF6O3tJRwOs2nTJmRZpq2tjYGBAWw2G9nZ2Wg0GkWsO3XqFBaLhZKSkst+3y+HuLg44uLiyMzMRJZlXC4XTqcTnU5HXFwcRqNRESFiljNarXZRwngs4GTnzp2sXbt2VoVyQUEBO3fuZGpqiocffhiIfm5in43s7Gyys7PnrFcQBEpLSzly5AiNjY2kp6eTkJBw0f2JXZNbW1uBqO2DLMsEAgHi4uKUz0bs83OlmEymee0BNBoNx44dY2xs7IpCqzZu3DjnsT179tDU1ERraysmk4mkpCR+//vfK6Fw8fHxzMzMEB8fz7p162YJnLFq7n379jE9Pc3Y2NiC2w6Hw/T19SmWAwkJCej1ek6dOkVWVhZbtmxRxVOVa4Ysy4yPj9Pb24vb7cZgMCDLMnV1daxYsWJRomp/fz9Hjx5lenoaq9XKbbfdRkFBwaI+16Ojo7S2thIOhy/JmuRqMTAwgNPpZMWKFbMszTIyMujo6JjjEa6ioqJytbghBdUjR47wk5/8hJqamlmPf/vb3+a73/0ujz32GCUlJXzta19j69attLS0YLFYrsm++v1+JWldReV6o+5IF//xqV+DP8Aff/kq+esKed/7N+P1BdmwvhBJivoSieJsISM7I4kff+c9TE7PsGF1Ab//82sEgtEZbW9AwG63KwP1WELoufS0DHHwhVNodRp0Rh3xCfNX0HQPTOCeCVBdMr9XY3VJ5oLPxdh9ulP5/ZVTHXOePzo0wN++8NSsKqaTo0O8/c9PsPOd77/uq1XP944CGBiI+l6OjDiR5bM2qXqDlorK6+9GWeXaYDTpKTunOtnv9+PxeOYVhCBavXI1PIVlWVZEyOLi4qs2SMrIyKC5uZmMjAylMrS6upojR44wODi4qNb/80lPTycxMZHJyUmGh4dpaGhg7dq1cypPZVmmqamJ6elpJahpenqajo4ORkZGqK6uVlrXx8bGZn3vT506hdfrxeFw8NBDD80aPEciEU6ePEkkEqG2tha9Xo/JZMLlclFSUjKvD25XVxd9fX1oNBqOHDmC2+1GkiTF/1qSpFnny4KCgkt+X5aSmO/vQinUer3+kj9DMcH5fMEzJSUFURQVobm4uHjRHUh6vZ7y8nIaGxuVQLXKysoLCpRTU1NotVrWr1+P0+mc5Wkcq0C+GpSXl1NfX8/Jkye5++67l3Td69evR6fTEQ6HKSsrY//+/VitVjZt2qRMPvzyl78kOTmZ7u5uEhMTsVqtBINBjh49SldXFwaDgQ0bNswr7Pf391NfX8/Y2Ni8k0UajeaioXAqKsuJ3++nra2NiYkJkpKSqKqqwm634/f7OXr0KKdPn2b16tULvl6SJOrq6qivr8disbBp06Z5faDnQ5Zl+vv76ejoICUlhcLCwivyTF4uYu/N+fkQaWlpynUyJ0fttlK5vpARbvoKTvkmP77FcMMJqh6Ph3e/+93893//N1/72teUx2VZ5nvf+x5f+tKXePOb3wzAL37xC9LS0nj88cf50Ic+NO/6AoEAgUBA+f98bcpXiiAIjI6OYrfbb6qAG5Ubn0RbPIJOg+wDtz/EyRM9fOozjyOLAo+87zZ+96cjmM1GfvQf7+HZnfUEAmHe945bmPEF6Rt3cktN1BvQ4z3bHvSON22itGjhCsjhnnEefd+P8HkDvOUjd/Pg+2+fd7n+4Sne+5lfEJFkvvbpB7lrw+VVQN1RXcieM6LqXbVzPR9/eOIQAnDuMCsiy3hCQR5vPMkn11y/3sdPPX2cH/xoF/duq+Kznzrbivmxj28lLy+ZNWsK5ojhKioLMT4+jiiKJCcnz3luZGSEkZGRq1KJ2NzczOjoKOXl5fMGlSwXMUHO5/MpA8qYoHYl4RxGo5HMzExSU1M5cuQIJ06cULxVY2Lc2NgYo6OjZGRkEAgEGBsbIxgMkpyczNTUFAMDAxQUFJCQkEB3dzenT5+mqKgIg8FAb28vqamp3HvvvXMG0E6nE5fLhSAI1NXVUVZWRnFxMY2NjbS2tiKK4pwU5FiidktLi1KNmpycrNzDxNrJRVHEZDLN6jy4WfD5fADs3LmTrKwsysvLSUlJQavV8uCDD7Jjxw7279+vWC4sFr/fr4i1EPUtvZCgOj09jcFgwOVyYbFY5v1uXg20Wi2lpaWcPn2a0dHRJa1SNxqNSsZAZ2cnTqeTqqoqjh8/Tnx8PImJiZhMJpqamjhx4gRmsxmtVqtUSZeXl7NixYo5onl/fz8nTpxgYmICs9lMeXk5DocDu92O2+3G6XTidrtJSEh43fq+qVxbYmJmV1eXEgSVnJyMIAhIkkRPTw+RSOSC54hwOMzu3bvp7++noKCA22677aJCqizLjI2NMTk5yfT0NH6/H4fDQX5+/nU7TjUajfPaEel0OpKTkxkeHp7VzaGioqJytbjhBNWPfvSj3H///dx9992zBNWuri6Gh4dnGe8bDAZuv/12Dhw4sKCg+o1vfINHH3102fbXaDRSUVFBY2MjoihSWlqqnuxVrhvyi9L4n11fYLB/kp8/tg+TycDR070A9PZPMOMNMuMN8vyu0/z0N68CkJWRyG93Hqe9d5xbV+az9fYK2j1OyqvsrCrOniOmyrLM8MAUMx4fu35/mOd/vhdJkrBlJqLPTMLtCWAwaDEaZgdA+QNhIlK0Csoz47/sY3zzLVWUZCbj8gZYXzp39vrk6BCRebL5JFnm9PjIZW93KfF6A3T3TFBako5Gc/ZG+eXdTUQiEjt2Nc4SVJOTLTzy15uvxa6q3MC43W5FrDif0dFRgEWlhV8JHo+HkZERSktLr6qYCmdF03P942JJwpfiYbcQWq2WmpoaBgYGGBwcRJIkSkpKCIfDtLW1kZycrARLybKs+KkCimiZlJREZWUl7e3tHDlyhGAwiMvlora2dt5BtNVqRRRF0tLSmJycVDxpY8/N13Ku0Wiorq6mvb2diYkJMjIyKCsre11V8JWWlhIfH09nZ6cieOTl5VFcXExiYqISbLVQVexCjI+PY7FYyM/PR6/XL8qCYGZmhvr6euLj41m7du2VHNYVUV1dTUdHBy+88AIlJSWsWbNmSfMBpqamOHjwIDabDb/fz/DwMHq9nra2NsXTtaKigqKiItxuN8FgkNLS0nnF0OPHj3Pq1CnMZrNSuXru5zcpKUntHFO5poTDYerr63E6nWRlZZGfn698n8LhMKdPn8bpdM6aWJRlWTnnu91uXC4XPT09TE9PU1ZWxvr16y86xvT7/TQ1NeF0OpXwveTk5DmVn9cbcXFxjI6OztuVlZqaSkNDA8FgcEmu1SoqS4Ukvw48VG/y41sMN5Sg+sQTT3D8+HGOHDky57nh4WGAOQOwtLQ0enp6FlznF77wBT796U8r/3e5XEveMpCSkkJRURFtbW3k5uZedsKtisqV8P3PPk5/xwiP/vrviIs/286TkW0jI9vG6g1FADQ1DzI15aWyMhNBFEmwxrHp1hJ+8fuDhMISdls8gUA0mGRsysOXfvq8sq73vG22P1ooFObv3/NjOo90IPgCcEa4lHVaegx6/uMnr/C9n+/GGG9gVU0OlaWZvOtN6xAEgaLcFL77xTczOe3lns3lV3TsVbkLV8ymxZuZ8vs4X1LVCAIpcde+8kqWZT7y97+ip3eCt7xpNR/7u7Ptlu9/ZBO//PV+7r7r2vpEq9z4jI6OMjo6Ou/178knn8TlcinJ9ctJb28vRqNxTtXk1SAmuJzbFhzrYFmq446Pj6ekpIS4uDg6OjoUD0iIBj+1t7fjcDjQ6/Xk5eVhMpmYmpqaVRGYkpJCfHw8u3btYmJigtWrV1NYOLf6HqIibnJyMpOTk1RVVSmt+jH7gPmI+ddOTk6Sm5t7XVctLReiKOJwOEhOTubUqVOcOHGCgwcP0traqoTEuFwunnzySfLz86murlb+jrHq3pmZGWpraxVP3ZjXa3Z29qIDVGpra5EkiYMHD16yeLvU6PV63vjGN3L06FFaWlro6elh3bp15OfnX9b6JiYmOHz4MBCtMpuYmECn03H33XezZ88eJezM6/UyPT2NyWQiOTkZs9lMXl7evAJ/OBzG6/Uq1gibNm266hMzKioXQ5IkTp8+rYTXnf/ddrlcTE9PU1JSonx+nU4nra2tzMzMANFzuMVioaKigqmpKbxeLwcOHMBsNuNwOBacMOjv71fOTTfSpILJZFJCs86/dsWuT6+365SKisr1wQ0jqPb19fGJT3yCl1566YLeLuefTOebyTqXCw0qlpLk5GTa2tqYmZlRBVWVq4Jvxk9bXS+VG4rQaEQOvHASURQYG5jCUZKx4OvKy8566n35nECqv3nPbfzfx/bwT999lr95SzF9o4mE4iw0vDqhLLPjeCebVpQq///593bQdawLISJFjTxlGckSRzjLjmzQEDYIIEPEG2Dfa+3se62dn/7mVbbdXsHnP34vG1Zc3kDtUnhP5Qq+tHfHnMcjssw7yxcOu1pqwuEIv3niNQTg4XduQKs922I8Nu4GYGRktiXJihoHK7596b6OKirnMjMzQ2NjI2lpaUqQ0bnExcXhdrvZtm3bslYpBgIBRkdHKSoquiYDo3MFVVmWGRkZmTV4XUqysrIYHh6mpaWFVatWsX79evr7++nr61MGuxCtvJmvvdpkMin+ncXFxRfcVkFBASdPnuT06dPU1tZeNPU9EAjQ39+PyWTC4XC8rgepe/fuZWRkhKKiIoaHhwkGg7S2tiIIAiaTCbPZTH19PYIgUFNTw6FDh2hvb0en06HRaNi1axf33XcfNpsNj8dDOBy+5PZyp9NJKBS65oIqREXVW2+9lZKSEg4cOMCePXtob29n06ZNl+S7KEkS+/fvx+PxYLVaCQQCGI1GbrvtNiWYyuv14vf7MRqNOBwOZmZmOH36NKdOnUKv12Oz2ZAkiWAwSCAQIBQKEQ6HkSQJl8tFUVHRFQVoqagsFT6fD5fLRSQSIRKJMDk5icvloqamZt7vdWJiIlqtlqmpKVJSUuju7mZgYACr1UplZSVWq3XWNUmWZaanp3E6nfT29tLZ2bmg56rL5cJgMNxQYiqcHd+HQqE51+PYJOjrqYtC5cZAkkUk+eb+XN7sx7cYbhhB9dixY4yOjs66QEQiEfbu3csPfvADWlpagGil6rkJu6Ojo9fF7LRer0ej0eD1eq/1rqjc5EiSRE/LEL//wUvU7W3h4c/cxwOPbOabv/8E0xPuC4qpCzE5OUl9QzRl2OsLYjEZWV0ax9RMkHNTj3ae7mDNoQYeWh+tmDy2rxUkGUQRMc5AzUMrqah1UFaRxYuHWnh+XxMAm1cVcvBQOzqdBn8gzPMvn+al3Y3842ce4M6NpfPv1BlGXR7+5U+7cPkC/MMDm6nKvrTKtneV19AwPsrjjScVW21REPjKxruoTb309+pyefVAG4/9MmqrkOuwc/vmMiB6E/nv33onR452cd+9NRdahYrKZRHzJSsuLp53QLJx40aefvppTp8+zV133bVs+yGKIhqNZl6ftKuBIAhotVoGBgYYGRlRqtw0Gs2SV+aKokhZWRnHjx+nt7eXvLw8cnJyGBsbW7QwVVhYyPT0NKdOnWLlypXodLp5lzMajSQnJ9PX18fAwMBFBVij0UhVVRXNzc0cO3aM6urqi4qwNysWi4WJiQm2bNlCd3c3+/btIzExkaSkJDo7O6mqqmJiYoLR0VGefPJJfD4fpaWlrFmzhmPHjtHU1KSIfZ2dnRiNxkturdXpdBgMBpqamhgeHiY3N/eat+cmJyfzwAMP0NjYyIkTJ3j66afZtGnTrPvvCzE+Ps7k5CTx8fFkZmZSUlKC2WxWnt+wYcO8rwsGgwwMDDAwMMDk5CQajQaz2YzdbsdoNCo/Bw4cwGazqQKLyjVnamqK06dPK1YyGo1G8Uud73scDod59dXoveDY2BhjY2NoNBqKiorIysqad4JLEASSkpKwWq309/cvOGkjSRIzMzNEIhHa29spKCi4Yb4jfX19mM3mOZ7dsizT19dHXFzcFXmdq6ioqFwuN4ygumXLFurr62c99td//deUlZXx+c9/noKCAtLT09mxYwcrV64Eojdee/bs4Vvf+ta12OVZxFJoBwYGSE1NvS4TFFVuDv7809387/dfIL88C1Erknem4jSvfG6a82Lp7e1l85p08nKzqCrLpchh4fTp0yTF63moOpcXmvrxayRmwiH++Yld3Ls6KoKuurWIntYhiEg88Fe38ZEvP6Ss0yNFeGFfE/YkM1/6xH1oRYHG1mF++vg+6hsHCEckvv/fuwiHI2y9vWLBffv3v+xjd1MXAP/w+F94/nPvv6RjEwWBr2/eyvurV7GnrxuDRsO2/GJSTcvT7j8wMMUvf3OAlSsc3LvtbAVsrsOOXh+9GXQ47LNeU1aaQVnp1RN3VV5fBAIBtFrtgn6IMa9Nv//yvYwXg06no6ioiJaWFlJTUxfdFr1UxKoMGxsb8fl81NbWYrFYLtrpcrnEqhidTifd3d2KX+pibYd0Oh01NTUcP36choYGampq5h0cx6ptBUFYtJVCzM+1oaEBl8v1uhVUc3JyaGtrY2RkRBEf9u3bx/T0ND6fj2effVapiMzMzOSuu+5SgsSam5vJy8sjNTWVw4cPEw6HqaiouGQBw2w2s379esbGxujq6qK9vZ01a9Ys0xEvHlEUqaqqIiMjg927d/Piiy+SmZlJbW3tRQsZkpOTWbduHd3d3dTX19PR0cFb3vKWi743er2e/Pz8i9oMdHZ2MjIyQjgcXlKfVxWVS2Fqaor6+noSEhKoqKhAq9Ve9FoyNDSk/J6WlkZSUhI2m21Rk3rj4+OEw2GysrLmfV4URdavX8/Q0BDd3d04nU4qKiqu+87JqakppqenqaqqmvX+ybJMR0cHbrebysrK13U3hcr1ieqh+vrghrnLsFgsVFVVzXosPj4eu92uPP7JT36Sr3/96xQXF1NcXMzXv/51TCYTDz/88LXY5TmUlpZy4sSJi1aTqKhcLrIs09sySMAb5NbtK3jw/bcvyXpDoRB6nYZttxXgcERbzJOS0zl0qo1P/PV92Pee4KcvHUZAxqDTsOWf/xuXL8CnH9jEexO24feFeO/Htsxa510bSqj9yYeJj9MrgVQrq3P44Tce5rd/Oswvf/caE1Mz/NsPX+TO28rQauYfaIUjknLssd8vBVmWkYGiJDtFSfaLLn+lPParV9n5ciM7dp1m820lmEzR1qX8vBT+8NuPAWCxqBMuKlcPnU5HOBzG6XTO2344ODiI2+2mpmZ5K6TD4TATE1ELkVAotKzbWgir1cratWuRJGnZr9EDAwNAVLQ7deoUWVlZpKamXlJLuMlkorq6mrq6OlpbW+cNvhQEgZUrV1JfX8/JkycpKSkhJSXlgoPPWCiW2Wy+Lrp8rhWZmZmIokh/fz8ZGRnk5eVhtVrp7u6mr68Pj8eDXq+ntLSUqqoqRRA0GAyYTCb6+/vp7OwkEAhQVVWF3X5515hYsFgsHO56wm6384Y3vIHTp0/T3NzM888/T2pqKlVVVWRnZ88rkoqiSEVFBRUVFbS1tbF//36mpqYWfH8kSaK+vh5ZlikrK7toUUJ6ejonTpzgN7/5DWazmfz8fCoqKtRiBpWrisfjQZIkcnJyFn09yczMJDk5GaPReEkCYSQSobU12kkmzxO0GkOv15Obm4vFYmHv3r10dXXxhje84bodk8qyTHd3NxaLZc75oa+vj/7+foqLi1V7DxUVlWvGDSOoLobPfe5z+Hw+PvKRjzA1NcX69et56aWXsFgs13rXgOgNdk1NDSdOnKC+vp7a2lq1PUFl0Tz5n3/hf778OB/45nt4w0fvnXeZzoZ+Dr5Yj0YrLomYGmsnjVV4jI6Okp6ejtsX4lM/2IHHF+KPB/p57KsPM+MPMDjhIiRI7G/pxjAq8aOf7Oa333qE/Oz5B0n2xPmrQN/1pnWIosAP/2c3vkCYf//xDj7/kXvmXfZT229jxOnB7Q/w5Tcuvh15wu/l28f28OfORgKRMOvScvjc6s2sTs1e9DouxG9/d4gXXjzFB/7mDm679WyL7YpaB7teaaS0JAOjcXbFgSqkqlwL0tPTGRwc5MSJE8TFxVFeXj5L1Ovr6wNY1gGXLMvU1dXh8/moqqoiOTl52bZ1MTQazWVdm0OhEF6vF51Oh06nU6qRwuGw4vPo9/uVf/v7+3E4HHR3dxMfH09hYeFltV8mJCRQWlpKc3MzNpttXs/VuLg4Vq5cSUtLC42NjSQlJVFdXb3g9gYHB/F4PKxatep1XfWj1WpJTEycJWTabDZsNhurVq1a8HUmk4n777+fnTt3cuDAAQRBICcn54o/1z6fb1Heh8FgkPHxccxmM2azednberVaLStWrKCqqorW1lYaGhp4+eWX0ev1ZGRkkJ+fj8PhmHc/cnNzOXDgAD09PfMKqsFgkF27dilV1vX19axbt47S0oXtgIqLixkfH1f+dvX19bhcLu64446lPGwVlQuSnZ3NxMQEzc3NrF69elFe3BqN5rIqRnt6epBlmZUrV85pi4eofcBrr72G3+8nFAoRDAaB6PksFrZ3PZ7rx8bGcDqdVFdXz9q/kZEROjs7yc3NXbAiV0XlWiMhIHH9fa+Wkpv9+BbDDS2o7t69e9b/BUHgq1/9Kl/96levyf4sBpPJRE1NDXV1dZw4cYLKysrrvtVC5drjHHfzsy//lqA3wL4nDy0oqGYXpZFfnkl+xdKIgpIk0dw9RYJZT5otDo/Hw7Fjx2gd8uLxRSvIptw+WnvH+Pxb7gTgRy8d5MCpLrRnuoN3HWgmqzSZ/a09bK0q4vbygkVt+x1vWMsv/vgaLk+Ausb+BZfLtiXw64+845KOyx8O8ba//IYe9xSRMzP5R0b6ecfzv+X3972blSmLt0c4eaoPQYCa6tltuj//xT5CoQhP/O7QLEH1/u213L6plLg4PaKoXoRUrj2xVvfJyUna2tqYnJycJajW1tYyPDzM3r17yczMXHI/UYgGZXg8nhsuefhcWltbGRsbm/WYKIpKYEYMrVZLIBDA7XbjdDqZmZlhxYoVVyR6xUTx8fHxeQXVWFJ6UVERycnJNDc3K4FA8xHz+xsaGroqgtz1ytTUFFNTU5SUlFzya00mE/fddx91dXVKCM2VIMsyfr9/3nvGzs5OOjo6lImAwcFBwuEwEP0M2mw2qqqqFhQ1lwqtVktFRQVlZWUMDg7S2dnJ4OAgPT096HQ6ysvL5xWiNRqNEgB3PvX19YyOjrJx40YSExN57rnn6OjoID8/f8FzkclkYsuWs10x//u//6sWMKhcdQRBoKKigqNHj3L48GEsFgsWi4XU1NR5i33C4TB+v5/4+PhLFjeHhobQ6XTKhN3IyAgpKSn4/X4ikQi7du1CFEXS09PR6/XEx8djs9nQ6XQ0NjbOySC51kQiETo7OxkYGMBut8+xABoYGMBms80bpKmioqJyNbmhBdUbFYvFwsqVK2loaOD48ePccsstr9vBisrFcY67+d7Hf442zogginzmvz+84LItx7rpbR1ioHOUDz76live9itHenns2XY0GoF/eE8VpUW5DA0N4XG7Meg0BEIRzCYDlQVnffn+9q51aASRF184jQENjoJkPvX4XxAFgaeONfDMZ/6K/JTFeSMWFqZx/FQvPSNTzHgDxJuWJmn76a4mOl2Tsx6TkBGA79W9yi+2vn3Oa3p6x0lMjCfBenYwe/xED5/5/BMAfO87D1Nbc1ZUfcfb1vH8i/W86Q1zB49ms1qJqnJ9odPpSEtLY3BwcE54YjgcJhAIkJCQsCxiaixoRq/XX/OwnctFlmUmJyfJysoiJSWFUChEKBQiEomg1+sxGAzKz+DgIG1tbaSmpiphI0tx3ImJiQwNDc3r+To5OUl7ezuAUiV1vtB7Lg6HA51OR1tbG263m+rq6kVVV91sxFpnYwLzpaLValmzZg0jIyM0NTXhdrsvu2tKluU5f1tJkjh27BgNDQ2K8C1JEg6Hg8LCQrxeLy6Xi66uLnbv3q2khC8UQLdUiKJIdnY2BoMBu91OQkIChw8fpqenZ46gevz4cSRJorr6rKe43++nr68PrVZLX18fNpuN4uJi/H6/UnU6MDBwUS/VGAaDYUHBVkVlOdHr9axcuZLR0VHcbjdDQ0O4XC4l7yPGxMQEra2tBAIB4uPjycnJITU1ddHf05qaGtrb22lsbFQea25uVjxZ9Xo927dvn9fWZ2pqira2NhISEq4Lv2y3201TUxN+v/+CYVx6vf66rKpVUYmheqi+PlAF1WuE2WwmNzeX5uZmQqHQ63KgonJxfB4/f/n5bk4faCHNkcKXf/MxMgoW9rMrqMqmZGUelesKL2k7Iz1jPPOjF9n+t1vIKjo7Qx0MRStcomNKgaGhIV5tGOXpw/0IYRmzRscHHthAcuLZdF6dVsMHt67ng1vXA/Diqaink3RmYDo05eZIdz8jTg/rC3JYVzB/AIssy/QPTyNrBHQ6DUEkliom6tBwHxpBUKpTY0RkmUNDffT2TswKhnrhpXq+9Z2/YLUY+c0vP4w5Pvp9jZzj2Ro5z7/1bx7ZzN88snmJ9lhF5eqg0WhmiUeSJPHCCy8QDoe5++67l3RbY2NjdHd3K0JHfn7+dTU4kiSJ6elptFotJpPpguE24XAYWZYZGhoiFAqRlpZGRkbGvMfT399Peno65eXlS7q/drud3t5epqamZlXzhEIhZeBpMBhITEzE7XZf1E8yIyMDi8XCqVOnaG1tnSV43WyEw2E6OjqYmZkhPj4eq9WKxWIhMTGRiooKGhoayMvLIzv78ro/UlJS6Ozs5NixYxiNRhISEkhKSiItLW3Rn3lRFLFYLExPT5OUlMTQ0BBtbW0MDw9TUlLChg0bFhRfVq5cSVdXFw0NDRw8eJDDhw9jMpkwm804HI4l/yxC9Ptz4MABpqamMJvNBINBZFmmvr4es9lMTk4Ofr+ftrY2CgoKsFqtDAwMkJSUxAsvvKBU9AqCwKZNmwAwGo2sXbuWHTt2zBF+PB4P+/fvx+VyYTQaMRqNyvvh9XoZHx8nEomolaoqV524uDhyc3MBaG9vZ2RkhKmpKRITEwmFQrS3tzM6OorNZqOoqIjh4WGam5vp6OjAYDCg0WjIyMi4YKhgrFinsbERWZbJyclhfHxcmQxduXLlgh0JRUVFOJ1OGhsbWb169VW5DsuyTDgcnmUlFPPu7unpIT4+ntWrV89rXwDR88KFvGJVVFRUrhaqoHoNsdvtaLVaurq6KCsru9a7o3Id8vkHvsVwzzhrt9Zw/9/ciaN04Vb0GZePf3jjf5DusPPWj2xd9Db6Wgb57gf/i56GPjxTM3zyxx9Snnvb9lXYE+NJtVlwjnchSxHqe6YBEEPgD4X4w1+O8677Vy+4/tvLC1hfmMOhjj62VBTy8wNHOdDeiygK/Ojl1/jam7aSIsRRmJPC7sNtaDUCx+p7OdU6iNMd9Q3wS2Fu/eaP+PjWjfzdbes4Ud9HgjWOwrwUXG4ff/zzMcpLMtiwrpBQKMKPfvIKwWCIj354C3FxegYGpvjdHw+zYV0ht2wowqJfeAIjNBPmkQ/8lO9/991UVUYHzwMDUwC43H5mZgKKoLp2TT7f+te3IQgCq1bmLvo9V1G5XvF4PLPa/vx+Px6Ph4KCAkwm05Il3k9OTipeng6Hg6SkpGWpfj2XcDjM2NiYIn7GSE1NnSUuejwehoeHGRkZmRWOZbVaWbVqFcFgEK/XO6uqVKfTsX79ekZGRhgZGaG+vh69Xq+kNFutVkWQFQThgtWhl0tMBIxV9MVoampicnISjUZDUlLSBb0nz8dsNlNUVERjYyOTk5Nz2i5vFCRJYmxsjImJCaWK0+Vy4Xa7mZqaYmxsDJPJhCiKsz4bOp2OVatWIcsyzz//PI888shleQmLosjq1auZnp7G5XLhdDqVz0pZWdmiJ9WNRiMnTpzgyJEjyv5t2LDhoveQoihSWFhIYWEhg4ODDAwM4Ha7cblcHDp0iOHhYTZt2nTBSYPFEKuYjQlGkUiEiooKhoeHmZycJBKJcOzYMWWfAAKBAHq9nt///vf4fD7lb3DXXXeRkJCATqebJZ56PB4ApdJXkiS6u7t57bXXkGWZ7Oxs/H4/Xq8XSZKIRCL4/X5mZmbYu3cvt99+u9oVpnLNSElJYXJykpMnT2IwGJAkCVmWKS8vJzU1FUEQSElJwev1Ktcgp9NJT0/PBQXVGBUVFcrvVqsVjUZDV1fXBYMeNRqNEpx8/oTcchGbDCoqKiIjIwOfz0dzczMul4vc3Fxyc3Mv+D1VBVWVGwG1QvX1gSqoXkN0Oh35+fm0tbWRmZl5Scm+Ktc/Xad7efzrT/LWTz1A6dqiS3rtaN8E33jk/xH0hxAFgYc//wayiy98I+WamsE54cY95Vm06NF+soef/p/f0N04SFZRBg+eF/yk1YgUZifz0f/zOKIgc+utGfSMRqvJJB3ECVrefgExFWB80kOh1kpGTjFxYR1PHmwjPgiyADoffOd7OyAkIwggR2QECWRBRoyARoaIFkQBUk5G+MnkqxgmIvzi5/sRRYFf/fBv+NOfj/Hk08cRRYE//fZjnG7o509/jg7YyssyuX97LT/6ycvsP9jO8y/W8/zTn+ZNhZU81nRszr6KgLkzWpE7NXW27fld71iPXq8lPy+ZtNTZ39N1axfnCauicr0TCAQIBoMMDw8zNDSkXJMSEhKYnp7mtddeU0S5ioqKyxYlXC4Xp0+fVnwdL1egjUQiBAIBpbU+HA4TiUSUH0EQSEpKQhRFBgYGGBkZIRKJzBI2I5EI3d3d2O12QqEQPT09xMXFER8fT3p6OmlpaciyrLy+qamJkZERANatWzdL6DEYDDgcDnJychRRdnh4WAn1Sk1NJS8vD5PJRCAQuKxjvhCx4KPGxkamp6cVwTcxMVEJ6rwc0TolJYXExETa29tZs2bNsotRsb9rXFzcvJ+NoaEh7HY7er0er9fLwMAAQ0ND6PV6SkpKFDEgJqJ2dHQwMDAwp+U7Fh42MTFBUlISW7duxW634/V6cbvdeDwe2traOHTokCLMnTp1itWrL3zNWwi9Xk9qaqricTs1NUVTUxNHjx4lKyuLuLg4jEajYg0BKEJg7Gd8fJyEhATy8/NJT09XPt+XQmZmJpmZZydn6+vrOX78OM888wxbtmy5onvRlpYWGhoaSE5OprS0lMzMzFlVvbGJhPHxcXp6euju7sbv99PY2EhGRgZr1qxRvo8Oh+OC26qvr8fj8TA4OEgkEsFms3HLLbcAMDMzozw3PDyMKIoYjUZaWlrwer2KH6uKytUmISGBtWvX4na7GR4eBiAvL2/OuTkuLo7U1FTcbjd+v5/JyUl8Pt8l5W7IskxycjJDQ0M0NTWxdu3aBSdvrFYrJpOJ4eHhZRdUY99Ni8VCa2sro6OjuFwuDAYDq1atuug5KBwO4/F4Zp3HVFRUbgzy8vLo6emZ8/hHPvIRfvjDHyLLMo8++ig/+clPlHvXH/7wh1RWVl6DvV0cqqB6jcnMzFTatl7vabo3Gzt/uYdjL51koHWIT//3hylauTivr5N7m3j2Zy8z1D2GPSOR37R9D43m4gOm5IxEPvnd95BbOn+b6fmMDUzy5Tf9OyF/gFV3V/G3//ouMgrSeOGlen73h8O86+0b2Hp3JQ0tg3h90TTQXceGlNb9ytJMfvrld14wWGl43MX7vvobPDN+xDAIMhjPdBMr88qh6G+yDIJENCtQAvHMAiEzGKejv+s9MoNT0TZASZIJhyNkZ0YDbJISTRiNOkqK0khKNBEMRaiqjCZ/lpVm8EpDG+nFifgiIWqTM3jIXMzTnjYEGTSiSFiWWJGSySN3V6PdIrLxnCApk8nAe99960XfUxWVGxlRFLFarUq7rNPpJBAIcMstt5CQkIDX68Xj8dDV1cXo6OicaplIJEJ/fz9jY2MIgqD8xIh5QHq9XiwWy6JThX0+H+Pj48zMzCiibyAQUEJ35jsOjUaDJEl0dnYCUTErOzubzMzMWQPKcDhMb28vTqdTCSCqqamZUx0Tq86dmJiYtZ35EARBCR8pKirC5/MxOTlJX18fhw8fBqIp5MtBSkoKZrOZuro60tPTyc/PJyMjg+7uboaHhy8qUs2HIAgUFRVx9OhRjh8/rlQQyrKMxWIhLy9vziC9p6eH8fFxRFFUfhITE8nOzr7g33xmZob6+nr8fj96vR6bzUZ8fDxTU1MIgkBeXh4vvvgiBoMBvV6P2+0GopWboVCI5uZmNBqNUrkkSRJarZb09HRWrVpFTk4OkiQhiiIul4s9e/aQlJTEQw89pIjjZrMZszlqY1NYWEh/fz+JiYkcPXqUpqYmKisrL2qXsBiSkpJYs2YNbW1tDAwMzKogi313YgKkVqtVRP5Vq1Yp+7cUVFdXY7fb2bt3L8888wxr1qwhMTERnU43q7J6MQwPDxMfH88DDzww7/Ox70xMWF67di3T09MIgqB4OxYWXtiyqLi4mPHxcRoaGpAkCb1ej1arxel08txzz81aNj4+nvLychwOBykpKXR0dHD06FGeeeYZNm3apAbaqFwTBEHAarXOKxy6XC46Ojpwu93K9z8uLo709PRLro5vbm5WJgDNZvMFKzoFQSAtLY3e3t5L2salIssybW1tmEwmVq5cqXjHpqenU1hYuChLjqGhISKRiCqoqlz3qBWqczly5Mgsa7HTp0+zdetW3va2twHw7W9/m+9+97s89thjlJSU8LWvfY2tW7fS0tJy2R70y40qqF5jBEGguLiYEydOXHcJiypXxps/9QA9zQM0HmjhG+/5Pv/0+0+TWzG/XyhEbzL+59E/8pef7kKj03D3uzby4Ae2LEpMBfjOx39B3astfOq77yEtx37BZb/5/v9isHOE5KwkdPFG3v7VdyjerD99bC9Dfh+P/uQFsvJs3L2pnJaOYfyBMLtbuxC8QRCgPD9tXjHV5fHx4r4mVlU6+MC/PoHHN38llqSL2gYY7HqyTBYSrXGsKstm76F2Hn7DGlraRnj5WCvtNh8Bm4TBJePN0PD27au5tSgPW6KJfEcyeTl2Vq7IJSXZgkGvJSXFyu9/+1FkWUar1dA2Pc5vLM0MPAQDjLPuDz/gY9W38p9veRN/OzrMC/2teMMhbkl3sCWnCK3aCqjyOiXW3rwQcXFx2O123G43PT09JCcnK2LLxMQEbW1tBAIBJUgjJrrFiIlEiYmJOByOCw6cQqEQAwMDjI+P4/F4EEWR+Ph4xQM0VsWn1+vR6/VoNBq0Wi0ajUYR7CRJwul0Eg6Hsdvt8wqgWq2WgoJolfnzzz+P1WqdN+gmIyMDs9lMb28vHo+H2traRYlqgiBgMpkwmUxkZmYqrc9paQt7YV8JgiCwatUqJVl9dHRUqWgaGhq6LEEVooPxsrIyRdiMvcfj4+OMjo6Sk5NDTk4OoigyPT1NV1cXdrsdnU6HJEmKR+nY2BhlZWVz/C9jfrWNjY0YDAYqKytxuVxMTk4qVVwAycnJQFQoi4uLo6SkhJycHBITEwkGg3R2ds4KVYt91s4VBYPBILt27WJkZAS9Xs+WLVsWDGIRRVF5z9asWcNTTz3F8ePHufXWpZlg0+v1StVFrDU99iPLMiaTifj4+GUPX8nMzOSBBx7glVde4eDBg8rjWVlZbN26OAuhmKVGSkrKJW37cipFTSaTIozr9XoSEhKw2+1YLBbi4+OVf8+v+isuLiYnJ4fnnnuO+vp6VVBVua7w+XzU19djMBjIz8/HYrFgNpsv24rDYDAgCAIbNmxYlK2IVqtdFjuacxkbG8PpdFJTU4MoiqSkpJCcnLzo85skSfT395OWlrYkE1sqKipXl/PvEb75zW9SWFjI7bffjizLfO973+NLX/oSb37zmwH4xS9+QVpaGo8//jgf+tCH5lvlNUcVVK8DEhISSEtLo7Ozk6SkJPUCcZNgz0jiUz/+EN98z/dpr+vii/d9nX/b9RUyC+e27o8PTfOzf36Sg08fAxnW313Nu//PG4m3Lr61x56eQCQcueBrZFlm7x8Pc3THKbR6LY9853382/d38JEPP8aP/usRSkoz2Hx7KU/sOokMHDjeRUVRBh/56zu5/5M/xucPIcsyq0uy+cAbb+F//3KcI6e6uXdzBf/5i904MpKwJZjYdbAVo0mHRwpDTNzQyhSl2vnKx7fzxKsnebm3mwnXDB45QmGhhR9+4C0A/M07NgJwz+2VfOiRzXz52Z280NiKNlvPt++5k9L0FErTz56MBUEgPzd51nHGRGh3MMA7X3yc6aBPec4bDvHtE3tINMTxcMkKatLUSQwVlUshLy+PEydOcPLkSQoKCggEArS0tJCUlERNTc0VpwSPjY3R2tqKJElK66/dbr/kMBlRFElKSlr08oIgLDhw1el02Gw2JZzocmbJRVGc0269HMQS1tPT0xkcHCQQCJCUlHTFVY3p6elzqpILCwuVEJH+/n4ikQiyLBMfH09lZeUsEdvpdNLc3MzRo0dJSEggHA4TCoUIh8NKtbHNZqOiogKtVktKSgqFhYV0dXXR09NDZWUlR48eRRAE7rrrrjnHo9frF+VH73a7GRkZoaSkhHXr1i1arLBarRQWFtLe3k5VVdWS2zRpNBri4+MXDGFZbsxmM/fffz9TU1MEg0Hq6uqUCuAL4fF46O3tpb6+Hp/PN++ExFIhSRI7d+5kcHCQ4uJi1q5de8nnG6PRSElJCceOHcPpdM6beq6icrVxuVw0Nzej1Wqpra29LK/m88nMzKS3t5eJiYlFXXeWu0syEonQ0dGB3W6fZStwKduVZZlgMLikVfoqKsvF66lCNRYkGeNc+6KFCAaD/PrXv+bTn/40giDQ2dnJ8PAw27Ztm7We22+/nQMHDqiCqsqFKSwsxOVyUVdXx8qVKxcdUKBydYhEJMKhCAbjpd3g2DOS+MJv/p5/fOhbDLQN8bmt/8yPjn0bS5KZcCjCxIiTtGwbB/5Sx/E9zWSWZPCOj2/j9jevu+R9/OCjb2XF5jK0uoVFh+YjHXzvk48hRyT++Q+fZjJ4tuQ+EIwOaD/6gbsI60QGR6d5aEs01bm1dwSvP9qOKIbh5Ml+PvaVJ+jsnwRgcNTFxNQME1Mz3HVLCQAhQT7Tvx/ly397Dw9trgLgK7nbaPy/jzPpjFYS+YPzm+UbtFr+7Y338m9vvPeS3w+Ap7sbmQx4ma/J6UenD/JwyYrLWq+KyusZs9lMbW0thw4dYmhoCIhWcFZXV1/ygCwUCuFyufB6vYqlgNvtJjk5mZKSkmUPqjqXhIQEurq6LriMIAhMTk6SkZFxxQE+y41Wq51TkSrL8iwf2aXYRmFhoWJfpNfrMZvNWCyWORXBCQkJrFmzhp6eHrxeL0ajEZ1Oh1arRafTKS3+53+GsrOzGRwcZMeOHUQiEW699dYrGkzHBLRLbWcHWL16Nd3d3Tz77LMUFxdTXV19U02Ci6KI3R7tcOnp6WFqamre5SRJ4pVXXmFkZIRgMGoJlJqayp133ql4xC4HkiQxMjJCWloat99++2WvJ9YZtnPnTrKyspSJjuv9O61y8zEzM0NXVxfj4+PEx8dTVVW1JGIqRCcP7HY7g4ODZGQszg5sKYKeZFnG7/cTCoUwmUzK96qvr49gMEhR0aXlSpxLzMd9bGxslj+ziorKtSUnZ3YX7le+8hW++tWvXvA1Tz31FNPT0zzyyCMASkfS+V1caWlp8/quXi+odw7XCXq9ntraWqXqZ8WKFVd1IKmyMH5fkI++9YcM90/y6A/fx5rbLs37zpaexNee/QJf3P6v9LcO8sHaz/JYy3/y7599groDbRRXZrJ+SyUPvf92NtxbQ2HVwrYAF2K0f5Lv/v0viUQkHj/1TXT6uV/vwckZZqa9yLJE38Ak2960lq8++mb0Bi3V1dHtakSRT7//rrPHHwjxme88hXZGQtIKaDUCEjL9I07W1uRyoqGPN2ypZvehNhyZSXzq/Xdx/51VfOb7Tynr0Os0rCnNxusLYorT09g6xLtqq/nm+D7CkQgljmT+WN/A5vw8UsyXXp3T7Z7k163H+VN3Pc6An3idnu2OMnzBcNQfdZ4Wpj6Pk5AUQSdeWtWbiooKeL1eZZAUiURwuVy0tbXN8kC7UDieJEkMDAzQ09NDOBxWWvpNJhMOh+OSWgCXiljbuNfrXbDqraysjKamJjo6OigtLb2q+7cUDA4O0t7eTk5OjuITG6sq1Wq1l/2ex8XFKdYJF0Kj0cy7XDgcZnx8nD179gCwdu1apVJTp9NhsVjQ6/Vs2rTpiu0SYgJuLC3+UjAajWzfvp26ujoaGxvp6enhrW996xXtz/WKJEnK36SsrGzW+97W1kZfXx+FhYWkpqaSlpZ2VUKetFotpaWlNDU14XK5LrtK2Gg0cuutt9La2kp7ezvNzc2Kz29CQgLV1dVXJelc5fVNZ2cnvb29GI1GysvLSU1NXfLrXnp6Og0NDfh8votWc8d8DRcbbBuJRJiZmVEmRGM/Pp9vljAbFxeHxWJhfHyc7OzsSwrWOp9gMIjb7VZD5VRuCGRA4uauUI190/v6+mZdkxdTHPizn/2M7du3z6mgP//8s9hz0rVCFVSvI4xGI7W1tdTV1XHq1ClWrFihzpZfB4wNOxnoHgfg1OHOSxZUAZJSE/iPff/Ch2o/g38mwJcf/AaplQWE/CHa6nrpax3ml4f/+Yr2MynVSsW6QhLs5gWrVBOTrchGPbhm+OlH/5tb76xg0+azosDEdDQF2Z54VtTccaQV/3QAUQIhKLNuTQqptmQKCzN5YFMFz+5vpLl7hA+9ZxNyROb7v9pDVUk64cjZm6ns5ATe/nc/JSnBxGc/cDf/+K0/AxBwaAkb4Pd76/lVYz1Wo4E/vOedFNgXP5B5tqeRTx14GpCJnLmBc4cC/LGznnBEAml+T1S70YRWUP1SVVQuFUmS6O7uJiUlhfLyciA6q9zR0cHExARarZZQKEQoFEKr1SrhG1arFb1ej8fjUaoUMzMzycnJwWg0XvObpVil4YUE1eTkZAwGw7In3S8HsizT39+PLMv09vbS29uLIAjKwFcQBERRxGKxkJiYuKz+kl6vl1OnTuHxeObc52i12lnvfzAYZHJykvXr1y+J96zL5SIUCl12uIHNZuOuu+7i9OnTHD16lGAweFNOgLvdbsxmM/39/XR1dWG1WklMTMTpdOJ2u7HZbGzatOmq71dFRQWNjY0MDAxcke1CUVERRUVFSJLE6OgoAwMDNDY20tXVRW9vLw888MAlWYaoqFwKY2Nj9Pb2kpeXh8PhWLZrSigUQhCERbXe9vb2Lnoy0+/3c/LkSXy+qKWWwWDAZDKRmJhIZmYmJpMJnU7HzMwMbrcbj8dDfHw8ubm5l30ssizT3NwMLF+wo4qKyuWxUNDeQvT09LBz506efPJJ5bGYrdT5uUKjo6PLlj2wFKhq3XWGyWSipqaGuro62tvbF+UHprK8ZOcl8/5P3UNPxwhveM8tl70eo8nA/zT9J5+47cs0H+5gZCrAP/7kr+lpHqKgIuuK91On1/LRb7yDL7zt+/zg80/w8W+/C4D6U3389tf72bK1ii1bq/jPV/6Jf9r2KK6pGX71vRf5yKNR79L2njHe/39+DcBPv/FuDh/tYu/BVobxEdEL4JcJxwukZSXzSl0vfzzczM+efY3JaS+iIPDiwWasWj1TLi+vHG+btW+2+Dj6gSmnl9GJczzZZBkZQZnemgkG+fGhI3zrvnsWdcxHRvv45P4/I83T1B+RJaKrlhEQZi0hAO8vX3PNBRwVlRuRoaEh/H4/VVVVSjVqVlYWiYmJ9Pf3I4qi0soda+nv7e0lEokQDAYZGRmhoKCANWvWXFc+aIODg4pX6kLIsozP5yMr68rP2dcCvV6vBB7B2fbOjIwMvF4vTqeT6elppqenMZlMS96+3d/fT3d3N9PT00xMTCjbj1WNbtu2bY6IFRMalsoKqaurK+q9fYVenzHfV6fTeclBTNc74XCY0dFRKioqWLNmDV1dXbS3tzM1NYXVaiUnJ+ea3Z96vV5EUcTpdC7J+kRRVPyGI5EIxcXFuN1uXnrpJe6///7r6hylcnPg9/tpaWkhOTmZ3NzcZb0XnZ6exmw2z+tBHgwGcblcuFwuJiYmACgpKbnoOr1eLydPnkQQBFauXLng+gEsFssc7+1LJXY+Ghoawu12U1NTc1NOYqncfLyePFQvlZ///OekpqZy//33K4/l5+eTnp7Ojh07WLlyJRA9T+3Zs4dvfetbS7K/y4EqqF6HmM1m0tPTGR8fv9a78rrG7w0y2DdJfkkab//bzUuyTo1Ww4Ofeoh///hjDJ3s4Mvbv8bTU4+h1S3NV3FscAqv28ep/S3KYz/98cs01Pdzqq6XLVurqKjO4RM//Rj/8cXf88pLDTzwt3fgyLEzMDIdregEuvsn+OEf9xLRCSDLhEwaBFM02fl3+5oRz3TQTzi9CIAkywRDEQrzkzna0Mv559YPvm0jB3I7cGTZuP+uKmwJJp4+2sjLA70ABC2AEF2PKxBY9PH+oGF/NPNqAcsnQQBBI4Mknq3CAt5ZXMuHKjcsejsqKipRAoEAnZ2dSur9ucTHxy/YBh8TIgOBAC+++CJjY2NXHF611AwPD5OamnrBSqGYCHglLYvXitjgN/a38Hq9tLW1EQgEFC/cGLEq1aVGo9EQDoex2WyYzWaMRiOdnZ1AtLV/vs9EzIrA6XSSnJx8xZVc/f39JCUlXfbnT5Ik9u7dS3d3N6mpqYrn6M1ET08PkUiEgoICtFotxcXF10VFWF9fH7t37yY+Pp6KiooLLhsMBjl58iRarZakpCTlM3fu50eSJLxeLydOnKCjo4PCwkI2btyI0+nk+eef56WXXuKBBx5QxRuVJWVwcJBwOIzBYFhST+v58Hq9c6rx/X4/3d3dil+hXq/HarVSXFx80c/61NQUTU1NSnjWlU50ybKMJEnKTyQSUX4PBoOMjo4yPj6OJEnYbDbVjkPlhkIVVBd4jSTx85//nL/6q7+adf4TBIFPfvKTfP3rX1fuO77+9a9jMpl4+OGHl3K3lxRVUL1OsVqtSpuVxWJRktLUm7qrgyzLfPwd/4++zjEe/vCdvO/jd1/xOiVJ4kvv+zHuaR+mrFRmpl1Y7Rb6W4eQJZn8asfFV3IRcksz0cUZiE8yI0kSoiiyaXMZjacH2HT72WqS1XeW40wwIelEfvGr/fzjFx9idVUOm1YV0Dw1wWf+/DyRHC1oQRZBFqJhVIZp0CIgylHxMy5OR0aSle6BCd5yVy2fec+djE15ePgffzlrv6pLMllRdtY8vrwqi0//4QVEolqoNgKhM78/VLG4qpfBGRevDnUupKWeRQBZjPClFVtIiTOzOjWLHHPiorahoqIym7a2tgV9MC+EIAiYTCZMJhMbNmxg9+7dtLa2XjddGLFE84VEGlmW6enpobu7G5vNdkP7t537t7DZbPh8PrRaLRqNBo1Gs6zVUunp6QwPD+N0OhEEAb/fT3FxMRkZGaSlpc0bxhKrTurq6uLQoUNs3br1slu//H4/ExMTVFZWXvYxjI2N0d3dTWVlJatXr74h7R8uRnd3NyaTieTk5Gu9K7NobW1Fp9Nx//33XzAMzOv1smPHDqanpwFmVUKbzWb0er3i9RjzjaypqWHVqlUAJCUlsWXLFl566SVefPFFtm/frlpwqSwZOTk5yLLMwMAAIyMj5OTkkJ2dvWCV55VgMplwu92Mjo4SDAaZmZlheHgYnU5HUVGRYmNzsfO+y+Wiq6tLqVKvqqqaNSYNBAKKn2ogECAQCODz+fD7/dhsNsUe6FyCwSANDQ0XrDY3mUzk5+eTmpqqBjarqNwk7Ny5k97eXt7//vfPee5zn/scPp+Pj3zkI0xNTbF+/Xpeeumly7ZpuhqodwfXKSkpKWRnZ9Pb2zvL2Ds5OZmysjL1xm6ZiYQlRgai6bb93WNXtK7e9hH2P3+KbW9fR3fzEDMzAYpvKebjv/8YKWlW/rr8UwgI/KTuWyQkX74fGIBvJoDH7WfSE+DjH36MTbeX8c5338qb3rIWjfbsoM9o1FNcm01LyzD2NCv/9097eWzXMaSAjGQA2SAgCiBFABEEGSJ68KZDvFvgX9+xHbfHz/rKXLJTE4lIEpozg0p7Yjweb1DZlsWkZyYUosc5TaopnjSzmYbOYURBQEYGGWqzMzDbjLyxspztpRdvN4pIEsfH+i8upp5BECDZZOKN+Zc/iFZReb0zNjbG+Pg4FRUVV5RCnJeXR3x8PCMjI9dcUJUkicOHD9Pc3ExBQcGCFba9vb10d3eTl5e37C2aV5NYGNjVQhAEVqxYgcfjwel0YrFYsFqtF3w/29vbsdvtVFRUUF9fT319/SULqn6/n/r6etraonY0hYWFl30MPT09aDQaVq5ceVOKqeFwmKGhIfLz86+744tEImg0mguKqRAdrLndbu6++24yMjKYmppicnKSqakpnE4ngUAAu92OxWLBYrGQkpIyp+otLS2NTZs2sWfPHo4ePcqGDWpXi8rSoNPpKCwsVMZ53d3dTE1NsWLFiiXfltVqZXR0lMbGRsVLNS8vb9ECbjgcprm5mfHxcUwmE5WVlYrPaiy4bnBwkOnpaQKBACMjI0pVeHJyMnFxcbjd7jnrdbvdnD59GlmWKS0tRavVIooiGo0GURQRRRGtVrsosVdF5XpFrVCdn23bts3St85FEAS++tWv8tWvfvUK9+zqoapy1ymCIFBUVERhYSHBYJBgMIjH46Gjo4NXX30VnU5HUlLSRVueVC4PrU7D1378CMcPtPPgu9Zf1jr62kdItJt57NvP0XC0C51By/u//Aa+89WnOH2qn2OvdfCmhzdQUO0g4AsS8AZ5+X8PcNsb1qA3Xl4lsi3Vitaow63T0tI8RGvLEG9+2zr0+tlfdVEUSMxPxD82xq92HcOTDhhFMIDOCbIWpDMviXXUC0QrVWcSZHYNdvGle+7AemZQozln0NXSPTprWzqLjnU//RHBSAQBWG1Kp+PwKIIIOoOGDz2wgb++ey2iuLgT8p86T/Ot47sZ9roRL+EMphOXfuZfReX1QCQSoa+vj97eXux2+5L4RRqNRvx+/xLs3ZXR399Pc3MzZWVlrFu3bkEBKVaJk5GRoQ7urhBBEBQh62KMj48zPDxMaWkpfX19BAIBxbt0McS8/jo6OohEIuTk5LBixYorqjAeGhoiOTn5pp3Y7ujoIBwOL8pLcbl54YUX8Hq9SuX05OQktbW1F32d0WgkEAiQkZGBKIrY7fbLsmbIy8vj0KFDhEKhy9l9FZULYjAYKC4uJiEhgcbGRmZmZpZ8gisrKwubzab4ml/K9UuWZZqampiYmCA5OZnU1FQkSWJkZASv18vg4CAjIyPIsqz4pFZUVJCUlMTExAQzMzMkJyfPudaPjIzQ0tJCfHw8VVVVauWpiorKDc3NeTd4ExGbTTQYDFgsFpKSkpicnMTj8SgBGsnJyWoS6RLidvp4+jcHKanO4pFPbL2sdbTX9/GVv/oxVruZDz36FgxxOm7bXoMlKZ6C3x3BNT3D2tuKEUWRbz7/RQD+9X0/5NS+ZqZGXbzl4/de8jZlWaa+vp83fXgLv/zhTsJaDdqwzIff9H38wQjeYJiQLBESICIKBKxaiNcgCTLE0u4FAUkvI8hR8RRtVEyN/cR46lQTLzS38c/338195SXozpnl7h+dnrVffXgIRs7sowRNrSPoERAkiPgi3LuqdNFi6vM9zXzq1WfPOeZo9enFEICVyTdmiIyKyrVCkiSGh4fp6ekhGAySnZ29ZNWZZrOZsbExxZrkWlNYWHjB/UhOTqa1tZUjR46g0+koKSlRr7vLjCzLdHR0YLfb6ejooLOzk9LSUtauXXvR17pcLurq6uju7gaiwtiKFSuuKBU+hk6nY3p6Gq/Xe935AC8FHR0dxMXFkZCQcK13Ba/Xi8vlIjMzE0mSKCsrW5SgWlJSwu7du+nv78fhuHw7JUmS8Pv9ajCVyrKSnJyMTqdjaGiIoqKiJV13zOLlUpFlmc7OTiYmJtDpdIyPj8/K9tBqtciyjMViITc3F7/fjyiKlJeXo9VqycvLY//+/fh8PoLBIO3t7eTm5tLb20tfXx9paWmUlpZeF9d/FZXlQq1QfX2gCqo3GEajkczMTGRZRhAExsfHGRgYIDc3l7y8PLVyZgn41Q938fRvDiKKAv+774tYEhd/I3Ly1Ra+9+lf84YP3IlGq8FRnMaKW4tZcWsxPl+QT//9rxjz+PjGfzyMI292ldfGh9Yw3DNG2ZpCvvOR/6FyQxHb37f4MKwn/3iU//fDnZhMejZtqWT3M3XIGg2DTj9oRWStiKyJ/otOJBQnEEgUkDUCSIAGkGVkCWqy0zgxMhIVUYUz4qoY/T2GNxTms39+gR8fPsJv3vk2kkzRkJaINLuEX4p1BkuQ0AoaP8iaqBK6qSafTPvFB7i97mk8oSD/cfJVpWI2umNytHr2Ah97jSBwe0YhWfHXfnCoonIjEA6HGRwcpL+/n2AwSEpKCgUFBUsaxJSTk0NPTw/j4+NLniR/KcSqJD0ezwUrb3U6HZWVlczMzDA2NkZ7eztr1qxRr7nLyOTkJD6fj7y8PE6cOEFJSQm33HLLBV8zNjbG0aNHGR0dRaPRUFxcTG1t7ZIKnxs3buSZZ55h7969bNu27aYTBLRaLT6fjz/84Q+8/e1vv6aVuOvWrWPnzp2kpaUtSkiN4XA4iIuLo7m5+YoEVa/XiyzLan6ByrIiiiJpaWmMjIxQUFBwzc4psiwzPT3N2NgYY2NjhEIhCgsLycjIoKWlhbGxMdLT0ykqKsLj8VBXV0d5eTk5OTnMzMzQ19dHXV0dhYWF9Pb2IggCpaWlTE1N0dvby8DAALIsK3YH6vVTRUXlZkAVVG9QBEGguLiYoqIi+vr66OzsJBgMUlJSol6grpDMnKiPVoItHkPc4n0CJ0ecnD7UTsAfoqdliF8efnTW891dY7S1RBM1XzvYTnFpxqzn73jreu5463qOv9LAsV2nObWvme3v26yI5xfD5fIB4PeH+MAXH6KoKoc//XI/004vJosRwaBlJhgiKAOiQMCmQdZGRUkxJFCdnUbYJ7FmbRafeOtmpj0+7v3qTwkIMlICUUGVs5WqMWGzdXycdf/vv0hJNLEyM5Ma43mihABCGAxjoPWfOY4IrN+Qy3984A0XPLa26XE+s+85Tk0MR7d23j2mLAkIGvmsJ8F5aAQBk1bPF1dtuej7p6KiEk2xb2xsRJIk0tPTycnJWZYqvLy8PA4ePEhnZ+c1F1S1Wi3Hjx/HarVesC04OTlZ6Qg5fvw4r732Gna7nby8PFVwWQYaGxuZmJjgz3/+M8FgkJqamgWX9fv9HD16lKamJrxeL2vXrmXVqlUX9dq8HBISEli7di0HDx6koaGB6urqJd/GtWTt2rU8++yzJCYmXlMxtaOjg8bGRiBqs3ApgqooihQXF1NfX8/k5ORlp4KbTCYSExOpr68nPz//pqxIVrk+yMzMpL+/n76+PnJzc6/JPvT29tLV1YXRaCQ9PZ2UlBSlqr+iooKhoSHa29txu90YDAY0Gg05OTlMT09TV1enhCefPHkSQRCoqanBarVitVpJT0+nr68Pu92udneovG6QZQH5Jq/gvNmPbzGoguoNjiAIOBwO9Hq94keTnZ198ReqLMgb3nMLtesLSElPQKfXsvPPJ/C4fDzwzvVodfP7cA51j/Hpe76BOSmeT373PVRtmNuyk5uXzJatVTinvdyzfeGBQe2mMt7xqfsorHbwjQ/+lPqD7Xzn6U+TmT9XdPD5gnzxn/7I5OQMX/nyQ9hs8eTnp2CzxfOWR27jLY/cpizb0jrEhz/2SyIacBXrkTijQQoCxjgd//P370B/zvFJgMmoJ+wNYHQJOMqSaRgZU7xUZSG6AhmQJZlhp4cXvW08TytmGxgnoydYQYbERhBDAoixHn2ZW6ovXFHtDPh5+/OP4wrGvJeEMz3+5y4lIEeIiqqAVhCRkBERCMsSDnMSP9r0Fgqsl+6dpqLyemN6epqGhgaSkpIoLS1dVpFQq9WSlpZGf3//NW3712q1bNmyhX379vGXv/yF1atXX9Sb3Gq1UlNTw969e+nt7WVwcBCLxYLdbsdqteL1ehWf0Pj4+GVJbp6PSCSCx+MhEAhgNBoxmUw3rM/nxMQE3d3dRCIR9Ho9BoNh3rbrcDjMqVOnlEmAkpISOjs7SUhIWBYxNUZpaSkDAwMcP36c8fFxampqLsuj83rk4MGD6HQ67rjjjmu2D729vezbt08Rr4uLiy95HVVVVTQ3N3P8+HHuvvvuy9oPURS56667eOaZZ3jttde46667Lms9KioXw2QykZOTQ3d3N8nJyVc1LDBGUlISXV1d5OTkkJU12yZLEAQyMzPRarU0NjYiyzIajYaRkRGGh4cxm82sWrUKgL6+PsWmLobBYFhyOwMVFRWV64Eb805bZQ7p6emMj4/T09ODz+cjEAgoP36/X/l9enoau93Ogw8+eK13+bpk5/On+M9vPsemLeV87p/eSMPxHr7zxT8AYDTpufcta+a8xjM9w/OP7UGWwZoUz7q7q+YsEwyGef8H/4eRURef/+x9pKYt3Oau0Wp444ejN/8//Zc/gQDuaS8j/ZOkZiXNEiGbW4aoO9kLwKHDnbzrHbNTaKenvRw81E51bTYHhwbwO/R4LDJC5Iwgeqbc1BsMMTnjJT3xbEjIs4cbcfsCAITCMv/3LQ/iDAb4/LMv0DI6EdU3NSAgIAsyAgKSJCOL4M6DiF7GNAxxIwKaM3kOsiQQtIMp38Q716+44N/ij+31TAd8yOc/cV41qoAAksiP73gTr432MBnwYtEZuDenjFvSbp40bhWV5cTtdlNfX09CQgKVlZVXReCM+Rzu2LGDe+65Z9m3txAZGRk89NBD7Nu3j8OHD6PX6y868LPZbIiiSEJCAmVlZUxMTNDX10ckEkEURWRZVroLLBYLqamppKSkLEv4htvtpq2tDZfLNec5vV6PyWTCarWSn59/w5wP+/v7yc/Pp7y8nD/+8Y8AtLS0UFhYiFarRZIk2traqKurw+fz4XA4WLNmDVarVWkvraysXNZ93Lx5M8eOHaO9vZ2enh7S0tKorq6+4Se1dTodgiAsqyB9Ifx+PwcPHiQpKYkHH3zwss9Fer2esrIyTp06xf79+1m7du0lTRK5XC5aWlpITEzEbDYTCAQuaz9UVBZLXl4e4+PjtLS0sHLlyqt+vo5VknZ1dZGYmDivqOt0OpXvVldXF01NTQCUl5cr39VrVWGronK9ISEgzddCeRNxsx/fYlAF1ZuIpKQkjh49SltbGwAajQadTjerumN6epqJiQmee+45HA4HhYWFagvTObzy0mkCgRC7nq/nM196CJPFgKgRkSISqZmJc5aPhCP89B9/x/4/H6VqYyn/+JuPzbtet9vPyGh0sNvWPsK92y7eIijJEl964m8ZGZ/g1KF2fv/dV3jg3bfx3k/dy388vpsXX2vh1uo8btlQyNSUlzvvKJ+zjn/65z9xsrEfz0ojPo2EkAxiWEAWgfBZXVKQIBhLjjpDIBxRCkJNRj1J5jiyDAk884H38XxLK5997gX84TMrEUAmunC06hW82dF/TUPR5wQEEGTMBfH8/F1vRbvAIGnU6+EH9fv5besp5PPV03P+KwoCsiyjEzV8b9ODbM0pYWvOtU8lVlG5EWlvbycuLo6qqqqrVi2anp6OzWabVwi82hiNRrZs2cJvf/tb6uvrL9qWGAwG8fl8ygA0PT1dCbCJCVEzMzO43W4mJibo6Oigvb2dxMREUlJSSEtLu+LqUUmS6O7upq+vj/j4eEpLS7FYLBiNRnw+H16vV/mJ+dnl5+df0TavBpFIhOnpafr7+2ltbSUYDJKUlMTBgwc5cuQIGRkZuN1upqenSUlJ4c4775xlG5GdnU1jY+Osv8VyoNVqWb9+PatXr6apqYnm5mZ27txJQUEBmzcv3v/8eqOsrIxdu3bR29tLXl7eVd/+6dOnCQQCS+JPu2LFCoLBIK2trfT19bFu3ToKCgoW9dr+/n4aGhqU/1+JF6uKymLQaDSUlZVx4sQJenp6rsn3r6CggOnpaY4cOYLdbp81TpQkiZGRETIzM7FardTW1uLxeJRzsYqKisrrEVVQvYlIS0sjKyuL1NRUKisr5x2seb1eWlpa6Ovr49ixYxw/fhybzYbD4SA/P39JEnBvZB5+5DZ8viCb7ixHoxHZu7ORiE5E0GvIK06bs/zPvvoH9j97AlOCiQc/uGXem/+RSTf/8rMXsRUlUZWdynvedeFQjYnAFLtG9rFjZC+usCf6YAHwHWiYrufR703zl7ohAJ7b38i/f/INbFpZqLy+tW2Y/Qfb2L6tBo1GJGAT8YkSQFRIBYQIiCGQz/mIiJqzwqU3EOTnO49EXwO8/bYaTIazlR3bS0sISGE+/ZfnoxWqMX/TWdqnzEw2hE0y1g6B0rI03n7/Su6rKkMzz/t0bKyf/2o8yI7e9uhGpflmvKJt/8nGeD5YtQ6r3si9jhISDUsXlqOi8nojEongcrkoKipatvZ0SZI4ceIEY2NjzMzM4PP5CIfDAItKbb8aiKLIpk2bOHDgAM888wzr1q2jrKxsznLd3d289tprBINBcnJyZr3+3AlKi8WCxWIhMzOTcDjM+Pg4o6OjtLe3MzY2Rm1t7RVVIDU1NTE+Pk5ubi4Oh2PW9Se27Rg9PT10dXUp9gQ5OTnExcVhMBiuu6pVl8tFIBAgFAphNBoJh8O8+93vZnx8XBHGYi3p5wsOkiRhs9lwu9089dRTlJSUkJGRQUpKyrLZH2i1Wqqrq6msrOTYsWM0NDTgcDiuiRiyFGRlZWE2m2ltbb1mxyAIwpL4LIqiyIYNG0hLS2PPnj3s37+fvLy8RQm1GRlRn/uVK1diNptVwUjlqpCQkEBeXh7d3d3ExcWRljZ37LGc6PV61q1bx8jICK2trcTFxSkdG2NjY4TDYdLT05XlzWbzvHYsKioqIMkC0k3uMXqzH99iUAXVmwitVktxcTG9vb3I8pxGaQWHw8GKFSuYmZmho6OD3t5e6urqOHHiBImJiWRlZVFQUHBZfmDhcJi+vj4kSZrznCiKZGVlXdfhHcfq+xAT41ixPlrBYLHGgSBgiNNjMM4OqHrtpVPs+N0hfN4gH/ja21l15/zthf/1x/0cbepDlmX8o5CUNL8vUjAS5L+7Hmff2CEEQDrT7C5JAhNOMx6fgR6XB4PYBCQqr4s7b7++8OU/MDk1w6n6fv75n97ER/7njxwbG40+KUJED/EBkbAsIUug04m8c/MKsu0JyjpOdA4SDEcrVgVBIE4/N5xra2ERol4gIslKVSqcG1oVFVoDyWCwmvjP978Jm3X+augnO+v5h9eeiVaxymdWplgSzK5SFRD4YOU6Pli5ft51qaioXBoTExPIskxiYuKSr1uSJDweD3v37mV8fBybzUZSUhI5OTlYLBZsNttVHzBeCIfDQXp6Oi+++CL19fVzBNWuri727t2LzWZj27Ztiw670Wq1SiXrxMQE9fX1TE1NXXZYTiyFuaKiYlGhXjGv9WAwyMjICCdPngSi53eDwUBeXt6sQfK1pL+/H6/XC0SrmIeHo2GOsVCw84lVsw4NDTExMYHf78dqtaLT6aivr+fUqVOIokhycjJVVVVkZ2cvSxW2KIqsXr2aoaEhXnvtNdLT069Z2/yVEHuvxsfHr9o2JUnC6/ViMpkIBAJEIhHC4fCSVHE3NDRQV1eH0Wjk1ltvXfTfPubD63Q6LykQS0XlSsnNzcXn89Hc3IzBYFiWa/OFEEURm82GLMuzCm2Gh4dJSEhQOxtVVFRUzkEVVG8yMjMzlZCM+TxsmpubcblcxMfHK+mNW7duRZIkOjs76evro6mpiYaGBuLj48nMzCQ/P5/09PRF3YS2tLRw5MiRBZ9PSkrinnvuuS4HGZNTM/z8l68C8Icnj/IPn97O8KSbiEGDZNSg1Wk49lo7e3c0sP2Nq/j+//lfvJ4g2967iW3vvm3B9QqzxMD58UX8/EvD9+ic6UE+0+guy+AN6GjtySAY0qHxgGlAywwyukQJqyHA3cXVrC7LoaNzlCefOsYdm8vIyEhgcmqGzIxE9HqBId957bQiJJiMTLm9SAKEIhK/euU4G8vzuKUs+pn5yv/uiFacSmC3xPGOTXMHE/F6PTq9SCQQPiN5Cmf9TgWQhTP/E2X6jR7e+dIT/Pzet5Jlnl0F3TA5zD+89my0KFWSozt47pt13tzAO4pr+JuK66OiTUXlZmBgYICEhIQlD8E4ePAg7e3tRCIRtFott99++w3Rcq7X6yksLOTw4cOKyONyuTh06BADAwOkpKRwzz33XLbYY7PZsFqtdHV1kZSUdFkVorEQkMVWzQmCoFTcORwOvF6v4q8+MTHBkSNHcDgcisdrbFLWbDZjs9kwmUyL2s9QKITb7SYYDBIMBpEkCZPJhNlsJi4u7qLrmJqaYmJiglAoarzd3t4+b6Vie3s7vb29jI2N4fP5AJRq4MzMTEVADofDDA8PMzw8TE9PDy+//DKJiYlUVVVRUFCw5MJqrMr5z3/+M01NTaxcuXJJ13+1MJvN9Pb20t3dvWzCsCRJHD58mMHBQTweD5IkodVqCYfD5ObmLklFcXNzM8eOHcPhcHDrrbde0nGIoojdbmdsbOyaBuepvP4QBIHS0lICgQCNjY3ceuutV30fpqamAJTzr8/nY2pqat6uDRUVlfmRZQH5Jq/gvNmPbzGogupNhl6vJyMjg97eXjIyMmZVg/r9flwuFw6HA4/HQ39/PxBNY8zOzqasrIyqqiqCwSA9PT1Ki2BbWxsGgwGr1aoMshaqgPX7o4nsb37zm+c8Nzk5yb59+3juuee49dZblcHd9UJigomikjS6u8ZZvy5aoSpJMmhEBI2IgMC/fuEPzLj9vPrMcXzjHmyZSXzoX9624Dq9gRDdASeSHmxx8XztI/fNWSYiR/j3lv+iKyamyhCUNPgiWgaGbQRD0a+pxicqXqRhnQbLnSM0MYo3cjff/8EOTp3uZ+++Fv7wxEfp7hmnqDCNlpZmXMHwrBpPnVvG6ZxB1gHa6KMCcLpnmFvKchlxephwzyALIGjh1so8EuPnb6nX6jTI4XA05Cq2FeGcjYmxtcu0T0/y7uf+l+ff/AhxumjFayAS5iP7njzz2nlQztHR5/994/28peji/rMqKiqLw+1243Q6lyXAZ2hoCKvVSkVFBRkZGTdUW2BmZiYQFZutVisvvvgiGo2GlStXUl1dfUXiSszL9OTJk5w6dYqEhASsVitWq3XRIpLValW6US5VkBUEgfj4eEVAHx4eZmJiQgkhia1PlmXGxsbo6OjAYDBgs9kUb9nzrSFkWVbCVGJWDlqtFkEQFHE0MzOT5ORkJczr/P2WJIm6ujoEQVCCvbxeL1VVVXOWe+211wiHwzgcDrKyssjJyZm3akqr1ZKdnU12djarVq2iq6uL+vp6Xn31Verq6qisrKS0tHRJxbLYum6kz/v5ZGRk0NzczO7duwHIyclhy5YtV7xev9/PsWPHCAaDRCIR+vv7SUtLw+FwYLFYmJycxGazUVpaesXbgqgIpNFouOuuuy7r9Xl5eezfv5/nnnuOTZs2XfVKQZXXL7FK8c7OzmuyfafTiVarJRKJEAwGaW5uRqvVqtYXKioqKuehCqo3IXl5eYyMjNDV1TXrplSn0yGKIlqtlpqaGiDqndfb20tfX58ycNHr9RQXF1NcXIwkSfT399Pd3c3MzIyyrthA6Px/DQYD2dnZ83qxWq1WDAYD+/fv58UXX6S4uJj169cvm6/ZpfLU3nrqvJOQJvK71+rZfFspLcOThOK1ZFWkozdoqajJ4cjuZmZmfKDT8sF/eSvGuIUtDL714m6OdA+ABQbwMhzxzlnmtYnj1Dublf8HJA3+iA5JEvB44oipimGrhH5KAzKE4iVcoTji7U4+/9sfUFW6hlOn+6mszMJg0FFaEhWrp6enkbQCQvBsoafGB4IMmiAIRoGwIKPTari7thiAX+09TiQmccrwt1vWRbcvSfS4p7DoDKSaogPF7fnFPHOgAf0QuIqBM2PsWEBVdNfPWBfIMt2uadY88QO+edu9PJBXxif3/5m+memzb8Y5yytq6jmPTQQ9C/8BVVRULpnR0VF0Ot28rdRXSjgcJiUlheLi4iVf93ITu16NjIwQHx+PJEls3rx5yTwlk5KSKC4uZmJigv7+fsLhMIIgkJiYSHJyMna7/YLVdHa7na6uLqanpy/bNgCi14j6+noKCgrYtGnTnOcjkQhOp5PJyUkmJiYYGhpCFEWSkpJITk7GZrMxOTnJwMAAHo+HlJQUCgoKMBgMirAYDAYZHByku7ubwcFBICp02mw24uPjlXuAjo4Oenp6WLNmDVlZWUxOTtLQ0EBc3OwJPVEUue2229i7dy9+v5/CwsJF3UeIokhhYSH5+fn09/dz6tQpDh06RFtbG3fccceSecgPDUU9zmMTzDciWVlZPPzww0xMTFBXV6fYLlwJwWCQF198UemSAkhNTeWee+5ZtupP4Ux45eVSXFyMVqvl0KFDPPPMM1RVVVFbW6tWq6pcFS5nwmypiJ2Djx07RjgcJi4ujpqammXzWVdRuRlRPVRfH1wfSpbKkqLT6cjLy6O9vV0JF4BoeqTNZmN8fFxJK9VoNOTn5xMIBBTPsnMRRRGHw7Fk6aYZGRm88Y1v5Pjx4zQ1NTE2Nsadd95JQkLCxV+8zBxt7lN+P9zUh8vnZ9I5g6wXGZpyE45IvOnt66jf3URAFIkkxPHlx3bxaZ3AG++umbO+L+x+id831xOHqFRg/t1Lz/Cf2vt4qLhcWe6FoVcQEZCQicgC/ki0ejN6gjp7kpIM4CmMIIZB0suEJRFEGEnv5o3ivfzhtx+d5c8aCAQIBoOgE4joQDhjayvpgEB01eEzbfnBcISWwTHy020YtBpkAdCAXqcly57A/7ae5NvH9zLhj35GNqQ7+PbG7dyiz+KVrkYIydhOweQKORp8pQRUnalaFc8OaGZCQf5+z9P8rv0E+8e6Z71nggBoZOSIYqCqoNMJjPvnfkZVVFQuH4PBQCQSWbL1hcNhurq66OrqwufzKS3kNxqxdt/x8XHWrYtOKrnd7iXdRlZWFllZWUolZqzdvb29nba2NsWaJzMzc473uNPpBFCqQS8XWZaRZXnBqqPYfYPNZqOoqAiv18vExIRSjRrDZrNRXV2NzWabIwDo9XocDgejo6Po9XoKCgqYmJhgcnKSqakpwuEwsixjs9nQaDSMjo5y1113MTIyQlNT07z3B3l5eUiSxL59+9ixYwdbt25d9OTsufc1vb297N+/n6effpr169cvifgfE/COHTs2KyH7RkMURVJSUsjKymJgYAC/33/Zrf+SJCli6p133kl2dvYS7+1c/H4/3d3dV+zbn5+fT0ZGBgcPHuTkyZN0dnayYsUK8vPzVWFVZVkIBAL09fUxNDSETjc3w+BqYDabWb16Na2trcTHx5Obm6t+3lVUVFTmQRVUb1IyMzMZHByko6ODmpoaZYBjNpsZGBiYs7zRaGRsbIxQKLTsF2+tVsu6devIzMzk1Vdf5fnnn+eNb3zjNfdV9RskpTU+FCfz/v/5I8M+D5E4gcGQjzf+68+Q/tiLFIxgsZkZyYwjLMt855cv8/sj9fzbBx8k0x6tcOmZnuK3DfVgAr9NQuMXCJllZC187uWX2JaTj06nY8A/TKvnbDtPMKIhJkJqRAmdLkQopEURVjUgaQAE4uKCAIhmiZMjDVQGHYji2YFsMBh9XtJyVuSUZIxT0erRkqI0Tk6NKct7fIHoLyJRQVUGXyTM71tO8YXDL856r46M9PHWX/8S4VAE4UyIlCYMGaMGhFIdA55zhAdBnm0eK4CMxKuj3bPCrJSnz4iqyFFfFuGc18frrt9AMxWVGxGz2YwkSczMzFxRi7LX6+XgwYMMDg4SiUSwWCxUVFRQXX3jWnSkpKRw8uRJ6uvrAZYkdXw+zm3Bz87OJhwOKxWhfX19ioVPTk4OOp2O3t5eenp6yM7OvuL2y6SkJIxGI8PDw5SXl190eZPJhMlkIicnh0AgwPT0NFardU4V6fmIosiqVasQRRFRFLFarYqfrizLSJKERqPB6/XS1tZGMBiku7sbjUaz4IRuQUEBsizz6quv8sorr7B169ZLPn6Hw0FycrKSAN/f38/GjRuvSIQrLy9Hr9ezb9++Kxa8rzXBYJD29nY0Gs0ViSkxW4mNGzdeFTE1Vg3r9XqXxKrAaDRy55130tfXx/Hjx9m3bx+nTp1ixYoVSl7B2NgYSUlJ13XwqsqNQUtLC9PT02RnZ5OVlXXN9kOv18+xXFFRUVk8qofq6wNVUL1JEUWRgoICTp8+zeTkJHa7HYjeFIZCISKRyKy2jYuFWS0H2dnZ3HPPPTzzzDMcPnyYzZs3X5XtLsRrg/34UqOVnJIOGodGiRNlNAYRGZjZNYghLIEocsv2ago3FvCtx3bh00s0943yrn//DZXlmXxu+2b+u+EoIIMgEEqAUMLZakt/OMwvd+2gJN7CSV0LgigoFawhSSntRBAgJdnF4JCd2Un3Mqa4AAZjVDBFgr0DRzn2qUkef+Kjynbi4+N5dWoCZygAehBkAcLRClJRAnuqBc4IqoIAd1YXAtA8Mo4knt3at5/bi5Ayu15U3ysgd4ZnPfjgpko+974tGPRaar73PVxxodl+qufYAAixj94C52Ahttw5G4jIMluybrzWYRWV65mYiOrxeC5bUJUkid27dzM5OUlxcTGFhYU3hc9aeno6r776KidOnCArK4v09PSrsl2tVktqaiqpqamEQiEGBgbo7+9ncHBQCe3Jy8sjNzf3ittBh4aG8Pv9lyVyGQwG0tLSFr38QhWkgiAo9yOlpaU0NzfT1tbGwMAAqampF6w8HR4eRpZlZQLxcjCZTNxzzz3U19dz8uRJnn76aTZv3kxqauplrzP2XTp69CibNm2ipaUFrVZLXl7erPuwaz2RfCGCwSAvvPACTqeTO+6444qEwtjfJ3YvupyEw2FeeuklpRp2Kf36c3JyyMrKoqenh7q6Ovbs2YPFYkEQBFwuFxqNRskkuN5yAlRuHJKTk5mcnCQjI+OG7fJQUVFReb2gCqo3MXa7ncTERDo6OkhKSkIURcW3anBwkJycHGVZvV5PWloaAwMDZGVlXTVf06SkJMrLy2loaKCysvKq3GwvhFGnZVorzBIOZzLA3A9CKIzeHQGNgKSBllr41JYafrDjNfwuL7IMUz4/+1q7qO8forL2wgPvlJxsytMyaRjpQpg5K6ie7/RlsfjJEiYYn7AQCOgRRYnEhBnsdtcZ1ZFoR70pgt4wu7LYHQzyy76eM5WpIAsyRheIZ/xUj3b2KzqtLKOs72hvf7RKVQZECDgjkAjoojsY16fB1Cco+ysKsL4yl8++9y4Mei2yLJM4ZcDnCxOyS8RCqYhVniKDKHOpOkCNLYMq29URNFRUXi9otVpMJhNut/uSBUNJkhgeHqapqYnR0VFuu+02ioqKlmlPrz6pqalKu/v27duvyT7ELHxycnIYHBxUxM+LVYQultbWVvR6PYWFhUuyvsVwocT0pKQkbDYbjY2NzMzMzJsoPT09zeDgIJOTk3R0dFBcXMwtt9xyRfskiiK1tbVkZGSwd+9eXnjhBaqrqy/JLzMYDPLSSy/h9/sxmUzY7XZ6e3t56qmnSEtLQ6vVMjIygtlsxu12K90612NFY0xMnZ6e5o477ph1v3g5xILJlvtYJUlix44dTE5Osnnz5mWphhVFkfz8fBwOB7t27aK1tZW4uDhuueUWnE4n3d3d9PT0kJGRwcaNG2/ocDKVa0NaWhpdXV2cOHGCvLw8MjIyrpmXqoqKyuUjvw48VNUKVVVQvakRBIGioiKOHj3K4OAg2dnZWCwWcnJy6OjoIC4ublYQSczjrKOjY8kSVhfDypUraW1tpb6+njvuuGPO836/n1deeQWv16v4veXk5LBq1aolvTn/1Lbb+PwfXlBqQSURJL2AqwBsJ0Mgisg6gZkMDTt6O/H6/Xzr/ffydz/5M75IhHAcIMtMzPjY39yFIII8xz0hKpk2hMZ5U9pKEnxWOJv1hSjIRORzq1HBbPZjNvuRZc4RIWXEmPwqQEFhKjNHDXz280/w6D+9ifh4Azu7OgjLMSETBARC8dHlI3oIzASVM4DDnoDdYiIYiRCIRJRwqfN2G+OwSFy/CDGdVAPv2raaT77zdmXRU/3DTPj9GJ0atDPgKzjjzxgbk4rSJYupelHDd2996NJepKKiclGmp6fx+/0XHaxJksT09DSTk5NMT0/jcrkYHR3F7/ej0+moqam5qcRUiPqH5ubm0tPTQzgcvqYBihqN5opFrfmIeeiGw+GrIuxNT09TV1dHeXn5gtWtBQUF7N+/XxGTz2VoaIiXXnoJWZYxGo1kZGSwevXqJfP2S01N5aGHHuLAgQOcPHmSoaEh7rjjjkX5oO7du5fJyUlycnKYmprC7/djt9sJh8NUVFSQlJREf38/Ho+H9PR0Ojs76enpuS5D23bt2kVXVxeZmZn4fD6CweCiPh/niuVer5fOzk56e3sZHx9HFMVl/4w1NTUxMjLCxo0blyxAbj4kSeLll19mcHCQiooKbrvtNuXY1q9fT3NzMydOnODPf/4zK1eupKysTPWfVFk0Go2GVatW0dXVRWtrK16v96a7vqqoqKjcLKiC6k2O2WwmMzOTzs5OgsEg2dnZFBQU4PP5aGhooLy8XGlri4uLo6ioiJaWFmw221Vr2dRqtRQWFtLS0sJrr73GmjVrlIFr7KZ1cnKSrKwsNBoNoVCIlpYWuru7Wbly5aLF3862Yb7wkV+iNWj562/fhyFJT1qcheKEZARB4MEV5Xx95x4mPb5o1eaZe19JJyOGoolOsiAwvibaovf+3z3O3+UWkpJupMs5M2tbAbeMXtQQMklIxphAekaV1En8rPkIt6TnEa+LR0JSXmcQI3gj8ydoztY7BPSaqFApyAJCUENLWzSF9/iJHjbdVoIvdKblXgtEoj512gDIGpAMAoIko4kIIMMn37CJiCTxgZf+hE8IoTkr10a3ERCI79SgnzyzEyJIMnz8Hbfx3i1rZu3n6cERZG30eU1Ag34Egumx0BsZQcN54vDFeSivgjzL5SdZq6iozMXpdFJfXz/Lz/J8JEmipaWFxsZGJZRJo9FgMplIS0tTKrVuVrGguLiY9vZ2urq6rkvh60qJtdi3t7dTUVGx7NuLBTY1NTWRmpo6r5BfUlLCnj17kGV51udqcnKSV199FbPZzPbt25ct7Emv13PHHXfQ1tbGoUOHeOqpp7j11lsvKNDV19fT39/P2rVrqaysRJZlDh8+jNVqneVNe66lUjgcpru7e0krjpeKFStW0N/fz/j4OAcOHODQoUPY7Xays7NJT0/H5XIpEyux8KrOzk6mp6eJi4tDp9PhdDqjHSuJiVRWVlJUVLSsgqrX66Wuro7MzMxl/64ODQ0xMDDAypUrqa2tnfWcKIpUVFTgcDjYv38/hw8fpqOjg7y8PBwOx3URwrpYPB4PJ0+epLS0dFYBhsryExcXR0VFBdPT07Ms2lRUVG4cZM50fN7E3OSHtyhUQfV1QGFhIRqNRvFhq6iooLKykubmZhobGwmHw2RmZgJRz7iJiQlaW1ux2+1XbZC8Zs0awuEwLS0tdHV14XA4KC0tpaOjY95W0omJCQ4dOsTBgwfR6/ULigHn8uinHsc56EQGvv3OX9H7PiPBTA35FhufqtnMA7kVPFhbzs8PHZ/9QgFMY1FBUNJByBa9sTnsmuaOOC1fedM2/u7xZ/EGoy1tksgZX1TQ+gRCGpB1Z8VUdNG29386/gc+fl5gi06UECMS0mzz0fOQ0QgyWiEm8srkRlKYzJPQaDWkZURv1m/NcSj7H/umy1qIGECIRBVNOQJ/tW01W1YW83xXC3v6u9CJIoIwSwImacIAk2eFX1mUue+uCh7Zum7O3kmyjCyAfGbcpJ3RIExLBGwREKNrvLQKVZk/dJ/i1dEOvrrqHu7KLEV7k4o3KipXC6fTyalTp7BYLFRXV88ZsAWDQRobG2lpacHn82G329m4cSNpaWmYzeabVkA9n7S0NCW06WYUVJOSkkhKSqKrq+uqCKqJiYnK76Ojo/NWqU5OTqLT6YhEIjzxxBPodDrMZjMul0sRO5dLTD2X4uJi0tLS2L17N7t37yYrK4u4uDi0Wi1arRadTodWqyUYDHL8+HHS09OVCV5BEIhEIhesas7OzmZwcPCqvfeXQkZGBvfffz+7du1SOpsGBgY4ceKEsoxGoyE+Pp5IJEJPTw8ajYaysjL8fj9+v5/c3FwKCwuxWq1XZZ8PHTqEJEls2LBh2bfV1NSE0Wi8YOie2WzmnnvuoaWlhYaGBo4dO8bx48fZsmXLVQnmuhS6u7s5ceIEkUiE9PR0HA4HExMTNDQ0EA6HGRwc5A1veMN1aU9xMxMMBgkGg6pthIqKisp1jCqovg7QaDQUFhbicDhobW2loaGBsrIyysrK0Gg0iodacnK0UjM7O5v/z96Zx8dx1vf//czsKa3uW7JknbYs2bJ8xbGdOHESJ+ROOAKEK7RQWgql0NKWUsqPHlBazraUFgqhhQLhyEXuy3bixJds676s+76vXe05M8/vj5HWkiXbkiM7trNvXiKydnaO3dnZZz7P5/v5joyM4PF4LtlA2GKxcN1111FcXExNTQ3t7e2cOnUKgOLi4gWlLklJSbzjHe/g6aef5tChQ6SkpJxzwOEOBRjQpsMypdBh9cN+fBkq7e8b4U9ef5zDg518tKiEn1ScQM6UtEsVEqsDKIZACok3ff5H5uvHD/Pze9/Ds599iCeqGviXlw8u0EGVoMCwGEinMVNKb4qZA9OS/zy1j1i7BYdFM0VMAdHWEJ6QLZyrOrcZFYCCJNoSDIuSLks0u9LKSbxliP/8ZS0f+8uf8eNvfJjC3BSSnE5GfD4ArB5wdZqrE0IgdUnsKgf37t3AG71dPNnSiCqEGVMQmplVA2yTgPe0mArw8Bfex8bczEVf6/hohykqS/PHEICmIixvotuxhEHfNH98+DekRUXxibU7eOfqLURbImH9ESIsh0AgQHt7OwMDA8TFxS0QU4PBICdPnqSlpYVQKERGRga7d+9+WzdYiYqKwuv1vtW7cdGIj49neHj4kmxLCEFubi4dHR20tbUtcKlKKWltbSU+Pp6ioiLsdjtTU1O43W4SEhK45pprLmkjp9jYWO666y6OHz9OV1cXY2Nj6Loe/gEzligUCjE0NMTPfvYzXC4Xd9xxB3FxcYyPjyOlXNSJq6oqubm5NDU1sWrVqks23loqmZmZbNmyhaNHj7Ju3TruuecevF4vo6OjJCQkEBUVFZ5Y8fv9AG9Zk62uri46OzspKyu76K+j1+ulr69vyWX8a9euZe3atXi9Xp5//nlef/11br31VhISEi7qfi6FkZERjh49ytDQEHFxccTHx9PZ2UlLSwtgRoEVFRWxf/9+Dhw4wN69e9/iPX57MVsVMtv/IkKECFcWBgJxVoPU1YFxlR/fUogIqm8jrFYrJSUlNDU10dDQgK7rFBUVEQgEqK2tpaysjMTERGJiYoiKiqKuro5NmzZd0gFycnIye/bsQdM0WltbmZqaYsuWLYsuqygKN9xwA7/73e949dVXueOOO8663i8fe562W1Xyfjwj9AFYFJzjgsL/1NCi4cnrKlB2TLAnbxUvd/UAENcQJKZLRyqm2jlVaD1tbRcAko8881tefu/v8dDOLfzk5HGGJrwwc/k0VPO/qteC9Ev0xCCoMDsGnwzY0aVCZow7vK+qkMRYAwQNlYBuCW9PQWJTdeyKHhZTFRT2pu1mXco63jjWaYqghmRsYhpI4a+vv5HPvfgs1imIbwQUES49UHRJR+o0N/7iv82DmWkUpSoCQ5EIQ6AGJLZpwpbSuGgHf/H+PWcVUwGy4mORszEDzEQn+ATJDicjft+y81MxX2ZAYuiCYb+Hf6x+ge82vsCdqzbwofydFLjSI4H9ESKcB7fbTU1NDVJKioqKyMjIWCAItLS00NDQwOrVq9m4cSOJiZGojYhDaGVJT0+no6ODQCDA8PBwOHYIYHp6Go/HQ0xMDIWFhcTExLyFe2qiKArbtm1j27Zt8/5uGAaGYRAIBPB6veF9P3HiBMeOHSMzMzNcNn+2CKX09HR6eno4deoUmzZtuuyc38XFxXR0dFBRUYGu6xQXFy+a5ftWCakA3d3dHDhwgKSkJMrLyy/J9gzDoL+/n6amJgoKCpaUrxwVFcXu3bt59tlneeKJJ3A6naSkpLBhw4ZLFrE1i6ZpvPHGG7S3t2O329m+fTtr165FUZRws0GLxRL+bKanp9Pb24vf739L3+u3G6OjozgcjssuEiRChAgRIpwmIqi+zRBChEvSTp06RUZGBqWlpRw/fpzq6mo2btxIQkICGzdu5OTJk1RVVbFx48ZLPoCyWCxLykaNjY1l69atHDp0iNbW1kU7FQ/7PDzRXgeGjYmNNlSfjm3Ih2PaAGEKntZpyHhe59ArTdx8ywZyJwWhBjdWvymkSqvKZK6KN80C0ix5B0BAyNC54Tc/IDHWxnTKNEbAjggqGELMb+5kgDJuRUTrZum/IgloFnSpEOfwETXjUgVQBDhmxNO5zNUMFRSS7YnclXELTquT67blU907yfHxIT732JP8reNW7l1TzL+fOIz72BiKJjBUM8MUDZQgCEOaYrFh7p+c2V+hCFDA0W/+ffY4PnLbVt5xzcKuy3NZk5oMCsxt+ieFIM0Ry2jAd5539FyYKzS7CQr8usbj3ZU81Xuc0oQUPpB7I7dlbHoT648Q4eplbGyMuro6oqKi2LBhw1lLNw3DdKNff/31b2kTpssFv9+Px+O5pI0ar3YcDgepqanhJphJSUlhl/TY2BiaphEVFXXZiwiKoqAoChaLhejo6LAoNjk5yalTp2hvbwegtraWPXv2LLqO2THZyZMn6erquqiNlC4ERVHYvXs3+/fv5+jRo9TU1LBmzRpKS0svi/Lv3t5e9u/fT1xcHLfddtslEaSLiooIBoO0trZy6NAhKioqKCgoWFKj1KSkJN797nfT3d1NX18f/f39PP300+Tk5LB169YLdtd6PB78fj+JiYnnfQ08Hg8vvfQSU1NTlJSUsGnTpnnXekVRwjFgYLp/e3t7cblcnDp1itjYWKxWa9g9Gbk2XhyklIyOjpKSkhIxDESIcIUipZi5b716udyO78knn1z2c/bu3fumxpyRu6W3IUIIoqOjEUKEfwoLC6mqqqKnp4eEhATsdjvl5eVUVVVx4sQJNm7ceNmWnBQVFdHU1MTx48fJzs5eMKB9oacZwwBFEXizBLZJBX+6lXGhkVzlxeI/XVSvhGDfszWozOSg2lRAMplvZazEgmIoGJph5oMqzCicEqnDqMePsIJIDyBG7IigikSGrf4CATowZYGAgkifBhQMA3qm4lgdN4Fd1eeJpmcbQykoxNti+ZuSz+CyRjPu9/IfPSd4eU0fUoHxoM4fvv44qZUutkyncdI/jgS0GIk3AxIbTFHSOSLw5khQDNBFWAWd3W81IE13qAFrclL48G1bF9+hObjsdpxOK15/KJzDaqiSxsmhJb2fi7LgdZDouoKq6GiGSvPUIH9X+0u+Uf8k92fv5P7sbWQ44y98exEiXOFMTU2Fb7L9fj/Dw8MkJiZSUlJyzgYXkRu3+QwNmdets3Wkj3BhFBQUMDQ0RCAQoKamhg0bNqAoCgMDAyiKgt1uDzs7r7SGLNu3bycnJwdVVXG73fT39+P1es+a+xobG0tOTg6dnZ0kJiZedqX/LpeLu+66i8HBQaqqqqiqqsLtdrN79+5Ltg+GYeD1enE4HGHxr6+vj1deeYXY2Fje8Y53XDKBV1EUNmzYwIYNGxgaGgpnTbe2trJu3TrKysrOORnlcDgoKiqiqKgITdOoqqqioaGBxx9/nPj4eBITE0lOTiY9PZ3Y2Nh5AqlhGPT09OD1eikuLmZqaiocRyGlJDo6mszMTOLj47HZbKxevXre6zI4OMi+ffswDINbbrllnnB6NqxWK0lJSUxPT3P8+HECgQCapoXvCZbaxyDC0vD7/bS0tODxeAgEApFmYBEiRIiwDO67775lLS+E4NSpU+Tn51/wNiOC6tsITdMYGxsDzAD6uc0hEhISKCgooL29HV3XUVUVh8PBpk2bqK6u5vjx47hcLuLi4sjPz7+sbroVRWHHjh0899xzPPvss9x2223zHLX901MgJLpTEnIJDNuMaCgstL/XhcQg/pSP+HqJbeK0dicMiQzpjGyx48m1nRZddQUCEiN6xj0qTve3k5oCFgkpAWRAQYzYw1moYm6OSkCFUQcyw4eBwJAKHRMJZMZMEWMLmssv8hIrKBgYrI0p4DNrPkaCLY5B3xT3PP9DRgI+pBAwZgNNASkZHfBzrLETy4y0Ob5Bominm00pgZn9VyU4dIQmkMKKQEEJSlS/2YjLqir88x/fveT3vSQjlWPdveHtSLs+JxP2Aghv9nSurCFP/y2oKzgVHa/h5Sdtr/Dj1v1sSSjgA3m72JVahCourzLKCBEuFoZh0NbWRk9PD0IIbDYbDoeDnJwccnNzz/sZvpyu7ZcDszmZEbfuymK32ykoKKC1tZWJiQlqampITk7G6/WSmJiIz+ejsbGR0dFRSkpKrqjz0mKxhMviDcNgZGSE3t7eczY1W716NWNjYzQ0NJCbm0tiYiJWq/VS7fKSSEtL49Zbb+Wpp566pJnCmqbxwgsvhCc3Zl3BmqYRGxvLbbfd9pa5ZVNTU0lNTWVycpKKigqqq6tpbm6msLCQ9evXn7e6y2KxsGXLFtatW0ddXR0jIyP09PSEM0zBFDTtdns4tzcYNMeIKSkpvPTSS2iaxrp160hISKCrq4v29nY0zcysr6ioCF/3p6amGBgYIDo6mr179y5ZuM/IyODuu+8GIBQKsX//fjo7O7nzzjt54403OH78OKtXr77s4iquRKSUNDQ04PP5SEtLIzY2dt69WoQIEa4sDCkQl5mDc6UxLsPjGxgYmBcndS5WIloqcofwNqKzs5Pu7m7AdESc2VU2OTmZtrY26urqKCkpwWKxYLPZKC8vp6+vD4/HQ3d3N/Hx8SQlJb0Vh3BWUlJS2LNnD/v27eO5557jjjvuCA+wHRYLQgGpGgRSJKrPdGLqjhkhEcHkditT14JlzGBXZwqZ/mjWlGQwtcbBd48fXbA9YYDqVjGiDaQqZ7rXz/gxJTM1+wYyJYhwq+Cf71YFQIqZaFCBpiuoikGfJw6L0Il3+Ehw+FGV0yKkkAo3pe9ib9oN5EabHWI9mpd7Xvp3RgIzXbSmrKCZ27CPKjgHwBIw1+EuNJAOMEKnhV2rW5pO25m9xyqRqUFkjwP7qESRZjRA6eZMslLjl/x+XJ+3mmM9vaf/EDuj4l7INVfMistyzu/zF9ANBdCRElTFQNMUjo21cmSkDYdiZ3dqCR/Mv5ayxKwL2IEIEa4MpJRUV1czOTlJYWEhWVlZyxaiKisr8fv95+1Q/nZh9mZ2YmIikie7wmRlZdHf34/P58PtdjMxMUFaWhrFxWaszMjICHV1dfT39y/JSXc5oigKWVlZdHV1oaoqq1atWlT8UxSFdevW0dDQQENDAwBxcXFkZWUt+abgUqGqajga5GITDAZ5/vnnGR8fD5emBwKBsKhYXl5+WWR6xsXFcfPNNzMyMsLJkyepq6ujoaGB7OxsNmzYcN4xc1RU1LyMXo/Hw+Dg4Lwqg+bmZpxOJ+vXr6empoYXX3wRwzC48847w9epWdFe0zQmJiZ49dVXOXLkCE6nk7S0NPLz87nmmmsuWICura2lt7eX1NRU4uLi2LZtGy+88AKPP/4427dvJysrMsZ6M/T29jI5OUl5eXlESI0QIUKEC+AjH/nIssr3P/jBD77pyqDI3dLbiMzMTAYGBgiFQmHBdC5Op5OysjJqa2tpb28PD8wsFgs5OTlIKfF4PAwNDV12girAqlWruPnmm3nxxRfDDbUA7l5dyreqX0U4NaTXih4127/eRESdzi4NJShs2b2eT5XtCj8+EPLySHXtvG0JBBKJMq2AT6DH6qCaNxhSmo+CALuBtOvgUVEm7JypKkopEEIipUA3VHRDogvB4HQMg9MuVCQCiSYVPr3mVj6ef/28/fiDI99mxGuuUxpAQAmvX/WCbjer+A0V/Nkzy1nBsEgUTaD6RdhhKw2BUCVYQEsPYK89PeDOW7O8kqPdebl867U3zPUiwS6XKaaezqg9/TyBEs6UlShioeNViJmnzLymiiLx6gGe66/kye4aHMLBruQiPrr2GrYkr7qiXE8RIpyPvr4+JiYmwlnYF4LH48HtdjMwMMDq1atXeA+vPCYmJgAuuzLsqwFFUcjPz6e2tjZc+ZKRkRG+LqekpJCZmUlLSwuxsbFXbGOw7OxsdF2nt7eXwcFBtm/fvqibLyoqii1bthAIBBgdHWV4eJj6+nomJiYoLCy8bByAqqoyOjpKXV0da9euvWgTL36/n+eff56pqSluvPFGcnJyLsp2VpLk5GT27t2Lx+OhtraW1tbWcEVYVFQUDoeDqKgooqKiSEpKOmuUiMvlWnC+9/f3k52dTX5+PkeOHEFKye23376o8GaxWEhOTua+++7jxIkT1NbWkpube0FNuwzDoKurC0VR0HUdIQR33XVXOGv15ptv5siRI7z22mu8733vW/b6r0a6Tg3w7M8Pce9Hd5Oes7T7JZ/PR1tbG1lZWRExNUKEqwQpCTeDvlq53I7v4YcfXtby3//+99/0NiOC6tsIp9PJ5s2bqays5OTJk2RmZpKRkTFvpjohIYHc3FxaW1txuVxkZGSEHxNCkJaWRmdnJ+np6Rd8w34xyczMJDExkZ6enrCgujomgcyoWPq8U+AKQUhB6gKhSLAanFkN/lxD6zxB9e9vu4Uom5WHK07OW27W5SkNsIxbzFiB+BDSceaVRYBLx7D6ULwqTFsBgdTMoGoDUIRESvM1NqQwja4SDGH+VzcEUer82Zb/bX+GlkkPMJNtK+epj+hOcx89qyCQKDHsckY8FRg2FUUDRZ8ReMUchy2Aw8C3WiO61YJUAHV5N3KZcab4IJHIaO3CxFRljjMVgaIYnL6fFFjU0+KqOENcFeH/M9chJVhVHW8oyIuDdTzb1YiCYF1CGu/ILmbvqiKK4iLB/xGuXAKBAG1tbWRkZJz12mwYBlNTU0xMTBAKhcL5eiMjI1RUVODz+ZBSoqoq+/btIy8vjx07dlwWzWfeKoaGhrBYLBF36kUiKSmJ6OhoRkdHKSsrW/B4QUEBk5OT1NfXs2XLlisuTxVMAbKgoID09HSOHTsWbqB5NoHUbreHx2f9/f2cOnUKt9tNaWnpOd2Yfr+fsbExJicnmZqawuFwkJ6eTmpq6op+txUXF3Py5EmOHTuG2+3m2muvXbF1z+L3+3n22WfxeDzs2bOHVatWrfg2LiYul4trr72WrVu30tDQQH9/P36/n4mJCQKBQDhKpKysjM2bNy9pnU6nE4/HQ3R0NFJKYmJizluqqCgKmzdvpq6uDnkBd73d3d0cP348PLE0i8fjCU8yZWdnh7NkI5g89t8HeOO5aiwWld//4j3nXV5KSVNTEzab7U3l+EWIECFChEtPRFB9m+F0OikvL6ezs5POzk46OjpIT08nJSUlfMO4atUqfD4fTU1NTE9PU1BQEB6MZ2VlMTExQXV1NUVFRfPcJJcLq1atorq6Go/HE57h/8aOu3nw5f8zBTqbsai+JyUQFNSPDTHgcZPuMgeqihB88aYbSY128c3XXkc7o9RNMGOL1MA6ZAoP0qVjOHWkyzgtJtolhiNkZrD6LWAoGLpAUcHAdFUiTwuAYAqpUoKhK7is9vA2dUPnF10vohtzmlwoM4LpTJZJIFmi+SVSAcMOWI2ZDlEKIBEaWLxw2q07f7DtKdOwDyqIkEJldTfcvuS3gOdamjEUA2EIs9x/GahCYCjz90VR9TliqulOnSuiWpX578ncZ4s5wqqiGBiGgmo10EMqdeOD1I0P8s3qAyTbo7g+M49PluyiIC7SBCDClUVra2vY8bcYTU1NHD58eN5N9eHDh7HZbAQCAex2O8nJyUxPT2OxWNiwYUO43Praa6+97LqPXypUVb0gISLC0hBCkJOTQ0NDA263e4FApKoqpaWlVFRUcOrUqXAcwJVIdHQ0BQUFtLW1MTY2xtq1a8/pRBNCkJmZSUxMDHV1dVRUVJCVlRVuXDU79vL5fHR2djI4OAiYYl5iYiLT09Ph+ICVbKqWk5NDZmYmTz/9NKOjoyu23rnMRpcUFRVdcWLqXGavpRs2bJj392AwyNGjR6mursbtdpOfn09cXBwul+usQntCQgL9/f3Y7Xa2bNnCqVOn+O1vf0tGRgbx8fEMDQ0xNTWF1WrFZrNhtVqRUqJpGlLKZTm8h4eHqaioYHBwkJiYGG644QYcDge9vb243e4FDdYsFssli4G43PFOB/D4QhRsyOb2D+xY0nMGBwfD1SVX4qRRhAgRFkdK0zx1NXMlHN/x48fZsmXLRVt/RFB9G+J0OikuLqagoIDm5mb6+/vp7+8nLS2NwsJCrFYra9asITo6mpaWFqxWa7j0c3Zw2NLSEn7u6tWrL6sulEVFRdTV1XHs2DH27NkDwLVpq/mn7XfwhSPPLGiNJGdETDSQfgtI6HefFlRn+fj2rdxXuo53/d8v6Jt0L9iukDPCqi5Rpiwo4xaz9F+R6HE6MsrAcOmQ4UPxC/T+KIygguLQkTO17XJ2h8w1mr9Ks9nV1pTs8Lae7DuIgUQVpwewQoB0aeC2MqvM6k7M360GWCTCMGfCtVgD26SCEgTLNGgxi+WTSqZ2B4jd76S9YRiPL4DLaWcpHOhsBxWkTYdljg1/eP0DvDzYyK/aTyLDwumse1agCInVos9xr4I1HLcw+5eFF3cpZ5zAgpnM2/nxCyMBL4+11/FYey3xDhvvLNjAJ9ZeR4rjyiwzjfD2IBQK0dnZydDQEMXFxYs2sjEMg5qaGhISEli/fj1xcXEAtLW1EQwGsdvtlJWVYbPZOHnyJDU1NWzZsoW8vDwOHjzI/v37ycnJYefOnZdFXuGlJCYmBl3X8Xq9V2zJ+eVOamoq7e3tdHV1UVpauuDxqKgo1qxZQ2NjI4mJiZddpuhyyM7OJjExkebmZqqrq9m5c+d5S+ZjYmLYsmULra2t9Pb20tnZicViISEhASEEQ0NDYWdbRkYGFosl3Fz05MmTDA4OroigahgGg4ODNDc309PTQygUumiZmWVlZUxMTHDq1Cmmp6e56aabrqpMZ5vNxnXXXUdUVBQ1NTW0t7cDpqPU5XKRkJBAcnIyycnJ2Gw2dF3H7/ejKAqDg4Ns2rSJjRs30tDQQEtLC4ODg+EKM03TCAQChEIhFEXB6XQSFxcXbpR2Pk6ePElVVRUOh4NrrrmG4uLisMg7t2rtTKSUGIZx2URTvFXUHGun9mQXzigbmbkp510+FArR2tpKamrqZVn5FyFChAhXOvfffz9dXV0Xbf1Xz+gkwrKxWq2sW7eOrKwsfD4fra2tjI+Ps2bNGpKTk8nKygpn6eXk5ITdEIqihJdpa2ujtraW66+//rKZVXW5XJSUlFBdXc3zzz/P2rVrycnJ4YGCckrj0/jHA09y1D9KWIo0wAioEFIQutmN743WTjZlLGyCkeKK5qXff4gbf/WfDPYGT3fu0+dGfc5aIjHdohpYR0yRQyoSGaUjE0JYkvyEpi1oAlSbMSPyzT7RRBoCPShIdXmpmjxAivM2HKqD33TtR0pwOQKMeubc5DtnyuCnLabtFQkOHWJCEFQQFsAi8adJXJ3motFdgslSaUYgnIHmBP/6AM4aB3/63cf5779675LegzGfz2x2FbM8d6qCYGdGHjeuKuRTJbv5aetRftVRwVTIjyIkqmqghF8ec3+dVm2eCzWkzx/ML2YuEwKEIpHGYrNqgolAgIcbK/hZ6zE+V7qHj6/Zddk5sSNEGBwc5NSpU0gpycvLO6to0tvbi8fj4cYbb5znNF0sC3uuGzMxMZG77rqLmpoaqqurefTRR9m2bds5u5VfTQSDQRoaGrBYLFeVmHO5MetSbW5uxuv1LnC/AaSnpzMyMkJbWxvJyclXtGgz61Q9ceIEPp8v7MqVUp71e8ZqtVJcXIyUErfbzdjYGGNjY4RCIYqKikhPTw+PwTo7O2lvb2fDhg2kpqbS0tJCKBRadLJlqdTW1tLQ0MD09DQ2m43s7GzWrl1LSsr5BaMLweFwcOutt1JbW0tFRQXd3d3k5eVdlG29lWzevJn169czMTHB1NQUk5OTjI2NMTIyQmdn54Ll09LSeO6557BYLJSWlrJx48ZwvNVKfSaGh4eJiYnh3nvvXfJ1b1bAv5I/lyvF1HSAcY+fqJQYdN1APU9kVnt7O4ZhUFBQcIn2MEKECJeKiEP10vHAAw8s+ncpJWNjYxd125E7hLc5iqIQHx9PfHx82DVRW1tLRkYGa9euJTU1lYGBATwez4JSvMTEREZGRsIDqcuJ8vJyhBC0tLSwf/9+nE4nq1atIjc3l0+mlvJnrmj+pqGKpvFh0x0qQRiYJeo6fPfAYaa8Qf5q7+4FNzg2i4Wv77mTh17+BYZPQRm1ocwKc3N7L8nZf895vgHCo6J4LEgk9miNgENBw2xOpainxQxDF+EGV9syW3l+oI1j44f5TNFfMBSYQFHAajGIsgXwBm2AMIXFKB3p1E1BNZxDKpBuCzh1hNPAl20gjyoIBK42gWedRJ55NRCmKzSYp6EOh6hq6uVAZSs3lJ9/0JcWHW2+ELbllcpen5GPbeZcSnPG8ufrb+HT627giZ6T/KztDTqnZ8sLJVbVwKrqKHMiEgw5k0HLQreqEMw4gc/HbGyCJBQSfLPuFRSh8LE1O5d1LBEiXEz8fj9NTU0kJSVRVFR01pzT/fv309LSgqIoeL1empqaUBQFIQSKoiz48Xq9856vKAobN24kNzeXgwcP8vrrr9Pe3h52V13NHD58mImJCfbu3fu2c+ZeatLT0+no6KCtrY3S0tJFhcW8vDyOHTtGf3//Fd9NfLZLvaqq6LpOQ0MDo6OjrFmz5pwuQCEEsbGxxMbGLhrDcerUKU6ePElKSgrBYJCUlBROnTrF8PAwmZkLJ4mXgtfr5fjx4yQnJ7NlyxZyc3MvmXBWUlKyaIbn1YTNZiM1NXWB8zoYDDI8PIyu6yiKgqqqVFZWYrPZSElJobKykubmZpKTk4mPj6e8vHxF3pdZEXU5k0jBYPCyuw94q6g+0YlhtdDdM87wsJv09LizLjs1NUVfXx+FhYXY7UurAIsQIUKECAt56aWX+OlPf7qgmkxKyauvvnpRtx0RVCOEsdvtrF+/nu7ubtra2sjNzSUhIQGr1RrOUToTj8dzWd5UK4oSLonq6enh1KlTdHR0cOrUKcC8KfnJ/ffzNwde4eX2NvNJEtBBCZg3cg8fOUH36ATffeAurGcMFK/PyOO719/HZ15/HMPpR/oUlDELSlCdySmVZp+nGbF2lrniqkDAtBV7uwV/rh9sAl2b8/hMlbucVolVfIQsFkYCXfx11VeRc1aaGuemZywBTVeYKx6apfZmWbvqB80C6piCniURFvAUGMS0qqhBQXSbgqd41rM7I0POltsL8G0LIPYp/MV//Y5XvvVHRJ+n9H9LZhbPtDUtsxkVfGbDdQv+ZletPLD6Gh5YfQ2Dvkl+2PoCLw5Uokl93nKaoaDPNOYKC6xzHKhSzv83Z51ROy3IzubZfqP2ZQod6dyQnRdxqka4LGhra8NisZyzy7bH46GhoQEpJXa7naNHjy5p3Ys52eLi4rj99ttpaGjg5MmTPPbYY2zZsoU1a9Zcta6knJwc2tra6OjouOIFvMsdRVHCcT1DQ0OLuq2jo6NJS0ujo6MDl8sVjq64EgkEAoAppvX09DA6OkpSUhJNTU1ER0eHG/4sh4GBAdrb2/F6vbjdbuLi4rDZbCQkJNDd3U0gEMDhcGC323E6nTgcjiV9n7W1tSGl5Prrr7+g/XozKIpCVFTUVS2ong2bzTbvujM6Osrg4CClpaVs27aNwcFBqqqqGB0dpauri9WrVy9adbAcvF4v/f39y3Iej4yM0NHRgdPpPP/CbwPe/9HrONUyQHPnCJ/9q1/y0x99HMsiLlXDMGhubsblckW+XyJEuEoxpDhdzXqVYlwmx3fjjTficrm44YYbFjw2W8lxsYgIqhHmIYQgIyMj3DQhIyODzMxMurq6yMjIIDo6et7yKSkptLa2Ul9fT05OzmWXMacoCjk5OeTk5GAYBj09PTQ3NxMVFUVqTCw/vPt+eqam+MRvHqdpcAQhBWKOrvhKYxv/9vIhPnfrQqHvrtUlFMYl867nf4JP0dCjgug6KB4VZUpF+BSEPpv+OeuVXHjRcfbpiJAV72qJmC39l2CEFNAUhCb4xevXsyp5lA2FnbR7AmjSiiLMHFGLKslOGmfUHY3b55jnwrSqOnFOH8ODKUirjp6hYxkTaIkSd6lOdJuKkBB1SsVTaOasmi/czN7ONntSwLvbB68qfPUXr/CPv3fuDlU35Rbw90dfWtZ7FWu1U5587kFlmjOOv1n/Hv507V0823+S/255hbHgtCmUCnE6DxezoddcRXdWcA7n0i7JPGvGAhiK5Pf3/5L35W7jH66/JSKqRnhLCYVCDA0NUVRUdE4XUXNzM2BWE7z73e/GMAw0TcMwDAzDCGfenflz5nV+FkVRKC0tZfXq1Rw8eJDDhw/T3t7Orl27LrnQcinIzc2ltLSUuro6kpOTWbt27Vu9S1c1KSkp4RL1xMTERYX9goIC/H4/VVVVXHPNNVesczg5OTmcRT86OkpmZiaFhYUcOHCA6enpZX+e+vv7aWpqYvXq1cTExKBpWniyOycnh/b2dvr7+8POWDAdiDExMcTGxhITE0N0dPSiImtXVxfx8fHL2icpJbquEwgECAQCBINBpJSkpaUtewImIyODlpYWKisrKS8vX9ZzrybsdjvR0dE0NjYSHR1NSUkJt956K+Pj43znKw/zvaOP8ef//EGiXBf+mXj99deRUnLttdcuafne3l7279+PzWbjpptuuuDtXk1krkokf+MqGgfHGRqe5PnX6rntunVYLPONGW1tbUxPT7Np06bImDJChAgR3iSPPvroWR977rnnLuq2I4JqhAXMdgiddVCsXr2a4eFhGhsb2bx587wv/lWrVqGqKl1dXVRUVJCUlMSaNWsuy9IVRVFISkrCYrFQUFAQPo5VsbH86oPv46M//y2VPQPmwrOl+xJ+9sZJ/vCGa4iyLyypLY5P5dg7/5SH9v2SipEesEiMeB0jXjfX4RMoXgV1UkUEFt5ExNf7sY9LwII3Q0EaymlHqwD0mR8h6B1JxB+yYk/1ElIs2C2nHZqqIkmN85AcM40vZEFKgUU1sFs0BnpMF49UQCiwJiuRttAEfqeGP11iH1JQQpBwyMLEzhDSykwjqPlNqqQFprf6eeZYA1/+8F5s5xByVsfHg215HV/fX7j02SOX1cl7cnbyzuxreX24mZ+1v87x0XZAohuzDtXTAqumK+iGEj4mLXTazXs+ZltXCZvB/9VXUdHWw/UZudxYkEdydDQFqYkLHMwrxZTbx+SUn7qmXoZH3PQPT+H2B5gOaowH/GSvSuCjd11DXvqbc6VEuLLQNDOb+HzVAe3t7djt9nkZoGeLBlgOLpeLd7zjHTQ1NXH8+HGefPJJysvLKSkpuercqlu2bGFkZISTJ09GBNVLQEFBAUePHqWrq2vRTEGbzUZZWRlHjhyho6OD4uLit2Av3zx2u521a9dSW1uL1+ulpKQEIQRCiGV1S5dS0tnZSUdHB5mZmRQVFdHZ2Ulvb294mYSEhHCzG8MwCAQC+Hw+3G53uOQ4FAoBpx2h0dHRREVFYbfbGRkZITc3NyzIzhVI5/7M7s/sMosdx8jICKWlpcu6TuzcuRPDMKisrMQwDDZv3rzk515NuFwu7r33Xvbv38/Ro0dxu91s376dlrohjj3Vi6L08bMfPsrGnQVER0eHJ8yklKSmppKenn7O1729vZ3e3l62bNmyJPG8paWFN954g7i4OPbu3XtZVqu9VXzsozcQ5bLzq5er+If/ep6mriH+4IFduBzmvdHw8DA9PT0UFhYu+lr7fD5qamqIjY2loKDgTeUfR4gQ4a1DLtnAc+VyuR7fwMAA6enpl2RbEUE1wqLMzUWdbUJVWVnJ4ODgvJNTCEFmZibp6ekMDQ2Fm1Rt2rTpsryx7u3tDedPzSXaZuPnH34vf/TLx3m1daYRgAFCB39I4x1/9yP+4cHb2F2av2CdUVYbj+z9EL9sreRLx57FmL2yCJDREt2lY6RpCMNAdSuIURtiWiWmPYBzWAdVIaZTZ2KdgpzJPQVmcl3NTFcsIFEYmYxDVWy4Er0EdQWrYswTPRVFEm03b4ykhICu4B6PBiRyxn3a4Bvlxzc+wO+99ggT14RIftGOogvsoypJLwl8BTq+XA0lev66AYjR8RaE+PxPnua7H7v3nK+1YoXlSKoPrd22jKVNVKGwO7WY3anFDPgm+XXnUX7RfgSPZk4GGIZAMxSkVMLiqh6aEa7PyvxvhtPNxkzncJNnlLbj4/z0SCVKCHIT4/n3D9xDQer5RU2fP4imSxw2ixmSPeFlZNRNa+cwQyNu3G4/Le1DaLpOa8cIUko0ff6raAiQisCwCGo6+3mqooH167NYk5dKUUYSd69fR5QtMvi+mvH5fMDipfmzDA0N4Xa7iY2Nnddo6s2iaRr79u0jEAiEowRGR0fZt28f1dXV3HnnnVd0KfaZKIpCRkYGQ0NDkQ7WlwC73U52djadnZ2kpqYuGjWkqipZWVm0t7ezdu3aK9bdNdtoq6qqikAggMfjQUq5ZNftbMnwwMAAeXl5ZGdnc+TIESYnJ/F6vfh8vgVl2LNd351OJ4mJiYApggYCAbxeL9PT0+H/jo6OMj09HRZhm5qawhPuNpstnLs8KwTD6YxXm82G3W7HbreHfx8fH6e2tpa6urpliaqKonDdddcRCAQ4derU21ZQBbPh2OjoKIqihCvCnvzFEQybDcMwiEuzhpuQnYnNZmPnzp2LZu+CKZC6XC5KS0vPux/BYJA33niD5ORkbrnllhWZqLuaSEyI5sMP7uI3r9dCUONnByv5RUMdf37/DewpyqGpsZGUlJRFS/2np6epqqpCURSGh4cZHx9n27ZtkcaIESJEiLAMbr31Vqqrqy/JtiJX5wgLmC3VmpycJC0tDZvNRnx8PCkpKXR3dy+q9iuKQnp6OtHR0Zw8eZKWlhbWrFnzFuz9uRkbGyMlJWXRgbxFUfjhg+/ky0+8yK+O1YaFNEWDiaCfz/7wd3zm9l186NYtC27ghBC8v3ATt65aw2ePPMbB/o7TYqQARdERFgnJBiIliJAQuw+EtGBIA3+GBduUQjBezlchdVCnQE8grOwZIZWgZmHK7yDW4cemGvNK3Wd/D+oKo+5oQMFw6mGhVgK6lHxwzSb+r+U4ozcHSNpnRwkJLD6F6AYFR4eVQE6IQGlwJot1Zv0CQuka+060nve1lmJ5Ik5a1MIb5+WQ7ozj08V7+XTxXhrG+/lZ2zEe66pGSvP1kYZA15SldSMUp19Pocw4b/TT54xUTv+3c2Scu7/9v9iDgjjFRqywEWW1smXtKjYXZlHV2MvJhh66+8YJhnQwJGpoae2xzrZvCOa9nydb+qjo7kOPhm/sO8hHdm/mrjVryY1LuNCtRLiM6enpweVynbU03+/3c+TIEaxWa7ix4Erh9Xrp7e0lNjaW6Oho7HY7sbGx+Hw+RkdHefLJJ9mwYQNlZWVXjfiYlpaGlJLKykrKysrweDzEx8e/1bt11ZKTk8Po6Ch1dXVs2bJl0YkDVVURQhAMBi/Lipilsnr1aqqqqjh69Gj4PJt1k54LwzCoq6tjbGyMdevWkZaWxsjICI2NjURFRSGlpKura0muaiEEDocDh8MRFlnhtNvU7XbjcrnCIuqFkpSUxPr166mtraW+vv6szccWQ1EUVq1aRW9vLx6P57KLl7oUDA4OhkXMXbt2ERcXx6OPHOHwsXbsUXbues823vvgnYA58TUreBuGQUVFBfX19YsKrbP4fD5iY2OX9B57PB4Mw6CkpCQipp6FWJeDf/vSe/jQt36J7oBgUOP/Pf4yf+uC8uwEvrx2zYLz3+12U11djc1mY+PGjfT399PZ2XnVfJdGiPB2w3SoXpmTvkvlcnWorqSZ5HxEBNUICxBCkJ+fT1dXF4cPHyYvL49Vq1YRGxvL2NgYXq8Xh8Ox6Bd8TEwMhYWFNDc3I4SgoKDgshkIBAIB/H7/eW+Ev3LvXt53zUZebWjnsUO19E9PIQ3QpMF3f/saSMmH37G4mzLJEc3/3vBB/qHmx/yytZ2QcfojJoQpogkBKjrKtACLhqqAr9SC4gfLuECPwhTLDFADAoFEmYBQgnlhMLxWQnFBLKrBpN+BTdVxWDQsM3mnmqHgC1nxayreKQdGlAFCINTTEQGnJob52/J3cGKkkzbLAM4PjaA/kUxo1IG0mM5Ya4+NqGlJ7C0DjGtOvCE7mmEqecEUnV8dq+aBbWWLv9a6xnIuYzGWlb0hXpeQwT9uuYd/3HIPtWP9/OLUSX7XWY9HBs/zzNPuYpAzjbnMLwvda76XQp+TswvmGypAQzIeCDDl96OEoLVnlN8+V4nQzggXEGY/rDP1ZkUIhCKwW1UyM+JxOqzkr04lNsZBTlYiq1clERfrRLUo/PrlSn72YoVZ0mcFqZ6OqJjyBvj2vtf5RsVBYl0WcpJc3JZdzHsLy0l1vv1uQq8mgsEgra2tYRFlMTFiaGiI/fv3EwwG2blzJ/39/Ss6qHC5XOHviDPzDP1+P4cOHaKyspKuri6uu+66eQLNlUpGRgarV6+mrq6OxsZGgsEg6enp7Nix46py414uzGb1Hj9+nPr6esrKyhac62lpaXR2dtLe3n7Flv2DOWbasmULx44dY2JigrS0NILB4DldqrNi6vj4OBs2bAh/xqampgDTleF2u2ltbSU9Pf2Cz1EhRNhlulIkJSWxbt066uvrmZycnDceMwyD+vp6/H7/os+ddeb39/dTVFS0Yvt0pVBVVYWUMtyv4Mt//zivv9SAYlEJKYIPf+qW8LJnuhm7u7uJj49fNEYDzIZXs+fTUvB4PABnndSLYLIuL5241GhG3V6zn4IFDENyvG+Mu3/7f/z+1nLuLSihNDEdTdOorq7G4XBQVlaG1WplbGyMhISEy+Y+KkKECBGuFC5l9VJEUI2wKDk5OWRkZNDZ2UlraysjIyOkpKSg6zpHjx7F4XCwadOmRQfamZmZSClpaWnB4/FQUlJy3gG5rhkoqrioJ//szcZSbi7WZaSyLiOV924v44v/+xwHaztQzdhC/u2R19i2Nod1eQu7EM/y4fzbqPH8Pe6AlX53LEFjJj5BmMKqokvEzA+GRk79GHqShR5bGkHVbsp6YdepQAlKFA/oLkAKdLcNvwCrRUci5gm3UkJQUwkEVHTdYip3qkSop0WVV/vb+XjJtTxQGMOBkcMIIPBOD02PrEVqCjMRpIQmHYw+mUPRrW1EZ/WjGSohQ0HLtfDT8f/m1UM5vDN/N9elbMKmnHYRtU+NLek9meViCn3rEzP487J43pe3hX1drfyi5STDmhtDGGconTPBuTMiKoCiSqQEI6BASDUXCYDQzOWFbqqts/9FzthHF3HnWlRBTJQDxZBYEEQ77aSnxbKhOIvcnGRK1mRgt1mIjTl/p9w/fuB6fv++HTx2pJZ/fuYAmm5gWDh9PBJECKamNWq1EerHX+Vfa1/jq9fcwXsKNr6ZlzPCW4Su61RXVxMIBCgqKiI1NXXBMo2NjRw7dgyn08kdd9xBYmLiiguqiqJgt9uZnp5e8JjD4WDPnj10dHRw+PBhnnrqKUpLSy/bCJjlsGPHDl544QViY2OJj4+nvr6eJ554gpKSErZu3fpW795Vh8PhoKSkhOrqatra2hYIQVarldzcXE6dOsX09DQZGRlkZGRckeX/xcXF5ObmMj4+ziuvvMK+ffsoKyvD7Xbj8/nCTkNFUVBVNZx/un79+nkTFm63GzArcfLy8hgaGqK+vp7i4uIluV4vFSkpKTidTvr6+sKCqmEY7Nu3j+7u7nli4JnXLovFckW+xyvBhg0bCAaDHD9+nNbWVt441IJhU0hLi+WP/vgWoqLnj7MNw6CxsZGBgQHcbjc33XRT+DocDAZpb28nKysLl8tFRUVFOJ94Kcxe/2NiYvB4PIyMjBAdHb0gTuvtjkVVuOv6dfx433GkAobNbE4rpUQ3DH5QcZwfnjpMWVI6v5daQqJhsH79eqxWK4FAgMnJyUh2d4QIVzBSireBQ/XqPr6lEBFUI5wVq9VKYWEhycnJNDY20t7eTmFhIVFRUTQ1NVFTU8OmTZvCWatzmR2k1dXVcfz4cUpLS88qZFYcbeNLX/gVOauT+bf/fAib7eKclrOlTssJd4+PdvLvf3gff/2DZ3ihosksxzfg4MnWcwqqOdFZrHHl00wbMfZRfJqFSb+doKGiCLAoBvp9YPm1CsEQ+iHzmFcxSPsHVoFtRnzQTW3O4g6RdMiDP9WKJ9+CX7WAaoVoQTCkYlHN1vVSCgwpMHSBFrAgLAZCOS0QAiDhxFA3f/D0XzMWO8mIN5WQoaAqBkn3dzF1MBXfSBQIYQqruqB1/2oK97YTk+rFqugEDYk1VmNYnuI/Wlr5r9ZHuD1jN/dm7SHBFsuxoa7lvDXkxKzszZ6UkkM93Zzo7+NAZzsn+/swON1gSgorUjHArqM4DLAYgDgtpCoyLKzqfgVtygYWA6HqCENFWgTCrYAChtVACQB+BaFJhGHeAOrRBqHEEDIKsopi+ONrb+COVRtW7GbQYbPw/uvLSUqO5tO/fmpexIJUmTlSA4Iq0iLRheQvjzxNv3eKP9lw/YrsQ4RLg5SS+vp6fD4fmzZtWlDuahgGr7/+Oq2trWRmZnLjjTeGyzAVRVnxsheHw4HX6z3r47m5uWRmZnLo0CFqamro7u7muuuuIzk5eUX341LicDi45557wv8uLi7m6NGj1NbWEh0dzbp1697Cvbs6SUhIIDc3l/b2dhITExeIgpmZmdjtdvr7+2lubmZ8fJzi4uJFxySXOw6Hg7S0NHRdx+/309LSEm4MBeZnXNO0cHbxmWJqV1cXlZWVgOnkFEJQWlpKY2MjVVVVpKSkEBcXh8vlIiYm5i19jWaz99va2mhpaSElJYXjx4/T3d3Ntm3blpTh+XYkIyODu+66iyeffBJVVfnzz76D1w428+EP7mTtmowFy1dVVVFVVYXD4aCgoICcnJzwY21tbRw+fBgwRVG3282WLVuWnNM56xb+zW9+E26S6HA4eOCBBy548uyVXx3ipZ+/zie/8UGkIcle5JiuNHw+H70Tg2iOmUavCCQSwzozGjUEMqBQMzbAn40N8o31N4cNKENDQyiKEhGpI0SIEOEyJyKoRjgv8fHxbN26lfr6elpbWykuLmbDhg2cPHmSxsbGcHfaM4mLi2Pr1q3U1dVRVVVFeXk5MTExVA8OMDQ9TUlKKlmxsRw72koopNPaMsjIsJvMrIvjpJhttLVcQUsIwd/9/jsYGpyiprUfDMmR4+18/J07z/m8D+W+my/XfgMDHadFw+nSzNJxKcwIzNsl+gZB6BULRpdA71bAJ4hrcDO5Pm5ebyQt1oYS0Eg6Nk3iMWj+XAb6tA0jYEF1htBsullKrgl0vwVDNVBUEIsV3gvwS4OXO5LBnoAaE0S1mTXsw8SgXKORQj+howkExh1IAaGghcaXClh7UxsxadPYFQ2/bsEqdKQAyTSP9bzIS4NH+IcNn6JqtHtZr3FhzJsvCw5oGk82N/JiWwsVfb1MLFI2KOC0+1cqSL/A8ANWA8WuIxw6QjWbcRm6QAspGBJEjHY6o9ahoQP6uRoHKmZcgKJIFNWgTYzy+eO/5RsNz/Fg7nYezNtBtHVlcsduXVdEepaLvkE3UoBhMZ22ZhMy0zkrdTGzT/CdmteIUq18rOTaFdl+hItPd3c3Y2NjbNiwYdHswAMHDtDV1cWGDRsWuEGFECsuqDqdzvAN9dmw2WzccMMN5Ofnc+jQIZ555hnWrVvHli1brni3Kpjiwe7du/H7/VRUVJCRkRHJVb0I+P1+rFbroiXwQgiSk5NJTk5mZGSE+vp6amtrF40IuBJQFIWsrCz6+/u5++67l9WEZmRkBIB3v/vd4WuEw+EI5zD29fUxMmI2OlQUhYSEBDIzM0lKOn8zxYtBZmYmgUCAoaEhGhoaGB0dpaysLCKmnodgMMj4+DgT/gT2HTnIB+6/ZlExNRgMUl9fz6pVq0hLS6O7u5v6+npKSkqA0waDbdu20dvbi9PpXNZrn5WVxfj4ODExMcTFxeHz+aisrGRiYuKCY16e+fE+upv6+cYn/pv+rlE++Jf3cMdDu1EtV94EiZSSvr4+2tracKoCPUaieM3vYsMmMeaaiYMK0m6gI/mz2pdZnZFFeVImAwMDJCUlRZpRRYhwBSM5s9Xx1cflenyXMt87cpWOsCQsFgvr16+nubmZhoYG1q9fT3FxMXV1dfT19S3aqRIIB6tXVVXx9JHDfLezjSHvNCIEFj/sXpvH3953A0ODUxQUppKRGb/oetrrezi+v4G7HroBR9SFfUA0TbvggYnVovKDv3kvn/3abzlW1UVT0wC/eOwo77//mrM+Z01MPn+65mN8u/kHyBlvpBBgmeMktGRLLB853SRA+iXRHV6m2mKQCARiRvyTjOxOIfWVYUKxgGreLEpNQXPPHZmZ61Ziz954AGYa1msCiYoWdKLHhLBGhRAKGFIwhIu4nVNYjxIWVaWm0vBCEUU3tpGQPYVdNUVVm6ITNFTsqsZkcIo/OfFP9I27gKWX8W9MXvz8ORcBTaN5bJSnmht5sqmRoWnPki7q80TVmZtuaSgYfgXDbwHHjJdVkSiWM9y9S0KGrbCGFCjMlHwgGfRO86+NL/Hd+n3sTSnnY+uupTTxXMrs0ripuICH/ccRIVOoklY507TKPI4zsg34auUrJDiieVf+0vLSIrx16LpOd3c3GRkZi96oGoZBX18fhYWFbNmyBYCOjg4GBgbCjaJWWlCNiopicnJySctmZ2eTlpbG0aNHqauro7u7m127dpGWdnaH/5WCYRgkJCTQ1NTEI488wqpVq8jIyCAnJ4fExMRzCsderzecm1lUVERxcfFVITSvNIZhEBUVtaBb/ZkkJydTWlpKTU0NY2Njb5lQ+GYpKiqiu7ubvr6+eY7Cc2EYBoODg9hstgUTLrNu0MzMTAzDwOv1Mj4+ztDQELW1tWzcuPEtmQhQVZXCwkIKCgoYGBigsbERj8dDf38/6enpV6QgfilQFAWLxcLLb3QwPhXkl09U8J67tyxYrru7m1AoRHx8PHV1dQQCAaampsLXmVAoFM4qvhAROy0tbd413O/3U1lZSW9v7wULqn/6b79H5YF6BntG6fjhfn7ytSc4tr+BWz+wiy03ruHEiRMkJydf9iXwbreb5uZm3G43mZmZfHRdMb/o/V+M2DO/h2djpkynqlAlEsm7X/wf3r9GwyanSFHTmBoZZkviDmzKldt8L0KECBEuNRUVFZdsWxFBNcKSURSFtWvX4vP56O7upri4GCHEoll6Zz4vKiuTL732CgZm/qRj0Bwsv3G0g3+NcvIvf/+uc67je194hJ6WQWLio7ntwXM7Q8/GrEP1QlEVhe/+9bu5+0P/zpTbzxPPVvK++7adc+C/PWkzf1X8Kf6l6XtocnaearHlzYFWVFQIV5kfv7WP1sas00uanawYuS4Ff5Jx7tU49EUemLOIBBFQUDRh5m5KkAGFEFas0SHT0YbEJ61Eb5vCXgH+idmbWcmp/Xlkb+onY/0QFkWiGQKLYqAZKjZVJ6AL7BbtHMe6kAS7gSENFHF+QUFKyY8rT/CvRw7hDgaWtP4zCYuqMCN2m78xZ/Nv/n5uJlc1/BqIma0JFFXn+YFqftfVwDeuvZv78ta/qS3dkpfPwzXHkaoxZ3szx2VZfH70Lw7/jvWJaayNX5jFGeHyob+/H03TziqujI+PEwqFyMgwXUpjY2Ps378/7OpzOBysXr16RfcpOjoav9+PYRhLEgFtNhvXXXcd+fn5vPHGGzz33HOsXbuWrVu3XrHum7a2Nk6cOIHH46GoqIi4uDhGRkaoqakJNxZJTU2lrKxsXtRBMBikqqqKxsZGwKzkmI0OKCkpobi4+Ip9TS4GqqoSCASW9P2dmJhIbGwsHR0dJCYmXpGi3KpVq3A6ndTV1YXdf+f7jJ06dYrBwUF27NhxzuUURcHlcuFyuVi1ahVVVVXU19ezZcuWFW08tRyEEGRkZJCamkpLSwtNTU2Mj4+zZs2ayOdgEZp7Rvh13TR+h0GaPYaPvGfx9zwvL4+uri5qa2sByM/Pp62tjYGBATIzM9F1fUUncBwOB7GxsTQ0NBAMBikoKFi2UL+qKJ1VReYEc/me9Xzt4/9N9eEW6qq7CVgsJKQ7SS10kZp2nI994nbAQlJyzIodw5tF0zTa29vp7e0lOjqaTZs2haPOHE6B3zf3HmBmTDbb22DGaCFn5uMfbTO4Pm+QYW8/9V2VPNL9MBvjt/GuVR8k1hp/iY8sQoQIF0okQ/XtQWS0EmFZCCFYtWoVdXV1HDlyBKfTeV4XxYTfx3sf/RWzjdFFyMwRmuWp2ka+svcWohbJNvX7gjicNu7/g5s48MRxtt5UcsH7/mYcqrMIIfjjj97Iv/zb8wx0jfOLR47w4PvOXTpdnrCeH2/7Nt9u+hdqpjrR5Px9EBg41RBONYgqJMEJG60tmcB8SVIi0R3SbExlYIp/Z2SjgkDY5ragX+wYAPfpG1OJBF1BGiB1gZgpFQ9oFqJdARL3DOB+Ixn34OzAVdB9MgN7VJCE/Al0oaBIs8RdBRQhiY3y0z+xtM7CUocvnHiYvOQJUqxZDE0l0++x4VRt3JBZwPsKy8mIig0v//OaKv7x1f1L1WrPvW3mDmYFqDrhga5yoa6+2aZUctF9lIb5GltsIfwBlT8/9DtyYxIovwCX7iwZrhiI0sBnOa2dCsxs2Dl5sGfyv83H+cdrbr/g7Ua4+ExMTBAXF3fWrt99fX2AWUILZm6e1WrlPe95z0Urd4mOjsYwDPx+fzjjcSlkZmZy3333cfToUZqamujp6WHXrl1hMfhKYHh4mKNHjzI8PExCQgK33XbbvP0PBoN0d3fT29tLX18fzz//PLfccgspKSlUV1eHcy7z8vLYsmULLpeL/v5+KisrqaiooLa2lnXr1lFaWhoRlDAbGA0MDHDy5ElKS0vP6VQVQpCXl0dVVRWjo6NXZGavoigUFRVRXV3NE088ERZBZ5uhJSYmkpycjMvlCgti/f39OByOZTn3hBCUlJRQUVFBfX09GzdufEsd0qqqsnbtWuLj42lubub48eOUl5e/ZULv5cqX/+cFusdME0N6jp27985vIjU4OMjU1BSKopCbm8v09DSTk5Ns3bqV7u5u2tvbSU1Npauri+jo6BXdt+3bt1NVVUVdXR319fV84AMfWNI55fV6GRkZCU+AhEIhLPFBPv2De3nxlydpODaApsFwn5+BCQMUN2/s+w98Hp3r9mZz291b2X6NWW0TDGpMTflIvshC62zWcSAQIBgM4vf76evrQ9d1CgoKWLVq1bwJHVuMgT9kgD7zN0F4bIYqOdNL4AvaqB3JYH1SHzZVokuN42OHODF+iK0Jm3lv9h/hsCz9uzdChAgR3o585CMf4cYbb+SjH/0oAJ2dndTX17Nz584lNSlfKpHReoRlk5ycTHp6OlJKCgsLz9nkKaBp3P2LnzEVDIb/ZtjNnEdFExiqJGCTDE9Ps/qM2ex//bsneOa3Fbz393fz0T/Zy647N72p/fZ4PIvmDy6X669dwze/8SzSgKam/iU9x646+KuSL9Hna+V/279Bj28STSoIQBUGFmHgsgQY64/h4OsbkEJBKqDM0UYFAj0cZC/nGx9nf/WBiOXc5lCPigiqGPY5guFsPqic690UaLrKlHCw7pZWOo9lMdScPOO6hPb9uVgcLdjTfTAjquoIVGFgKIK4KB+T087zWj2loTA4EUNW4gT9wR7sUR1kO6HfHcNPTrXx77UH+f011/LpDbt4tK6Ov9+3//Q+q+c4znNtc84xM6stW3XTLaBIhHohpf7hNc9vbjUPERZxhQCLRUfXBN+qepX/vfn9F7JBALKi44h1WHErQWRoVmmX5kYEMyL5wj39bVs1/7DtHVekk+vtgqIoBOdcP89kaGiImJiYsOA6NjZGenr6Rc0Omr2Out3uZQmqYMbH7Ny5k7y8PN544w1eeOEFCgsL2b59+2UtIHo8Ho4dO0ZXVxcOh4MdO3ZQVFS0QDCw2WwUFBRQUFCA1+vl2Wef5aWXXsJms4W7tu/atYvy8vLwc2Y71A8ODlJZWcnJkyepr69n7dq1rF+//pLmQF1uJCQksHnzZmprazl+/Djr1q07Zzl/fHw88fHxdHZ2XpGCKsDmzZspLCxkZGTEzMucmGBycpL+/n503axAsVgsYaG1s7MTr9eL3+8/68TLYthsNkpLS6msrOTYsWOsXr2a9PQ3H0HzZkhLSyM2NpbKykrq6+spLy+PfD/NcKK7jyH3tFllBIQW+V7o7+9namoKu92Oruu4XC62bdtGVFQUGRkZ9PT0kJmZidvt5sYbb1zR/cvKyiIrK4unn34aTdPOKaYahsHAwAB1dXX09/djGPONAEII7HY7227PZe8D1/LsL+tJSovj5VcbEYqCb9o89ldf6+Pl48/y5b+ycu22fD75hw/T3T3Gn372Hdx995u7Z5jL5OQk4+Pj5OTkMDY2RlNTUziHFsxmtwkJCRQUFCw6CZDidOGOHkOGJ71nBukKiEWrygTekJVmdyprYoexKWa2v5RwbOwEJ8cfYrUzQKYjj3zXteTH3EicLRmLcvl+h0aI8LYkEqL6lvL888/zh3/4h4BZ0bd582a8Xi+JiYm88sorKxYhE7nyRlg2QgiKi4vPu5yUkoee+C297qn5DyjgT5OIkERawaoqpCwyU374gFkSeeRAEx/9k71ver8DgcCK5Kq5ou2sSo2lq2uMmor2ZT0301nAX5V8H09olJ93fJmRQBuqkEgJBw6vp7Mjg/Aga/ZJckYYkxBymdZUgQAds7P7TDN3ANsE2AdtTK8JIp0zfxfmj0AgPQp4LKaYOrd60mquQCzqyhQYQpB7TS+KIhmsS0XMbO/UMwVkbu8jvmQCIaRpilQMNKmSET+Fx+tAk2KBOBk+JK8CisAn7QR1M4c1YFiwKxpZcW6y4twENYWXR4b5n5+9QWjUiVDE6UY7BvOPYwm4bDbyExPZsSqb8vQM4hwOgoT45Gu/xadrcyIAlsuss/X070JI5ous8rTjWIJQzEcPDrRztL+HazJWXdCW7aqF9xaW86PGo2AzwJh1QRjme3+W+9GgofP7zz7G92+9B/tlLGa9XZmammJoaIjCwsJFH9c0jeHh4XkiiNPpxL9IQ7aVJCbGdP+43e4LzkLNyMjg3nvv5fjx4zQ2NtLX18eOHTtYterCPgMXC03TqKysDJfol5aWUl5eviTxNyoqittvv50XX3wRRVHYtWsXL7/88rwb8bmkpaVx2223MTw8TGVlJdXV1TQ2NrJmzRrKysretsKqy+Viy5YtNDY2UlNTQ25uLqtXr15UaBNCkJCQQE9Pz1uwpytHbGwssbGx8/5mGAaTk5OMjIwwMTHBxMQE4+Pj2Gw2pJQcOXKEG264YVnbiYuLY9OmTVRXV9Pd3f2WC6pgCr3R0dGMjY0xPT29IhPhVzonunr54E9+jeKUWALmd/rm7IXiucPhIBgMcs011yClpK6ujlOnThEfH09ubi5dXV14PB6A8zYWvBBm3aZlZWVnXaarq4s33niDiYkJgsEgpaWlbNiwAUVRkFJitVqJjY2dJ8jecNN2AD42Po0iBCeOtbH/5Vr2V3YC8JVv/Q5hV/E4DdR0C/UNvSsmqA4PD9PQ0IBhGAwNDeH1eklKSiInJwebzYbdbj+vE/fd+WV8o2o/RrQGmgBpNgrljMl7IUDOastSENQtdLgTKIgdQ52pNJISQtJKu09Bl/W0eZuIGvkhPiOa/Jh3cEPqfaQ5Mlfk2CNEiBDhSmZycjJ8X/GrX/2KzMxMjh8/zhe/+EW+8IUv8Oijj67IdiJ30BEuGl97/QBHes9yUyNAztwb3rN23aLl/p/58n288PgJ7n1wZbqRx8XFMT4+Tl5e3ptel0MoKLokMB1ESrlsB4XLmsQfFP07QS3IJ17/Lw7tD6KE5nTmNkAqpmAq5sZiWmeaDBmAEAgpTs92zzxkHVeJO2JHS5BocTpSgFVX2B2bQXX8GN3B0HzR0G6cdmXOE1Ql6sy/lZmBXM7WPkJTNiY642fCngQDRzPQvFbi14+CfY7xU5VkJY3R2Z+CtJ7h+JRgeFUUnwqKRLoMukcSyU8bQcUgaKg4VHPW3mYxKEgeIz9pDM+0jb6+ZPoGEtGlsqRZMQXYviqbm/IKKE1JZXvWqkXfr1fv/WN+3VbFb9qqGfJ5kFJiU9WZwatOUNcIGcYZm5xbX29uTMxkYamqMXPMAkWEAy9QZmzHswPj2ad/6bUX+fU97yd2GQ6juXyseDu/aDmJVwudzuU6D1LCK12tXPPj7/N/9z3A+tQrv1HQ1cLY2BiNjY24XK5Fm/4ZhsHLL79MMBicN8PqcrkYHBy8qPs2K3CcLz/7fFgsFrZv305eXh4HDx7kpZdeIj8/n2uvvfYtFw8Nw+DUqVNUVlbi9/tZvXo1W7duXba4ExUVxb333hv+d3R0NFNTU+d4hlnmvnfvXsbGxqisrKSuro6mpiaKioooKytblgtxKQQCASYnJ9m/f/+KrvdiMDo6yujoKFNTU2cVbUKh0DkrZ65UFEUhISGBhISEBY8dP36cmpoaioqKwvEfS2X2fFrJ8rc3Q11dHWNjYxQXF0fE1Bl+c7IOAWgW0JLNEUe7z0tjYyNJSUmMjIyQkJDA0NBQ+OZRCMHatWs5duwYHR0dFBQUoGkab7zxBtHR0eGJsZWks7MTKSXT09NndUyPjY3h9/vZs2cPJ0+eZHJyksTExCVNUiUkmOaLPXvXs748Df17v6F7SNI6MA2agWETaC6V3411MfLTp/nE7deSGBWFIQye7Wpi1O/FZbVxy6oicmMXfo5mkVLidrsZGBigr6+PlJQU0tPTaW5uprCwkKysrGWN+x/I38i/176OTwuZ4/hFBq9n9o60WMzBf0iqTAYdJNpNAXym8IiQVBkKxpBhn8Jj2HGJaYa9v+abja/gtCTyvuzfozh2e8ThHSHCW8nbIEOVy/j4srOzaW9vJzs7m0cffZSPfOQj2Gw2Pv7xj3P99dev2HYigmqEi8JLnaf44YnjMNOr/mxkx8Tyjzeddp92dY/yve+/TElJFh/54C627165bp4pKSk0NDTgdrvf9EBS+kIovhAhI0hPxwjZeSnLXkdI17n92R/R3eDHEjozV3XGXKhAUUIcLYPmDbjFD4FEA8WnLBh9SbuBlmoQsmpYe2xYxxWs42pYPD3EMOlF07hyQnimoswLvMVsxCRUidUZmiN6SqyqjqoYRFuCKLOGRwUKb+mg53AGg9WpgETqgtGTyfiGHKTeMjCvvNzh0LEEBCG/anaeF2ZeKxozHekFwhDIoMHAeBwpsVPEOU37hSH18HbBHETGuIKsXdPHmqI+Jiai6BtMpH8sgbl1/wqCpKgo7itex31r17EqNo6YJeSwJTqi+ETJDj5RcvbGHrph0D09Qc1YP093NlI52sOQ3xNuKCBmHMOmmGqWdAlk2J0aXgbz7dO10/baprER7vz+//Kr33s/GXHLPz/TomL4nz3v44EXf7okj62UmMK8FExpAT76xKMc/OjHI07Vy4BAIEBNTQ3x8fGsW7du0Ruiqqoq+vv72bFjx7wMT5fLRUdHx5IbRl0IiqJgt9vftKA6S2pqKvfddx8nTpygvr4+fFxL7XK+0vT393P06FHGx8dJSUnhpptuIiVl+df4xYiJicHtdi9p2cTERG666SYmJiY4efIkDQ0NNDc3U1BQwMaNG5cdt3A2NE0jGAwyMjKyIuu72Ph8PsbGxs56jocrGN5GFBUVUVNTw/j4+LIF1ba2NoAVmWxeCRITExkbGws74N/uglBI16no6kGTct5o2uV0MjY2xsDAAGDmp1qt1nnXTavVSmZmJt3d3RQWFuJ0OrHZbNx9990rPjED5jk0NDREa2srnZ2dFBUVUVJSQm9vL83NzXi9XjZtMp2jaWlp3HDDDbzwwgscOnRo2Te3KSkpPPTBvbz4ymsM7vczapUYVoEEpnwBnqts5snWZvQokC4dI0ZDEQqGNPiH46+wMSmD/7zhfjKiTzvB/X4/g4ODDA4O4vV6sdls5OXlkZOTgxDivI3fzkaSI5of3/gAH3j55xizmQ1zCF+uZnuJqjpWix7+01gwKiyozi6vAFO6kxTDjV1oeKSDGOkj1zFCux9+0PZtYi06q6N3sjv1TvKji5bU+DVChAgRrhYeeughPvWpT3HnnXfyyiuv8L3vfQ8wc7BnqzVWgsidc4QVRUrJv9Ue5FsHDyNm/nc2chxO/v3a67DN6dz7m0crOFrRztGKdu54RxkpKxgsn5KSQnd3N01NTWzZsuVNDdIzMxPoaB4Ew+D53xzjY5+/47zPCYVCTE1NMTU1hc/n4+/aDtE2MoljanEnllQN/PkBhttsKDNRWbFjdoaT/RhRuilIzrhXpXVmFBavk7BuHIsXfC0uAi0xoJ1+H4Y6HBRt66XOmo40BNIwp7qVeY5G8/coewgQJNm9C49/2wDWKI2hqmRCbtMJ5O1x0fmjQuK2juIoPy0YpGeP0dOSipyJiRIzQt7cc0P4VaRFp6Yzm6yEMfLSRtEMFZu6WLaUKa4mJEyTkDDNeqOLyUkXUaFybsy6hvuLS5YkoF4IqqKQG5NIbkwid68uBaDXM8H/thzl6Z46hgLueU5cRRjzxFSLejoHS9OUme6P5uuBAaNeL197bj8PlpexrSgbdZmC2JaUbH5x8wd5/8s/O6+oKgQYQTNbQkoY9Xl5sqmB95RuWNY2I6w809PTTE1Nhct4DcNA1/V5P+Pj4yQmJrJ69epwib+iKDidTgzDwOPxLCgZXkkcDgde78Jrw4WiKApbt24Nu1VfeeUVVq9ezY4dOy7Kjf9iBINBXn/9dTo7O3G5XOzevZv8/PwV3UZcXByDg4PLErzj4+PZs2cPU1NTVFZWcurUKVpaWsjPz2fjxo1v2sUXHR1NSkoK7373u9/Uei4VHo+HiooKJiYmSExMXPB4VFQUPp8PXddR1WVmwlyhtLe3h5tyLYfJyUkGBgZYs2bNZePqXbVqFYqi0NzcjKZpFBcXn3e8pmkaqqpeVeJrV1cXQ0NDPH6qnY7Jybm94YmxWvjg9deyYe0a3G43NpuNQCCAoigLnJ4pKSm0t7ezf/9+FEUhOTn5ol1THQ4HN9xwA+Xl5Zw4cYLGxkbq6+sBsNvtuN3u8Hk2NTVFTk4OJSUl1NXVUVxcvOyJq8LCQk7WDOGbOIgaI1DjLPgkSHW+B1R4VNBBj9HCMVFVo33sfPQ/uDEjkY+nbsYaMJ21iqKQkpJCYWEhCQkJK3ZObU9dzbd33MNn3ngiHHsFZ4qp5h9jov1zYqIEQUOd9xwRPhkkE3oUKVYPQSmZNhzEK9Pk2Mdo8afg1hS6PPv57sQxELHcknoLZXHbiLXG4rJEY1cjTd8iRLiYSLnQfX61cSHH19vby1/+5V/y7LPP4vP5WLNmDT/60Y/YsmXLzDolX/nKV/jBD37A+Pg427dv53vf+x6lpaXL2s4XvvAFpJS88MIL/NM//VM4Qu3YsWMratqICKoRVpR/r32db1W+BoYpEp6tN1Ks3cJHd8EB9yO0964m1prIxvid7NxRyPMv1lK8Jp3EhJXtQDrbPffkyZNhMeJC+einb+HQi3UgJS/8/HWuua6Ish1FC5bz+/309/czPDwcFh+sViuKw87RyUHwnEVMReLLDqJYJZMBP6o0R4DCI8mxxtMVmkDaZrMAJBgC4YWM1ePYLRoyBixlbrxrNGSnHaUhChESGCEV2eVkbfYQTeOpMyX+Z9TiAzGOAFbVIME2jcsaWPhaqpK0smEccX7an8tF6mImx1UwWZGEP2TFuXoakRwiKjpIbIIH9/jZxXGBAJ+CjDLoHUtiaDyO8vwurE79HM2hzAekIohPcGMRB+iz1XJi8hZ2JN+OTbk0JcNZrni+UH4rXyi/lSPD7fz41Ou8NtgyNwQXIcz4hFkxVUpBwH96/2RQRQkoGIbkxeoWDrzewn3XlvKB6zYx7Q+wsTALRVnaoP6atBz+Z8/7+diBXxE0FhekAaQmIKSeDkyX8LV9r1IYl8SmVZH8rbeSyclJurq6CIVCCCHCN3Rz/yuEwO/388tf/nLRdfh8vosqqDqdzouSwZeUlMTdd99NVVUVtbW1PP744+FYgItJb28vBw8eJBAIUFZWRnl5+UVx+CYkJKBpGvX19ZSUlCxrG7GxsezevZvNmzdTWVlJW1sbra2t5ObmUl5eflHf78uJ6OhonE4nw8PDZxVUwcz4jT+j2eXVSldXF4mJictyLQ8NDdHU1ERMTMw8l/vlQGZmJqqq0tjYiK7ri35WpJSMjo7S29vL+Pg469evv2IbkS3GwMAAiqIwKVRURaDPRjsJwXuvLaes2Kzgmv3cn00knZ1k6+7uBrgkcSpxcXHs2bMHj8dDe3s7FouFEydO4PP5aGpqAszvOYBNmzbR0tJCZWUle/cuv1/C9m3F/PCnR7CHJB+/YQ2t7mkebRnEjYbuPL2c8AtEyIqRGJoRVc0mofsGRjnpfYKimGj+KPtWrsstu2gNEu/OLUWi85nXnzpDhJhVSCVxLh9ORwiQqOFJ+YWYoqpgIhRNssWDRRiEpAUNFZui41KCeAw7AWkh2TrNYFDwRN9TPNv/BD7DRsiwsil+A7el72F93LqIezVChAiXhPHxcXbt2sWePXt49tlnSU1NpbW1dd547Z//+Z/51re+xU9+8hPWrFnDP/zDP7B3797wmGWpCCH44he/yBe/+MV5fx8cHOTBBx9cqUOKCKoRVo4xv5fv1LwKQVP8k8J0I86V7GbLz/PyG2jUx8AOvaMN6IbksbZfsTF1Pf/289tZE1t+UfYxNjYWm812VmfLUsnJT+W/Hv0U3/zzXzDUOcx3//zn5K/L5E++8SAx8dFIKWlubqa/vx9VVUlJSSEnJ4e4uDgcDgffq3sdqWNmoC5CwGWYYhcSix8Uv/kqWqwKP7j9ft75q//DZ2hmaKquoEgF1QtWKdENQchQ8AQcZguk1UHcKaCOWigdzEDrEaSXnCTO6adnKp7BaReGVBBCYrdqOKwaNlUn2eEhye4962BOSojOnqbooSbGKhMYPZoGQiKlwNsQh7c5jvi7elGjdNKyJ/C6nejaOS45+ukNhQwLFQ0FbClsJzHu/C44AxUD6PWN8lT/z3h+4P/YFH8D16XcRYZz9Xmfv1JsT8lje0oeQz4332l4gRf6a8Oi5lxnasBvO+1O1QXCp2CZNkvVLDNu5GePN/HMS7UAvGvPRv7qQzcveT+uy8jjmTs+xpePPc/rgx3zHpMSZFCBgBLOvRE6IGDSG+DBn/yKv9l7Iw9es/GqcvtcSXi9XqKjo1m7du2C69SZpcyLlTZbLJYVK1E/G1FRURctq1VRFDZt2kReXh6vvfYaBw4coK2tjV27dq24s0rTNI4ePUpzczNxcXHccsstK9K88Gzk5eXR0dFBRUUFAOvXr1/2OlwuF9ddd11YWG1tbaWjo4OcnBw2bdp02WRhXiyEELhcLkZHRxd9PCYmBpfLRXNzM1u3br1o0ReXCx6Ph7GxMcrLy5f8HLfbTX19Pampqaxdu/ayvNanpaWhqir19fXU1NSQl5dHdHQ0uq7T399PX18fgUCA2NhYrFYrExMTV5WgarVacTqdZCUnobd2hhuMGkjKs5Y+6akoCtEzjV/z8/PDJfeXApfLhcVioaKiAqfTSW5uLpOTk9hsNpxOU+20WCysXbuW6upqxsbGlj02rzzVxZRzJpveGc/n73sHzkNH+bc3DgOn7ztmo0BEwJy8NzEHZlPTTrpsk/xN2yPs8TTylbL3YlEujrt9T9ZqNmV3c2o0Fa/fhmGYOfsOR4hoZwCrxSBc1aSYvzvV0FnH4joKUgisaISkis+wYRU+Eq3TeAJ2/IYVu9BIsU3T5Y8nJFWi1CA+JJUTtZyYqCbFnsynCz9GUczKVmREiPB2R74NMlSXe3xf//rXyc7O5uGHHw7/LTc3d876JN/5znf44he/yDvf+U4A/ud//oe0tDR+/vOf84lPfGLJ25qYmOBHP/oRAwMD5OXlUV5ezsaNG/n85z+/rH0+H1eMoPq1r32NRx99lMbGRpxOJzt37uTrX//6vGYcK2UPjnBhPNx09HSzI4WZPkkSIcWc0huBdIZonUpFdcJoIArNb8F9OAXdZ6Eqc5zGm/6B61Lv5M6MD6OIlR3QCCGIj49nfHz8Ta9r9ZoMvvrTP+S1pyr5yVcfo2JfPQ9t+xJ3fuR6ckvTEXF+CgoLyMrKWlB22D41FlaZNQdY/KezZnVFIp0wu4ASNAUvISRxVjvrUlI58NDH2f39HxIShulYCAgsPsH0hAPiNfyaBSkVM6fTEEipoCUa/PtH3kmyNYqvHfs3eq2VFCWOUJQ4QlBXmdZsGFJgVXRc1gBLMURqUkGokvhN40irwnRXNN7B6Jl6cph4KhMQxOwaIatgmK6mdFjUszyTNhoQ4JAz546gorGADfldZKRMLmlfFAz8uhWhBjk+sY/jE/uwCpXyuG3ckfmHOC2XpsFFqjOGr25+F1/S7+Y3Hcd5uOkoPdOTSN2CkApIAwFkOxK4OWUNrV1jBKJ18lzxPPNaAwDxNjvjmN3Anz/cQMWRdgIhje9/5X1IQxLjshMfe3Y3Un5sEj+9+UE63GMcGewiYGhomsGPT5ykJ+AOu1KFNiPsG4AOhiH5+2f20Tkyzl/fuefiv1gRFpCTk0NHRwdCCLKysi7LxixRUVH4/f6LmtUaHx/PnXfeSV1dHZWVlTz66KNs376dgoKCFVn/0NAQr732Gh6Ph3Xr1rFt27aLLr5ZLBb27t3LI488Ql9f37JdqnOJiopi586dbN68maqqKk6dOkVnZyfZ2dls2rRp0eZFVwM+n4/h4eFw850zURSFdevWUVFRQXt7+4qdL5cr7e3tSCmXdZxtbW1ERUWdNaP5ciE5OZkNGzZQW1vLiRMngNMO/dTUVLKysoiJiaGurm7J2cRXArMTZb5AgCdqGuY9luqK5uY1yxO+CgoKws7QlcpeXgp1dXUcO3aMzMxMbrzxxrO6Y9evX09jYyNPPfUUiqKEz0lVVdm7d+9ZJ7l6enqYGu1DzAxYGwenQQj2FOfy3ZOvI3wz19YZMXpxTKF12mcjzuXj5cEqTr3ew79u/Rjpzgs3XpwNh+okyzWFokj6fXGcaTuZxabOVmgJEm3nNhYYUsGqmJP3oZlMg2glgEUYaFJFQ8EmDKLVENO6DV0qRFlCeEICQ1oYDYzyd/X/wp+t+STlCZHYpwgRIiyfMxuu2u127ItE8D355JPcdtttvOc97+HAgQNkZWXxyU9+ko9//OOAOaYZGBjg1ltvnbeuG264gTfeeGNZguo73/lOampq2LZtG88++yzNzc0YhhGeXHzkkUcu8Gjnc8UIqgcOHOCP//iP2bZtG5qm8cUvfpFbb72V+vr68MzrStmDI1wYL/SagzWUmeZDCjCT0TkrrqJKlGgDT8BO73QcXq+dULcT1WeeiiN9CQyOxPG68jQhI8D9WZ9Y8cF+cnIy9fX19PX1Lbt5w5m44qK4/QM7Wb0mjYpX6vjdjw/w6hPHeeGXATbtLUTf4ST7PdkLnmdRBCgghUSLkUhFQdEkUgE9eiaw3mqKpRYvYJh/++S7dgKQGu3ixpRcDrR0mCuceYpXWGaaPc04EYFAwIqUoEqFzCizNOxLOz7Df7f9JxXjRwBz4GZTl1e+q0kFY2ZWSkchdv0E1oJpgs9noU3YwaKDZu6L51gCSkBgWy0Jus7+fipuFSk05GyUm4Dalhy8vkEKcobOs0cCAwUVY17+akjqHJs4TMXEG6Ta7GyKv4l1cXtIcxYu63gvBKdq40MFO/hQwQ7qxwfZ19vCtBYkzeniztUlJDsWxlq8f+tG3L4AXb1jfOsX+wFYm51K9QmzXO8XTx7jieeqiHba+I+vvp8jx9vYvjmfgtzFHYmzma+zPLRuG988dJCHK0/g1zTzJDFABASqdvq9+dmhSkpTU7lna8llfcN9NRITE8PNN99MbW0t1dXVXHPNNRetBPFCcblc6LqO3++/qDfoiqKwYcMGVq9ezauvvsrBgwdJSUl5U+XthmGEG2A5nU5uvfXWS17yXFhYSE1NDS+//DI333zzmxJyHQ4H27dvZ+PGjdTU1NDc3Ex3dzeZmZls2rTpqnLtAeHPwrmcuNHR0eTl5dHW1kZCQsKbqki53Ons7CQxMfG8Ey9er9kVHswbn/Xr118R1/aEhAR27tyJ1+tlenoawzBISUmZl/kaExMT7jB/JRzT+ejq6mJycpL4VdmMeuePzUaml59dnZycTGpqKoFAAJ/PF3aHXiwMw6C9vZ2DBw+yatUqbrnllnNe42w2GzfffDNdXV2AKShLKWltbaW6upo9exZO7g4ODtLS0kJebhYhm3leP/56LdtKc0jJi8GI18AlUMbmfHcKkA7jjDWZIqY/aCMOH4qALu8YHzr0Db6/7dMUxqzsd4NVsZFgSwZGUITBgC8WXSozu2fGQ6lz8vej1BCxi0RvzS1OEWLuMQkkAkVIbEJDkwohacEqg8SqPqZ1m2lAMAyclhChkFnhZUidbzV/ny+X/gUFrtwVPeYIEd62SBGuBrxqmTm+7Oz5eseXv/xl/t//+38LFm9ra+P73/8+n/vc5/jrv/5rjh49yp/8yZ9gt9v58Ic/HG60mJaWNu95aWlpdHZ2LmvXjhw5woEDB9i6dStgNv2dNWlUV1cva13n4vK6QzsHzz333Lx/P/zww6SmpnL8+HF27969ovbgCBfGiH+mW5oqTVEVU0wNu1aRYDv9pT84GIdhKKiKIIoZN6sCrcFEEnQPR8deIsuZz/akW8/c1JsiJSWFrKwsmpubsdvtK1LeWbKtgJJtBdzze3t4+TdH+N1P9nH0mUaqXm5nctRDVkEq195aFl7+o2uv4ddt1RhODeG1oLsM5qZdSosEu46jU0H1C6QCWkaQ5xyHuAdz9viLd++h4t9/hjdouhjRJdJuhCe4dV0hEDSdqkKA5lb4XXUDd5eZWUkfy/9D0vrSeH7gGTSpLek4Z0PxQ4ZCyDAHgCFDhdnQfCsk39lLMGDBfSyRUGe0eQ74VKQO0a2S0HoDqQjm1S/NuiWlQB2xEkqavz/tPem4p51sLO48R6aqRJcKqpCEpIpV6mdsQjAYDPL66OMcHXsUBQv5rm3cmvEpXNaLf7NdkpBGSULaeZcryzMH77tKclmTnYLHF2BrcTbf/NErBIIhEmZcqdO+IN/+r5eoruvhkccr+P0PXMcrrzXyew/uoqxkcecWmPlrn995PZ/adi1dU5MYusHH/u8xRkLe8LkjZk7GL/7yBV452cI/feQOnPbLo2HJ2wWHw8H69es5evQoPT0988phLgdmxRuPx3NJHE+xsbHccsst/OY3v+Hw4cPs3r37gsr/JyYmOHDgAOPj4+Tn57Nz5863RKzesmVLuEP3Srl8HQ4H27ZtY+PGjdTW1oYdX5mZmZSXl5OamgqYYkcwGAw/T9fPnrV8OWKxWFBV9bwZvtnZ2YyNjVFdXY3L5WLt2rVX3eS61+tldHSUjRs3nnM5KSV1dXUYhkFMTAwxMTEXNdpipVFVNbzfi+F0OtF1HU3TLpvmWheCruv09PTQ3t5Obm4uXTNDZjnTnEgRguz4uGWLxkIIbrnlFk6cOEFNTQ2bNm26aK9TR0cHx44dC3dQHhkZobW1laKihX0G5pKWlrbgBhqgqakJr9c773tmYmKCxsZG0tPTscelzHOfVrb28aFS8+YZi8RIDCH8qhlJ5TBMs8c8hJmmGm76JEEKvJrGR974Dvem7+XPy25GWUGhfnfKXp7s/SVpzmmsisGgP2ZeJd+sa9VlCZAVNbVg3CvlTNsCBAoG6sz+n4kys9bZY3OoOgoSYyYmQBUy7GIF0KXOTzp+wd+v/8KKHWuECBHeHnR3d88zOyzmTgVzDLp161a++tWvAmaOdl1dHd///vf58Ic/HF7uzO+5C5kwXb9+/bzxtd1uZ/PmzWzevHlZ6zkfV4ygeiazYeazroMLtQcHAgECgdMzf2falSMsjZHAONOGFzBLwKXFAF2ZU70izRB4m86MckZG0hS9wwnoLvCuDqF6FbQ4nWhFodcbT37MKPuGHmNb4i0rGpYuhKCwsDA8S7F58+YVK6mNT4nhXX90C0W7Ujnwq0rGur384tvPIITCh//ybq65ZT1pOUkUJ6QhhESJ0jEQEFAQM25eqRrg1BEKRHcKhAHoktC6AMdG29k3UMlQcIDRwCQbS20cOhoyX1IBoXEbMsZA15Vwyb8QYAQUhNvCX/76WTJiY9iauwpFKNyb9S5uSXsHB0cO8Ez/7/DpizsfZtcjgaCumoMxQJMqEkFAV8Mz7Bqg2A1ito/iizEdkIEG10zWK8Q2KbgLZ/qWzVY6SSBoCqrCAPugSiDVCDe6AhgZj6W6OZuNa7sX3b+QtJj/NRQUYfpVoyxzhVlzQx7dQazqA6HR4jlEy6lDmAPXJEri9pATVUZG1Fqc6lt/472l+PRs399+6nYA/IEQVotKRmocJ6s6qa7rISE+iu/810touoHxfxJ/IETfwAT//LfvJi8nCUVRsNvmX+6dVitrk0zn2lOf+DCf/fVTHG7tQRimwXxW5N5f28bdf/MjvvWH99ASHOeJpgbGfX40qTPomcaqKsTa7LhsdgoTEylPz6AsLZ3SlNSrwin0VuJwOEhMTGRsbOyyE1RnhQ232x0W6i42DoeDjRs3cuLECX7961+Tm5vL2rVrl7R9wzDCs9JWq5WbbrppRTt8LpdgMMjAwAD5+fkrLujabDY2b95MWVlZWFh95plnSEtLo7y8nIqKigX5o1dSQyshxJKaogkhKCsrY2xsjI6ODqqqqti4ceNVIaqOjY3R0tJCV1cXUkry889dAj49Pc309DRlZWVXpVt3tkT+Sv3OCYVC9PX10dPTg6ZpZGdnk52Tw7u/95/mBPvMUEYi+fb9d1zQNqxWKxs2bODEiRPU1taSk5MTzp99sxiGgd/vp7q6msbGRhITE9m+fTspKSm8+OKLVFZWnldQXYy8vDwaGhqoq6tj27ZtgHku19bWEh8fz5o1a1AUhdt2FPPc4UakAr88XMVDt29je2o2R4e6kRaQrnNNGpklXoo4I58cgc2i85PWg/y2q5JvXHMf16etTGXTjqQbeKrvV+hSJ9HuI87qZyLkZFqzmttVdBJsPhzq4mYHIZipEJPEW7zh/Z0dL88GremL5ByowsCQAl0qKOjY1RCaZgqqBpIWTzud092sjl5YXRchQoTlYTYifqv34uIye3yxsbFLGktmZGRQUlIy72/r1q3jt7/9LQDp6emA2ZhxbvXY0NDQopNu5+LrX/86X/rSl/jtb3+74j0Y5rKkUfxyVVwhBE8++SRZWVkXtFPnQ0rJ5z73Oa677rpwQ4cLtQd/7Wtf4ytf+cpF2c+3C9Oaj7+t+Q+s1iDBoMOcSbUZSA2z5B9ASIRFImY6a6oWnYQYL4ah0D8ajx4j0WNMsdXnszNgiSXXNcpEaJgWTzVrYspXdJ+FEOGMta6urgUf7DeDrutMTU1x1+9fT25uLv/x14/Q1dTP/33raV598jh/8i8Pkl2Uzu25eTzT3oESpWE4BHKmKZOwyPAsuW1UomgGSIkx49r8m5qfk2T3m80JUiQKuaYL1QBrvwOvMzhnZ8DwWhBTFtSAAEPw5Udf4uHffzepcaaIHG2J5rb0O7g17XamQlO82vcKrw8fZIopQgTNinAp0A0FXZpl9YZU0AyBZqjoCIIhC1aLOWC1KQAG2MGxaQyAUI6H6Zo4sEj8TTEk1EiCcaAn6nijzU7zilTMPE9A0RTUaTDmTW4JhkcTmPKMEOvyMR20MuFzEjIsWCw6LnsQMWdA7NYc2ENB4qx+otRgOItKIvEZVlzqnNcJiUcb4ejorzk6+mtAkB+9lZ0pD5IZVbxSp8aK4LBb+ci7rwXgpp1ruPXGEory0/i3/36ZF19tYMO6LH76a7MZw+9eqOKlAw3YbBYe/u5DOB1Wopw2VHX+BEVClJMffehd/OT1E7zW3M6p3hEmJ/woM+bnUY+Ph77+CKEYA18mGGfcfw1NTwNQOdjPbxrqAIizO9hbUMCHyjaxIXV5X4ARTuP3+y9LAWg2amfWhXSp2LBhA3l5eVRVVdHe3k5raytZWVln7Q5tGAZdXV3U19czNDREdnb2RWlutVwGBgbQdZ3CwosXPWKxWCgvL2f9+vU0NDRQX1/P888/j9/vJycnJyzCCSGuKLcimOffUs49RVFITk4mPj6eqqoqqqqqKC8vvyxzic/HxMQEp06doqurC7fbjaqqpKWlsXXr1vPexIyPj6MoyrwuuhHeeoLBIN3d3fT19SGlJCMjg+zsbBwOB90TE0z4/aaj0jqnqWvShWcjR0VFsX79+nCjLyEEW7ZsueDPg9fr5emnn2Z6ZgwAUFxczDXXXBN2BWVmZtLQ0MDExAQOh2NJ195gMMiBAwfo6+tDUZR5EQWNjY3Y7XZKS0vD29i8LpunqpvCy7xc3cIfrr+WI68snICfj0QoEiEkTkdwgfghJThtQcZ8Pj5+8Bd8f+d72ZOxZgmvzLmJtsRwXfItHBh+HgBVkSTZvSQtbuiav8dy1qti3jMkWE1BNSRnGtmih5ughgzzNn/uPIOYsx6hgIX5EQhSwucrv81HV3+U2zJLr/qmfhEiRLi07Nq1K5zpPUtzczOrV5tNpPPy8khPT+fFF18MN1Gc/U74+te/vqxt5eXl4Xa7WbduHe9///vZvn07mzZtWnFDxZIE1crKSv7sz/5sSV+4Ukr+6Z/+aZ7rc6X51Kc+RXV1NQcPHlzw2HLtwV/4whf43Oc+F/731NTUggyICOfm190v0OMbxGGNwqvakLqCUATCZpgDk9nq/9lSGgF2m9mxMjnew4THiS9wehQhZ2ZOQ4aKU5UcHn1+xQVVMEvIMjMzaWtrIxgMnjUsf7kMDQ2haRrp6ekIIfjjr72Pvo5hvvWZ/0ULanz+vm/xya++l3+950H2D/4/vF4bigIoc7qOYtbzWKckCAPDbqDaZFgUHA3YsSsaTouGzakR8lhBCsSwSk7BJPnZQ9yQksfRyo280NmG0MzmVgAdg+Ps/dsfcv/WUj5++3ayks0cOiEEcbY47s69n7tz7wdAMzTe/9uf0jDRi9WmoVoMnIk+EJgCq6Hg8dmZ9tmIcgTJTRtDQXLmR86aHCR+zzAA07FBfE2xOGMCBJujcThgKl+Ec2DRAUOiBGYE1bkzexIqa3OxpnjxBJygmDERADZLiFUJkyS5TrtsA4aVoYANmxIi3TGFKsyTMSgtGDJ4jsZbkrbpY7RNHyNKjef61IfYEH/LijdJe7NYLCqbNphfCl/4zB381Z/cjmFIpr0BuvvGyUyPJxDUCAQ1fv1kBb96ooKCvBR++M0PzxNVjZk7iHeUrSE2zkHUTiu/OVhNZWWPma8qASmxTQrsE5JgDEzngDzHN8hkwM9v6uv4TX0dDouFOwrX8MEN5WxIS0ONDNCXjK7rl+UNjcViwWaz4fUuP8/vzeJyudi1axfbt2/nlVdeYWJiYt7jmqbR0dFBZ2cn/f39aJqGw+Fg165dF+SSuhiMjIxcMiHTYrGwYcMGSktLaWxsZN++fTgcDoqLL6/JouWQkJDA4OAggUDgrGVlc7FYLGzcuJGqqipqamq49tprrwg34+TkJC0tLXR2djI1NYWiKKSmplJaWkp+fv6Sxy1WqxXDMC5qE7kIy8PtdlNVVYWUkqysLFatWhV+P//rxDH+5dXXZgu2w+fq6vh4ot/kWDU+Pp4dO3bQ1dVFe3v7kj4/Z6O+vh6v18umTZtwOBwkJCQsqBiIiYlB13Uef/xxwCzvPFdEhWEYHDhwgP7+fjZs2EBJSUlYhPX5fLjdbkpKSuY5++/YWsxLVad4o7ETBHzt8f187YE9vD9+Nb+Y6GR+4ydO/1uAUMxXOcphTrzrM3FWs45V8+MikBj8RcXjvH7H57Cpb76q4P5VD9Lv76HZXbfk58yKvfrMfYJLDWBT9JkqLTN+y6mEkBLcuh1tpkGVTZx2uuphJ+tcWfY0QgDKNH9X9zP+5mQsnyq+kQ/kb1+RY44Q4W3HrA5yNbPM4/vsZz/Lzp07+epXv8oDDzzA0aNH+cEPfsAPfvADwNQj/vRP/5SvfvWrFBUVUVRUxFe/+lWioqJ48MEHl7Wtd73rXYyOjrJnz57wdsbHx4mPj2fjxo288sory9v5s7Dkq+PnP//5JZf1ffOb37zgHTofn/70p3nyySd59dVX53V4vVB78Nk6kEVYGkEjxDP9ryGRWC06drtGwG9FGuaXtRAzTanCgxeJza7hsM5+uUvSEqboGJhtqCOw20Mzv4GBwYD/fDPMF056ejqdnZ00NTW96QYNs06ozs5OkpKS5s2oZ+am8I0n/oyffO1JeloPcHx/PQ3H23n4jx/io4d/jKYrhIJW06kZMHC1a8SfUBBBKwiDUI6GIkCdI7oGDBvBoErctmFGXs40owEM8DbFMZju5eB4C2uKXiej8xaGvTOWQmnmY0oJjx2p49k3Grj3mnV8+oHdxEQvdA0ENclAWxCvzcnMuAyhWpGGEt4PAMUCfs1GS38KCa5pkmOmZwahC6+yceXjJG0ehZBg+JkMZFAhLtNNb0c6YiYYSgDWKYHmWijOBoNWQp3x4DSQVjNeQjh1gpqFtuFkpkOTZMVNoiqn9y9oWOjzxZPhmMAyM3gOSCtOETrv++rVJ3i+/zs83/8dnGo86Y5iClw7SHRkkmLLwWGJRss5tZUAAQAASURBVL1MhFYhBKoq+NM/uAUAnz/I2Pg00VF2hoan0BWoHx3hKz9+lqdrm8kqSiQ5LYY3OrrCtxvaHHuGkgHOAVCDM52VDWlGMoybP6Fo8KWD5jq3uOrXNB5trOfRxnqSo6L4SNkmPlC2kXjHxW2McTUQGxt72UbROByOt0RQncVisRAVFcXQ0BAvvfQSfr8ft9vNxMQETqcz3JgoPz+ftLS0y0pImpiYwOVyXdL8VkVRKCkpoaam5oof98wK0aOjo0tuLmmxWCgsLOTkyZNmw5/L0K3p9XrD2bo9PT1MTEygKAopKSmsW7eOgoKCZU/+apoWfs709PQ5m3ldqcyO3eQVUlvp9Xqprq7G6XRSVlY2r+z+qVNN/NPrryJ0M93zdAE33Fe6bkW2L4QIZ5JOTk5eUOM6wzBobW0lMzPznAJpUVERsbGxTExMcOTIkfNe84LBIH19fVitVmw227zzfXR0FCHEgtgKp83KX7zrRu75p/8J/62+s4935hdy3YZy/vzQU/g0jbnyoVANhDDHmPExXlTFwJhz+qgzjZ6MmfsZQwqmQn6e7a3n3pzTPREuFFVY+ETBn/Ojtu9SP1U5J8N1IXNjt2bL+K1CJ9M+MUdMNaOubEJDCBjXXIBEwcxJldJsJmvGc537c6IgibYF8fgDfKPuRV4ZaOIHOz6I07IyxpMIESK8fdm2bRuPPfYYX/jCF/i7v/s78vLy+M53vsMHPvCB8DJ/8Rd/gc/n45Of/CTj4+Ns376dF154YdkVe/X19Rw+fJiystPX7K6uLk6ePEllZeVKHdLSBNX29nZSUhbvIL0Y9fX1b7p7+plIKfn0pz/NY489xv79+8nLy5v3+EragyMsnYPDJ/HpphvZqkgcVg0hJMGQBUNTkDP6n1Akimqgqho2q44tnG0pcEUFUBUN3VBxOILYbBo2RceqmCXkAX16kS2vDFarlXXr1lFTU0NjYyOpqanExcUt+SbXMAympqYYGxtjeHgYv99Pdnb2WfMOH/rCPbz/s+/gwQ1/hcWicuP9W3hnMJ9H1A7s9iCqXyf9e6BoKoZdYNhMh6r/ej+qMOY4KmduHlDR7QY2VxBtwgYIgn1RTB1PQmwFq6Jz/63P0zaQiTJ6G9WN04x4veYQ3QBNN3j81TqGx6b5l8/cg8UyXxis7xtk1O3FpiiEnAbSAhZFEkLOxDnIefujGSrDUzEMT7lIi3eTEOXDbjHPCQFzOpcCNknGfT2owmD0QCquHgNfsgAVRMjMUnUMQSDtjIHfTBSW4lMwMMzhok8gosxzanAiFoc9RKLdh0U9vX+aVBgKxJJiM52qIVScyvkF1bl4tQnaPIdp8xxGRxAwLGhSRZNOhEgmzrKKa5OvZUfSdhzqpRUsAppG3fAQqqKwPiUVVVGQiuDO+8v5bW0dx0LjjO6wEkLy8/FmyJRMTo9B+9hZ12nYYHoV2CYkzuHT2api5v22TYOtFXSLxJMPIRcL7Q5nMOL18s3Dr/Ptw29wQ24uf7bjOkpSLk0G55WIy+VieHj4suxe7XQ631JBFczu1X19fXg8Hux2OxaLBUVRuPPOO5c1brnUTExMvKWC3pUiPJ0Nq9VKXFzcsgRVMCco7HY7Q0NDb8nrPztmmJiYwO12MzU1hcfjYXp6Gq/Xi6Zp4Wz/3Nxctm3bRkFBwQVFVGiaRmdnJz09PeH3W1Uvj8m/lWY2gsTtdl/2GbF+//9n77zD4zjL9X1/M7NNZdV7tyVLlqtc4xonju10p0BIqIHQ4dA58DsHQuhwAoTQQ4AAoSSQkIQUJ05zXOMuWVa3eu9ttXVmvt8fK62tuMm23ILu6/Ll1ZZpuzv7zfM97/N6KSkpwWq1HiemAvx419HqOylk6PcWoLp/fPbxuRAfH09cXBzV1dVERUWdcZZqQ0MDHo+HmTNPLfIqikJKSkooFuB031e73c61117LgQMH2LdvH+Xl5cyePZuCggJMM3hR4fV6j6uazE6IYd3cXF4+dASbReXPxVWUd/fyu0+8h2UpWdxf/BpP1B/COKb5lM2iE+7wYrMamBJMUwEEmnK0qanHf/S4SAmbmidHUAWwKlY+Nv2L7O7dyj+a/4Qu/cflLYaEVClCsQ82oZNhD1aEGaNVVyCIULzB42NqjJhB8dOuBEIRAEO6nTF36pgDV55i0BZu8zPss3Ogt4lvH3qB7y24ZVL2e4op/lOQUiDlpTV2n2zOZv9uvPFGbrzxxpM+LoTgvvvu47777juHLQuKt2+Nh8rMzCQzM5ONGzee07KPZUKq0VimwUQ5HyXzn/rUp/jb3/7GM888Q2RkZCgzNSoqCofDMan24CkmztbufaHbmjCwWwJIgk5Kw6KMDk5ACImqGigCHBYdi3JMP0sBsc4RfKaFiIjgYCA1bDA0mLGeZ1dRXFwcubm5NDc309nZiRCCiIgI0tPTx7mbA4EAbrcbr9eL2+1mcHCQoaEhTNPEYrEQExNDYWHhaWdPLFaNu766jqE+F9/8wG/w+wPk/iCaZsNL3EMGilsFVYJuYGSYuNfriASJRTVPsDSJIQVhS3txb0nAdFkQBriPRBI5t492JYow1c/MjEaGUv7ChhUfpa0inUc27cXt9YMpkSbsPFDHl7/9JB965xLiYq0YhoHD4cA6OnhTTLCNKMH3xGJiGmDoo03Hxp1IR+v2haB7JIJ+n4MfxS3hoFpOE224RPCkJoQ8JhpAYk/wYN0PNvy4ojVMqSAMgWUYpAL+GIJnK2O0cdVoFqoIKEiLCTpIk1D5/+BIGHZNJ1LxHzPjL/CZllAJ1EDASpjqRxMnOq4n5lg9S5WSMCWA15RoYgS/6aU/0MY/mg/x18bHWJO4mlvTbiJcC5/w8s+Efo+HhoF+NtceYWdLE1W9PfhHu3VHWKzkRsVR0d5NwDjJ/k1UnFPAHyvwxUqsA5KwLlACY6ViwWWouiCmPBgFIBVwp0qUAPhi4GS5CiaS1xvqeb2hnrTISD5UtIg7Z83BcRl3aD4f2O12TNO8JLtXj7lDLyYFBQXjSteLi4spKSm5pMVUXddxuVwXrdGYoiiXvaAKQUGovr7+jMRpIQSJiYm0t7eTk5NzQb5Tfr+fw4cPU1tbi9vtHnfs7XY7YWFhREdHk56eTmRkJJqmsX37dlJSUpg1a9ZZrXNkZISSkhJ0XScrK4uIiAhsNttlmR07ERwOBxaLhcHBwUtaUPX7/ZSUlIQapr3182dKSePgABCs+ji2iEYKSZ9v8iawhBDMmDGDvXv3cuTIkdMKo6FtNE1qamo4dOgQkZGRE57Q6OzsxGq1TsghnZSUxHXXXUd7ezsHDx5kz549NDY2sn79ejo7OykvL2fhwoXjJgiEEPz4AzfyzP5y/veJzQDsbe1hd20TK2Zk8/2lN/KFmSt5qOQlNg0fxlD9qEpQojQMJSRWaoqBOuro9OsqAUMjKDsGH3+tuZY97S0sSUl/62afFYpQWBa/hvkxS/hH3Z/YN7wD45hzRNA1G3Qqa8IkRnMRo7lRFYkuFbxmUEwNV7xYhY6BQpMv6OBXMbErR8v9XcbRif4x16rPPH6SxRwd22mqERJ4n24qJtuSwgcKF2KbKv+fYoopLgM+97nPcd999/H4448TE3P2+eOn44zPiIcOHTrh/UII7HY7mZmZ56WU7Ne//jUAa9asGXf/I488wt133w1Mnj14ionT7O4I3dZUE1VKHBadgKEQMECGHIISi2Ji0XRUIdGUYztuSuJjXAz5HYDEoQZIcQwCwUKnWMv5vwBIT08nLS0Nj8fDwMAAPT09VFRUEAgER7M9PT3jcvqsVitOp5OcnByio6OJiIiYsHustLQUl9oJcRLVBhahsr5qFv/65RawWEGVeBZJXDcoECnRFBOrOL70PchoIyubgSPbhackeLKQPoXe59NI2NjMQCCMIUsYEaqPPQOPsLboC2xa+WGefL2EP/57N95AAMUn2XewkeJd9RQUxLBkUTKZ6ZGoiiBK0Rg0Qy1mURWJIiVoJqahjA62jkYRCCFRFDPoSsbkF0/U86271+EbGaKytpKYJXFU6GU0uOtgVFh1zO0jKnuY9qfT0Lsi8caOOXAFFpfAMhKMAjCsYNoFevjYrh/jkDUFKMHCdZfbRkKUIGAqWMcJ0ZKhgINE2zBSMWl0xxKheUm0uiasL4aO/OiMv13R8ZgaVgUCEqIsXly6ycsdr1IycIivFHyReNu55ySaUrKtsYFNR6rZ2dJEyynKwF1+P8Xd7SE3qTidbfRYRp2Q8pjIsfjwMPr9HvzxBr4ksAyBvQesgxIhRahLgm0g6Hx29ICigzcW7H0m7iRwJws0t8SdIo4TWVuHh/n21tf53tYtXD8jny8uW0FmVPQZH6O3I2O/pz6f75IUVL1e78XejMuOvr4+TNM8qzLbyeLtIKgmJyfT09NDcXExaWlpTJs2bUIOzPT0dNra2qivr2fGjHNvMHMy/H4/hw4dorq6mkAgQEpKCrm5uTidTqKjo09ZDdPc3ExNTQ1FRUVnFQvR2dmJlJIlS5Zc9AZsFwIhxCUdjwJHPw+GYVBUVHTCa6W6/t6jxdgKSCvIsTp0hYlPhE4Qm81Gbm4ulZWVxMfHT2giqrW1lV27dhEZGcny5csnHKXS19dHTEzMSZ9fUlJCV1cXNpuNsLAwCgoKSElJISUlhaqqKnbt2sXhw4cpLCxk//791NXVHZeJLYRgWmLsWDwqEti27yDKyCBOq0ZPTw9XWzL4yMI1PO8q4fe1r4y6qySaIlHF0YZOhinocx0zIT566A1D8LGXn+bN93x8UoVFm7AzvXMO6UYuNY6dNFkrCBAce6vCJEL1Ea74UBTQpcBjaBioCCBceLAJnYBUafTFoUsFBYlT84Y+Mv16GCbBcv8xQ4OU4DfG70PwvtHzqBSh50kJ/1fyCq801PHo9e+cElWnmGKiXP7DrcuW22+/HQhGz9x8881cccUVFBUVMXfu3EnVK8/4bDh//vxTCkcWi4V3vetdPPTQQ5M6iJvI4H+y7MFTTByfebRTuqaYaMIINgoSEotqhCLPxWieqkCiCjNUzj+GOlp6Eqn5KIzuCOVcSgTp7ijq6+sJDw/HZrPhdDrPS+nrWKZUWFgYKSkp1NTUcOTIEYQQxMTEkJ+fT2RkJA6H46zK5vr7+6mqqqKyspKEhATCwsLI+kEmM2bk8+LvdiNMidQNpAxg26ejXxOOjFYmOH4WWApcmAMa/rpwkAJjwMpItZPBWToDehixNhcOJcBTrb+lYOY87r5hCXffsIS6xm5+99ft7HyjGoCK6n7KawcQdhXTIhhJEahK0B2hekEoOoppAQWEMIKD0TGXqpCI0bJ+RUg0VdIz7OMzf9zCJ9bkYpVWsl2ZzLDmMmQM0m3pYqexlUFlAKszQGTBEJ6Xwgk4BHqYQI7t/OjgWPOC8IJlUGKEgTvtmPOCcuyMfnA232+8VVAVuA0rhhRYFAOrYjCsO+j2RZLp6MNpObNmeuNFVQsWYeCXggjNjykFnd5u/rf0OyxwXk+728OA10/98ADCVIixhrMmdRq35szBaT3+XCmlpLizg6erytlSX0/T0ODEZdGxK4mxj+kETbhRXhURMEmOctK/oxPTKli7JJ83Hy+nqDCFvDtyeaaqAiVDJXWWE7ySwS43br+fgR43WoeJ6pOI0a+3xSVRDAhvg4iG4FB+0AWObgN/hGBgpsA2AN54gVQFBpJnqyvZXFvDX2+7gwUpkxsdczkylh/n8/kuOXdZeHg4hmHg9Xr/I0SbyaKnpwdgwrn0k40QIlQ6ezljsViYP38+ra2t1NXV0dTURFFR0WkdijabjWnTplFTU0NSUtJ5yRQ1TZMXX3yR/v5+MjIymD9//hk5J+fNm0dTUxNlZWWnzKc8FsMwME0TKSV9fX04nc7/qO9lVFQUjY2Nl2Q8ysjICKWlpZimybx588Zl7B/L7taW8XcIjv6OA4vOw29iUlISnZ2dNDU1TUhQTUlJweFw4HA4xvWsOB1SytDYuaWlhQMHDmCxWMjNzcXr9VJcXExYWBhSSrxeL/X19dxwww2EhYWRn59Pa2srhw4dIiMjg+nTp1NTU0NsbOxxjf3mZqbwwzuuZUtlPQcaWnn0UAOPlzXx9SvnsGDGNDIyMlBVlQ8lrSc7PJn7Dj2Goh69ljEluH1Whj12zLG8UXFUyzZ8Kv2Gh20tDVyTlTvh/T8dfX196LrOFYuXszZ8HQMDA5S0vEaN/ipDWiOG0AmgoRsKEgUVg3Dhxa4EhdTOgJMB3YGJgkUYRKi+0Nz1kG5jULczpuxYQo2slFGR9ShCgNcITt6GhNWxx1TJno4W7nzycT45bymaorAwIxXnf9B5Zoopprh8qK+vD1WuFRcX88Mf/pCGhgZUVaWgoOCkRtEz5YwF1aeeeoqvfOUrfPnLX2bJkiVIKdm7dy8//vGP+cY3voGu63z1q1/la1/7Gj/60Y8mZSOnuHTRhMpYwykBWFQDjKB+YwqQo4MRgUQZnfm1qHpIMB3DohjMjWnFafGOExDDhJ9cWwFtbW0ht2h8fDyzZs06rwNmIQR5eXkkJycTFhY2YYdIbW0tBw4cOOHyxlxJdrudJUuWUFZWxqxZs0hOTuZD96bS3z3Ea0/tCzVmUntN6DGxbgngvcOGTDy1C0AIcBQME6gPHy3FlwxvT8Ae4ceVP4zLtGNTAkSobp5qeZJ7cu5hsNeFq60f+5FOFmfEUD3kYXDYh1TA1E08TgWMsbYIAs1toGgmAdMEMyh4jp/rkKMV/0FRVVMMpAZew+Sh3fXcNjMuVO46a9Yslset4Dr/DSiaws7ebfxb/RdCtCFfSsWdIfBbtLHuZOOyOxUpUEYgolEwkmki7TJU7g8y1LzrxNlQgoDUUEUAi2JgILAiqHMH3WIzI9qxnTBe4eTHPZgPG4xf0IRBQGo4LT48hpURfZgXOp+icSgWwxTouophBvOFt7Yf4YfFr/PdJdexLDGLIwN9vNZYx+62Fqr7egjoZqhD5Jhr9IxE1RM8OdpuJz0qiqun5xBhs7EkI42smGhMKYkaHRS3tw3wo6ZnScuIo787GNPQUNNFz4ODWPrdLF46DdPUURTBl776DmqqOphZmMawCLCppppnD5RTX9+DbgFnvcQbB9HVwf2wDkhsA2AbkNh7JRYPuFLAtAWDwgYKFXwYfPqFZ9nxoY9echfGFxpdDzpULmTzookyVv0xPDz8HyXcnCsDAwPYbLaLdsyC55K3h2VCCEF6ejqdnZ2UlpaiaRpXXnnlaV+XmppKR0cHFRUVzJ49e9InK4qLi+nr62PNmjVnFe0QFxdHcnIylZWVzJkz55QuQCkl7e3t1NbWYozGviiKQm7u5Ik9lwNOpxPDMBgZGbmkJp/6+vooKyvDbrczf/78U37vawf6T7msq3OmT/bmIYQgPj6eI0eOYBjGaQ0DmqYxd+5cdu/eTVNTE5mZmRNaj6IoeDweNm/eTFtbG5GRkbjdbnbs2AEEf082btyIpmn09vby4osv8uKLL3L99ddjt9tZuXIlTz31FFu3buXmm2+mr6+PyspKFi9efFyjthuLZpKXHM9tD1YB4DdMKryw2Bk9bv+uTp5LhiOF9299hGF9BAkEdG107HhsNJlESjADCtJQEEB5V9ekCqqdnZ2Eh4eH8oCjo6O5Mvo2ZvWspvRwKTPnT8eltHBkeCv1rkMMBvoZkXa6AlZGTBsCsCkB7IoPZXTbpYR+3cGgflTAtypGaO/c+vjjJiXo5ljjKvAELOPG+HJ0PFrc08YnnnoWoUOk1UqeM5bUqEg+c81ychIu3ciNKaa40ExlqF5csrKyyMrKGpeXOjw8THFx8aSJqXAWgup3v/tdHnzwQTZs2BC6b+7cuaSnp/P1r3+dPXv2EB4ezhe/+MUpQfU/gGR7DL3+0fJ8AZZRIcuUJoapIkP5lEGRK1ju/9bydYHT4iXK+tbSUckiRye5024lb4YDXdfp6+ujoqKCffv2kZeXd16bSoyVkJ0JXV1deL3e43KHx2bcAa677rqQSDLmjFFVhS//8m58SoAd/y4mcI0VY5aG4wE3arWBZa+K/wYrSqOBtAtk0rEXV3LUASzR4v3ErGun/4VUxpzBrn3R+LK68dksOBUPVqFT0r+NG64vB3+ohgn8Aa593wpWv28F/958gB0HmxhRjKDAawSfl5PopE3tDgqWUhlds8lR5e6oM0RTTWwmeK0CUwGXN8BfyjqZnhRLTkoS8fHxoagQgDVJa1mTtJbh2cM8te5J/vqTRoa6wgg4QUv14/dqGJ7xgz9rPyiGYHjB+OZSzjAvwdD9E79P5mgZk0Ux8JsqighGUvhMjf0DWURbPaQ7+nBq/hMv4C1IGcwQNlGCcQhIpBSEa34GAw4iLX4irT6GfVYUC+iGJKCrqFYDrx++uPNZTF2AqRydjRiz5Soi2IhrtAR/wqLq6CBYRWFmUgIbCwuYn5rCgrTTO1xSUqP58c/eB0Bbaz+JSU6WXJHLb375Cv39bjzuAIdLmwH45teepLyslazseFYsmc7WF0v56peuYyh+hK1tDdTOCbC/vQ1PoonmBVOVWIclgchgdACAZQRs7cENNq0mtj7JcNoQcx78BV9esZK7iuZgvQQFxQvB2HnjUhQsxwRVl8t1yWSWXg4CfCAQuKjxDW8nQdXtdlNXV8fhw4dJSkrCNM0JZaoKISgsLOTw4cPs37+fGTNmhNx25eXlVFRUUFRUhMViwe12h5yfhmEQGxtLWlraSZfd29vL4cOHycnJOaec3Hnz5vHSSy9RXV09Lif4ROurrq4mOTk55NYLDw8PdXH/TyEyMhIhBENDQ5eEoGoYBnV1dbS2thIbG0thYeEpJ8b2dbXwp8r9nOoXfkbcuccHnYioqCiklLhcrgk5tvPz86moqGDv3r0kJycfJ2ieCEVR6OnpYWRkhIULFzJr1ixM08TtdmO1WrFaraGJg7i4OK6++mpeeeUVXn75Za677jqsVivLly/n1VdfZd++fcyfP5+9e/eGJh3eeu7PjIsmOSqSjsFhAB7dV8KjB0r43NXL+fjqpaHn5UUlsPnaz/LL8q08UrN7NEt1tL5OMUOCojQEAZc19O48tH0vG7JnkJ9w7tEtpmnS29t7wvOFzWZDIFADDnITlpPrXA6AWx9iS9eT7Op5jhjNPda+AAhGAgzpDoZ1WygPFYJi6lha7LBuRx7jTh3bz5FRkXXYZwv2MxgbdwowfMHPrwTGXury+Snu6KC8pZPddc288Pm7iQ47sQN7iimmmOJiExkZyapVq1i1atWkLfOMr1BLS0tP2KQqKyuL0tJSIBgL0N7efu5bN8Ulz6LYQsqGGkJ/KwKsiokuFVRFD81ajDUf0sZ1qg/epyCxq+MFMYFkurWfInsPiKCQoGkaiYmJ2O12jhw5QnFxMQkJCeTk5Fz0Cwe/38/mzZvp6enBbrezevXq457z8ssv43a7iYuLC5V8Hlt2KYTg67/4KP/84g5+euTfAPjeZUPbp+NfY0H0mITd7wHA9bPw0RzKMTE1mLGkIFFTfNizRvA1hgdzRxsc9B6II2tND8poZ0+75kVbLtG3jJXUC6Liwll980KK5mZTNDcbjy/AdV99mH49WAZ/1ezprLshhe+V1+Kw6HjQkFJimkfD/AWgjHZHtWk6y+LyaM6yUtXWjVTAMCV/Km7n8avXnFT4iLRE8v7cu1n8+Xb++ORWBsIbqNqkEWY16bppiMCAHXujBcUng82y+gTqAZWRPAPdGTwWznAPCsH82RMx1lxgLJpAkcEoClWYWFSTfr8Dr5lIpOYj2957koZgxyxPBJtUjameKiaGUAlTfQwF7EgETqsXXSq4/RY01cQ0BYapoGgmRkBFaBIZMEFRQEjQRbDUz5SgBAUQgZh4Fo+AH627ltsKz66pyRipaTH81+evBaCgMJXqqnYyMmL52lf/iVAEdntQGPK4/fzjTzuQUvKPP26jcm8DALe+fznGc8MYy+M4kmbgRaf1muBIXBuR2Lsl/ihI3BM8xo5OiW0IbP0mI30eHtrxMn+cu4f/u+Va8rMScTr/swbqXq8XRVEmdMF6oRkTLd7aQXOKU2MYxoRzB88Hl4PofDqqqqo4dOhQqHN4UlIS69ev5+DBgzQ0NDB//vzTLsPhcLBw4UIqKiqoq6sjJSUFv99PcXExpmmydevWk75W07SQy1jTNPx+P7NnzyYnJ4dt27Zhs9lYtmzZOe1jSkoKcXFxlJeXM2PGjJN+ZtzuYKOi/Pz8t8V7e7aoqkp4eDjDw8MXe1MYGBigsrISv99Pbm4uaWlpp3xvWlwDfOC1xzBMkzGl6tjsc4kERfLrsl18Yd7x48tzJTw8HEVRGBoampCgqigKy5Yt4+WXX+b1119n3bp1pz2n5eXlERsbO86lqyjKSY0LKSkprFixgq1bt9LS0kJ2djYZGRnk5eVRUVFBRkYGBQUFlJaW0tbWdtwkh8Nq4Z//9W7e9/t/0NDXH9Kpf/raTtYX5jEt/qiTMtJi46vz1nF33lL+UreHx+sPMBQITmZKQ6B7NQyfGhqDCb/A5zO55Q9/5c933MbinHNrxqzrOqZpnvBaJjIykujoaJqamkJGBIAwzcn1qR9kXdJ72dbzMq93b6bb14MpBQGpEuqxMHbtNSqtBqSCW7eeUEwd8tsImCrDPhsun+2omCzBNARSD7p7lYAybiwqBRhSMuD2svbbD3P3qoX81/UrzumYTDHF24Kj8zNvXy6x/Tt06BCzZ8+e8Di7rKyM/Pz8c6oEPONXFhQU8IMf/IDf/va3oQu8QCDAD37wg9AMemtr67ju6FO8fVmfvJq/Nr6AfkwHGyHAMto9Uoqg5CdCpeBvXYJAU3QiNd/oXxKJYIa1l+sja0Eq7Ol9maXx60OvcDqdFBUV0dXVRW1tLXv27CE6Opq0tLRxg40LzZhIejJnzLG5Xh5PUBg9kevsnTkriLaHcd/hxzBTVfw3BwcwUgUZIzBjRp2LXhPbU37kLIFSpIyKqkFBMeqaLvRuK64nEgGFnueSKT6isfbje0bjF0zUfElyVzof+eK1LFiVj2YZX+bV1NXP8IgvFN+1ZFo6/2zcFnRjqhKH0PHpKsHz1dHmUAKJVTOwqCZz4jK591MruP57f2DY6wcT6jr7+eVzb/KF209dljkzL4UffvVd/POpfVTJ1zB9KtMtQ9SZKt5pJhFlVoQE1QeWJpXweoVAjInljh40NThwVIbAtCoo4eMF0WOF1qAJ1EQVCoqQwTxfAQFTxWXYqPUkkO3oxa7qnAohgjooAhQkhhybYNDxmRYirT4G/GHBzqyGQFVNTKmgqBJTD75QKqANSjSXJKzJQPULXGkQ0WQymGdBqmBYFLCc+jMeZrHw3avXsTF/Yl17J0pUVBiLlwRLDn/3p48CMDjg5o0tFSxaPI1Xnivm9U2l3PTOJTRXdjAy7CUpJRpLQDCtRWNur509PW14NyTRGHChhwtc4cF9aVkX/D+iSWItM/EkQmRL8HPlPTTIf297DKfTwac+dhW79tRx1x1LmZGXPKn7d6khpaSnp4fw8PBLUijRNA2r1RoStaaYGLquX9QIh8s9Q7WmpoZdu3aRkJBAYWEhKSkpREdHoygKWVlZlJWVTcilCkFBJykpie7ubnp7e+ns7MTv93PTTTeFohliY2NRFAVN01AUhbq6Ovr7+3G73Xg8HgKBAIZhsHPnTnbv3o3f72ft2rWTMgkye/Zs3njjDZqamsjOzkbXdZqbm+ns7MRms6EoCv39/Zd0Z/sLSWRk5EVvTNXR0UFlZSVRUVHMnTt3QhP+j1Tuw6MHkEIFTSKMo5OoEolUJKjwcPluPlq4lAjL5Db/HRP0TndeMgyDrq4uEhMTSUlJYdmyZezYsYNdu3axYsWpBbS8vLzjmkidjtTUYEXN2JgZYOnSpXR0dLB9+3Y2btxIamoqtbW1xMTEHHesYyPC8ElzrMgqxP2bt/GVDavJjosZd39ymJMvzb6Gz8+6mkG/FxXB0zXl/KJ4N92MgAnCK1A8wQv1gDT5wO+f4J7Vi/jCupVn/Tt9umiftLQ0ysrKcLvdoUiAMSyqhauTrufqpOtpcbdQPHCAQ4MH6fK24TO9SGkghcBnavh0bZyQqqBgYmJIQZ/HwUjAzojfimEe7d8w5hXwD9mCQ30DhE8QGkYLOLYthj9g8PAre3j1zWqSoiL43O2rkCbkZyeiXsSJxCmmmOI/g6KiIjo6OiZcObds2TKKi4uZNm3aWa/zjEf0v/zlL7n55ptJT09n7ty5CCFCXSufe+45AOrq6vjkJz951hs1xeWD0xLBFXGFbO8pJ1STPMpYtuTJpy6C7tRIzYdV0TFRSFDdLHS0M8vWgyYEBib7e//Ekrh14wYqQgiSkpJISEigu7ub1tZWysrKsNlsxMfHExkZSURExAUTIqxWK3fccQebN2+mo6ODHTt2HDe4fOtFtKIoJ922dSlFhGkK/1PyZ/SxmWa7YOTb4YwdZ61Ux7IjAMUCudASElNhVNRO9BHz4Ra8/4hFHw6jtyoWY7RMHwQiXKKbsOTqwhPvk6KGBEKAmVkJ/KK+LbQOTZGoFh1TCgxzNNtUSNRjIh2Wxs8gOtzBN+9YzxcfCZ4fMOHRl/ezZvY0FuSfflb/puvm4XJ5iY0N50+Pv0F8hw//DD8dV5mEVWuEV41uJ2DrFYhfx2GsGMSoseFptINFEnlDD5Y0P1qiH4swsAgDb48NLUxnpDUcT58Na5YXX5cdNcePRQj8poZFMfCYFpq8MWTb+7Cqxqk3NpQnfPQzr4xunCZMpA9szQJhChzFGq5p4KgVGCoYqsTRLoMxBubR5UXWGFjcJhENAWzdAQJhgr75NtwZVgLRwc+TRVHIi41jaXoGy9IzWJ6RRdgFKimOig7j5lsWAvD+j13F+z92FQBLVs5gxOUlOS2Gq2+aT1iEHa/HT115K3OWTqd+oJ8H3tzBS7VH0E2TMeu6K0vgyhQQAMVvYnVJzNGvzeCQh+/f/wIAPb3D6AGTpuZevv/td5CSEo1FU4mOfvuUufb19TEwMMCcOXNC95mmSWdnZ+h8kpSUdFHdjna7PeSQu9iYpklXV9dFPR4TYSI5heeTy73kv7q6mpiYGK677rrj3uv4+HjCw8NpaWmZcCTQWGObsrIykpODkzR+v5/p00+cV3mibFKv18urr75KZGQk+fn5k2YqyMrKIiIiguLiYnw+H93d3ZimSVJSEoZh4PP5KCgoICkp6ZKcdLnQOJ1O2tvbL+p3bHBwkPDw8NM28R1DN03+Un1gtIxaBvPpNYmQ4mj1jxBIzcBrmDzXUMGdefMndZv7+4PZrTExMSd9jsfjoaysDJfLhdfrJScnh7y8PAYHB0ORG5Od2zs2KeH3H9MAdzQn+YUXXmDHjh2sXr2agYEBysvLmTt37nETGavzsnls3yHMY855b9TUsa+xhWc/+X6SoyKPW68qFGJtwbHEB2Yv5P2zFnC4s5M7//I4Pv2YCfnRm7/buo/MmCjeuXjuWe3nmKB6sigYt9uNqqonbWY2RnpYOulh6dyYevPR1+oetvfs5sWOV2k3Oo9uO4L50bNZn3wVVmL4ZsnzdLnaMOToGH70cKXYojFHHNijbKxMyWJ2VBKY8K+ScrqHXbR0D6IbwQMh9KPHpLlzgNbOQT7wnb9DQLJq/jQ+/Y6VZKbGoqqX9m/0FFNMHidpaPG24tLaPyklX//61ydcvXzs78vZcsaC6vLly2loaOAvf/kL1dXVSCl5xzvewbvf/e5Qntr73ve+c96wKS4f3plxA/v6DuM1R7thTuiLFZT1bKrBnLBOMm2DzLT1kGIJOp0UwIaKBx0rTdSNlDE9YvZxSxlzlyQlJeFyuWhtbaWvr4/W1lYgWMaUnZ19QZyrYWFh3HzzzezZs4fKyko0TWPp0qM5TYFAINTBtKenh8jIyFNe+C+Ln0N2pJ1e3yA+Q8VnWEa714MiDJR5ElYpMDvYsV60SPQfmChXC5Tbg8u12HXs1/Zg7ggnyjLClvsXkbWxBZllIA2FuOSTZ8RWNnQi/EcHVo917Dru3R1zxarK8RfnAsiNDLoL1s3LY2VeJturmhBSogbg+7/dzN9/eDeaduqLHrvdwgfftxKAR/+yA/ARgc6MQReeCBvGuwOoDRZktR3q7AhTQX81OiSyEhAMP50IisQ2bwizyUa/Ixl3SySqXcfwBgVrRRjgF9gXDKG3WVDmezFW6cEmU6ZGmy+KLEffCVzW4/damsHSKFMKevbHEYiG4aYI3IcjsfoU1HYNu8VE9YK1TqIExi9wbLMNLeh49YeBxR2MVwWwuCXxu0fQSn3YApK7vnodRTMyyZqRjM1x6ZSFR0Y5iIwKDv6dMUFHRYTFwdwrghdc02Ji+fl1N+HTdR47fIjnqqvoGHERY3fQ0jvIoN9HT5GK4gfVIzGtJlIR2PsNLG5JcX072khw5P61bz3F8KAHIWBuYRr9PSMsX55LyYFG3vO+FRzaW0d0TDjXblzAzlfKWLA8j5SMS9/RNTQ0hKqqlJaWIqXE4XDQ2Ng4zq2TkJDA8uXLT3khfD5xOByXjKB66NAhWltbWbRo0cXelBNimiYlJSV0dXWdU7bmuXK5C6oul4vU1NQT/n6OTbY2NjZimuaExHVFUSgsLOSNN97gwIEDZzVWsNvt3HDDDWf8upMx1miqtbWVsLAwhoeHGR4eJjk5mYyMDGy2yXUovl04tlHe+czYPxFjk129vb1nNJnf7XHhN0cna1WClkAj6EgYE1RRQGjBcXOj69SNq86G/v5+wsLCTlg1JaWku7ub6upqLBYLiYmJtLS0kJaWhtVqZcGCBbS3t7Nv3z4yMzMnNZ5mzBl+7G8eBCdO5s6dS3FxMXv37qWwsJDS0lL27t1Lfn4+8fFHc03/e/1qdNPg3yWVeEeFS1PCsM/PfS++xlfWrSYn9tS/n0II5iQn87d3v4t3//Uf+EwDYYDmOTpm+94zW4gPC2dlfjaW04xrj2V4eDj0G3oyh2pPT0/IKX+mhGkO1ievYV3SlYwYbkb0ETShEaGFY1OPnkceu/IjeHQ/r3dU0e4ZxKZYWJY4jemRJ3Z53TInaMboHHSxt6GFKLuNquYuSps6OVTeyjBepAw281KAbcV17NpxhLXLZ3D3rVeQkhxN2CU0Zp1iiineHqxevZqqqqoJP3/ZsmWnnaw6HWdVcxYREcHHP/7xc1rxFG8fpkVk8ZHp7+K3dY/hM8YGEScTVoP3K0hsqsGtMRWsj6od9wwVgQUFBBgSrMJgb98rJxRUjyUiIoL8/HwgONs7NDREc3MzZWVlhIeHk5GRQWxs7CkHe16vl87OTjweD36/n+joaOLj4085yzE2iA4EApimSXJyMtXV1VRXVx8nqCqKwt69e3G73cyde+qZbIHgjowN/Kb2n9g1E/toLIKUBJOQrCDeL0JRCmYrEADzsES5XSK7JcYOSdy1Q2S8r5Gtn7kCpMDcBAn3dGCOqKRknzxMf0ZWIqoQmFISHx3OtpHK0QiHE0U3jEdKiLc7sSpHTzEPfuwWPvXAkxyoaEEYkpamft7/X4/wx5/djdUysVPRA/e/mwdf+ge1WjtDf0xCBSLtvWhFA8j54H0tGt+hCOSwCkhEuIEl04u/IgJM8B0MZoMFCF40GF4taAc1BdIIHkt/jR05oGF0WPFE6QRej8SxfAjr8j58pnbC0n/Dr9C2PxEtwU/V43l4+2zEL+yhe09iUBWVo++oFhQApQXwgjddYmsHUxP4Y8DWDQOzBaZVMJQhEEJBSgvWAUiKjSS9WmNpfja1O+vQVIW6shYqXqzk6e9tomhVPmtvW0RYhJ2Zi86+bOFCY9M0PjB/AR+YvyB0nyklz5ZW8ustu+nWRzA1A2+MgeYDdxKoboLN0vygGkHnqkLwc1dS0owi4R+P70aYkl/9bDM9Db0A7H61gsriJpJSo5kzP5PSPbV87Rfv44/3v8Diq2ZyywcnP5vuXLDZbLS0tKDreki4TE5ODv349/X1ceDAAf7973+TlJREQUEBmZmZF9Sh6XQ6qampobm5mYyMc8uROxfa2tooKSkhJyeH2bNP/VtxMfB6vWzZsoWOjg6mTZvG8uXLL9q2XM6Cqt/vx+v1nrJhZFxcHHV1dQwMDEy4FF5V1VAMwvr160MNqi4Wg4ODVFdXEx8fz9KlS4mNjZ1yoE6AsSzQCymoer1e2tvbaW9vx+/3Ex8ff0algy+3VYRuC9VESgUUiRyt/EEZVaRUiUQGKzomESklfX19JyyP9Pl8VFdX09vbS3x8PAUFBUgp6e3tpbm5menTp6MoCsuXL+e5557jwIEDXHHFFZO6fYmJiVRXV5ORkTEuJ3Xu3Ln4fD4qKirw+/0sWbKEmpoaDh8+THJyMnl5eaiqit2i8a2b1iEl/OtgGcbouU8Crx+pY3tzE4+/9w5mJZ/eVT4vNZkXPvR+3vWbvzLk8Y+rv/P7DT7z+38zLyuF+955DdNT4ib0nT18+HDIIfVWQdUwDFpaWhgeHiY9Pf30B+sUCCGI0MKJ0MJP+hyHZuX69DknffxEJEVFcOO8YOTfqvwcAEpq23jwiW0Yhkl5VbCnilUJxgscKG1m6yuVZKTH8rMf3ElUVNiUY3WKty9TGaoXnC1btlzwdZ6VoProo4/y0EMPUVdXx65du8jKyuKBBx5g2rRpbNy4cbK3cYrLgPXJVyKR/KHucUwp8JtiXGfJIMF8Sg0dVYVboitY5zwqpmoIVARCCGxYcEs/PqkgMOnxnVmTM03TiI2NJTY2lsHBQRoaGqisrASCTtK4uDhSUlJCQunIyAhNTU2hctHw8HA0TaOhoYG6ujoiIiLIyckJddA9ltLSUg4ePHjc/W/tMuv3++nq6sLn8zFt2jQiIiJoa2vD5/OhaVqoK69pmgwNDdHQ0EC0oZKrpXJEb+XYjFr1BGcvsRSUSAWROVoi9qRJYI/Aq6vEfNxNyrxOOg8noNl0urbEMVwdyex3Zp/0GPb2j4A/2ETs9rVz+LnRjFVVUMTpB/NCwA0pi8fdZ9FUHvrSO6mo6+CHv9pMXW0XLW39vPsDD/G9b94+oTzMjPRYvn333Xz+5e8yJIIhvYqQuH+aCJrE+eFuIpYO4nnTiZbhxVYQtA/4KkZw749ArwsOJLWIAPELe7ClerGm+vEOWDFVyUhrGEiJ64U41CI3vledyE4LIy/GYJEmTS9NI/vqVvweC1JXMBVB56EEorMG6SpLCF4MGcGBoX8wKNwLVWKfNYy3KoLAcg+6T8WTa2JYwSeCjb0MvxpsLxYQIBXQBXG2cK5IzmRt1jRWpWeTcGxu1sfB7wtQtrceaZr8cG8t8clR3P+pP2IYJj957ksc2FLB+ruW4Qi/9LrDnw5FCDbOncnGuUczYF89WMMr+6rZvq8O02oSbbGiWCSqIXENuImw2/G6/RimjmmYOBxWvCM++vpHUDQFq82Cc9Qxaw+zUlfRhq6blO6to6Gqna7W/ktOUHW73QghWLt2bShL7ljGmvKVlZVRW1vLli1bmDFjxgUV63Jzc6mpqbnoLtXGxkY0TTttjt/FoL29na1btxIIBFi2bFlo4u9icrkKqo2NjUgpTykujDntOjs7iYmJmbAQmZmZidPpvOhiKgQnCMLCwpg1a9aUkHoGCCGIjIykr6+P9PT083bsXC4XTU1NeDwehoeHUVWVpKQkUlNTjxv7nY7NbYdDE69CEaCZSEMc9SQoEqGORSkJpkdNbnWFruv4fD56e3tDmcEOh4P29nbq6upQVZVZs2aNq/RKTU2lo6MjFIsRFRWFxWKZlNLJt7JmzRo2bdrE66+/zoYNG0LCr6IoLF26FKvVSklJCaZpcuWVV9LR0cGRI0fQdX3c9+cDVyzg+cNVePwBTAARrPzx6zqfeeZ57pg3hw8snI+iKFhOEcmVFRfN61/+KJ977Dm2VjeAABEIlrsDlDS2847vPMqqWdl85V1XkR4ffcr9G5vgGstoHsPr9XLw4EH8fj8ZGRkTzgO8FJg3PZU/fOVdAByobKapY4CsxGi27TlCU30PezvraWsf4B23/YzCman8+KfvwWa7MDFVU0wxxRSTzRkLqr/+9a+59957+dznPsd3vvMdDCNYphITE8NPf/rTKUH1P5gNyWvICkvnubZX2Ndfgil1QGCOufOkRCgw0hyOtcLC2ve3YBNKaMwohEAgsKIRQEeXJt2GgwAqPtN71tsVFRXFvHnz8Pv9DAwM0N/fT3t7O83NzURERBAIBPD5fNhsNqZPn05KSkooe8swDPr6+mhra6O0tJTExETy8/NDj7vdbkpLS0lLS2PhwoWhdQohjguOT0xMpL+/H9M0OXLkCLt37yYjIwNN007YICQqKoqoqCjeM7Ce35vP0mL2cqpIBSEEYlbwcZuqI6+RKF6D7Gt6sQiD4dd9WOhlYEewtCkQZ2XttSefia5t6EaY4LBrJMwOR5aDIQUaQSfgya5Txq7Tq0dKuXv363gNDwiTMBVireHkR2bzic8v5Lm/RLHtjSp6PS5+9H/Pc8dti7nmutPnTzlUOz+4+st8ke8wMOJBb7FidAUHYoFqG3qFDXSJbbU3eKhMiX32COlzO/EcikS1G8TOCXZ8DXY6FchYHUMqkG5gIrAu9eLRVYzdYfhfDjpUh3dEY4xoNLyShu4PiqWmCigKrs7ge61YTFKvasXd5yD9+haGusLxhGtosTodbjeegA2334KUgoAezH41/AoIwVXJuVyfMZOZMQmkRkQRYz91+YHVZqFo5QwAHj/0fQJ+nZaaDqLjI/ndN/9F1YEGAn4dJBQumUbh4hPnAV4urC3KY21RHuY9wQ+Yopz4A1hf382bbx6hp3OIZ/61D9OUqBYVjy9AekEyiRmxbLhlAUnJUfR2DZGVl0RUdDjTZ6WdcHkXC9M06e7uZv78+ScUU8ewWq0UFRUxb9489u3bR3l5ObGxsaEmkRNdl9frPe6+U/09JsjV19ejKAo5OTkTXt9kYpomw8PD9PX1ERERcVGbPZ2IhoYG3njjDSIjI1m/fv1FiWYwTZM33niD4eFhbDYbLpfrgpdDTxYtLS04HI4TTm6OIYQgIyODmpoaVFUlLy9vQsLawMDAhDO3zieGYTA0NHRRm2xezqSnp1NWVkZ3dzeJiYnnZR1HjhzB4/EQHR1NamoqiYmJZ53ZWjbUgqKqmHpQTBMKCOVEtqZgw8wrkjLPbePfgsViYd68ebS1tVFXV0dt7VGjQ2pqKtOmTTvuvDo2dh7L8j5y5Ah+v/+MfncmitVqZd26dbzwwgu88sor3HDDDeMc6kVFRRiGweHDh1mwYAEpKSlYLBYOHz5Ma2traPIlNzGOf3/ifdz/6jY2VdYw1p5AAk39g/x4y3Ye2L4Dv2qS5ozkE4uXctecOSf8DjqsFh56/630utz0jbh5/VAtP9+0M/jg6E/l9rIGtn7zEW5eUsjaObmsnjst2FviLctTVZXU1FSysrLGPdbT00MgEGDx4sWXxHnpbFlQkMGCgmD1SlFhBr19Lp5+7iClBxspPdhEZWUbN635Ph/6+NXc/u4rsEywYm2KKS4Lphyq/xGc8Vnr5z//OQ8//DC33HILP/jBD0L3L1q0iC996UuTunFTXH4UOHMpcObS5+tnU+Pn6fb24jet2BUdw6Xx3JPzcXU4sLglX/j2O3nwG//AbjNQUVBRUFDwywA6JibQrtsZNuzYtHPLtoDgoCwxMZHExETy8vLo7e2lp6cHq9WK0+kkLi7uuFJZVVVJSEggPj6ezs5OampqOHToEHPmzEHTNPbs2YOUkmXLlp3WlXDNNdeg6zqvvvoq7e3tJCQkUFRURHR0NIZh4Pf78Xg8oeD5sYy0acBCuYCf1/yZVzv3jDp/T3z20oSJphioQpI8f4jkJYNEKSMMm2E4cgOYrRb00Uyj8C4v93/2Uf7fL+8ezTmS4/a//Eg7wgS/x6DS1QIIpBT4DRWrapxQVB0TU/26QtVw/bjHRnTo9Q3R6D7IFmUvcescXJGVTfXTKvVlbfzf4aexaSqLlufiCD91Ply01ckvrvkm36/4LlXOHnzFYQiLBBP8e4MDT1+ej8BOB0aThfSPtqILG73PR5OwthczIGj5ZwrSBtE39YMQBNwq2Ak27hqt0rdeMYJz5SAgsSX6cL0aQ/rSDppfT0eagpRlnfTVxpB7Uy26acGR6EGLCWAQvLAasutoEgxTMBKw4vFrgCCgK0ipBC+gTIX/nn8VHy9cdsp9Ph0Wq8a9j3wMgDdfOoRpmFjtFv7+wCZe/JuD/LkZFCycxg0fujIovl+mF+onE1LHyMlJICcnAZ8vQHZOPMnJ0Xzzy48D8ObWalobetiz6whf+N+byc4LNnRae9ull7nZ0NCA3+8nM3NiF8+KorBo0SIGBgbYs2cPMTExocY4bW1tHDx4ENM0yc7OJj8/H0VRqK+vZ2RkhI6ODjo6Os56W5OSkiY1N++tmKYZaobi9/vx+/0EAgH8fj8ulyvU0ONkTYQuJhUVFURERHDzzTdfNLG3rKyMxsZGkpKS8Pl8oRzEy42xeJ2JOEjT0tJQFIWqqip8Ph/5+fmn/YwahnHSpjAXAq/XS2trK+3t7ei6TlRU1EXblsuZ+Ph44uPjqampISYmZtLfU4/Hw8DAAAUFBaEmZmdLt3cQgwCKqmAajA6iThaXBVarSWbE5Od/x8TEEBMTQyAQYGRkBLfbTURExEmjNcby5jweD+Hh4VRVVRETE3PezithYWGsX7+ep59+mqqqKhYvHl8BNXv2bMrKyqipqWHhwoXEx8eTlpZGbW0tUVFRoWzd9Jgovn7dVexqbWHI6w2V/8NoA3s9GK/QOjzM1157hcNdnXx66RWkRh7fuAogLiKMuIgw8tbFszw/i3/vKecfr5WMG6X/e085z+8oxxlpZ1j3c8+6JcSE20mNdbJ69jQURUFKeVwussvlClWuvZ2Ii43gnvevouXqWfz9b7t448VS/BL++rs3+OvPXuZrP7mL1Mw40rOnJpSmmGKKywMhz7Duy+FwUFlZSVZWFpGRkZSUlDBt2jRqamqYO3fuccHhlxtDQ0NERUUxODh4yoyuKU6Prvfh6pqPVShYRuXS9p4IPvStd+D1WlB8kjC/m/fcfIA776rCxCQgA5hIvNKkz7RS5ney15VDYdQa3pv92Yu9SwwNDXHo0CEcDgdz5szhscceIyUlhXXr1p32ta2trezYsQOPx0NhYSELFy4846zDI8MN/L7+z1QOdYQGa4JgJ3lVSFRh4rR4ibUMk2QZRhMGI6aNEdOG17TQ6Y0manchVX8eAsCiCh7440d45L4naKru4IHnv0x8SjSt9V187Jv/pH/Ey4LCdMJvUXixrRQINqASSCyqiSJkSFSVMuhg1Q0F05SkRroY2z2pA14BdhMGBJYEA5uqYxU6STKW0nvDsPrt+HpGKFo6jR/84Z4JH5NnW//IS50v4wrY8A9a6HsgCXRB0sda6fhB0JkQu7Ifd50Db5sdLVIn4ZZu2h8NXpQn/Fc7w1udeEvCCbtpEMs6D4FhlYBUsDsDWBQTkFgVA5tikGnvRZNm0CyiSkwEPqkhpUAC/tHbbsPCQCDoXO10h9PljkQ3FAxDQZVWnEo412fM4t15RUxzntxtdS64Bt389t4niEuJ4sVH3gBAmAY5szN491c2ollU8hdePnmrZ0tjfTfNjb28/kIJ21+rINLpwNXrIi7Ryf2/+yAJKdFYrJeOK2JwcJCDBw+Sk5NDVlbWGb3W7/fz3HPP4fV6ufbaa4mNjeXll1+mu7ubyMhIent7UVUVIQS6rofKDQsLC8cJOG89N41d2Bz7/9jtpKSkc7ro6+3tpampiYGBAWbPnh0qbRxzzm7fvp22tjbsdjuapmGxWLBYLKHJsNjYWBITE4mIiLig+bGnw+/389hjjzFz5szjBIALhdvt5qmnniIxMXFCv1OXMt3d3Tz//POsXr16XEblmHv6RO99b28vlZWVCCHIz88/qbPV5XKxb98+7Hb7pGdAngq3201vby+9vb0MDAygaRopKSmkpaWdsEHQFBPD5/Oxd+9e4uLimDlz5ulfcAbU19fT0tLC8uXLz9qVOsaDVc/wxyN78HitGKbACKjIUIPXMYLynGoxSHXa2Xrdl89pnZNBIBBgx44dZGZmsn//fkZGRlixYgV5eXnndb2PPvoos2bNYsGCBcc99sILL6DrOjffHOxwb5omBw4cCDlwj6V1cIhH9h7gsYOH8I1WWo5hWEczayH0NlyfN4Mfrl9P+AQmDreX1fPHl/eyt7Y1+NYZwax3KcAc0/aDZmO+8e51JFoDKAEfVyxdOk5A3Lt3L06n85KIiDmfbH21nOf+tY+SHTUIUxIRYcM16OVDX9jAynWzSMmYyo+e4vxwPjWfsWVn/PKbKI6392+56fHS/Klv/EdrZ2d8BZmTk0NxcfFxF3mbNm2isLBw0jZsissfTYtl2HoXTv/fkKP5UAnxg/z088/yuW/dhK4r+AMaf/7TfPbuiGfJsia62sPRHAHefCUTvyERdhPPkMrQaj8V3T/nPV+6gUM7qrnqtsXBsvooB+GR5+5enShOp5N58+Zx6NChkLD61lLZk7F7925UVeW66647q1n8sYvCbxZ8larGajb3b6ZGFCOFREFiV/3Eai6cqheJwCst+IwwfFLDY1jo9kUyL3ohH//wB/hx4zPseqOKgCH5n8/+BdeQlzAEr758mMHWfl54cg8+q4ol2kGgoY/OgyYkAQgME1QFAqYadLWOCaqANARKi0BLDDBQFkbYCwJtfgC53QLdCsRJ6FUwpvnRC/2YV3rpiOmn6H4Y+lEctT0jdLYN8D8feJj3fW49M4tOLybdlHY3RdErebj+W/gcQ6R/v3e0rArUO1VcNWEkXd/NcHkE7U8lEnN1P1pmAGExEVaJlhLAWxn8DPnL7SgzA7h/HAcCHF/phhSTsUZqAIowEaNCsi5FSEA9Vkz1mRoDgaDANDNyHv817QZibRE4LQ6cVjt29cK4oCKiwvjCg+/HMExi453Ywyz84ev/oKupl2/e+SBSSm748NVsfXIP3/rn50mfQI7t5UhWTgJZOQksWjqNtdfPZeumw2x58RCD/SN86PoHmD4zhft+8V5i4yNRz6A772RjGAbt7e00NTXhdDon7E49FqvVyvr169m0aRObN29m7dq1oa7yK1asYGBggIqKCqSU5OXlERMTg9vtvuCDINM0qauro7y8nL6+PoQQWCwWmpqaQk1lNE3DarUihOCKK644L+Wk55P6+npM07yoztl9+/aFqigudxobG1EU5bj81E2bNuH1elmzZg1xcXHous7w8DAxMTHExcWxePFiKisrKS0tJTU1lenTpx8nhDkcDpTR3EQp5Xm7gJdSMjAwEBJRPR4PiqIQHR1Nfn7+OZWOT3EUm81Gbm4ulZWVJCYmnjIi4kwxDAOr1Top79P27nIsqoluCWD6rWhWA2mamIYSqgISiolQTBRFsiblzCbYzhcWiwVN03C5XIyMjFBQUHDexVTTNE/pIn/rY4qikJiYSGNjI6ZpjptwSYty8rVr1pAdE803X34dOTq+kwrjDcKjVtMXj9TQPDTAV69czdLUDJRTnB9WzsrhioIsNu2v5LXiI2w5UBtatiIEpjk2lhQ88Nw2+gJeMpwOHsrIJD4mGqvVGqxmEIID3V0cMgLkxsYxPyn5bSksrl5byKqrZ/K3326hvqqdna+UA/Das8U8+futzFqUTSBgcM8XriU77/SNw6aYYoopLjRn7FB95JFH+PrXv86Pf/xj7rnnHn73u99RW1vL97//fX73u99x5513nq9tvSBMOVQnF930cLB5JdO1TlQRbDoF0NQSzbe/vYHeNgfCp6P4AjhsHhRFBsUpVRLwKJi6RGo6fmw4DIXComwaylqYsyyP8r11RMVG8O4vXs+mv2znU9+/k7BIOz63n+Ssk3evnwxGRkY4ePAgR44cobCwkCVLlpzy+YZh8Pe//53ExETWr19/xus7ePAgJSUlQDCGwDAMhBAkpyRTaqmmMfIgEZYBrEpwpt1E4DNV3LqdQd2OTYnhhtRr2Ji6HkUoGIbJA99+hrKSZlrbgiXvilVFB1RVYBgydFEpdAMlEKDrM5Kof/hQRiQD77EhJFhbdKRFw1qv4lphErYHInYK9BQTIg20chUpJEKODgJHG0khTISpg9Cxb/ATtsRHZkom06tXUFzbQtPeJtavnk3hvAyUNCeqTUMTCm09gxTNSKO2pZe5uakkxR0tw5JS8lLHE7za+SSK0MfFERhSEDBUDBSkFBhS4PeqoAj8iorvkAPP/jCsV7sJdFrw/Tno1Iv4aC/oAtej0ThmeYj6YA+xHi/RcS7QGI1fEBgoBMzgSHzEsDIcCMdEclPq9bwz/dZLahDc2dSDI9zG/R97GLvDSndbP11NPXz6J+9n+U0LT7+AtwGuIQ+vPFvMrtfKKXmzDkUVmIYktzCVj33letKy4olNOHGJ3/mktbWVmpoa7HY78+fPPyeH2uDgIM899xz9/f04nU42bNgQigC42DQ0NLB3715GRkaIiopi5syZIcdhRUUFgUCA/fv3k5GRwfTp04mNjb2sGnKMsXnzZoaHh7n99tsvyvq9Xi///Oc/mT59+gVtVHa+2LFjBw0NDdx1110hcaSrq4sXXngBTQs2+EtLS6OtrQ1d18nKysLpdCKEIC0tDV3Xqa2txW63M3PmzFAZ8Bj9/f2UlJRQVFR0Xsrt/X4/ZWVlDA4OYrVaiYuLIy4ujpiYmCkR9TwgpaS0tJSRkRGWLl06ae71trY2ampqWLVq1Tkvc9XL/40hwe23YpjgD1iQ8q0OVVAVE6tF568rP8zsmOxzWudkUVxcjKZptLS0MDg4yK233jqp0S9vdZ43Nzfz6quvhpywra2tNDc3U1BQQHR0NH/729/IyckZN3k0NDTEgQMHWLBgwUmv6X62800e3LEzmKc6mqs6Djn2n0RaJTNi43jkxttJi5zYNWJ1SzdSwtbyOhq7+xka8bL1cD2aquBVTUYTopibHIUBpMaHUS91avp7cQs95JbNjY3lk0uWcGVGDrH2t1cMwLHs3VbFoT312Owa/3pkO26PHxRBelY8FlXwPw+8m6YjXSy+Mh/rVCOrKc6BC+FQTf/Ff4ZDteXTl45D9Qtf+MKEn/uTn/xkUtZ5xoIqwMMPP8x3vvMdmpubgWBW1X333cc990y8TPdSZUpQnXz6vLWUtG9kumWYcMVAkSLkauxoj6CqNI7GGifDA1bscX5s+R50odAZHsmIauPQnnS6hhKJbPCwaGkeg280sPKWhWz7zRtkFaSiqAo1JU3c+blr+devXkHXDX76wpd56W+7iE1ycsMHzk/nbpfLxauvvordbmfJkiUnbTYyODjIU089xcDAALGxsdxyyy1n9NkaK9kc6xDd29tLbm4u0dHBmexDhw5hmAZ6puCl9jdo87biNXzYVDsp9mTWJa9mccx8NOX4Cza/X+eB7z1Lf98IZZVteLwBrDYNv08/2v7KMFEMicREBCQYHrA4goNM/whYwxEI9BgDrVNHCA1plxiLfKhbLXjngMw3sFVLtBkBRI8KkQb0SOR2gbZIxyhVsabr1C9LRnZY0Z0WVD+oHhPFryAkYEoUc3SGX5eE262smp2Nqip89B0reGlrOXMK0pieGcdvKx6iQd0fjCSAYOMpRvNREZhSoEsFfVQENaSCIRVMwOtXMV8Lw2IxcKx14XokhsDBoINV/5KbvlcTiBjwEblwmNQ5PcRnDGBIBbduw6VbUYWVlQnLWZu4hqzwyW0ecT7o7xykvryFojWFl5TweyHoaO3n6T/vpKa8lbIDjQhFIE2JMzqM//3JnYRH2Mm9gM2qDMPgyJEjtLe3k56eTm5u7jkt7/Dhw2zbto1bbrnlkuhcDsHz5jPPPENERAQLFiwIZV2+9TlPPPEEy5Ytu2zLHU3T5K9//Svp6elcddVVF2UbSkpKOHjwILfddtvbYjxTUVHBSy+9RHx8PLGxsaGx2sDAALfccgvbt2+np6cn1Oyxrq4O0zQxTRMpJQkJCeTm5jI0NITX62XevHnjjouUkh07dpCenk52dvakbvvw8DCHDx9GSklBQQExMTH/cefbi8Hw8DD79+9n3rx5k9YQbmBggOLiYhYvXnxc89EzoXGkm/fs/D8kAsMUeAJBccg0FQxTgBQIIVFVAyEgzKKzc/33L5nPTUNDQ0jQfPHFF4mPj2fDhg1nJTJ7vV6OHDnC4OAgQ0NDoRxXIJQj2tLSQlxcHLfccgt+v5+nn346VCEWFRVFT08Pq1atGlfJYJom27dvJzs7+6QVHz5dZ/nvfsugz4d57CXxCa6OTYuJogriHWF8dtEybswrIMp2ZmKJlJK6jj6GvD4+8Jt/HHXHitF/SPwxjDbMkphWQAneRgHVAbflzuKjcxaTGx13yXwezgc+n5/7Pv0XSvc34Ix0oAiYnp9MzaFmZi7IpnxPHdNnpTJtZipFK/JISoslNefym3yd4uIwJahODpeaoPrWMff+/fsxDCN0PVFdXY2qqixcuJDXXnttUtZ5VoLqGD09PZimeVk2NzgZU4Lq+aF2+E12d3yGFG2EZNVDtBpARSIRBKSg27TRHrATECoBU6HSm4rLtFPRnkz5nhw0r4JmCAhINF1gSskDH7yRkREfGWHhtBxqZu07l/L1u35Bf/cQ//3LD3Lve3+FHtD5R+WPUNXzk6vn9/upqKigv7+fpKSkUHdRVVWx2Wz09/fz8ssv43a7iY2Nxe12I6Vk/vz5xMTEIKUkOTn5uAHo4OAg5eXlxMfHc+DAAXRd5+qrrz5OFAkEAuzdu5eoqChmzZp1TvvS1tpPQ303218s4cUdNUhVEGnRCFNURjw+fEM+BOAp1HGUB9NCDIsHM9qGpVshEOND6/TjL7DB+gC2Rw3oh6HbLBg5gpif+BEWieUBHfNFBfN1BeWjOjZNx/M9O7YlfrwlNgyfQtfKOBxdfnzxdky7Fc0PSIkyFnVljGbH6hIhYX5+GiVlrWiqQkFWAuXVHcxbkMjAwj1YYkdQxNGxsSGDgioITASGqYAIXtD4RgVWhxZAFcHWjHqjBd8zkThmeSiJSiXjL14UHbwxGgMzw4l3aFx9ZQKzC2JIiophbtRswrS3r3vg7Uh7cx9PPLKNno5Bdr9RhaopRNo1pITVG2ZRfqCBD33lJjpb+rjm9kV4RnxExZ66Cd250NjYSENDwzl3921paeGVV17h+uuvv+i/06ZpUlxcTHl5OUIINm7ceNJGfqZp8vjjj5OWlsbq1ednQux8Y5omr776Kq2trRQVFR2X4XchqKioYPfu3Rdt/ZNNaWkpu3fvZsaMGQwPDzM4OBjqLH6q3FNd16murqa8vByXy0VycjKJiYm43W7mzZs3zql6+PBhAoEARUVF57Stw8PDDA0NYbVaGRkZoampiYiICGbNmnVc85kpzh9SSnbt2kVycvK43N1zwe/3s3PnTmbNmnVOzvlvl/6DFzv2hiZ9TQl+XQtN9AaRWBQTi6aT5ojmiVX/Mxm7MCmMuT+Lioro6upix44d5Ofnn3G8iK7rPPvsswwODmK32wkPDyciIoKoqCiklKFJk+7ubqxWKzk5OQQCATo6Orj22mtpb2+ntLSUnp4ebr75ZnJycsYtv6SkBEVRmDNnzkm34c3mZu555im8us6propNqznOwerQNH573S2sysg+o30eY399C9urGukYHOa5kkpMKY8TVKUG8piAPtNuBF2rJmSER3FnwVxumFZATvTkTBhcipimSXf7IJ2t/fR3D/GXn71Mdm4SB3dUYwQMfB4/miawWlRSM+P5wFdvZOGVk5udPMXbjwsiqP78P0RQ/a9LR1A9lp/85Cds2bKFP/3pT6FJ1f7+fj74wQ+yatUqvvjFL07Kes6pC0d8/Pktq57i7cP0yCtQxZ94sul/iNM6iVbdx3WId5lWOgLRdAciQCh09E7nCvVaVi3R+PeeciLtNppb+kMzyP/78AvoXoMwm4XHv3s3jnAbP/p38IshpeSdn1pHTKLzvImpEMwrnDt3bqj0qLOzM/TYmEPGYrGwYcMGUlNTGRoa4o033mDPnj2h5yUnJ3PttdcCUFtbS2NjIx0dHfj9fqqqqoiKimLDhg1ER0cft/6Ojg50XT9nJxtAaloMjaVNvLz5MMJuBQnf/OE7mb8gC8Mwueob92F6Ba4V4J8WbMrkWWgFJMJrIDUFrdOGmm0QYTXQ3wVmqcA3RwUdpANkgkBKMA8J8ACdAl1RERaJ0aJiTffjL7OS9Ho3KApSGUboEn+cnUCMDVu3F//MOPyAc8TAGhsGmkJGZASlPoPY1Ej8Ph1MiW9QoeU3WVimuYi7pQfFGkAIGco7lQjkqLgaMAWmVBBIHFoAZVRMBYjM8RD9+RFaO2NhnxXd5seqmxg2BW3EgH2DbN4/wNOpYXzwpqXMWC9xOM89g09KidftwxFu59DOasIi7Eyfk8GbLx0iOTOOnMJ09m8pJz45mrTpSTz565fJmZnGzMXTeeDzjzJ/ZT4rbyzih5/4A1dcO48rNy7kZ1/6GytuLGLduy5c05XLgZSMWP7r3o24R3xs/td+cvKT+cevXiXc6WDfG5VBJ/dX/o5pSF56/E06W/p4z2fX8+Yr5bz/i9fR0z7AjLkZxCVHjWvWdLZkZGTQ1tZGQ0MDhYWFIZddTU0N+/fvxzRNcnJyKCoqor29nZaWFlasWHFcueXYwKanp+eiCqoul4sXX3wRl8tFZmYmS5YsOamYCsESz7S0NBoaGsjNzSU1NXXC69J1nZKSEgYGBnC73Xi9Xnw+H3FxceTm5pKTkxPMpzvPKIrC2rVr2bx5MxUVFRdF0GxoaEBRlElz5l1s+vr6cDqd40R2r9d72jJjTdMoLCykoKCA8vJy9u3bh9PpxG63c+jQIYqKikITFwkJCVRUVDA4OHhWZf9SSpqammhoaGDMr6AoCsnJyeTm5l5STdP+ExBCEB0dzcDAwKQtcyw/dMxBebbs7KlBjMqpwTGHwG4xkFIfnfQFRRDMbEeyIeX4RkwXk8jISDRNo7+/n7y8PAYGBigrKyMpKemMxOudO3cyNDTEunXrSEs7eUWI1+ulpKSEI0eOEAgEmDt3LgkJCSQkJDBr1iwee+wxWltbjxNUo6KiaGlpOWU28hUZGWy75yM8XVHOb/bupdfjZrxZdbSL1Fte7tV17nnhKb5/9TrWZeXhtJ7ZZMnCnHQW5qTT53LT1DfA4dYOvDYZWo9AYIq3KLxjw1MBLcND/Gjvdn60Zzu35BXyf2uuxXqB4kO6OocoL2vhiuV5qKrC7h3VTM9LJiUtho62AVzDHnLzU3ANe9j01H4K5mQwpyiL55/Yy67XK3nfJ64mIdnJT77+L2LiIvjMNzayZVMpWzYd4t0fXcP0ghT+/PNXcIRZefcnrsYeZsVqs3DlDfOZs3gaPp9OZ3Mvb75SRn1FKyODbhor22mu7eR7H/sD171nBR/8n5sZGfJQfqCBxVcWsH9rFbpuUrQijy3PHmTp1YUYukm4005YxNtb9Jpiiv9EfvzjH7N58+Zx4+CYmBi+853vsH79+gsrqBYVFU34AvHAgQPntEFTvH3JjpjJR/J+z67elzjQ9yzIASyAgcAnLbhNC0iIUvO5Kf0dzJ47P/TaL21YRcAw+Nxv/832igZyEmJoqe9DAG5fgIf/uZN9Bxu4553LWLVwOq4RH+/41Ll3NB7oHeKBL/6dhOQoPvm9O054MSSEID09nbS0NEZGRjAMA13X6erqoqWlhaSkJEZGRmhubiYhIYHrrruOQ4cOER8fT1VVFe3t7aHA/LKyMvr6+oiLi2P27Nn09fUxZ86ck14wDgwMEBUVNSmOl81/38kD//sEJEYjDJOCGSnMX5CFEAJNU9n4ngX8vWEvmAqeRUcFRwAZNjrSzDKxaQaqYuKfoeKbriL14Llj+FsWVGFiIYD6cQNZLxBzTMSwRM0zsV/hJ2qZh4ZPJIABZoKDyD4dv8+HcyBAmK4y2OvlCiWMpJnp7HrqAIXJSWy8exVf+eDviVQEX/nizTz4taeIGnTzoc/fxJOP7qTuTS8fXHsPzx7ZTdfscnR70OY6VvovAVWY2NWgKzV4qgvum0PRUYXJ8HAEtybfxXWfnsHLy6vZtOUwHcMDOGvdWEYMLCMG3jg7f3x2N48+vpN1VxayZFYWAd1k4zVzUZRTnz+llJhmUED9y/3PU7S6gNee2M2BNyr57I/ezS++8himaXLvHz/GL77yGIoiuO/RT/CTzz4KwFd+/UGeeXgLQhF84cH3Ubm/nvryVhIzYmmp7eSlv+4gJtFJVXEDvZ2DU4LqSQgLt3HL+4JZk/OWBC8IO5p76Wrtp+lIJyU7awj4dTpa+jiwrZojZS08/qtXqCpuIjEthv7uYSKiHNz6oStpru3kPZ/dgN+nEx55ZgN1RVFITU3lzTffHDf5AsFJnLEsyNra2nGvufLKK8c91+l0EhUVRWNj4wVtGmmaJhUVFYSHhxMZGcmbb76J1+tlw4YNE44eWL58Ob29vWzZsoUbbrhhQuKWaZq8+OKL9Pb24nQ6cTgcREVFYbVaaW1tZceOHezZs4fs7GyWLl161sKqruu4XC4iIiKOW8bAwADbtm3D7XYzf/58oqKi6O/vP64pyoWgv7+frKyss2pudiky9nt3LGeSM6woCrNnz2Z4eJiqqioSEhKIjo4O5aba7XYSExOpqqoKuUtOxViTHF3X8fv99PX10d3djdvtDh33sUY5b+ey3EudyMhIenp6Jq3ZmBACm82G3+8/p+X0e91YLBJzdDiliKPZ9YoIFoIH7wuOSK5PXXzO2z6ZjInVnZ2dZGRksHDhQurr62lsbGTatGlIKXG5XBiGEXqN0+kcdx6sqqqirq6OuXPnnlJMheB3fenSpRQVFdHS0jIulkNVVVJTU2lpaTnuddHR0TQ0NOByuY7LTT6WWIeDDy1YyA0z8vn4s/+mpKPjmJ0FaTneuioBn6HzhddfwGbV+Naya7gzf+4p96NmsJvtnXV4jQDJDifr0vKJDrPzfzev4mBtHf9v3348RjA/VgoZylANrm/079FmWaH/gadrKpAmPLjuhlOu/0zQdYO9BxqYnpOI1+vnv//7caKiHNx//118+mN/oK9vhGuvn4cz3M4Tf9tFeISdn//+Q3z8rl8T8Bt87QfvpHhPHc89sRdNU3ls85f45feewzQliiKYuzCbfTtqALjm5iJ+/u1/4/fr+H06V18/l3/9aQcABfMy+OsvXqWnc4hP37uRn9/3FADv/a91bHmpjCvWzmTmnAwe/v6/iYsJo7OphycfepXiHdUYusGAy887P3oVf//ZywhFcN1dV/DS47t585UyakpbCI+wk5QRy3V3LmXxVTOnslmnmDzGsjzezlzC+zc0NERnZ+dxVbxdXV0MDw9P2nomdDVxyy23hG57vV5+9atfUVhYGCrrePPNNykrK+OTn/zkpG3YFG9PnJZYNiTfxdrEd1A2tIc2Tz1ew41FsRJliWNe9AqcltgTvtaiqvzyE7fi8Qfw+gK8+95H6RkcIS4qnF37ahkY9PDo03v45W9fw+MN8LH3rmLfnnpWLs9j6aIchgY9FM5OP+7CdsxFUl/VQWtjD9tfLqPxSCfdDd24B90gJUJKbvnIVaRPP3lTFyHEONdVXFwc2dnZ1NbW0t/fj9frpa6ujoSEBFJTU7FYLEgpsVgsVFRUkJ2dTV9fH0lJSVx33XUAx820vxWv13tC5+qZ8sJfd/DQN5/GjAxDmMH9/eA9a8ZdfHyhYCOvdRbT5fFjjLo7x1CEiSIkdlVHEyamDOaSmlJFEswBA0LOUMUpEfOC94loCPuiD6uio6hg/VgO+dGZfPWmq1DdOnteLcfnC/CXB14EIEzTuGnjQqp2HGHZNbMY7B8JLtuUdDb2MdDrAuDIoRbKdgUFp8M766DaYPhhJ6l3afjWduCXIJAIIXmr3mkRJhZhoCqS4UNhOF8rIO56g/RF0RTFxDPnplVMn53GvT9+huoXKgnYFIRdJaJmCMtggD0Dh3hlWxUAXT1DVB1u5a7bFrNo4TQaqjtIy47HM+Lj5X/uYfWNRfz6609QdbCRd33qGrY8tZeDb1SQOi0RRRFBZ+rsdKITnWTOSCFrRgozFmSTnBlPak4C02dnULAgh9UbF5A7N5P5qwr4wFdvIqcwndy5GXzkvtvJnZNJUmYcI4NuZi05dzfzfxLJGXEkZ8Qx94pcbnzvCkzTxOv24xnxsf2FEmYuzOZn//NPFl89k+f+vIPhAclvv/sMiqLQ2dLH3i0VfOrb76C3Y5DlG+aQegYN8+x2O06nM1Q23NfXh9/vD3UiP5aTCQU5OTkUFxezY8cOli1bdt5FvTFRs6urK3SfxWJh8eLFZ5Tjqmka69at47nnnmPr1q3cdNNNp31Nf38/PT09LFmy5IQCcmdnJ1VVVRw5coTh4WGWLVtGIBCguLiYrq4uUlJSmDNnznHVN36/nz179tDf34/FYmFgYCCU3edwOMjKyqKgoICOjg727duHpmmEhYWxd+9eMjIy8Pl8/PnPf8ZisXD99ddfMMdoeHg4Q0NDF2Rd55uBgQH6+/tZuPDcG+ctW7aM2NhY9uzZE3LwjjlVNU3DNM1Tiu0+n4+ysrLjjq2macTFxZGfnx8SY6eaTV18IiIiME0Tt9t9Tpmnx6JpGrqun9MyTMCUAjEafxUUUxlNfA9qZWboNC9IC4s7p/WdD3Jycjhw4ABVVVXMnDmTmJiYkBt4eHj4OJNNYWHhuGqJ0tJS4uPjmT9//oTXabVaT+iAdTqdNDc3HzfGHxuXj4yMnFJQHSMpIoJ/3XkXZV1d3Lf1NQ50tQWFzVMhg8LqV7a/yN/KSliRlkV2TDQp4ZHMjkuisr+bwYCXPx7ZxYHeFhQEihDo0sR+wMKaxGlY+70IIXhXXgqbmrvp8Ps4Nv1BIkGV40TUEKP3PXOkgpcOVbIqO4UHbrydiDM0W5imZHjEy8N/2056Sgx9nUP841/7iIpycNdti+nqGqKra4iqqnbM0Q+naUoMfbQhrmky4vIS8Af/7ut1ETfa4DMyyoHNYWX51TPZ+XoFK9YWkj87jX89uoPomHByZ6ayesNsXnu+hFXrZpE3Kw2rTcNi1ciankThgix2vlxGSkYszphwpJTExkeg6wZxCU7CImxICVfetpiWqjZe/9de6stbUAMBAr4ADqvC2tsWEvAbrLxuLhUHGlixfg61Za0g4MjhFn51Xzv6/z7BvQ99kOwZyYQ7HWd0/KaYYopLi1tvvZUPfvCD/PjHPw5FQ7355pt8+ctf5rbbbpu09ZxxhuqHP/xhUlJS+Pa3vz3u/m984xs0Nzfzhz/8YdI27mIwlaF6+TDs9lLV2EV+ViKbt1bw2PP7uXHNbH7/520A5KTE0lTXgxCg+U1Mw2TZ4mns21bN+pvmU7yrlsycBCoONOAIs9HbNRQaIAAIXQd/AIDCeRn86KnPnZO7wTAM2tra6OjoYGRkJHSfz+eju7sbh8OB2+0+qRhwIt58800SEhKYPn36WW+X2+XljiX3BQdA0cGLjeiYMB7b/OXj9tcT8PHOnd+hz+fDkEcHrKow0RQTTZgowsRvqgRMFZ+uYZgCVZHYNQNFmETZvMcImBJVSGyqjlXRcag6P5n/SyK08eXAw4NuvnLXr9A0hajYCD7ytY1k5gbFbdM0eeWZg1gsGquvm83fH9pCb9cwH/r8eh756cuU7qvn89++jUd/8QoHd9VStGw6qzbM5vd7HyXsOjci7OhEvyJMLASdAZ7DDka2xeAutTI2ov36/e/i219+HIDv/Ow9/ObHL9Lc2Ev2iiwMi0LLi9UICY5oB52pdhSvjqPLix6mISJtLJyVTuWbdaycn01yWgwv/G0XS9cW0ljeSnfbAP/72w+y+6VS5q/KZ96KGQz3u4m+CN3mpzg7+rqGsFhVinfU0HSkk/6eYbY+W8yiNcFSs8KF2Qz3DpM7J4Nrbl+MzxsgKSOOoT4XqqbS3z2EpiogJfv27GPIN4Az6WiGamxsLJmZmRQWFlJRUUFfXx9SSmbMmEF6evoJt8k0Tfbv309ZWdkZnVvOls7OTjZt2sSSJUuIi4ujr6+P6dOnn3X35zfffJO6ujruvPPO04rBpaWl7N+/nzvvvPOUzsWamhp27twZEqUtFgupqam0tbURCARISEhg5syZJCYmMjQ0xM6dO3G73SQkJKDrOg6Hg+zsbLxeL52dnbS1tYVcWCkpKVx55ZXous7TTz9NXFwcmZmZtLW10dLSwm233XZeOsi/lfr6et54440L8p5fCHbs2EF9fT133HHHpHUSP3z4MPv27WPBggUMDw9jt9uZOXMmBw8eJDExkby8vONe097eTlNTE6ZpkpmZic1mQ9M0NE0jPDx8yol6CaLrOtu3b2fmzJkkJZ18UvxMOHToEEKIU+Zyno5lL34DAx82zRh1oY59do7mpwb/kvgNK3uu/e65bfR5oqOjg8rKShYuXEhxcTHt7e3ccccddHd3U1ZWxoIFC/D7/Rw+fJiioqJx579nn30WVVW5/vrrz3k7tm3bRltbG+9617vG3T+WeTt79uwzjqrz6gHu3foqT1aVYZzicllazKBzdNRtLEwRfBtHM1elAYyaC1SHjqKOX5aUBJuvjjZHdQgN1aUyNJoqMSamSuvROABMEFIcjQAYfUAZFii6wCECzElrw2I4WJSVTHdXOukxCcSGO+ke8JIe7aSkqpXa1h4a2/pIio6gsbGPpbMy2bu/AYBrluSx5Y0qHA4Lj/zqQ/z4J5uIinLw31++gZ6eYcpKW1i5Kh9FEWx7vYIZM1PIzE5g5xuV9HYPc90tC1AUQeXhVtIyYomKCV5jGIZ50ji2Yx9zj/hQFIHdcfJzvqEbqFpw4srvC2C1Bc0qO14oprOxh6d+uRmfy8M7Pnsd7/rC8e5dwzDxe/288uR+tr1QQlNtF1arimFIfvbMZ4lNdE6d19+mXIgM1YwHv/UfkaHa/Nl7L0ntzO1286UvfYk//OEPBAJBTUfTNO655x7uv//+yZtkPdMX/POf/2Tfvn3H3f/e976XRYsWXfaC6hSXD5FhdhbNDJYy3n5tEbdfG2wikZYQRUfXILERYfz055spmpfJ/u3BkpLSkiZMU7LtlXLcA246W/tBN3ENeUOZrhGRdhRVYcWafK66eT6zFuaEfqzPBVVVycjIICMjA13XMU2TQCDAnj17cDqd2Gw2Fi1adEbZUw6HA4/Hc07b9bv7NxFQNYg6OpO9ZsPsEw4gHBYbz67+Ft8u+zOvd5aEXKqqIlGEiYnAb6jopopf1zBNgSLAoppBYVsx3hpBhSLMoFMUSZgaRph6fBOeyKgwfvXCl/j+p/9M8a4a/vSjF7jimlmse8cSFEVh/a1HXUvv/eTa0O3PfGNj6PY3fvZeyg42MqsoC0UVdLUNEFZr56r3zGR70w72lVSSmZFIenwKf/taMYrbzu03F/HX8q2Yhsn0GclEHlO6rSgCv09HACmqnZSUGFostWiKwhWrZvDqK2WoukQGDBRXgECYhd3lLSgWhf0VbUQOeciak87SDXP56NdvYWTIQ1J6LLMWHxXHp8TUy4vYxOBAYtUN84GgmPmez2xgZMiD1+1nwcoZ/P3BF2lv7OX1f76JoihoVg3TMNEDOqqq4nO5kaZEFSYIya/3fgvTNFFVFb/fz8jICK2trcTExBAXF4eqqiiKQnd3N6qqYrVaxznlFUVh8eLFNDQ00NXVdd7FtY6ODoQQ5ObmYrVaz1nAsNvt+P1+/v73vxMVFUVsbCyJiYlMmzZtnMDq9XopLy8nLi7utGXgeXl5xMbGMjg4GBLGxqIUKisrqaqqYuvWraHnh4eHs2HDhhPuy+zZs/H7/VRXV2OxWMjLywtt15w5czh48CAWi4Xa2loMw7gg+a0QLKW1WCzExV16rrYzRdd1GhsbycjImDQxFYJuuebmZkpKSli8eDH9/f1s27YNi8VCR0cHsbGxWK1WPB4Pvb29QHDCIDY2lunTp0/aQHyK84umadjtdoaHhydFUDUMg6GhoTNy3J+IQmcmJQO1+HSwaUbQqSoZzXoPPkcI8Okq2Y5Tl8NfTI79HpimGZqoGnPwRkZGhvoLjOVaq6pKXFwcsbGxNDU1Tcp2eL3eE577xy6iLZYzL+O2axb+7+pr+X/Lr+Shg3v4zcG94x4/Lls15B4VQZVUF0httEzfDL6vulvDEhEY10dCjC7DNCVIgUcGIFzHEaUjDYl3xIY5ZmKQb/l3dGPG/e01LJSUZQOSfZUmmq8RZBMYAgWJNMDiOfpal6cPBUln/zCKIoiLCedTH7maRfOyKSxIJTk5ivv/787Q8lNTY0hNPVptcc11R6MOll9ZMO44Fc7NGPf3qXpbHPtYWPjpHbbHXp+NleoLIVh5Q/Ca8Nr3rKBkWyWL1p148kNVFRzhdm56/wquvXMpA70u7v3Q7xgecHPvPb/H7fLy839/nogpt+oUU1x2hIWF8atf/Yr777+f2tpapJTk5uZO+vjtjEf2DoeD7du3Hzdzv3379jPKsppiivPFNauPdna8/trgD/zePbX09rhwWFQ2PbWfJStm8NKT+8gtSMHvDRAZFcbam+bR1+1i+TWF57WRFRC6qLZarcyfP5/Dhw8THh5+2gypE3GuZWcoCmgKY6O7sHArdx8jSr4VIQT3zv4AH8np5Z07v48qJIYU+E0Nw1TQTRXdFJhmcLpeEUEXKgQjAd6q06oiKB5pQrI64SoUcfJj/6Gv3sirT+3jXw9voXhHDYO9LuavnEHurBO7847FHmZl4Yqj5627P7s+dPvW/Fu4Nf/oc294/LrQ7fd+ZA0+bwCLNShc/ejhD2IYJvMX5fB/v/kAB/fUsXJtIXaHlcJ5GeQWpBCfEMmilTPo7RziTw++TGp2HLd/+ip+8KvN2NtcDEno7xkhbPl0vvGtp5mRn8zyK3LxuP2898OrKd5TT3yik7yZqfR2D3GkvI0Fy3KxWDUMw8Qz4psa3F0GKIpCTEIkMQmR3PvbDwGQkhVHfHI0f/vJC4wMunFE2Gis6qBgQTZt9d1ERTswdZOu5i6c6XbefPNN+vv7EUKc9Ls+llVnt9uxWCw4nc6Qe669vZ2IiIjTZkK63W4CgcA5uSfHhK+IiIhJE75mz55NeHg4PT099Pf3U19fT3V1NeHh4eMEjQMHDuD3+1m/fv0plnaUuLi448RGTdOYPXs2hYWFtLe343a7Q+7VU+2P1Wpl9uzZx90/Z84camtrQ2KrzWZj9+7dXH311RPc+7NneHiYQCDAK6+8wjvf+c5JFSIvJLqus3XrVvx+PzNnTm7XZkVRuPrqq3n66ad59dVXSUxMZGRkhLCwMKKjoyktLQ09NyIiItRcKj8/f8qxdJkRHx9Pe3s7WVlZZyWsHUtnZye6rp/VeO1YvlR4Pe/Z+fNgLn1ABKt8FDOkiemmgm4omAj+K//cewKcL44VLJOTk6mvr6e9vZ1AIICmaQghQg7+qqqq0OscDkdwEtHnC2VSnwsejweH4/hx0bkIqmPE2B185YrVpEdG8bN9u+hyj8BYnqkm32oqHkWAAcIyKpALRrMGJWZAQbWa49ZxVEw/qtD6dJXwcB/W8BF0v4Jn2Ibh00abmR27zqAjVvgEwhQICSK0eDH6tGC8BEIiTRH8/5hHAbKy/NxwU4BVM28iJWI6FovKjddd+IaKk0l4VBjLb5xYQzeLVSMhJZqf//vz+HwBPnntjwgEDP7+y1cY6hvhM999BxbrhZkUneJtwlsnPt6OXAb7Fx4ezty5p863PhfO+Kzwuc99jk984hPs379/XBbBH/7wB+69995J38ApppgMFi856vq7cl3wwve29yy7WJszjpiYGObPn09paSn79u1j1qxZE8pFdbvd9Pf3n1EH7BPx4S9ey+GSJppb+ohPdPK9X7wPR9jpZ4VTwuO4K3sRj9XvxRUYe74IZYEpo0KpVTMRQmJT/GjK+Ol0ZVRwFQSfuzrhqlOuMyk9lrs+vQ5pSppru3jyd2/w6lP7+O+fvheb3UJqdsLZH4hTYLMfHYjPKcoK3U5JjyUl/Wjm7+prjoZer71xPgC3370yJNBfsSSXz7zzV3S1DWANs6COjomP1HRSU9qKAHq7h3n9hUMoiuD3T36aL7//YXq7hrn53Vfwyf+9ie996k8c3lPHfb+/h5lF2edlf6c4fyy8MigK/b+H7jnl83Rd54knnmB4eJgZM2YghCAuLo6EhIRQM5yxf319fezatYu8vDwSEhJoamqivLw8lCVnsVjwer10dHTw4osvEhcXx8KFC1EUhaGhIUpLS6mtrcU0TfLy8lixYsUZ75dpmrz++uv09/ezcuXKszo2J0LTNPLy8kKTuO3t7WzatIk33ngDTdOIjY1l5cqVuFwuoqKiJiWfVFGUcxZLxpazcuVKtm7dSl9fHzabjcbGRtrb28/Z3XY6NmzYwPDwMK+88gqlpaWTkj06mWzevBmXy0V0dDTLly8/4YS82+3mlVdeCWWnHpu9OFmMjIzg9/uJiIggKiqKzMxMVFXFZrORl5dHIBBAVVXCwo6vnJgspAw2I7rQTcv+k8jMzKS9vZ3GxkZyc88+R1xKSUtLCwkJCedsIpkZncKq+Dls6ylFSIFuqhhm0G0nIdSMKseeycqkSzf7/FjBMi8vj4MHD1JeXk5mZmZIxExNTSUxMREhBEII3G439fX1IedqR0fHWb8vnZ2dlJSU0NfXR0FBwXGPT4agCkEzwXtnz+fds+bxalMtH3n5X4wruRob3pqnn2yRJ3jO2BzNsTIngN+vYrfrWGwmmtWD16theFV0j4WxkFWBxCoNdJ8FYQaF2TAlgCXSxD1sJzJqBHdXOGEOH7pXIWBaiQ4fYcQdTlT0MAmx/SydX0XRnFr6jXCe6/obSUOzmBtzO7mRaxCnMDq8HdEsKppF5Wf//jx+r59PXv8TNIvK5n/uISo2gpXXnT9hZooppphctm3bxkMPPURtbS1PPPEEaWlpPProo+Tk5Eza9coZC6pf/epXmTZtGg8++CB/+9vfAJg5cyZ//OMfueOOOyZlo6aY4j+NyMhIFi1aRFlZGeXl5SxevPi0g7+x4P8ziQg4EWERNn77r/86q9felHolL3fuIlL30++zEzBVBAIhQFWCjapAEqb5sY2W/R+LRTVRhYlFSDL1LGx+O5xGyxVC8J7PbmCg18UvvvYEsxbl8D/vewgh4Febvoxr0E36tMm/8D5bjnU7R0eH86snP01LQw8zZqfR0T7IP/6+i7wZyfzuZy/j9+kkJh3Nn5GA1xO8GPC4fcH7ziz2eorLFE3TWLBgAW1tbaSmppKRkXHS5/b09KBpGgsXLiQiIoLCwkK8Xi/Dw8PExcWhKAqbN2+mra2NoaEhOjo66OrqIjY2liNHjgAwffp0VFWlsrKSjIyMM+oMb5omb7zxBq2trVxxxRXnlOl8OkZGRhgeHkZRFLKysmhpaeGZZ54BuOSymwASExN5xzvewXPPPUd3dzdSSjo6Os67oOp0OnE6nYSFhYUyuy82vb29PP/885hm0Do1JujPnj37hOLUG2+8wdDQEFddddUZfR4niq7rbNmyBavVysaNG7HZbPT09FBTU0NERAR2u/28Vl5JKWlubqa+vh4pJTk5OWRlZZ3+hVOcMVarlczMTBoaGkhLSzuhk3EiuFwu3G73CfN1z4afLH4XX9mv8UpHCYpydIwkJRimQo49jb+svueSdkSPuU9N08RisTBt2jQqKipQFCWU7S2EGDemjYyMZO7cuaEGf2fabdk0TZqamigtLaW3txeHw8H8+fNPWClwbG7eZKAIwbqsXH65diP37nqZHo/7mA0Tx7hHJSgnHq+J0zW5OvpMdF0FjlanWCwmigqWcB1VSqZH9RLu8KGqEp9XI+DXcIQH/45QvahIhAKmAVdEHUGVEp9PIyzMh0+3omnB9y9eDb4H0coIimbQ4j3My+3lbO34HvNjbqUg+nbCLclneLQub6Jiw4Fw/ueX76eztY+Hv/NvVFXl0J5aVl47l7lLz99YZ4q3CVKMOtPfxlzC+/fkk0/yvve9j/e85z0cPHgQny94LT08PMz3vvc9XnjhhUlZz1n9utxxxx1T4ukUU0wyVquVwsJC9u7dS2lpKbNnzz5lmeaY++xiuloyw1P4woz3c3/VH4kPC3a99uoC3dSCM+aqgabI44RUAItioAkDDYN4EckaZR0NDQ0TbvIQHRfB1359N16Pny3/PoAzJpz/995fM9Q3wse+vpG0aYlML7z0cscinA4KRvOkUtNi+NyXgs0Yrl43G9MwcYRZKZiVTnxiJGkZcfzkLx/j8IEG1ozOiP/vr+7G7fISGXX+HFNTXBrk5eXhdrtpbm4mKSlp3PlA13WGhoaor6+npiaYET12YQscJwatWbMm5Aisrq6mrKyMmpoakpOTWb16NXa7HdM0aWlpYffu3cTHx0/YlVdaWkpjYyMLFy48oUNoMhgcHKSpqYnKykoiIiLYuHEjMTExdHd3s2XLFjo6OibUwflioaoqsbGxeDyec869PhOEEHg8nuM6X18MbDZbSExdunQpPp+P4uJiYmNjj3tuc3MznZ2dLFmy5LyIqQB79+5leHiYdevWYbfbOXToEH19fURERJy0ydu5Ypom/f39DA0Nhf5PT0+nr6/vkhG+366kp6fT2tpKTU0Nc+bMOSuRcuwcazvD7uknQxUKP1r0ThpcV3PTH3+DGRsAFVS3lT/d/D6K4k4+kXapEB8fT21tLU1NTaGJOSklhmGcNrM2OjqahQsXUl1djdvtntBvzpEjRzh06BBDQ0NERkaydOlS8vPzT3p+83g8oeiByeSGnHw2ZOVR2tPBvdtfpbS7g+Nq/7WjebjBu4J/KJbx5f5jnHi+fPx2K4qJMepMNUQwo1UdbXJls+vY7GPiq8RnaoRrQUFZUSWdgSiy7L1YRkXUoJgajCEYMMJIVIcRApyKlwTVRbfhxCd19vU9Tln/X4i1z2d50v8Qa7v0P5eTSdGKvKA7/UgXNYdb2frCIfZsqeTqjQu465Nrp2IAppjiEuU73/kOv/nNb3j/+9/PY489Frp/+fLlfOtb35q09UydAaaY4hLCZrMxd+5cSktLOXjwIHPnzj2pk6K/vx9VPfdmWefK6sSFmEgeqPozJhK7JoHASZ492lVbMbEqBlahk2lJZPXI1UzPnU51dTW7du1CCEFERAT5+fmnderaHVYefObzAHz3k3+kvH+EX3z9SRRVYeHqAjJzE5m1aBr1lW1ce9cVFO+oYXphWqiB0KWC45gupsvXHBWlsnITyco96rhVVWVKTP0PQQjBjBkzOHDgADt37sRut1NQUIDdbuf5558PuXoSExOZM2fOKfNPrVZrSLgqKCigoKDgOJFNURTWrFnDSy+9xKZNm7j11lsnJMINDw/jcDjOqeP1qfD7/Tz//POh0uxrr702VNqfkJDAxo0b+dOf/jRpIsdkU1NTQ3d3N9OnT6ejoyM0Q34hyMrKoqysjG3btnHllVdesPWeiIiICObPn09xcTF5eXns2rULh8NxnHPMNE327dtHZGTkeRPoIejsjo2NDcXmJCcn09HRQV1dHWlpaYSHh5+TCBMIBGhtbcXj8VBbW0t0dHRIaBprHjdv3jxiYmLYvXv3ZZtze7mgqir5+fmUlpbS2tp63kTzsyE7Ig7boTAMLThGWp6XdVmIqRD8bcnIyKCxsZG4uDjKy8uJjIzE6XROaJIrOTmZhoYGmpqaTvt9N02TXbt2oSgKq1evJjs7+6S/UVJK6uvraW5unpQIlxOhKQpFian88+a7+HPZQf5VXUb7yDAuw4ehGKCAkCBNCIacSjS7zokq6GUoa3F8joA4GoaKEG8VXSXugJUo+4l+UwSGVMb93e6PJsveG1qfgomJCgh0NAKoWDEQAuJUFz1GBBIFAwW/VOnzHuSphruwWq9nZcI7yA7Pu6Td05OJEIIP/89NuIY8PPrTzbz2zAFefHwPBfMyWbg6/7z33pjiMmUqQ/WiUlVVxerVq4+73+l0hip9J4MJCaqxsbFUV1cTHx8/oYVmZmaybdu2qdKlKaY4C5xOJwsWLODQoUO89NJLuN1uUlJSyM/Pp7u7m4iICLKyshgYGCA9Pf2iuY6klPT09OByuUjyhvM+Yy27RSVVSstoBtTxqEJiUXSsik6MYmeevoBpw7lER8aE8rW8Xi+madLR0cHBgweZM2fOhMvz/vdXd2MYJt/40MO4hjzse6OC3a8e5rlHd2AYJgO9Ll587E2SM+PIKUihrryNbz3yEUaGPNjDrETFnltThCmmmGzCwsJYtGgRg4ODtLe3U1xcTF9fHx6Ph2XLlhEbG0tCwtllB5/o3BEbG4vD4cDv90/I1ajrOm1tbad1Fum6HlqmrusYhoGu65imic1mIywsjIqKCkzTJCIigvDwcFRVxTRNampq8Pv93HzzzSd0M1qtVsLCws45I+98UFZWxr59+0hKSmLp0qU89dRTk1Z6ejr8fj/x8fHYbDaqq6svuqAKhPLBBwcH0TRtnKt6jM7OTgYHB1m1atV5/X2LjY2loaGByspKfD4fuq7T09ODzWajqqoKRVHOqCu8aZr09fXR09OD2+3G5XKFJgcHBwdRFIVZs2YRHx9/XGd0r9d7XnNapwgSFxdHWloa9fX1pKSkXBKT0mPYhkx8YYCET9+y/GJvzhkjhGDfvn1IKYmOjiYpKWlCYpuiKGRmZlJbW0tmZuYpvwdj36FDhw6dMnc4EAhQUVFBX18f06dPP+/iuV3T+Oi8xXx03mIAhv0+Kvu7ibLaiLLa+e/dz7Ojsw5OEH0FR0VSeYLSWYvFGPe8Ez3nZMi3uFv90jLa/Cr4T5ES85hnu0wbsWowwkBBEq146DfDAYEfDSs6FqHj9b/AL48cxK5YuDb5RhbE3kCYdvYNLS8nIpwOPnHvRgoXZrF3SyU/+vxfmL1kGvf+9tS5+FNMMcWFJyUlhSNHjpCdnT3u/u3bt59zZOKxTGhUPzAwwKZNmybc/be3t/eEg+QppphiYjgcjtDFnsPhCDVTGKOqqgpd1+no6CAtLe2CO1tM0+TIkSO0tbVhs9lQFIWZCblcn7OOPvcA2/sPUuGtp2mklZGAC4RBuKYSgZUkM4kZ/nyyHTkkpSWRkJAQGkAfmyuYkpJCaWkpBw4cYNGiRRN2n6mqwnf+9DGklLz8xF7iEp10/H/2/jy8jfO898Y/g50AAXABN3DfxJ0UtcuWLFm25dhxFqdpT+tsTZNf0+20SY6btKdtmuQk6duTxkl73mY7p2nSvmnaxD2J43iTvMmStYv7vhPcQYALCGLHzO8PGmNRpCSSAkVKns914RIFDGaeATDPPM/3ue/vPTpD55VB9j9Ywennm9h7fznP/subSKJE68U+vvX5/0CtUfHn/+fXSVBb6boywkO/vhe9QYkYUth6Yun76enptLe343A4yM/Pp6ioKO4iotfrxePxABAIBG5aebm9vR2/38/991+/oJzP5+M///M/bzouiFWD9ng8WCwWBEFgYWGBxMREysvLVxVTY9jtdkZGRrZFanuMpqYmmpqayMvL4+jRo6hUKrnI0WYzMTHB66+/TjAYlIuYrTWldrOIRCJ0dHSgUqnQaDQkJSURCoWWtSsQCNDW1iZ75G4mycnJ9Pb2cv78eQRBYHFxEY1Gw2OPPcbQ0BDDw8PYbLZVv69wOEwwGJQfXq8Xp9NJJBLBZDJhNpux2WxkZWWh1Wrp7e3FbDavek6iKCJJ0m0T2t/p5ObmMjY2xvT0NJmZ6/OEjHmYb0ZUnmE+imoRhIhEcfbmFNjcDCRJYmJiAq1Wy8DAADk5OajV6nUtRmRlZTE2NkZ7ezu7du1ads2FQiHa2toYGRkhFAoRCoUAaGxsXOHXHWtLzJc4FgF+uzHr9OzNeFvE/f6RD/KpM//Bm87BtxLsr25z7F+BldGpywVVQeCtdH/5GYza62WEwWqhY1FUaN6SUQUh1oClYwckHfC2J2yK2vuWoLpEGDU6IYqeCFm6OUZDKTwz/nNOO/8VVDYO2D7EwdQjGNQb8yi+kzjy7p1k2JO59HIbkXCUiy+3sftoBWrN9lmkUdgGKBGqW8qnPvUp/uRP/oQf/OAHCILA+Pg4586d48knn+QLX/hC3I6z5tHbxz72sbgdVEFB4eZYrVYyMjLIysqiuLgYh8NBSkoKU1NTXLhwAVEUsVgsjI6OxnWV5WZIkkRbWxuzs7OUlZWtKK5iNBr5TZudSCTCc889x+LiIkePHsVut8sFBDIzM2+a2mU0Gtm5cyfnzp2jv78fo9EoCy6xQXUoFMJsNlNSUrJi0js1NYU1TyIYncGSF2VPdjbj7kGe+IsDAHzgT/bgnQswvTCMoAZLqhGXy8Wz//gK40MzqNQCD/+XA/zvrzyDOcnIh/7kYQCikagyYFLYEgRBoLq6muzsbNrb2xkcHGTHjh1xPUYs2tPn89Hf309dXd2y10VRxOfzMTU1RWFhoeyJmZqaet19Li4uEo1GqaysJDk5GY1Gg1qtRq1Wo9Fo8Pv9zM/Pk5+fz/j4OOfPn+fee+9FkiTOnDnDoUOHbnqedrud4eFh3G73hiN244nX66W5uZmCggLuu+8+WeRNTk7G4XCwZ8+eTVsI6+7u5sKFC5jNZo4dO4ZOp+OZZ56hpaWFAwcObMoxb4Yoipw8eZLp6WkOHTqE1WqVi8VcuHCBw4cPs7i4yPPPP084HKa2tnbTBcbKykp27NghR1m/+uqr1NTUYLFYKCwspKmpiZaWFioqKlCpVCwsLDAzMyNHiF9NQkKCXMn8eosQ1xPhlEKDtxeDwUBSUhKTk5PrFlQ3E00wihiUEKISPm8A3R2SMTM/P08wGMTj8aDX6+V7wXoKuqnVaqqqqmhoaKCpqQmr1YrRaMThcNDf308kEiE9PZ3k5GT0ej16vX6FYDs7O0tfXx+Li4tkZmZSWFi4bWxg9GoN//vwb/KzwSZ+1HuRgQW3/JoggbiKmAqQkBBcVqgs9ohto1NFsegD1zmqhGqF0iGhZnX/1qVXhWURrHoib7VlqRFhSYNOeMsSQONlPJRMBBVzUSPJuDjt/H95euRfSdMn8a6s97Mz6TAG9eYV9ttqyuvz+T+v/3f+1+d+wree/AlPfPphHvvtlenFCgoKW8PnPvc55ufnuf/++wkEAtx3333o9XqefPJJ/uiP/ihux1nTaDU2YVJQULh9xCZlKSkpaDQaWTRNSkqisLAQj8fD3Nwc4+PjZGVlbbhq7XoJBoPMzMxQXl5+w8lIe3s7c3NzPPDAA9jtdkRRlCeha+1TdDodycnJzM3NMTc3J6d46fV6dDodZrMZp9OJx+OhoqJC9rzz+/2MjIwgSRJ2u10Wb9RqNQMDAwSDQVKzEsktTicYDPKFHz5BRUUFp06d4sj767j8ci+7Dpfhmpjj1WeuEI2I/PrvPcB3v/R/OfNCC//jh7+LbyFA64V+PvDJI7z004vkl2bQcqEfY6KeospsynfmY0k23fwkFRTWSXJyMllZWUxNTVFaGl8PM4PBwPvf/35+8pOf0N3dTTQalcWtQCDAL37xCwKBpQmc1+tlYmKChYUFGhsbqa+vXzU6NBJZKpKRm5t70+r2BoOBtrY2WltbqampQaPRyMLbjejv7ycxMfGGwu7tpL29HUEQOHDgwLLPZP/+/fzqV7/iypUrHDx4MO7HnZ2d5cKFC2RkZPDAAw/IomR5eTldXV2YTKYVXrehUIjm5mZcLhfz8/MkJSVx/PjxdUf6BgIBOjo6KCoqklP7Y1y6dImpqSkOHTokR5XZbDbq6upoaWnhueeeIzMzk3A4zHvf+94V798sNBoNGo2GUCiERqORra3MZrPctvPnz8vbGwwGkpOTKSgokCPHdTrdLV2Do6OjqFQqLJbt5et9N5OZmUlXVxeBQGBNwl80GmV4eFiO3t8MdMEoUUlCiIh31KKtIAhEIhF5XDg/P09ZWdm695OYmEh1dTXj4+OybcbIyAhms5n777//upGmoijS1dWF0+mULbO247WkVal5ong3j6WV8uqlc6gT9IT9IVq1fp6fGcIViBWlk9BqI+h0EVQqZIFTkiAcWfI7jYmcOda5VS0EYuhUV2eFSBhU4WXb32wtRxCWUv/FtyJYrx65q5BI1izijpgJSVrCqNELUdJ1HiaC8P8N/zPPjH6HgGglJ6GWMkspmYYMaqy16NXbQ+iOB2arkV1HKuhvH0Nr0PLK0xc59mt73zHesgo3QYlQ3XK++tWv8hd/8Rd0dHQgiiKVlZU3zb5bL0p+kYLCNiWWHqvVaolGo/T09JCZmUlycjI6nQ6bzYbVasXtdtPc3MzOnTvXFRGwUWKFcG6UfgtL1h9XV0vu7+/H7/djMpmYn58nFArdNEJLEIQVEXLXkpOTQ1tbG5cvX0atVpOQkMDi4iI6nY7y8vIVg3C1Wk1bWxvFxcUsLCywuLiI1+ulra0NgIPHq3jfh99OX/7dv3gfJnMCOr0Gt9ODSq1i0ePnO1/8OYsLS9WzT/zsIpIoEYlE8S8GEaMSWp2GnOI0/vDLv8Z3vvhzHv/EEY69f/cNz0VBYa2kpKQwMjJCX18fhYWF143mm5qaorOzU46Cs1qt7Ny584ZiWSxKdWxsjPn5eVpbW+XJgSRJ1NbW0t3dTWNjoyxCtbS0MDY2xmOPPSbvO7ZwEvOL9Hq9Nz0vg8HA/fffzwsvvMDc3BzZ2dnytX2jqPZIJCLbj2w1oigyNDREdnY2BoOB0dFR3G436enpzM/PY7Va6e3tXbV/utXjnjlzBp1Ox5EjR5b9Jvbt20cgEODKlStYrVby8vLk186dO8fQ0BDJycnYbDZGR0dpbW29ad97NaOjo5w6dYpwOEx7ezu7d++msrISWPoNdnV1UVpaSklJybL31dfXk5qayquvvsrc3Bw2m+22ialXs2PHDnp7e7l48aL8vVksFvbs2SP/bo1GIwkJCXGdKEuSxPj4OHa7/bbcvxWWSEtLo6enB6fTuexauB4Oh4ORkRGSkpLk30e8ObC7gDde7USDRGAxgNlyZ6RNGwwGPB4PGo2GtLQ0xsbGNpwlkJKSIo8tw+Ewvb29OJ1OnE4nVqt1Rf8uSRKdnZ24XC7Ky8vX7Nu6VQSDQdra2khS6yEE9twCHi8t5S8lCWfAy2IkyHlXH087LjK06JIjUiNRAVFUwVWGAfnWGVIS/Dc83nJBFbJ1s/LfkhTb09ufl/CWzcDViNf4sMYEXoBk9ZKgChKLUT16rQ+DKoJFHcQTNeCN6rFq5hj1n6dpvhUVkKjRcl/6UY6m3U+GYftEiN8K73riHt71xD18aNdfIkkSmfk2qvbevsxBBQWF63P69Gm+973v0d/fz9NPP01iYiL/+q//SmFhIYcOHYrLMRRBVUFhm2IymTAajTQ3N5OSkoLb7WZqaop9+/bJfnNarZa6ujqamppobGykrq5u0z3yYmldNxNDYz6IsCSkjI2NUVJSgs1mo6Ghge7u7rhUBTeZTOzZs4e5uTl8Ph+Li4ukp6eTnZ29qvedzWbDbrfT39+Px+NhZmYGk8lEbm4u2dnZKwSOB39tr/z3X/zjb+OemicrL5Xf+fxjNJ3t4bEP38uM08OO2jz62kfpaxtlwuEm6A8z4/TQeKYH18QcZ19qUQRVhbiRlJRESUkJAwMDTE9PU1dXt6zQzdTUFGfPnmVhYQGtVitfrzEv5l27dl1336IoEgqFqKqqoq6ujrGxMSRJQpIksrKysNvtJCcnMzs7S3V1NTqdjt7eXt58800uXLhAdnY2ly5dYnFxEUmSSEtLIxqN4nK5KC0tvem5paWlodPpiEQiPPDAA7z88stcuHBBvk6vZX5+noWFhTUXztxsZmdn8fv9FBQUEIlEOH36NMHgyirMTqczroJqe3s7brebI0eOrBB8YlWxR0ZGmJqakkWk6elphoaGqKysZO/epb7utddek9NuCwoKEEVR9qZdTbCempri8uXL6PV6jh8/TlNTExcvXmR0dJSkpCQGBwcxmUzs379/1Xbn5eWh1+uZm5u7aQTzZqFSqTh8+DDPPvssr7/+uhyhG4tC3SwWFxcJh8PbJrL6nYJarSY1NZXp6embCqqxjJe8vDwKCwuJRCJ0d3eTnZ29pir2a+W//e2v03H0b5h1eviz3/xH/unUX8Zt35uJRqNhcXGR4uJiFhcXSUpKiotdh1arlW1iuru70el0FBYWyq9LkkRXVxcul0su9radiUajtLa2yh6wJSUlZGdnIwgCakEgy7g0Xi6xpPHhooPMhub5k4bP4/LrcPtNhCJqVCqJJIMfm9GLTn2jTK8lO4CrxVEBiQzd/Nv/FyAqqZa9xyCElu0lIsVEXJa9L/avRogJtgJBSUNUElAhYdEE8EQNhCU1AVGLSR1C1ArMhI0sRMK8PHmSl6dO8ETeR7g//dg6PsXtzfs+cYSuhiGuvNZJwBdk95GKrW6SwlYjCUuPu5ltfH7/+Z//yUc+8hE+9KEP0djYKI/FFxYW+NrXvsbzzz8fl+MogqqCwjZFpVJRX1/P5OQkAwMD8vNdXV3k5uZis9kQBAGDwUBeXh7nz5/H4XDw7ne/+6ah7DMzM3R3d8vHyc3NJTExEbPZfMPVfUmSWFxcvKlo6/F4mJ+flycqGo0GQRCQJAmDwRD3KJ/Y5Gitk9LS0lKysrJkH9aJiQk8Hg+CINw4ck+vIStv6RgHj1dz8Hg1AJ/9+m8t206SpLdE1RDZhelkF6ZRd/DmQpKCwloRBIGcnBxsNhutra00NzdTX19PQkICoihy6tSppWJxFRXU1dXJguobb7xBa2vrqmnZMWJFg8LhMOnp6aSnp6/YprCwcNnktri4mMnJSXp6euju7sZisVBdXY0oigwPD+P3+3E4HOtKc49djw8++CA/+clPGBsbWyGoRiIRXn31VdRqNYcPH17zvjcLURRpaWlBEARyc3Pp6ekhGAzy4IMPAktCeEygi6dH6PT0NE1NTeTk5Cz7Xq4mEokgSdKyhaa+vj7UajX19fXyc0eOHOH555/n9OnTOBwOxsbGCAaDCIKAVqtl9+7dsnhx+fJluSDN/v37SUtL46GHHqKzs5MrV67IkWUHDhy44fkGAgEikciaogU3i6SkJPbt28e5c+fkYoibzdzcHIIgbMsU5budtLQ0Ojo6bpr2PzAwgEajkX+bLpeLyclJnE4n5eXlq/aPG8GQoOfJp57gv3/oO4wPuXms9EkESUQVDHH8N/bzh9/4SFyOE29iCyG1tbWMjIysunh0K8QWCq8ujCyKIj09PUxNTVFZWbntxdRYYa1YtHtOTo6cvXU9knVW/rD0k/y/fd8l1ei74bbLWfJOTVCFlz1n182hEd4WYZciVK8ehwuYVMFlr89Gjcv2ca0n6/JhvEBIUpOgiqATohhUEQKiBn9Ui0EVxqIN4o/q8ItagqKEViXxY8e/EBQDvCvz0XWc3/blN/7wIa6c6uQbf/KvvPL0BX508ctb3SQFhXc0X/nKV/jud7/LRz/6Uf793/9dfv6ee+7hy1+O3/WpCKoKCtsYrVZLbm4uBoMBURRRq9WMjIzQ3t5OYmIilZWVGI1Guru75QitmLByregpSRJzc3M4nU4mJyflKILp6Wl6enoA0Ov18kDvWsHT7XbT2dlJJBK5aRRRTFCIpegaDAYyMjIYGRnBZrNt2GMrXgiCsCyyJDMzk9HRUQYHBwmFQnKq6q3s357/9gD/6HuvHw2ooHArGAwG6urqaGxspL29nfr6eq5cuYLP5+P48ePY7fZl2x84cICRkREaGxu5//77r7NXqK2t5cKFC0xMTKwpajAW4VdXV8fExATFxcWygLZnzx5OnjyJ2+2+yV6W7y/mvRrzTZ6dnZUjJWFJIDx58iQej4eHHnpoSyvYxxgdHWV4eFgWsRMTExEEgba2Nh588MG4F1qamZmhoaGBsbExDAYD99xzz3W37evrQxTFZYLrxMQE6enpy9oVE7FPnz7NyMgI6enp2O12wuEww8PDnDt3btl+7XY7x44dW7aPiooKuY9fiw2DJElEo9Hb5gV+PcrKynC5XLS1tRGJRNizZ88tf2dOp5NAILBqgZy5uTmsVuuq2RQKm0tKSgoqlYrp6elVI99jqNVqwuEwCwsLJCUlMTs7i8lkwmQyyYJsvBYCiiqyMaWYWfT4iUaWov+EqEjnpf647H8ziNk7mUwmdDodMzMzDA0NodPpyMzMvGUblvHxcdm7GJYihjs6OvB6vVRUVMRN0N4sfD4fLS0tsve42WxecyHZ/al7CER/m38a/BEA0k3NCpdEz0RN8CqxUyJJ7aPQ4Fy2pcjV0acSGkR0LLcImI0urwOgFSJvH0mKRbC+fRxJEuTXTOogAVFLFIGwpEKLiFkbwB/UISEgIqFG4unRn5Kuz2RX8t0xTq7aW8Shd9cz3D3Ot/7b/8cff/2JbWFFpLA1CNLS425mO59fd3c39923slCcxWJhbm4ubsdRBFUFhTuAq/2obDYbc3Nz9PT00NDQwL59+1CpVKjVavbv309nZycXL14kNTWV3NxcrFarXP3U5/NhMBjIz8/HaDSysLBAbm4uGRkZRKNRJicn6e/vx+fzUVpaKg8CnE4nnZ2dpKSkkJeXd9NomqmpKURR5Gc/+5lchCQ3N5fJyUkuXLiAIAjbKsUxFk0WDoeZnJzc6uYoKKwLnU5HVVUVly9f5vnnn8ftdlNaWrpq0biY/3LMC/l6lJWVceXKFQYHB9eVhm2xWFbtHzIzMxkbG1uTdzIsCcVXV1KPtcfhcFBQUABAc3MzTqeTQ4cOrRCOtwqHwyFbscBSOvs999zD2bNnOXnyJAcOHNhQmr/T6eTChQt4PB60Wi0ajQa1Ws3c3BxarZaamhq5eNj18Pv9qFQqeTHJ6/Xi8XjYsWPHim0NBgMPPfTQiudjRWOuJjMzc9XjrmcSmZOTQ0dHhyyibyUHDx5EpVLR1dVFX18fdrud0tJSsrOz1z0xDoVCvPHGGxiNxhWetLFCPvn5+fFsvsIa0Wg0JCcnryqoSpLE1NQUU1NTckFMr9crj6diVeQNBgMDAwMkJSXFJcrYmmLix2f/knMn2oiKIskpiRCNUlK7PX8jkiThdrtJS0tDEASSkpJwuVyMj48TCoUIh8O3/PuORCJyhpPb7aarqwuNRsOuXbviarmwGfj9fhoaGuR+zWw2U1tbu65+5Ej6IdINNn46/H/p8w0gSALSMgXj7b/1qggGVeQtMXWpcFWqZoFy4wSqq2IkopLwlqD69vuTVD5ZhJUkWBANhK+RCbTXCK4L0asXwJYHYajldkkERS06TZAEVRiNECUiqYiKAmq1hCTBN3u+jYF6svXZZCekc096IVXJW2P/cqsYjHo+8qfv5ncOfIH+Fgf3P76XukNbF0CioPBOJisri76+PnneEOPMmTNrXthaCxsSVPv7+/nnf/5n+vv7+fu//3vS09N58cUXyc3NpaqqKm6NU1BQWJ2kpCTKy8tpaGjA6/WSnp7O4OCgLH643W7cbjczMzPA0qDXarXKA1CXy0V7ezsGg4FwOMzExAQlJSWUlZVhsVjkYg1FRUVEo1EGBgZIT0+nvLx8TQPBRx55BKfTycWLFxkcHKS4uBiTyURVVRWiKJKYmLgmUeV2YzabcTgceL1eNBqNUiRE4Y4hMTGR3Nxczpw5w86dO9m5c+d1tzUYDExPT+Pz+a4b1alSqcjIyFghnm2UWErm9PQ02dnZN93eZDItq6hdWFjIlStXCIffTmMcHR0lLS1Nrhq/1UQiETni8+p+MuYbe+HCBZ555hnKy8s5cODAuvY9Pj6O2+2mpKQESZIIh8OEQqE1CakxcnNzaWtr4xe/+IWcMaBWq1cMNG/E1anP8ST2ecWKMW4lKpWKgwcPUlpaSk9PDw6HA4fDQUJCAvn5+ZSVla1JFI8VCfP5fDz88MMr7nkTExOyL7HC1pCenk5nZ6dcGCzGzMwMXV1dsle1zWZDr9fj9XoJhUIkJycjCAKFhYXMzs7S1dXFnj174hKJpjfo7pislkAgQDAYlK+Hq62Xenp6ZJuWW/lcCgoKuHz5Ms3NzczPz2Oz2SgvL497tH+8kSSJlpYWWUzNycmhqKhoQ59FhaWcv6757/S6+3hx9CQj4hjzkXkiUpAoYfSqKDohgiBIb6XxC1jVPrL1s6RqvAjCkkgKS5Gp4lWRqQDJqkX0qshb7YawpGY8knT12aAlwrVOXa7Icnsx1XWEXvEqj0WjOoQnkoCEgCSJCALo1REGF3ro9g7h8Rn4eqsOFaDTqKlIyuRDRXt5V3YFOvX2/s5jmJOM/Ok//jZf//1/5m9//wd849knySrYWKE2hTscCW4aWH6ns43P71Of+hR/8id/wg9+8AMEQWB8fJxz587x5JNP8oUvfCFux1l3z3Tq1CkeeeQR7r33Xt544w2++tWvkp6eTktLC//n//wfnn766bg1TkFB4fr4fEueSh6PR56ElpaWyhMAURQZGxtDpVJhMpmwWq1y1EVfXx8pKSnU1tYSCoXo6+ujp6cHo9FIVlYWi4uLnDlzhmAwiEajkSN01up7ajQaKSgoYGxsjP7+fkZHR8nJydlw5dfbRSza4fLly8CSZ1dxcbHib6dwR5CVlUVeXt5NBbKKigoGBgY4ceIERqMRr9fLu971rmXi6sDAAHNzcywuLt7UY3AtxCKYXC7XmgTVlJQURkdHZcsBUVzyfotNRgOBAHNzczcUjm8n8/PzvPLKK/j9/lWLL5WWlpKfn8+ZM2fo6+tbVyp5rKgfLFWj32iKa3p6OseOHeO5555jbGwMvV7PBz7wgZt6bm8mPp8Pp9NJKBRCEIQtT/m/GpvNhs1m48CBAzgcDvr6+ujt7aWrq4vk5GSKioooLS297rXR1NSEw+Fgz549ZGRkLHtNkiTGx8flAmwKW0N6ejoej0e2PbLb7UiSxPDwMBaLhbq6umXjnpmZGVQqleznKQiCHD0/Ojq6pR7AW8Hi4qL8tyRJyz6r7OxsxsfHcTqdq2ZLrJXExEQyMzOZmpqiuLh4VUuq7Uhra6ucZVFTUxOXrKySlGLes6BheHgYSZKora1lPOygceoi7oADvXWOQLSfFM0cRvXbBaYkCUSEq9L8lxQQFRLJqkUMV4mpIUnDcDiVKDEbEgk1Ivpr0v1no0Yi0tv3MOGabd6OgF2ut6hlH1eJqCSgEZaiVJP1Aab8OizGAFFRIBjWEIhEaHaP0TQzyj/1nuWfD32YFP1yG4Ltyr4Hqqk7VIZz1I3Vtr0jqRUU7lY+97nPMT8/z/33308gEOC+++5Dr9fz5JNP8kd/9EdxO866BdU/+7M/4ytf+Qqf/exnl6Va3H///fz93/993BqmoKBwYzIyMvB4PAwNDTE5OYlWq6WxsRGj0UhGRgZms3nZwNPv93PlyhUikQjp6ely1JROp6OsrAyn00lDQwM7d+6UJwvZ2dmUlpZuOBJg7969TE1N0djYeFMD/u2AwWBg586dcsGD1tZW2Q8xLy9P8blT2NYYDAZUKpVcafl66PV6fD4f8/PzZGZmEolEePPNN5eleF+8eBFJkjh48GBcBB+NRoPRaJSj5m9GTU0N/f39NDY2riqoBoNBJEnaFimfoijywgsvAPDQQw9dN+IwZs3gcDjo7+9fk4/0+Pg4r732GgD33nvvLfsF5ubm8hu/8Rs888wzzM/P87Of/YzHH398SywTAoEAv/jFL+Sq1/v3799WgmoMlUpFQUEBBQUF8gJkf38/V65cobGxkczMTEpKSigoKJB/n0NDQ3Lxt+rq6hX7nJmZwe/3U1GhVIHeSgRBoKSkBEAWVUVRxOPxUFtbu0K4m52dJSkpaVmUYWJiIllZWYyMjJCTk/OO8kuMFaBqbW0lPT2diooK+TMzmUwkJyczPj5+S4IqLC0kFRQU3FFZQzF/voMHD67qn7weYpZco6OjBAIB8vPzmZ+fp6WlBYASfQ1Hcx5Zsq6KLuAOtuKPOJkOtDI8d5qIao6rU/J1REhUBTEIb2d8RCWB2aiJ6aj5LTF0SQZVI5IghJbZAYgITIaSrmqhhFH19jaCAH5RK796deSqsExeXRJ3BQEM6rdFXZMhSDCsBSTEt0Jru+edfPjUj3j62CcJR0UsOv22F9b/8ge/u9VNUFB4x/PVr36Vv/iLv6CjowNRFKmsrIx7IMG6VZLW1lb+7d/+bcXzaWlp6yo4oaCgcGsIgsCOHTvIy8vjypUrzM/PU1hYiM/nY3R0lEgkwo4dO8jMzJS9pyKRCGVlZSsm/Gq1msTERILBIGazGbVajdVqZWBg4JYmfDqdjqysLAYGBm71dG8biYmJnDlzhqGhIbKysigqKmJkZITJyUlqa2vlirMKCtuNmD/mjdLqRVHkypUrJCQkcPToUaqqqmhvb+fSpUv09/fL6fN6vR6TyRS34nEejwe/37/m6ye2iBObQMcE1dgESqtdmqxdbQGwVYyNjREIBHjwwQdvmr6dkZFBSkoKHR0dN/xsA4EAfX19NDY2YjabefDBB+M2AExJSeHjH/84HR0dNDc3c/LkSWpqati5c+dtFYMuXbpEJBLh4Ycfxmw2b2mk7FrR6XRUVlZSWVmJx+Ohu7uboaEh3njjDc6ePYtGoyEQCLC4uEh+fj6HDh1adT+jo6OYzeZtsSDwTmc1UdVut69q6xAOh1fNWMnJyWF8fJzJyclt4+d8O7h64W56ehpgmahqs9nkYni30reoVKo7SkwFOHToEIIg3LLoF7tn+3w+0tLSqKysxGw2Mz8/T2JiIikpKSQlJb19b1SbyTQuFScstLwf43QbgcgMpRV5iKKPOf/rzAXOsxAexB+ZJySBRzTgERPesgtYQoWEVoigJbpMTJWA/kA6AWn5QuvVEbFRSWAx+vbrWuFtK5erI1evJia6CgLoNCJqVZSo+HaUrIREv9dF9b/9HWJQQ5E1hc/vO8LDBaUb+lwVFBTeORiNRnbv3g2wKQsx6xZUk5KSmJiYWFYlFqCxsXFNaXwKCgrxJVbZORgMygNOSZLo7OxkcHCQnp4eEhMTqa+vZ3JyksHBQVJSUlasmCcmJhKJRJicnKShoQG/3x+XAezc3Ny2jDq6HqdPn8bhcLBz5065eEBubi6tra20tLRQX19/xw3sFd455Obm0t7eLqfKX0tDQwMOh4P9+/fLnucVFRU0NjYyPT1NMBiktbUVr9cbV4uOpqYmVCoVtbW1a9re5/PJVZzhbW/NWJR4bHIeE1q3kr6+PrRa7ZqFlMrKSs6cOcPExARpaWm88MIL+P1+du3ahdfrZWRkhJmZGSRJIj09nQcffHBT0sIrKyvZsWMHb775Ji0tLWRlZd02P09RFOWFtjfeeIOSkhJ5sHunYLFY2Lt3L7t372Zqaorh4WEWFxfp7+9Hr9fzwAMPrCoieTweZmdnqays3PYRVu8UYqKqwWAgISFB9ny+Fr1eL1drvxqj0YjNZmNkZISsrKx3zPcaWyAzGAwUFxfT0dGBWq1mx44dCIKA2WxGkiQWFxffcYsH8Vqcivmd79q1Sxbzp6enaW9vJykpidzc3Bv+3kxGEwuTC1h1BQAkGyqBPwAgKoboWXiZJvcPUYsTwFLMqFaILjmtXiWkCsKSt+pAMB2fuHz+YFEH0LwliEoSeCIGro6IjVkKCAIEo1dLD29Hq0rX+DCqVRJR8a1tluprIUmg0kcRw2oG52f51Mlf8JsFtfz+nv3kJyfd5JNUULj9CICwjT1G48F2v9v90z/9E9/85jfp7e0Fliy4Pv3pT/PJT34ybsdYt6D6xBNP8PnPf56f/exnCIKAKIq8+eabPPnkk3z0ox+NW8MUFBTWjiAIy0Q+QRAoLi5mYGCAqakpvF6vHFkxPj7O2NjYiup2WVlZTE5OytGuJpNpVS/A9eLz+YhEIszOzm6ouvXtxul0kpeXt8yb0WAwUFtbS1NTE83NzdTX1yu+dwrbEpvNht1up7u7G7VavSxFfGhoiLa2NkpLS5cVkBRFkUgkgs/nY2BgAK/XSzQajVuxJ6/Xy9DQEDt27FjzYkTMMzS2UHttyn+s0MdWFyZxu904HA6qqqrWPIGO9cknTpxApVIRjUZJSEjgzJkzCIIg+1sXFRXJ9iubhUajob6+nsHBQfr7+8nIyLgtUaoqlYpjx47hcrlwu920trYSDofZt2/fHZcyrVKpyMrKwmw289xzz2G1Wnn3u9993YXEWIGr7e4p/k5DEARyc3NvuI3BYGB2dnbV17KysmTfzOsV+7sbOXjwICqVCq1WS1lZGV1dXWi1WoqKikhMTEQQBGZnZ99xgmo8kCQJh8NBSkoKarWapqYmRFGUbX18Ph+XL1+murp6ReR0OBxGrVaj1+tli5xrhVe1SkeF9VEqrI8yG+yjZebHDC28hEpYvlDpFfVMhy3MRY2wrKCVQKI6gOmt6FRJgqikYj6SIG+ToArLRbGikuoqKwBBjkqVJIiIN7fUEgQQVBKoQBIlkAT+o6+FXzZ0YVJrCYYjPFZVzhff/QA6xaJLQeEdz1/91V/xzW9+k//6X/8rBw8eBODcuXN85jOfYWhoiK985StxOc66ZyJf/epX+e3f/m2ys7ORJInKykqi0ShPPPEEf/mXfxmXRikoKNw6er2eiooKCgsLOX/+POfPnwcgLy9v1cIJVquVgoICzp49S2Zm5jI/xVuhsrKSxsZGXn75ZY4ePUogEJAf4XCYlJQU7Hb7thEozWYzY2NjTE1NLSskotfrqaur48KFC2uuVK6gcLsRBIHS0lKi0SgdHR3Mzs5SWFiITqejt7eXxMREeVARQ6PRUF5eTldXFyqVCrvdTjAYjFu04uDgIKIorjk6Fd4WTGP9wlYLqh6PB6fTKVe5j7VjYGAAlUq15uJYMQ9Oi8VCQUEBCQkJ2O12MjIyGB0dJTMz87ZHwFssFvn7X1hY4P77778tbcjNzZUFrEuXLtHe3o7JZKKmpmbTjx1vAoEAL730EtFolEceeeS69gWLi4u4XC7KysreMVGMdxMGg+H64tRbAo50bajdXc7V2U6ZmZmEQiEGBgaw2+0YDAYyMzMZHByUo3gV1o7H45Gje69cuYLBYMBisZCYmEhRUZFcG8Htdi8TVBcWFmhqaiIrK0u2ZQiFQjf0ck3Wl3Ak66/Zmfr7/HLsu/QtNBIBwpKKsKS9asslIVWNiFkdJEG9ZLsT81adCFlkD1YB5Nfh6sjVpddUV3muzoffvueIEoQjVwmiyy414e3/CyBpIBSNEo6IqET4vy3tDEzOkJdg4RPH9lKcmUooEsWov/ocFBRuE5Kw9Lib2cbn953vfIf//b//N7/1W78lP/fe976X2tpa/ut//a9bJ6hqtVp+/OMf8+Uvf5nGxkZEUaS+vl4ucKOgoLC9MBgMVFVVIYoiJpPphj51BQUF+Hw+JiYmmJmZISUl5ZaPX1FRQWpqKi+88ALPPffcstcEQZAnJrt27drSibQoikxNTWG1WnE6nXR2dq6ozGwwGNBoNMzMzGA0Gu+IiFuFdx6CIFBeXo7ZbGZoaAin00lycjITExOUlJSsGgF44MAB2eKis7OTlpYWIpFIXARLp9OJ2WxeV9RWrO9xu90YjcbrCqq3o1Dc1NQUL7/8suzXmpWVxeHDh+nv76e3t5ekpKQ1f07t7e1IksR73vOeFf1rQUFBvJu+Zg4cOEBqairnz5/nV7/6FY8++uhtjbLbu3cvbrebzs5OSktL7yhblVAoxEsvvYTf7+f48eM3vC84HA70ev2Ke4vCnYHBYCAajRKJRGQf5xixiu53ksXRZpCdnc3Q0BBTU1Pk5+ezY8cOIpEI7e3t5OfnY7FYsFgsW55dsFmMjY0xNjYm20jcyjhRr18qvDQ5OUlGRgY7duxYds8bGRlBp9Mti6z2+/20tLTIY1pYWni89vd6Pay6dD5S+AUWwvOcdj3PG9O/QpAiSMR8VaOY1CF0QkSOPBUECElqpkIWIpKaWCq/VeNHLUhydKo3EhN0BdRX+apGRQFveGnxVJLAH9Qu83ONIUkgRYS3dh/zI1i5TdPoBJ2Lk5zvcSCGRLyBIH/46D2oIyCKEo/dU0nn0BSluWnkpCet6XNRUFC484hGo+zZs2fF87t375bnEfFgw3ez4uLiuKUDKigobC7rSS2sqKggHA7T1dXFwYMH4xJFk56ezmOPPcbi4iIGgwGj0ShXJHe5XDQ3N9PQ0EBycjI5OTm3fLyN8OyzzzI7O4tKpSInJ4cDBw6sul1ycjJutxu3201RUdGq0b4KCluNIAjk5OSQkZHB0NAQXV1daDQaduzYcd33xAS0yclJ+fqMBzMzM+uOTEpNTUWn09HX10dubq4ssHk8HjIyMmRxc62TxI0Qm5C++uqrGAwGHn30Uaamprh06RI/+9nPkCSJrKws9u3bt6b9RSIRurq6yM7OjstiVbwpLS3FarVy8uRJXnzxRR577LHbmjlQV1fHyZMnefrpp6mrq7sjIlUjkQgnT57E4/Fw7NixZRYb1+L1epmamqK0tPSOszVQWCImls7Ozq74rv1+P3q9/h3/3arVajIzMxkaGqK3t1eO4Fer1YyMjBCNRtHpdNTX19914rPX66Wvr4+UlBQikQitra3U1NRsWFQ1GAyUl5cjSRIZGRkrxuPhcBij0bhMnJ6YmCAcDlNTU0NraytjY2NkZWWt+3dp1lp5NOu3eCTzNxn3d3Le9Z/0LZzl6iZIEixGdXiiBgLi2/diFRJWTQCNSpQjV6eCyyNXr073nwsZkFAtCa+igDcQE17fLlQV+zcaVkP0bTFVHVgq/BVzKRAAlQiiJDHvCyBElgTdbz9/DrVPQgX86PmLBP0RtBo1e0qyCQTCPLSvjP/7XAPve3gn3c1jTE97+O9//h7ePN2N3xfivzxxkOnJecLhKAXF1+/nFRSWIbFC9L/r2Mbn9+EPf5jvfOc7PPXUU8ue//73v8+HPvShuB1nTYLqZz/72TXv8NoGKygo3FkIgkB+fj5NTU34fL64VbVPTU0lNTV1xfPp6encf//9PPfcc7zxxhs89thjaDQaRFGURR23283c3NwyYSXe+P1+cnNzOXLkyA0jJyorK5EkiaGhIQYGBgiHwxQVFSnpmwrbEq1WS2lpKYWFhbS2ttLR0XHDCV4oFGJqaipulap9Ph+Li4vLPFvXgkajobCwkL6+PgKBAKmpqSQmJjI4OEhBQQHz8/PAUtG7q1NtJUlCrVZjs9lu6Zr0+Xz88pe/JBAIYDabeeSRR+So9IyMDLq7uykqKrqhgHY1oihy9uxZgsEg9fX1G27XZpOens6xY8c4efIkzc3N7N2797YdOysri/e///2cP3+ehoYGcnJytnUWgCiKvPrqq7hcLu67774b2sBIkkRfXx9Go/G2Ff5SiD+xquoDAwOkpqbKfc/MzAyTk5M3zAB6J1FaWkowGOTKlSuoVCpGRkYoKipi9+7dSJJEe3s7DQ0N1NTUrPD+vFORJInu7m4SEhLk+11bWxutra0cOHBgw4tTN4pmz8zMpLOzE7/fL4vT6enpOBwOotEoRqMRn89HZmbmho4NS3OCbGMlv5ZXiS8yT9PsWc66X8bhGyciqd4SSZfQChEMqgh61duRXxFJxVTw7chVAdCqonJ0qz+iwRUwLUW5RtTMLyYgSUu2AEsNWPpHkkAMqSCsRoOaCCLpehMH0vNQSwLPt/UAUJqWijQXxS362F+Sy2tN/agEAa1KhShFEAF/KIIKCEeinG8bRhWF8dFZ5lyL/OAnbxJ2LkWb/+u/vsmJXzW91QD48fdeRxQlPv579/P0D89Qv7+IIw9V8dpzzXzwtw9RXpdLR8MwReV2jIl6BjrHychNYcLhxmjS41sIMDbk4r531+HoneKFfz/P+z9+GINRzz9+4f+y/4FKCkozuPR6Jw/9+j5mnR5Ka5WgDQWFW+Gf/umfOHHihBwodf78eUZGRvjoRz+6TOO8FQ1zTYJqY2Pjsv9fuXKFaDRKWVkZAD09PajV6juuQquCgsLqxERUr9cbN0H1Rmg0Gh544AGeffZZnnnmGbmiN7xtCxDb7sCBA5SUlMT1+OPj44RCIUwm05rS0ARBoLCwEK1WS19fHwsLC5SWlmI0GmURx+fzEQgECIVCRCIRzGYzZrP5HR+9orA1aDQaamtraW9vp7W1leLiYux2+wrRUafTUVVVRXt7Oz/5yU+oqKhg165dGz7uwsICsLFI0qqqKnp7e7l48SLFxcWYzWYmJiY4c+aMvOAyMTEhpzVejc1mo7KycsPXW0tLC6FQiP3791NYWLhsISc5Ofm6EezXo7e3l4GBAWpqara9j2BWVhZZWVkMDAywe/fu29pnWSwWjh49ytNPP83ly5fj5uUdb0RR5I033mB8fJyDBw9SWFh4w+1dLhdzc3PU1NQo94A7nJKSEi5dukRPTw8qlYrZ2VkCgQDJycnyvOidjiAIVFZWMjMzQ1JSEn6/n97eXubn53nssceorKzkl7/8JRMTE+zdu5f8/PytbvItIUkSg4ODLCwsUF9fL1/jJSUlXLx4Ea/XuylZCTabDbVaTWdnJ8XFxVitVhITE7FarYyNjZGdnS1b7sQDo8bKPWmPcE/aIzgDk1yaeZWm2dN4ItOoBRH1VeXM/VENCxEDvujbQrKAhFYlLhWXQsCiTSNbV4UQ9dDimiN4VQau8JZVamyI8sGCej5Zei8nhvrwhILsycjmcE4Bqrc2+KuHj7EYDJKdZJWfC0ej/KSgCZdnkYKUJP7nj19FkiSSEhKYnfeh06gptqfgXQzy3sPV/Py5Bt57vI7mC4O4XF7uP1rBqZNtRCIiVosBUVw6vwtnevAuBDj9cgcNb3Tj8waZcS7w7t/Yyz//3QtU7S7k4Q/u4ak//xkZ2clMjc2CJKGSJERRwpZp5eTTlzh3sg2tTsOO2lzaLg0wNjiNyaRlpNfJK09fxL8Q4NN/9wR7j1XG5ftT2AKUCNUVfPGLX+RLX/rSsucyMjKYnJxc2p0k8aUvfYnvf//7zM7Osn//fv7xH/9x3YEZsLSoFZvD9Pf3A0tZu2lpabS1tcnb3WpQ1JoE1ddee03++6mnnsJsNvOjH/1IjhyYnZ3l4x//OIcPH76lxigoKGwPYn5Li4uLt+2YiYmJHDt2jI6ODjIyMtBqtQQCASKRCMnJyeh0Ok6cOIHH44n7sa9cuQJAdXX1ut4Xsyd45ZVXmJiYIDExURZVr25nTBRWq9VyNEZJScltEasVFGKo1Wqqq6vp6+ujt7cXp9NJWVnZCq/MvXv3kpGRQV9fHy0tLUSj0Q1HKqalpWGxWOjo6KC4uHjNYlI4HMbj8ZCSkiIXtbLZbNhsNnJzc0lISMBgMCwbBAnCUurfzMwMHR0dtLa2Ul1dvW6f1UAgQF9fH/n5+VRUVKzrvdfD4/HcUQvPVVVVnDhxgl/96lfs2bMnbhHLayEm6jc2Nq4oDrhduHDhAkNDQ9TX199URBNFkf7+flJSUlbN0lC4szAajeTl5TE8PIzRaCQ1NZWUlBRSUlKUTJWrUKvVZGdn43K55AWovr4+GhsbGRkZIRKJUF1dzeDgIIIg3LH2SZIk0dvby/j4OEVFRVitVvk1g8GAVqulvb2djIwMsrOz4zruu/qe3tjYSHJyMgUFBQiCQCQSITs7e9MKqKYbMnm3/QnebX+CKf8wbZ4mmmYb6VkYJCSp3opIBZBQCxIqIYpaEJAAi8bCsfQHeVfmo2hUS1KEPxJmJriILxrm9YkeOucnkYAdlnR+LX8n6QlLovD/r3b1sUiKMYEU43ILCa1azUePvX3PfWR/BZIkIUoSjV2jFOfYsKe9/X197INvLZT+1r3ycz/5zz8mGomSlGzCbE4g4A9TWJTGd//uBXYdKGZy2M2rzzZx4P5ycgrTUKlVlNXlkpphAQmKK+2IUZHUDAsllXa6Gh0U7Mjk/R8/jM6g5dEnDmLLtDIzvUDVnkLcE3O88Wwj+gQNF19uJ82edEvfk4LCdqSqqoqXX35Z/v/V4/T/+T//J0899RQ//OEP2bFjB1/5yld46KGH6O7uXvfi0NUa5mYiSOssR5mdnc2JEydWqMRtbW0cP36c8fHxuDbwduPxeLBarczPz981aSgKCutlYmKC7u5uampqts0EsK2tjcuXL/P4448vG7DGg7GxMV555RXS09M5fvz4uiKIRkZGeOWVVzh06BB6vZ7FxUUWFxcxGo1ydXVBEFhYWGBubo62tjacTie5ublYLBZ5pUwRVxVuJ3Nzc3R3dxMMBiktLV01DVkURd588036+/v54Ac/uOF01v7+fk6fPs3Ro0dvWHhJkiQ5ddblcgFLxaksFgs5OTnrEkZnZ2dpa2sjKSlp3V6cly5doqOjg8cffzxu44A33niDqakpfv3Xfz0u+7sd9Pf309jYiNfrJTs7mwceeOC2RVdGIhF+9rOfoVKpePDBB7fNfQigoaGBlpYWqqqq1rTQMDw8zNDQEHv37r2thb4UNg9JklYtTHW34Ha75aKEOp1OLsi5XsG4vb2dSCRCXV0dfX19nDlzBkEQSExMpLa2ltLSUoaGhhgaGqK0tHTTxL/NIhKJ0N3dzfT0NGVlZaveR4PBIBMTE4yNjREOhzGbzWRkZMiBA/FAkiRcLhdDQ0NyIERtbe2WeHX7I37mwvOM+8dpmW9iIjCGP+pHp9KSokvlQOo97EyqRy1sfkHJ20UwEEZvuDv7gruZzdR8Yvsu+OpXUd1BRTY3ghgIMPQXf7Hmz/GLX/wiv/jFL2hqalrxmiRJ2O12Pv3pT/P5z38eWOpDMzIy+Nu//Vs+9alPrattfr8fSZLksdfw8DA///nPqays5Pjx4+va141Yd1Eqj8fD1NTUCkHV6XTKqX0KCgp3NuFwGJVKtW0KpwQCAVpbW0lPT4+7mApLC0UHDx7kzTff5IUXXpAHumtJz5yZmUEQBAoKCm5oF2CxWORBb1FRERUVFbhcLkZGRhgaGiI/P1+OLFBQ2GySkpLYs2cPfX19dHd34/P5VngBxwq09ff3s7i4eENBVZIk2eJCFJeqQyQmJqLVaiksLKSpqYnOzs5VBVVJkpienqa/v59gMIjJZKKoqIiMjIwN+87F0m87OjpYWFhY86q2KIpyIax4DrAjkci2TvUOhUL09/czMzNDQkICVqsVs9nMAw88QFdXF62trbS0tLBz587b0h6Px0MoFMLj8fDss8+SkZHBI488cluOfSPa29tpaWmhpKRkTWKq3+/H4XCQnZ2tiKl3EYIg3LViqiRJtLW1cW28jVqtxmAwYDAYSEhIwG633/Q37fP55H60qKiI1NRUzGbzsrFSfn4+4XCYvr4+kpOT75jrxOPxcPr0aaanp3n00Uev66et1+spKCggLy8Pt9vN1NQU/f39TE1NxS1jQRAE0tLSsNlsuFwuQqHQlo3fEzQJJGgSyErIZHfKxu2C7iQUMVVBgRUZpHq9Hr1ev+q2vb292O129Ho9+/fv52tf+xpFRUUMDg4yOTm5TOzU6/UcOXKEs2fPrltQfd/73scHPvABfu/3fo+5uTn27duHTqfD5XLx1FNP8fu///vrP9FVWLeg+vjjj/Pxj3+cb3zjG8vMXf/0T/+UD3zgA3FplIKCwtZitVoRRZGFhYVtEak9NDREMBjk4MGDm3aM0tJSpqamuHLlClNTU6hUKrxeL/fee++q24uiiMPhoL+/f0WV1etx7tw5NBoN+/btw2AwkJaWhiiKjIyMMDg4iNfrpaKiYk37UlC4VdRqNTt27MBkMtHX14ff76eiomJZJOj4+DgajWZFcaBQKMTExAQLCwv4fD55FfhqBEHAYrHIYmY0GiUYDMoDLFEUmZmZYXx8nJmZGWw2G9XV1SQmJsZlYSEtLQ2DwcDIyAiVlWvzIBsdHZWjduNJamoqIyMjhEKhDYvEsLR43drais1mo6KiYkP7CoVCtLe309vbi1arpbKykr6+Pqanp9Hr9YTDYVkUjxEOh2lvb6ekpGTTC+/MzMzw0ksvkZCQwGOPPUZzczMTExObesxr8Xg89PX1EQ6HiUajRCIRIpEIIyMj5OXlcc8999x0H6Io0tHRgVarvWFktoLCdkIQBAwGA8nJyeTn5xMKhQgEAvj9fgKBAIFAAKfTyfT0NLt27bruhBnAbDYzPT0tZ+usVmROEASKiopwu9309vZSW1u7rReWo9Eog4ODjI6OEolEEARhzcUJA4GALEpvxjgvJqwqKChsE95BHqq5ubnLnv7rv/5rvvjFL67YfP/+/fzLv/wLO3bsYGpqiq985Svcc889tLe3yz6q11o9ZWRkMDw8vO6mNTQ08M1vfhOAp59+mszMTBobG/nP//xPvvCFL2ydoPrd736XJ598kg9/+MOEw+GlnWg0fOITn+DrX/96XBqloKCwtcSKJ20X6wuv14tard6U6NSrycvLo7e3l+rqaiYmJnC73dfd9sSJE3JV3z179tx0316vl8nJSerr65cVuFGpVOTn55OYmEhHRwcNDQ1UV1ffMVEaCnc2giCQk5ODwWCgs7OTy5cvk5eXR0ZGBiqVCp/Ph9lsRqfTIUkS8/PzjI+PMz09jSAIWK1WkpOT5WglvV6PSqVCkiTm5uaYmZlhZmYGo9GIKIqcO3cOq9WKTqdjZmZGrkRcXV0d92JNsXPr7+9ndnb2hhXjY+1tb2/HYDDEPfX06kJ7GyH22fX19aHVahkZGaGlpYW8vDzq6+tv2E87HA5cLhc2m43R0VEGBgaIRqNkZWXh9Xo5d+4cgiBw8OBBysrK5MU0j8dDJBIhGo2SmJjIK6+8whtvvMG73vWuVaNtYynCt4Lb7eall15Cq9Xy8MMPY7FYMJlMiKJ4y2L0WhkZGeH06dNEIhHUarX8iPXV991335qijQcGBvB6vezatUtZJFO4o0hOTmZycpKMjAw5Wv1qgsGgbH1RX19/3d93cXExbrebvr6+Gy5qqdVqSktLaW1tZW5u7oZ99VYSiURoaWnB6/VSXFzM8PAwgUBgTe8NBAL09/ej0+nkCF8FBQWFu4WRkZFlY9HrLbZdnW1UU1PDwYMHKS4u5kc/+pEcrHntopokSRtaaIvNYWBp3v6BD3wAlUrFgQMHNiTQXo91j/CMRiPf/va3+frXv05/fz+SJCnFVRQU7jJUKhU6nW7NA8XNxufzyUJNvBFFkcnJSfr6+hgeHiY1NZW6ujq6urowGo04nc5Vow8CgQA2m41HH310Te2KCQHXm3ikpqaye/duWltbaWhoYP/+/XdtSqHC9sNms7Fr1y4GBwfp7u5maGiI3NxcfD4fkiQxNDTE5OQkgUCAhIQEioqKyMzMvOFv1Gg0Lps0hsNh3G4309PTBAIBcnNzN90/2G6343a7aW9vZ9euXfJCRSQSYWxsTG6X0+kkFArh8/k2xcfPYDAgSRIdHR0bSpu/fPkyvb29VFRUsHv3bhYXF2lra2NoaAiHw0FZWdmqwt3U1BSvvvqq/H+1Wk1+fj61tbUkJSUhiiJzc3MYDAb5s1GpVFit1hULWPv37+fMmTNcvHiR2tpaent7CYVCGAwGhoaGcLvdsii7EVwuFydOnECr1fLII4/IkbB5eXn09PTw/PPPy9FXNpuN0tLSuN8TmpubaWpqIikpiQceeGDD0bjT09OMjo5SUlIStwrbCgq3i5KSEnw+H62trezcuXPFdaDX66mtraWxsZG2tjZqa2tXvRa1Wi05OTk4HI6bTohjKerbZdx5LdFolBMnTqBWqzlw4ACCIMhj07Wg1+vRarWkpKRQXl6+ya1VUFDYFryDIlQtFsuGgrBMJhM1NTX09vby/ve/H4DJycllntROp3NDBUpLSkr4xS9+weOPP85LL73EZz7zGXl/8QwY2/CSuclkora2Nm4NUVBQ2D4sLi4SCAS2TZRAQkICwWBwTRFQoigyNjYmC55Wq3XFQD8QCDAxMcH4+Dijo6P4/X50Oh15eXns378fnU7Hnj17aGlp4dSpU/zar/3asn3EvP0qKirWPKHX6XRotdobek0bjUbq6+s5deoUjY2NZGVlrUihUFDYLEwmE9XV1SwuLsp2FrFrY2RkhLS0NDIzM7FarRtaKdZqtWRmZpKZmbkJrV8dlUpFVVUVDQ0NNDY2YjAY5MjbaDSKSqVCpVKRnp5Oeno6CwsL9PX10dvbu2FhcDXKy8txuVw0NTVhNpspLi5e83tHR0fp6Ohgx44d7N+/H1iyZbn33nvZvXs3Fy9epLOzk87OTgwGAyaTCZvNRnZ2thxx+4EPfAC3243Val0W/b4er+ySkhImJyfp6uqiq6sLWBJoo9EoSUlJWCwWmpqayM/PXxaFvxaGh4d58cUXSUpKWiamAmRlZXH06FEuXLjAyMgIsOS/NTAwwOHDh9ckekYiETo7OxkaGqKurk6uKB4IBDh9+jR+v59wOMzCwgIFBQUcOnRow1Glfr+f7u5u+TtQULjTUKlUVFdX09zcTHNzM/X19SuyZmKT4ObmZjo6OqisrFx1PJSYmEg0GiUUCt1QfIz50oZCobifTzzo7e3F5/Ph8/l48803cTqdAGRmZvL8888zPT29bPtYVlVycjImkwmfz0ckEiEhIWG13SsoKCi8IwkGg3R2dnL48GEKCwvJzMzk5MmT1NfXA0tz7lOnTvG3f/u36973F77wBZ544gk+85nP8MADD8jWgSdOnJD3Hw/WPVq8//77bziRujoSQkFB4c4kZizt9XpJTU3dcj+rvLw82tvbcTgcFBUV3XDbgYEBzpw5I/9frVZjs9nIy8sjJSWFc+fOyeen1WrJysqiqKiIvLy8ZZOBiooKOc21v79/mafi2NgYoiiuO2UrNTWVgYEBdu7ceV3BIRYxGw6H8fl8WK3WbWG7oPDOwWQyUVFRQVFRkVwx2Gq1LvNWvZPQaDTU1tYyOjpKNBpFFEXMZjO5ubkrJvgWi0X2yMvKysJsNsel/1OpVBw6dAi32013d/e6BNWBgQEMBoOcCnU1BoOB++67j8rKSkZHR1lYWJBF4ZjoWV9fj06nW7UC9Xo5dOgQlZWVjI2NkZ6eTlpamhylOj09zYsvvsizzz7LkSNHbugrGPMkValUtLW10dLSQiQSQa/Xr2p3kpubu2xxqbu7m8uXL/PMM8+wZ8+e64rfoVCIlpYWent7CQaDGAwGXnvtNQoKClCpVDgcDkRRJCMjA6PRSEVFxZr9dq93Xq2trWi1WsrLy7f83qmgsFFi/WZjY6Msql47brFarVRVVdHe3k5zczPV1dUrshZi17PX672hoCpJEqIobstrZmJigsnJSQ4cOMCVK1dwOp2UlJRgs9mwWCycOHGCvLw8UlNT5ff4/X5mZ2cZGhpCq9Wya9cucnJyFEFVQeEdhCAtPe5m1nt+Tz75JO95z3vIy8vD6XTyla98BY/Hw8c+9jEEQeDTn/40X/va1ygtLaW0tJSvfe1rGI1GnnjiiXW37YMf/CCHDh1iYmKCuro6+fkHHniAxx9/fN37ux7rFlSvTVULh8M0NTXR1tbGxz72sXi1S0FBYQvJyMjA7XYzNDQkV2XdStLS0khISKCpqQm73X7D6KecnBwyMjKYmpoiOTmZrKwsxsfHuXTpErAkFu3Zs4esrCySk5NvGGE6NTUFrPSBycrKQqfT0drauq4IpHvuuYdnnnmGN998kwceeGDVbc6ePQvAvffeS2dnJ6Ojo7c0wVdQ2Cg3qtB5p2EwGCgpKVnTtna7nYmJCRoaGrBYLNTV1cVFTFapVNjtdrq7u3G73csm37Akxp09exav10t6ejp2ux2LxcLCwoLsa309bDbbMg9aURSZmprC7XbHPb00JSVlWVRrrD9OS0vjkUce4fXXX+fFF1+kpqYGl8slp2rl5+czNzfH+Pg4c3Nzy4qYFRcXk5GRwdmzZ2ltbV028F2NsrIysrOzOX36NOfOnWN4eJjCwkLC4bDct4uiyMsvv8z09DQ5OTnU1taSnJzMm2++yeTkJB6Ph0AgwCOPPLLm38aNEEWR9vZ2QqGQ4puqcFeg1Wqpq6ujsbGRK1euUFFRsSKiPWaT1NbWRmNjI7W1tcvGaLGo+b6+PiwWy3VtYhYXF4lGo9tuAXl2dpaenh6ysrLIyckhJSWF3t5eampq5AUhgH379q2Ilvd6vVy5coX8/HylMJ2CgoICS1lXv/Vbv4XL5SItLY0DBw5w/vx58vPzAfjc5z6H3+/nD/7gD5idnWX//v2cOHFiw1rEaplx+/btu+XzuBpBurYs7wb54he/iNfr5e/+7u/isbstw+PxYLVat00xHgWFrSAYDHL58mUsFgvV1dXbImJgYmKCl19+mYKCAg4fPnzT7X/605+SlZUlb+vxeJiYmFhzOqooivz4xz8mLy+PI0eOrHi9o6ODixcvUlNTQ25u7pqrvL766qtMTk6uutLmcDh49dVX2blzJzt37mRkZISBgQHuvfdeZXKuoHAbkSRJ9l6N52Q4FArx85//HK1Wy3vf+175ug6FQpw8eRKXy0VycjJzc3OIogjAwsICZWVlHD9+PC5t2Gxi6VldXV0kJCRQWlrK5OQkfr8flUqFzWbDbrfLYr3ZbCYnJweAV155hYmJCZ544ok12amIokhXVxcNDQ1EIhHg7SrlOp2O+fl57r333mUZBrCUvvvmm29SXV29pqKCN0OSJHp6epicnKSuro6kpKRb3qeCwnYhFArR2dnJ7Oys3B9eOy70+Xy0tLQQjUZXCK9+v5+GhgaMRiN1dXWrXtuBQIDz589TWVm55vHUZuP1emlsbMRiscgC6rW8+OKL+P3+FdFOkiTR0NCAKIrs3r17U2oAKCgobJzN1Hxi+y780tdQrdMC6U5DDAQY/Ov//o7WzuI2Q//whz/Mvn377nhBVUHhnY4kSXR3dyMIAmVlZdtCTIUlD1KVSrXmggXhcHhZRej1mmXPzs4SjUblFbNrKS8vZ3BwkNbWVrq7u/nN3/zNmw6YRVFkYmJCFg+ufe3ixYskJSXJ/tRpaWn09/czMzOzbSYYCgrvBARBwGazkZubi8PhIDMzc92+oKuh0+k4fPgwJ0+e5JlnnuHIkSOkpKTwwgsv4PF4OHLkCAUFBUQiEZxOJ4uLi7z++ut3VOFPnU7HsWPHGBkZobq6mn379iGKIjMzM1gslmX98rWUlpYyMjLC9PT0mgoQqFQqKisr2bFjh3xv6O/vx+PxsLi4SF5e3goxdW5ujgsXLpCRkcGuXbtu7WTfYnR0lImJCcrKyhQxVeGuQ6fTUVtbi8PhYHBwELVaLfsQxzAajezevZuOjg5aWlooKSmRxzoJCQlUV1fT1NTE6OjoivfCUiSrwWBgYWFhS8c7kiTh9/vxer309fVhNBqpqqpadXzn9XqZnp5mx44dK15zuVwsLCxcV4hVUFBQULg7iJugeu7cubhMNhQUFLaWqakpZmZmqK6uvuHE93YyOzvLSy+9hE6nkw2lb4ZarSYcDm/4mC6XC2BZGu3VqFQqHnnkEXp7ezl37hxzc3M3Le7icrkIh8MUFhaueM3hcOD1ejl27Jg8+DYYDCQmJuJyuRRBVUFhC8jLy8PhcOB2u+NWYMhut3P8+HFOnz7NyZMnqa6uZnZ2lmPHjslCg0ajwW63E4lEePPNN++4Vf9Ywa9YCmwsMvVmZGZmyt6m66noqtFo5GPdyC4gEonw6quvotFoOHLkSFyEjunpafr7+8nLy4uLT62CwnZEEATy8/MJh8MMDw+TkZGxwhJGq9VSW1vLwMAAfX196HQ6eexitVpJSUlhdnZ2VUEVlsY8a100jyd+v5/x8XHm5+fxer1ydkCs8NZqGULz8/O8+OKLqNXqVW1VLBYLGo2GsbExUlJStk1wgoKCwm1EeutxN3O3n98aWLeg+oEPfGDZ/yVJYmJigsuXL/NXf/VXcWuYgoLC7UOSJIaHh5mZmcHr9ZKRkbGmye/tYnR0lFAodNPopqtJSkrC5XIRCATk6Nb14PF4EAThhsdTqVTk5uZy/vx5urq6uOeee4Cl1DW/3y+nkgQCATIyMhgdHQVWF2m7urowmUwroldtNhsjIyOIoqhEOSgo3GZiFadXK5R0K2RlZVFdXc2FCxdobm7GbrevKjK0tLTI299JxESR9S7K6XQ6MjMzGRoa2pQ02cHBQTweDw899NAtf6eSJMm2LOnp6asulCko3G0UFBTgdDrp6+ujqqpqxeuCIFBUVCTbBOj1eqxWK7A0LhsYGMDhcJCbm7tCZExMTGR8fByn03nbFpFdLhdtbW1otVpSUlJIS0vDZDKRmJh4w/7r4sWLRKNRHnnkEfn8rkav11NZWUlLSwsOh+O62U4KCgoKCnc26xZULRbLshugSqWirKyML3/5y3eMv5eCgsJypqenGRoaIj09Xfa3205UVVWh1Wq5dOkSp06d4oEHHrjpRDs9PZ2Wlhb+/d//HbVajclk4rHHHlvzBL+4uJiOjg7a2tpumBZqNBopKyuju7ubgoIC7HY7L7/8Mi6XC5VKJUc66HQ6vF4v+fn5DA0NMTo6Snl5OXl5eXR1dcnee9eel81mY2hoaE0RsAoKCvFlcXERn8/HyMgIk5OTCIKAIAiy/UggEEClUpGRkYHZbGZychK3201ycjIJCQmo1Wo0Go08Wb/6+rZarQSDQURRXNUgPxAI0NHRQV5e3rZa4FoLseyA+fl5IpHIujygS0tLOXXqFBMTE3GLCo4R81m9tiDYeolGo/T09DA1NXVdT0kFhbsRjUZDcXExnZ2dDA4Okp+fv2LcErOMCgaDtLa2smvXLoxGI9nZ2YRCIQYGBnC5XFRUVCyrel9YWEgoFKKjowOTyXRbrE6cTieJiYnU19evufhgKBRicnKSHTt2kJycfN3tUlJSyM/PZ3BwEIvFcsNtFRQU7j4EaelxN7Pdzu+zn/3smrd96qmn4nLMdQuqP/zhD+NyYAUFhe3DxMQESUlJ27aafEywyM7OxuFwMDk5eVPRt7a2FpvNRm9vLyMjI3g8HqampsjNzV3TMVNSUrDb7fT3999QUBVFkbq6OsbHxzlz5gzve9/7mJ2dJTk5mezsbJKSktBoNHR2drKwsMDk5CQTExPodDpOnz5NSkoKTqcTu92+aqqqyWTCYDAwPT2tCKoKCreZWLSU0+lc9nw4HMbn85GamoooirS2tsqvLSwsoNFolgkFsLSoYrfbKSoqIicnh6ysLCKRCFlZWav6bg4MDBCJROLm83k7iUV4tba2sri4yH333bfm9+bn56PX6+np6Ym7oBoPAoEA7e3tLC4ubqsCOgoKt4v09HQCgQBDQ0PMzs6uEEZhadxWVVVFY2Mjzc3NckBOzJ/a6/Vy6dIliouLsdvtCIIgp8/Pzc0xNja2qjfpRpmdnUWtVi+zT5Ekibm5OTIyMtYspgL09fURjUYpKyu76bYFBQWMj4/LBQe3A16vl9HRUQoKChS7PgUFhbuKxsbGZf+/cuXKsv66p6cHtVrN7t2743bMdQuqRUVFXLp0acXq/tzcHLt27WJgYCBujVNQUNh8QqEQ0Wh0y6vIz87Osri4KEd/wdKAXBAEQqEQb7zxhhzNNTg4eFNBVaPR0NPTw+joKImJiRQXF697cp6Wlsb4+DihUGjVyFan08lrr72G3+8HloSUn/3sZ0SjUUKh0LLq0QUFBXi9XlpbW9Hr9RQUFPDqq68SiUQoKytj3759q0bdCoIgt0MQBDIzM+84P0UFhTsRSZIIBAIcOHCAkpISRFGUHy0tLXR1dfHhD3+YSCTC9PQ0Xq+X9PR0nnnmGUpKSqisrCQcDhOJRAgGgzgcDsbGxhgaGkKr1ZKeno7JZKK4uHjV44+MjGCxWO7IIkeiKKLX6/H7/SuKQt0MlUpFdnY2IyMjcW/XrUSRSpLE5OQkfX19aDQa6uvrMZvNcWydgsKdQcxPNTk5mc7OTi5fvkxlZeWKuWHMU7W/v59IJIIkSUiShMfjITExEYvFQm9vL7Ozs5SXl6PRaOTrf3h4mMLCQrRa7S23d2FhgZMnT8pF7HJycohEIszOzhIKhVZN2b8R/f39JCcnr6lv9nq9hMPhbSOmhkIhWlpaCIVCJCYmrlokVUFBIU4oHqq3nddee03++6mnnsJsNvOjH/1I7oNnZ2f5+Mc/zuHDh+N2zHUrKENDQ0Sj0RXPB4NBxsbG4tIoBQWF28eVK1cIBoNkZmZuaTt+9atfrdq3xDCZTFitVhwOB+Pj4zfdn8/nY3x8nB07dnDgwIENefFlZ2fT0tLCs88+y7Fjx0hOTmZ+fl4WRqampjCZTOzevVuuKq3X6+XU/mtJTExcVlTrgx/84JrakZeXhyRJTE9P43Q6OXTo0LrPRUFBYX34/X78fj8lJSUrFpz0er3cp2g0GtnjNCYkzs3NyZPtmP9xQUEBoigyMTHB0NAQExMT8oLJarhcLoqKijbvBDcJp9PJyy+/jCiKHD58eN3+r6Io4nQ6t9XCUTAYpLu7m5mZGTIzM1f9TSgovNOwWCzs3r2b9vZ2ent7Vy2+ZDAYVnitzs/P09bWRjgcpqioiOHhYRoaGqiursZoNJKVlcXw8DBTU1O3LPgFAgFaW1vRarV4vV7m5+fljIOYZ/PVYmdsgWxmZgar1Yrdbl82fvR4PLjdburr69d0/Jjty8DAACaTaUUkb7wIBoN0dXWh0+koLy+/7uKR0+kkHA6jVqtxOBxyhO717kMKCgoKdyrf+MY3OHHixLI+Pjk5ma985SscP36c//bf/ltcjrPm0eAvf/lL+e+XXnpp2WpeNBrllVdeoaCgIC6NUlBQuD0EAgE8Hg+zs7NkZmZuaeEjURQpLS2lpKRE/r8oikiShCiKpKenMzMzw9jYGE6nk+np6RUDwFgKWmwgDrBjx44Nn1NaWhoPP/wwr7/+Os899xxpaWm43W55Zb+mpobq6up1F15ZL1qtlpKSEoxGI729vUiSpPj1KShsMjEf5NWikARBQJJWLsurVCpqa2u5cOECTz/9NIFAAFEUqa+vp6amRo6+ikXLXy/6PRAIEA6H77jo1Fg2gU6n4/jx4xsSRXt7e/F6vRw4cGATWrg+JEliamqKvr4+VCoVNTU1t+y/qqBwN6HRaCgqKuLKlStMT0+vyQLDarWye/du2traGB4eprKykv7+fq5cuUJubi6iKCIIgux5vFEkSaK1tVWOTD137hwZGRkkJSVhMBhISEhYNpaam5vj5MmTLC4uys9ptVoyMjKwWCw4nU5mZmZQq9VrSveHJZ/9Xbt20draypUrV6iurr5uv+73+3E4HFitVtLS0tZsQ+B2u+nq6pK9q69nIxM7R4vFQn5+Pi6Xi7m5Ofr7+xVBVUFhM3gHeKhutwjVq4nZ/V27qOd0OllYWIjbcdYsqL7//e8HliYRH/vYx5a9ptVqKSgo4Bvf+EbcGqagoLB5hEIhxsbGGBkZISEhgUgkwvnz5+nu7ubAgQNkZGTc9japVCrGx8cJh8NUVFSsGtWUmZkpp5G+/vrrPPLIIyQmJgLQ0dHB5cuXEUURs9lMRUUFFRUV8usbJSMjg/e9731cuHCB+fl5DAYDjzzyyJalb8VS5hRBVUFhc/F4PMzPz/Pcc8/JE/vYdRcKha77vrKyMlwuF9FoFJPJxOTkJA0NDVRUVKyIarzeYszs7CzAulNRt5rz58/j8/l417vetSExNRAI0NTURGpq6qakosa+v1ixwBsRiUTo6urC5XKRkZFBSUlJXNKPFRTuNsxmM8nJyTgcDtLS0tY0PjEYDOzcuZPLly/jcDior6+np6cHh8OBTqfDZDLdsm98JBKRvY5TUlLo7u7m9OnT7N69m8rKSpxOJ+Pj4xgMBjQaDZcuXUKtVnPs2DHS09OZnp6Ws6LGx8dJSUmhoqKCoqKidXmPxkTV9vZ2mpub2bFjx4oxrsfjobW1FUmSmJiYoLe3F5vNhtFoRK/Xo9frMRgMcrHT2MPpdDIyMkJiYiKRSASLxXLdvleSJObn57Hb7aSkpMge/h0dHYTDYaV/U1BQuKt4/PHH+fjHP843vvENeZH+/Pnz/Omf/ikf+MAH4nacNQuqscFnYWEhly5d2tYVZ7/97W/z9a9/nYmJCaqqqvjWt74VV58EBYU7FUmS6Orqwul0IggCOTk55Ofno1arGRwc5PLly7zwwgskJCRw6NCh21oQpKamhtbWVoaGhpAkaVVRV6VS8dhjjzE/P8/58+d54YUXsNlsBINBOWL14MGDcY/qMhgMHDlyJK77XC8+n4/BwUGsVqsipioo3AYyMjJob2/HbDZjNpvliNTYosb1/DNVKtWyMcczzzxDamrqulLEPR4PwB0Voer1ehkaGqKsrGzDhZpOnz5NKBTioYceinPr1off76etrY1AIEBVVZUSvaWgcBNycnLkInRrXcjWaDSUl5fT1NTE5OTkiiiiWyUQCACQkJCARqPh0Ucf5Y033uDy5cuyj+jVWCwWjh8/Lrc/NzdXLmS60Qwul8uFw+EgFAoRDAaRJInu7m5SU1PlBTW32017e7uc+RSNRpmcnMTlcjEzMyNHnq6GIAgUFhbidrvRarVUVVXdsJ3Xq5mgjCsVFDYBxUN1S/nud7/Lk08+yYc//GG5H9VoNHziE5/g61//etyOs24DqMHBwbgdfDP4j//4Dz796U/z7W9/m3vvvZfvfe97PPLII3R0dJCXl7fVzVNQ2HKcTifp6ekrom0KCwvJzc2lvb2d1tZWLly4wAMPPCCLBpOTk6SkpGxKRdCLFy/S1dUlL9zcyGMqNTWV1NRUrFYrp06dYmZmBp1OR3Z2NgcOHMBoNMa9fVtNrIiAVqulurpaGfgqKNwGAoEAWVlZHDp0aMO2ITMzM8zOzrJv3751vS824b3VlNfbSXd3N7C0OLYR2tvbGRsbY9++fbccmXYrzM3N0d7ejkajYdeuXZhMpi1ri4LCnUJycjIajYbp6el1ZQYlJSWRk5PD4OAgarWarKysuI1xYoJqbNyq0Wg4evQora2tzM7Okp+fT25uLpFIhIWFBfkcVmMj9wBRFOnp6UGv15Oeno5er0en05GQkCCLqbOzs7S2tmKz2aioqCAcDhMMBrFarZjNZkRRJBKJ4Pf7CYVCmEwmTCYTarUalUqFJEmMj4+zsLBAfX39DS2oBEHAbDbj8XiQJIloNCrXLlirvYCCgsI6UATVLcVoNMqBlv39/UiSRElJSdzHdWsSVP/hH/6B3/3d38VgMPAP//APN9z2j//4j+PSsI3y1FNP8YlPfIJPfvKTAHzrW9/ipZde4jvf+Q5/8zd/s6VtU1DYaiRJQq1Wo9frV03t0Wg01NXVkZyczGuvvcbPf/5z1Go1Op0Ov9+PXq/nwIEDFBYWxrVdU1NTmM1m7rvvPkKh0JrS6VNTU+Marr9dkSSJlpYWRFFk586dSkqWgsJtYnZ2FqvVeku+0j09PajVatkbeq3EBIDFxcVtVZzpRiwuLpKQkLChRa25uTkaGhrIzs6msrJyE1q3Nqanp+no6MBqtVJVVaX0twoKa0SlUmGz2XA6nRQUFKxLFC0sLCQSidDT08PExAQ7duy4bgbAeogtSF0tFqpUKurq6pZtp9FoNiVYYHJyklAoxM6dO1ftFyVJYmBgAFgqKnX27NkbFmeNoVKpMJvNhEIh/H4/sGQ1s5Z7hdVqZXJyEqfTSWdnJ4IgoFarlYV6BQWFuxaTyURtbe2m7X9Nguo3v/lNPvShD2EwGPjmN7953e0EQdhSQTUUCnHlyhX+7M/+bNnzx48f5+zZs6u+JxgMEgwG5f/H0uwUFO5GRkdHiUajN/VIzcvL4/HHH8fpdDI7O4vX6yUrK4ve3l5OnTpFd3c3aWlpGAwGKioqbrmQlSRJmEwmpdjHKkiSRCQSQaVS4Xa70el0aLVadDodOp1OGQgrKGwCkUiE2dlZiouLb2k/Y2Nj2Gy2dReuGxwcRKPRbJlX80YIBoMbLtDX3NyMWq3edHumG92r5ufn6ezslCPFtqpAo4LCnUpWVhaTk5N0dXXdsNL8tajVasrLy8nKyqKzs5OWlhbuvffeW25PTCQNBAJbkr00OTkp+6CuxsLCglwYRRAE8vPzMZlMslfqtY9oNIrX65XfZzKZKCoqIikpac2LP1arVfaFTUhIID09XVk4UlDYJIR3QFGq7X5+r7zyCq+88gpOp3OFf/4PfvCDuBxjTYLq1Wn+2znlP1YE4lqxKCMjg8nJyVXf8zd/8zd86Utfuh3NU1DYUkKhEMPDw9jt9jWFuq9mbL9jxw7a29s5d+4cAwMDGI1GhoaGOHLkyC0Vf1Kr1czNzeHxeO6YaKzbhUqlYufOnbS3t9PX17eisrhKpcJqta6IuFBQUNg4brcbSZJu2S8+MzOTvr4+HA7HumyHnE4nmZmZmxI1tRmIosji4iJ6vX5D749GoxgMhtt2vtcOqhcXF2ltbcVisShiqoLCBrFarVRWVtLZ2Ykoiuu+lmIp7vFaXI8JmT6fb8vsoG7knT09PS3/nZube1OvZo1GQ1JS0i15a8fG2PPz82RlZW0448zn8+H3+7FarevyB1dQUFC4XXzpS1/iy1/+Mnv27Imrncy1rLsH/PKXv8yTTz654sbk9/v5+te/zhe+8IW4NW6jXPth3agi9p//+Z/z2c9+Vv6/x+ORDcgVFO4m3G430WiU/Pz8De9DpVJRU1Mje3rec889XLp0iV/+8pccP358w+LDnj17eO211/jVr37Fu9/97juusvVmYzAY2L17txytGgqFCIfDhEIhXC4XTqcTSZJYWFhgZmaGpKQkLBaLIgooKGyAmCedxWK5ZYHv4MGDuN1uTp8+zeOPP76mSb0oivj9/ptmEmwn+vv7mZub23BU2VZG2QeDQVpaWtDr9VRXVyv9poLCLZCeno5KpaK9vZ329vabFkm6momJCUKhUNxqXuh0OjQaDfPz81tSTFmtVl83hV+SJKanp0lISJAttW5GKBTC6/USDAZJT0/fkO+pVqslJSWFmZkZJiYmyMnJWZefYCQSYXR0lOHhYXmB32w2k5ycTFJSElarVfFjVVBQ2BZ897vf5Yc//CEf+chHNvU46x41fulLX8Lr9a543ufzbXmkp81mQ61Wr4hGdTqd152Y6PV6ORJvtYg8BYW7gdjAzWq1bjgl82rS09MRBAGr1cr73vc+NBoNp0+fXhH1s1YyMjJ49NFHiUQi9Pb23nL77lYEQUCr1WIymUhKSiI9PV0u3uJ0OmlqasLhcNDU1MSbb75Je3s7ExMTN6wQq6CgsByn08n8/HxcvKJVKhWHDx8mHA4zPj5+0+1FUeTixYuEw+FbWvy63YyPj2M0GtdkkRArsuLz+fB4PLjdbhYWFjZ8/7gVIpEILS0tANTW1iqRVgoKccBms1FTU8PMzAwjIyNrft/U1BRarTZuxfgEQSArK4uxsbFl9m63A1EUlxV9uhav10sgEKCwsBCDwUBHR8eyNgYCAZxOJwMDA7S0tHD27FnOnj1LS0sL3d3dq87F10ppaan8d1dX1w3PYXp6mqGhIdra2jh//jxnzpxheHiY3Nxc9u3bR1lZGQkJCUxOTtLS0sKZM2e2dTargoLCO4dQKMQ999yz6cdZ98jxetGezc3NW1qVFZZWInfv3s3Jkyd5/PHH5edPnjzJ+973vi1smYLC1hEOh2lsbMTn8y0bRMWDYDBIRkYG99xzDy+//DIvvvgi+/fv31C6lsViISUlhYmJibi28W4nFvnR2dlJeno6ZWVl+Hw+3G43MzMzdHd309PTQ2pqKpmZmaSkpCgRWAoKN8Dj8WA0GuPmXxorbHUzj3av18trr72G2+2mrKwMu90el+PfDkRRlKtODwwM0NPTg8vlkiOYBEFAEARZZLgWv9+PSqXi0qVL1NfXb5qwmZSUhCAItLW1ceDAARwOB4FAgF27dm3YrkBBQWElKSkp2O12HA4Hdrt9TT6dpaWldHd309DQgNVqJS8vj5SUlFuKYM/Pz2dycpKhoSHKyso2vJ/14Pf76ejowOv1Ul5evuo209PTaLVa0tLSsFgsNDU10dTUxM6dO3G73fT29iJJEnq9nsTERBISEgiFQvL7b8XCICEhgZKSEhwOxw0zIZxOJ11dXajVaiwWCzabjcTERKxWKwkJCXI7srKykCQJn8/H2NiY/J0rfarCOx7prcfdzDY+v09+8pP827/9G3/1V3+1qcdZ84g1OTlZHhDv2LFj2c0tZpL9e7/3e5vSyPXw2c9+lo985CPs2bOHgwcP8v3vfx+Hw7Et2qagsBXEBjnFxcVkZ2fHZZ9tbW2YTCZycnIAyMnJ4eDBgzQ2NvLcc8/x8MMPbyhd1Wq1KoLqOolNUvLy8igsLEQQBMxmM2azmYKCAkKhEE6nk8nJSdra2tBqtWRkZJCZmXlLvrcKCncrer0ev9+P3++XJ423gkqlIiEhQS4+sho+n4/nn3+ecDjMkSNH4hIdezuZn59nfn6e5557jrGxMQKBAMXFxWRmZiJJkvzQaDSo1Wo0Go380Gq1crXrjo4O+vv7qa+vp7S0NO6LP2lpaZSVldHd3Y3dbmd8fJysrKx1pbwqKCisjZiYOTw8TElJyU23N5vN7N69m/HxcYaHh2ltbeXAgQO3ZL2i0WjIz8+nr6+PxMRE7Hb7plqMTE5O0tvbi06nY9euXZjN5lW3m56exmazIQgCBoOBuro6mpqauHz5MuFwGLvdTmFhIVqtlnA4zKVLl0hKSsJmsxGJRG65kFROTo48hr8eaWlpjI+PEwgEyMvLw2w2X3exSxAEuUjW+Pg4MzMzZGVl3VIbFRQUFG6FQCDA97//fV5++WVqa2tX9JtPPfVUXI6zZkH1W9/6FpIk8Tu/8zt86UtfWuZxqNPpKCgo4ODBg3Fp1K3wX/7Lf8HtdvPlL3+ZiYkJqquref755++o1DkFhXgSqwofrxSqwcFBpqam2L1797LJbllZGYWFhfziF7/g4sWLvOc971n3vsPhsJJyuU6SkpLYu3fvdQUBnU4nD5y9Xi+Tk5NMTU0xOjqKzWajqqpqS/0LFRS2G9nZ2YyNjdHf3091dXVc9hmNRq/bt4VCIU6cOEE4HObRRx+NW2Ts7aK1tZXp6WlUKhU+n4/Dhw/T29vL/Pw8999//5ojqfLz83G5XFy8eJFz587R1dXFvn374j4p37dvHxMTE7zxxhvY7fa4LTQqKCgsR6fTkZuby/DwMDk5OWsSRgVBIDs7m/T0dN58803m5ubIzMy8pXbY7Xa8Xi+9vb1MTEywa9euTcnUWVxcpKuri4yMDEpLS2/Y5/v9foqKiuTnEhIS2LlzJx0dHeTn55OdnU00GmV0dJTR0VEkSaKiouK2Rn2q1Wqqq6tpbGykubkZeDsi9Xr1RjQaDQkJCSwuLq7pGJIkMT8/TyAQkJ/T6/VyNoGCwp2MIC097ma28/m1tLSwc+dOYCkY7Gri2b+sWbn42Mc+BkBhYSH33HPPLa+MbSZ/8Ad/wB/8wR9sdTMUFLYNiYmJax7c3IiBgQHOnDmDzWajoqJixes6nY76+nrefPNNBgYGlg0W18Li4uKWVWK9U4lFBayFxMRESkpKKCoqYnp6ms7OTgYGBtbke6ig8E5BrVZTXFxMR0cHs7OzaxY4Z2dn8fl8KwQ6n89HIBC4ri1SQ0MDHo+HBx988I4TUwFGRkbIyMjgsccek0WKjIwMfvnLX+JwOK6b8roaNpuNRx99lIGBAa5cucJLL71Ebm4ue/fujYvHvSRJuFwuUlNTEQSB0tLSuEQhKygorE5ubi5jY2MMDQ2tqy+I+cW7XK5bFlRVKhXl5eWkpqbS3t6Oz+fblAydWEp+QUHBDYMDYuPxa8duCQkJ7N69G1jqV4eGhhBFkfT0dPLy8rYkhV6n07Fv3z7Z83pmZob+/n7MZjNJSUmrvsdoNK5pzuHxeBgYGGBubm7FawaDAbvdTlZW1rbWHBQUFLYvr7322m05zrpDwY4cOSL/7ff7VxQ7UYo6KShsL0RRJBgMypEBPp8PSZLWneLY29vL2bNnSUtL4/jx49cdLMaEiIaGBgoKCuQJ9sjICA6Hg5KSEsxmM7Ozs7IXU4yFhQUKCgo2dqIKa0alUpGRkUE4HKavr4+kpKQN+d4qKNytpKWlYbVa6e3tZc+ePWuKZrpw4QKTk5PU19dTV1cnP9/T0wOwqg1KJBKhv7+fvLy8O8ozNYYoivh8Ptkn9lo2mqpbVFREQUEBLS0ttLe388wzz1BWVsauXbtuKYuhu7ubyclJbDYbe/fuVcRUBYVNRq1WU1BQQG9vL9nZ2ddNgV+N3Nxcurq6mJmZiUudjtgcNRgMboqgGvOMvtn9YmFhQbaCuR7z8/NEo1H27Nmz5fZMsYV7k8lEZmYmTU1NdHV1rRrdn5ycjMlkYmpq6rr78/l8DA4OMj09jclkorq6etn3u7CwwPj4OIODgwwNDWG328nNzVU8WRXuTLZxBKdCfFj3qNTn8/G5z32On/70p7jd7hWvX6+aoYKCwtawuLiIz+fDYDCwsLBAc3MzarWa/fv3rznlqbu7m/Pnz5ORkcGDDz54wwmtSqViz549nDx5kh//+MeYTCZUKhVzc3OoVCp6e3uXbbtjxw727NlDJBIhFApdd8VbIf5kZmbS19eHz+cDliLsFhYWSExMJDk5meTkZNRq9Ra3UkHh9hOLXmxoaKCnp4eysrJV04MCgQB9fX3MzMzgcrnQ6XQ0NjYyMTFBQkICGo2GgYEBubjKtXR2dhIOh6mpqbkdpxV3hoeH8Xq9FBUVMTY2xqlTp1CpVHK16lvpz1UqFTt37mTHjh1cvnxZjqiPPbeelN1wOIzb7WZycpIdO3bckeK1gsKdSlZWFhMTE3R3d68r3T4jI0P2f09ISJCjFje6AKzT6RAEQe6f4o0oisCNU0kjkQijo6NylPz1KC0tZX5+nsHBQaqrq7dN+rsgCJSVldHa2srw8PAKO7GEhAQKCgoIBoNEIpEV84X5+XmamprQ6XSUl5eTkZGx4tysVitWq5Xi4mLGx8cZHR1lbGwMm82G2WzGZDKRmJgof5/bhYWFBdRqtZJpp6CwhXz2s5/lf/yP/4HJZOKzn/3sDbe97R6qMf70T/+U1157jW9/+9t89KMf5R//8R8ZGxvje9/7Hv/P//P/xKVRCgoK8cNsNlNZWUl3dzdXrlxBr9cTDAZxuVykp6df932BQICBgQGGhoaYnp4mKyuLBx98cE0D4ezsbB566CEmJiaYm5sjFApx8OBBiouL6e/vR5IkrFYrAwMDdHd3MzIyIqeC3Ykpr3cqs7OzAPT39wNLvlVmsxm3283Y2BiCIGC1WklJSSE5OZnExMRtNXhVUNhMEhMT2bFjB11dXVgslhUi3NTUFK+//rpcvCo1NZXdu3fjcDgYHR3F6/USjUYxm80cOHBg1WN0d3eTnp5+x0aIT01NoVarqaur41e/+pVcZMrtdnPvvffGZYHMaDRy3333UVVVxYULFzh//jzd3d1r9lcVRZELFy4QiURITk5WCqUoKNxmVCoVZWVlNDQ0MDIysua6FoIgUFlZyeTkJIFAgIWFBdrb29m1a9eGojYFQUCn022aoBoKhRAE4YZBB4ODg0Sj0RVWS5Ik4XQ6GR8fJzc3F5vNRllZGW1tbYyPj2+K13M4HCYajSKKovwwGAzodLobvk8QBDIyMnA6nUQiEbnQYDAYRKfTyRlwXq932T0gFArR3t6OxWKhrq7upvOJWI2WnJwcxsbGmJmZYXh4mGg0SjAYRJIkKisryczMvGmbN5upqSm6urqQJInMzEwKCwuViFqFpejUuz1CdZudX2Njo5xB39jYeN3ttsRDNcazzz7Lv/zLv3D06FF+53d+h8OHD1NSUkJ+fj4//vGP+dCHPhS3xikoKMSH9PR0zGYzw8PDCILAxMTEdW/0DoeDtrY2XC4XoihitVqpqalh586d64oIys7OXnUAWFZWJv+dlZVFcnIyFy9eZHBwEOCOFRbuRBISEkhPT8dqtZKcnExCQgKCICBJEn6/n9nZWXkAOzAwgFarRavVygNvSZIQRRGNRkNBQQGZmZmK4KpwV5GZmcnCwgK9vb2YTKZlFiUdHR34/X4effTRZYtT6enp7Nmz56b7FkURr9dLaWnpprT9djA+Ps7s7Cz//u//Tjgc5vDhw2RlZfGzn/1MXrCJF6mpqTz66KMMDg7K/qo5OTns27fvhnZTi4uLRCIRqqurbxoVpqCgsDmYzWZyc3MZGhoiMTFxzWM9nU5HXl4esJQF2dDQQEdHx4btP/R6PU6nE0mSSEhIQK1Wy96ndrt92Tg3lsK/1j5jbm4Os9l8w7Hy5OQkmZmZy+xQfD4fLS0tcmGm2Gdjs9nIzs6mv78fq9Ua19R/l8u1okhLDKPRKGcpXZupJEkSTU1NBINBkpKSKC4uJjk5edk5i6KITqejvb2dwsJCeRGro6MDgMrKynXNJzQaDfn5+eTn5yNJEsFgkF/96ldEIhGGhoYYHBwkLS2NrKysLStmNTs7K/9eJicncTqdlJSUkJWVpdxzFBRuI1f7pm5bD9WZmRkKCwuBJS+amZkZAA4dOsTv//7vx7d1CgoKcSMhIYGcnByuXLlCTk7OMmEgxtzcHKdOnSIhIYGqqipKSkpW3S5eiKJIV1eX7KXq9/u3fJX5nURiYiKVlZUrnhcEAaPRiNFoJDs7G1EU8Xg8zM7OEo1GUalU8kMQBBYWFuju7mZsbIySkhLFtkHhrqK4uJjFxUVaWlqora2V+8SamhocDgfDw8M3jPa/HrHrJzYJuxOpqanB5XJhNpvJysqisLAQlUpFZWUl7e3teL3euPv/FRYWkp+fT2trK21tbZw8eZJf+7Vfu+72CwsLwFL2gzKxVVDYOgoLC1lcXKS9vZ26urp1jy/VajWVlZVcunQJt9u9qi/1zcjJyWFiYgKn0ykLmCqVClEU8fv9lJSUMD8/j9vtxuVyydGk6enpN+w/JElibm7upgW0UlNTcbvdlJSUyPuLFS6sq6ujubl5WRGm4uJi5ufn6e7ulgtWrYVgMEhbWxvhcJhIJEI0GiUxMZGdO3eiVqsZGRnBYrHItQ5iC+TRaJTZ2Vk5UykpKUmukg1L48Py8nK6u7vxeDz4/f4V4rhKpWL37t0MDAzQ09PDxMQERqOR+fl56urqbilyUxAEDAaDPGc4ePAgU1NTjI+P09zcTEJCAna7nbS0tA17eG+EsrIyMjMzGRsbY3p6GlEU6enpYXx8nIqKinXXrVC4OxCkpcfdzHY+vw996EMcPXqUo0ePbmrwwroF1aKiIoaGhsjPz6eyspKf/vSn7Nu3j2effVaZRCsobGN8Ph+vvPIKRqORoqKiFa+LosipU6fQarU89thjt2Ug0tzcLFe3bmlp2XLjfYXVUalUJCUl3bCPz8nJoa+vj6amJmw2G8XFxUrBF4W7ApVKRU1NDS0tLctE1ZSUFGw2G11dXdTX128oWkqtVq8o7nknUVpaSltbGzqdjr179wJvR95uJiqVSi781dTUhCiKq0Y8RSIRRkZGsFqtih+0gsIWE0vhb2lpobW1lfr6+nULTTGf0o2OUdPT0+UFsFi2jVqtZmxsjL6+PqampohEIuh0OlJTU4lEInR2djI8PIxer0en05Gfn7/CJ9Pv96+pDkBubi5XrlyhtbWVxMRECgsL5XtHrA+7+l4iCMK6ojmvfp/X68VkMmG32xEEgYGBAdnTe35+HkEQ6OzsRJIk2Qs1ZosQi1KdmJhgfn5+mfidnJzM3r176evro6+vj5SUFIxGI7Ozs2i1WhITE9Hr9VRUVGC32+XPtbi4OK5agSRJaLVacnJyyM7OZn5+nvHxcQYGBujv7ycxMZG0tDRsNhtGo3FTF9QEQZDHyR6Ph/b2doLBIF6vl+bmZurr65UxsYLCbSYxMZFvfOMbfOpTnyIzM5MjR45w5MgRjh49KlsNxoN1j/4//vGP09zczJEjR/jzP/9z3v3ud/O//tf/IhKJxM3YVUFBIb643W46OzsJhULXnXg2NDQwOzvLsWPHbouY6vP5aG5uBpai3RcWFpRCIXcwFouF+vp6nE4nAwMDXLx4keLiYnJycra6aQoKt4xaraa2tlYWVcvKymhqamJ6epr8/PwNTXi7u7uJRCJ3fOSK0WiUU2Zh6V4yPDxMbW3tpi+SJSYmIkkSHR0dVFdXr3i9r6+PcDhMbW3tprZDQUFhbajVampqamhsbKS1tZU9e/asazEqtlgTj74llmkDSzZVsX4sVvwoJsC5XC5mZmYIh8PMzc2xuLgoR4u63W7Gx8fljM0b2Y/A29YHs7OzOBwOsrKy5IjU2OKa0+kkJSVFXgQKBAIYjUYkSVqzKKjT6cjMzGRiYoJIJCJ7jiYkJKDT6aiqqiIYDBKNRuWoT5VKRSgUIhgMMjMzw8TEBLBkBXZt4US1Wo3dbmdiYoJoNCrbFkiSRE5ODgUFBWg0GqxWK7t27dqUbIWruVrQjEQicqFIh8PB4OAgCQkJ2Gw20tLSbvod3SoWi4U9e/bQ1dWF2+0mFArR2NhIXV3dHX+/V1gniofqlvK9730PWLLheP3113n99df5+7//e/7wD/+Q9PR0uY+7VdYtqH7mM5+R/77//vvp6uri8uXLFBcXy9ECCgoK24fR0VH6+vrQ6XSEw2F5df9qQqEQHR0dFBUVyV5Vm41KpSIzM5OpqSlefPFFfD6fEuV+hxMrVGCz2RgcHKSvr49AIEBxcbGSaqtwxxMTVZubmzlx4gSSJLF//34qKirWva+Ojg4uX75MZmZmXFfJtwKNRoPP5wOWPFXb29spKSlh165dm37s/Px8+vv7uXz5MhMTExw+fFheEBRFkenpaXJzc5XIIAWFbYRGo6G6uprLly/T39+/zFv/ZiwsLGA0GuMecS4IwqrZW7AksNpsNgA8Hg8NDQ20tbWxsLBAKBTCbDbL265FHC4uLiYQCHD+/Hl8Pp8sNMYieLu6umhqaqK6ulqO9GxubmZoaEi23VsLpaWlpKamynZNSUlJsiVBWlraDd9bUFDA7OwsQ0NDsj/oteO4hIQENBoNQ0NDhEIh9Ho9drtdLmZbWlqKzWZDEIRln1E8uNGYUqPRyJHIoigyOzuLy+VicnKSkZERcnNzZXuazSBmn1BcXIzRaGRkZIRQKERDQwN79uxR7kcKCrcZs9kse0InJSWh0Whuas+yHtafn3YNeXl55OXlMTIywu/8zu/wgx/8IB7tUlBQiAOhUIiBgQHsdrs88KuoqGBgYICcnBzZr9ThcCCKIlVVVbelXZFIhI6ODoLBIAkJCbhcLkKhEMnJybfl+Aqbi1qtpqSkhISEBHp7ewmFQpSXl2/a4FVB4XYRE1VdLhcJCQnLPJli6aM3mlCLosilS5fo7OwkOzub+++//46/LrRaLZFIBKfTyWuvvYbFYuHAgQO35dgajYbjx4/T0dHBlStX+MUvfsE999wjp7RGo1Gl0KGCwjYkISGBkpISuru75TT6tfSFCwsLcRfn1oPFYiE3N5fx8XEyMjKw2+0kJiYyPj6+zPv0Zuj1elQq1bJggkgkQkZGBgkJCbS2tsoRvMnJyRQWFjI4OIjFYllzn6ZSqZaJwetBEARSUlJITk5GFMVVBUyNRkNRURE9PT0YjUbKy8tJSkoiPT2dnp4e2trasNlslJSUxD3zba3+4yqVitTUVFJTU9mxYwejo6MMDAwwPz9PVVXVLfm5Xo9YVGysnRqNBpVKRSQSweVykZubG/djKmxPFA/VreXzn/88p06dorm5merqau677z7+/M//nPvuuy+uQVy3LKjGmJmZ4Uc/+pEiqCoobCNioeyFhYX09fUB0NnZSWdnJxqNhocffpjU1FQGBgYwGAybKmj6fD5aW1uZmppibm4OURRJTk7GbDYTiUTQarUbKuyisH3Jzs5Gp9PR2dlJS0sL1dXVG/KZVFDYTmg0Gg4fPsyVK1fo6uqiqqoKl8vF2bNn8Xq9HD16lIyMDF577TXm5uZQqVRUVFRQWVnJ5cuX6ezspLy8nH379t3xYiosiQCTk5M8//zzmM1mHn744dt+nVdWVmK32zl16hSvvvoqOTk5GAwGjEaj4s2toLBNyczMJBAI4HA4cLlclJWV3TQdOxgMbvkiSVFREUVFRctExvVaVsXS7P1+v3wfiGWQmc1m9Ho9er0eURRxu93Mzc0BS2P4PXv23LaCS4Ig3DAa2G63k5GRsWwbg8FATU0N09PT9PX1ceHCBdl/1mAwkJmZGZcigest6CgIArm5uVgsFjo6OmhoaKC2tjbuafix77Ouro6hoSF8Ph+hUAi1Wi0XSVRQUNh8vv71r5OWlsZf//Vf8773vW9DGWVrQZnZKijcxUxOTpKWloZWq6W0tJSkpCSSk5PxeDy88cYbvPrqq5hMJlwuF3V1dZsyuRdFkY6ODpqbmxFFkdTUVCorK8nOziYrKyvux1PYXqSlpaHT6WhtbaWxsZHCwkJSUlLuCiFJ4Z1LQkIC5eXltLW10dHRQVNTEzqdjmg0yjPPPEN2djZzc3Pk5+czPT1Ne3s7Ho+Hrq4uysvLb1sE5+3AarWi1WqpqamhoqJiRbGW20VSUhLvec97uHjxIl1dXRQUFLBv3z7FbkRBYZsiCAKFhYWkpaXR3d1NQ0MDOTk5FBYWXlfEu14dgNtJPPqUSCSC3+8nOzsbQRAQBGGZJZdarcbj8XD+/HnZ2zUlJYXFxUWGh4fXZZOw2az2XQmCQHp6OikpKTidTgKBAKFQCK/XS0tLC0ajkZycnBVi7Fq5le8g5uva0tIie5vGK+o5lu4PS1HIWq0Wk8mE1+slGo3e1GpB4S5D8VDdUhobGzl16hSvv/463/jGN1Cr1XJRqqNHj8ZNYFUEVQWFu5jExETm5+flNNSYgGkwGHjggQd47rnnmJ+f58iRI+vyZVorU1NTnD9/ntnZWex2OwcOHNh0M3iF7YfVaqW+vp6uri7a2trQarWy0KpWq+Xo5K2eJCkorAebzUZOTg4XLlxAp9NRUFBAW1sbBoMBr9fL3r17qaysxOFwcPbsWbq6uigsLGTfvn1b3fS4kpOTQ2trK+np6VsmpsZQqVQUFhbi9/vZt2+fbGujoKCwfUlMTGTXrl2Mjo4yODiIy+WitrZ21f5kOwiq8cDtdiNJkpyOr1KplgmqFRUVdHR0YDKZCAQCzM3NUVZWRmdnJ9FodKuavW40Gs2y6F1Jkpifn2d0dJSenh4GBwex2+1yRtN6WG+E6tX/95XpAADwBElEQVTo9Xp27txJU1MTAwMDG6oDs7i4SGtrK3a7nby8PMLhsFyIKj09Ha1Wi8fjwWazkZubKxfpuhqfz8fAwACFhYVKwSoFhThTV1dHXV0df/zHfwxAc3Mz3/rWt/jjP/5jRFGMW1+qCKoKCncxBQUFXLp0iampqRXRoMnJybz3ve9Fo9FsyiTY4XDw2muvYTQaOXr0KAUFBXE/hsKdg8lkYvfu3Xi9XiYnJ5mZmSESiRCNRolGo0xOTlJVVbUuDzIFha2mqKiI3t5ecnNzaWpqIjc3l2PHji2b8Ofl5cnVkLOzs+8KMeBqUlNTEQRh23jDTU1NkZSUtOXiroKCwtqJpWPbbDZaW1tpbm5m586dKwr4SJJ0V/ShbrebxMRE2cPzWkFVr9dTX19PKBTi3Llz2O121Gq1XPxpuxMKhRAEYcWYThAEkpKSSEpKwu/3Mzo6yujoKA6Hg4yMDIqLi2/bOFCr1ZKRkcHQ0NANhfqYCByzLIhtNzk5SSAQwOVykZaWRm9vLx6Ph+rqalJTUxkaGiIcDt+wMKLT6cTlcuH3+9mzZ4+SUXG3oUSobjmNjY28/vrrvP7665w+fRqPx8POnTu5//7743aMNQuq/3/2zjs+rqvM38+900ejkUa9d8myZEmW5W6nkUqcTkuAZEMCC5td2i4sP8qSsAQCIUBYWEJYFkLdJPQSAkmcYjvutizLVu+9l5E0fe79/TGesRXLtsqo2D7P5zO25s4t546u7j3ne973+951113n/Tzo7SIQCFYOERERxMfH097eTmJi4lmdhcWMFu3u7kan03HnnXcK30xBCIvFQl5e3rRl4+PjVFdX09raSkFBwTK1TCCYO7IsU1BQQFtbGz6f75yFVbRa7YoQGxcDrVaLXq/H4XAsd1Nwu92MjIyI+4hAcJFiMpkoKyujqqqKY8eOTRNVVVWdsdr8xYgsy0xOTlJbW4vP58Pn880YcanT6bDZbPT09NDf34+iKOTk5CxDi2eP3+/n6NGjSJJERUXFOccAwcKOWVlZ9Pb20tHRAUBhYeEFjxGuayAmJoaWlhYOHDhAUlISSUlJZ4mfY2NjVFVVhY5rMplQFAWXywWA3W7nwIEDSJJESUkJvb291NTUoCgKaWlp5xRTgVBhnGC0a0lJySVxfQsEKwGbzcbk5CRlZWVcffXVfOhDH+LKK68Mu/4xa5XjrSHqM31+3333LbhBAoEgvERERDA4OIjX612yWW2fz0dPTw+RkZFCTBVckKioKBITExkZGVnupggEcyY+Pp4333wTCAyKGhsb6e3tZWJi4qyB0UzvJUkiKytrRXnizQWHw4Hb7V7UooazZWBgAFmWRYFDgeAixmAwUFZWxrFjx6isrCQyMjLkTakoCr29vTgcDjQaTegVGRkZNh/MpWDVqlVERETQ1dWFyWQiIyNjxroCkiSxZs0ampubURSFrKysFR+h2tnZGfJ97e3tveBkok6nIyMjA41GQ2NjI6mpqbP6XS4k5T9I0G6it7eXrq4u2tvbiYqKIikpifj4eLRaLZOTk0BgPBUbG4vf70ej0WAymYiKimJ8fByDwYBWq6W9vZ3h4WGysrKwWq0XfC5arVY0Gg0Wi4WRkRHa2toWxYJNsDxIauB1KbOSz+/nP//5ogiob2XWSsdPfvKTxWyHQCBYBBwOB+3t7SQnJy9pB6yqqorJyUmuv/76JTum4OImOjqa7u5uXC7XklWvFQjCQWRkJMnJyXR3d3Ps2DEA9Hp9aCB15qAvGGF15s8Oh4Njx46Rn59/Uaayer1eYObCJEuNw+EgIiJCTOQJBBc5QY/L5uZm/H4/siyj0WhQVZWxsTG8Xm/IMijogxcTE0NmZuYFg4BWAkGLg9lkLsiyTH5+/hK0auH4/X66urpISUlhYGBgTh6FKSkpdHd309zcTFlZ2ZJFalqtVqxWK3l5eQwNDdHX10d9fT2NjY2UlJSQkpKCoih0dnbS2dmJzWYjMTGRuLi4kFVDZ2cnAwMDaDQaioqKZj2pJ8sy8fHxDA0NkZqaSnt7O1arldjY2EU+a4Hg0ueWW25ZkuOIHqdAcAkjSRJ6vZ6+vj60Wi2ZmZlLMtD0er1otVqSkpIW/ViCS4Ng2tPo6OiMURoCwUpFkiTMZjM2m40tW7ZgNBqxWCyzFkdbWlrYtWsXg4ODJCYmLnJrw09UVBSRkZErovK0Xq/H7XZfMmnBAsHljMFgoKioKPR+cHCQwcFBVq1aNa2foKoqg4ODtLe3U1lZSUREBCkpKSQnJ5/zPmy323G5XNhsNuHdHka8Xi8+nw9Zlufs9ypJEjk5OZw4cYKpqSksFst51w03Go2GxMREEhMTcblcnDx5kra2NsrLy8nMzCQ1NZWBgQH6+/upra2dtq3BYCAnJ4fk5OQ5j7Nyc3MZGRnB6XQSGxtLdXU1WVlZZGZmiufYxY7wUL0sEIKqQHAJYzKZ2LhxI52dnXR0dDA0NERJScmiFuvweDw4nU68Xi8Oh+O8HSKBIIhOpyMyMlIIqoKLkuzsbLxeL4qizDm1KCMjA61WS1NT00UpqELgHGpqamhsbFzWSCqr1Up7eztHjx4lLy/voohUEwgEF8btdlNfX09cXNxZk/WSJJGQkBCK9BseHqaxsRGXy0VCQgIajQatVotGowlFFFZXV4ei6y0WCzabDZvNRlRU1IqItr9YCQqoHR0dodT5uWCz2ZAkifHx8QuOH8KR8v9WXC4XPT09uFwuvF4vLpcLh8OB2WxGq9WSkpJCSkoKTqeT8fFxVFVFp9MRExMz7wwTnU7HqlWrqK6uJiUlhbS0NNra2jAajXR3dxMbGyvEVYFgBSMEVYHgEkej0ZCVlUViYiLV1dUcPXqUNWvWhCICw0lnZye7du3C5/ORkZEhUrcFc8Jms9Hb2yuiywQXHcnJydjtdhoaGrBarXOatAoWrGptbWXDhg3o9fpZbXfixAl6enoAKCkpWdaJiPLyckZGRti7dy+KoixbpGpsbCzl5eU0NTVRWVlJeXm5EFUFgkuA9vZ2fD4fdrudo0ePYrFYzrJJkSSJ+Ph44uPjUVU1lKJ9JpIkhUTV8vJynE4no6Oj9Pf309nZiSRJWK1WcnJyxL1jHpzZdysqKppzXy7ohzs+Pk5qauqsjhNOhoeH6ejowGq1hgThmaJsTSbTeYtNzZXY2FgKCgpoaGgI+QJHREQwMTHBxMQEIyMjFBcXr3j/XMFbEBGqlwVCUBUILhNMJhPr1q3j5MmTVFVVsWbNmrB79PT19aEoCrfffvuiCLaCSxubzUZHR8cFU70EgpWGJEnk5+czPDxMX1/fnKswl5WV0dbWxvHjx1m/fv051xseHub1118PRc8EkWUZu90e8mVNTk5e0nuwVqvl+uuv55VXXmH//v0kJCQsW5GqqKgo1q5dy+7du5mcnBSiiEBwCRCslu71evF4PPT29hITE0N8fPyM669atYrMzMyQx6rP55v2s9lsJioqKiSaqaoaEld7enqoq6tjw4YNF6Wv9XJz9dVX4/F4Zj05+FaioqLo7+8/7+T6YgmqMTExAKSnp5/z2losUlJSMBqNjI2NkZiYSEREBPn5+TQ2NmK329m3bx9r164lOjoaVVVxu90icEUgWAGIp4RAcBmh1WopKSkhOjqalpaWsKbL2O12Ojo60Ov1QkwVzItgqrTdbl/mlggEc0ej0RATE8Pw8PCct42OjiYjI4Pa2lpGRkbOuV5VVRVut5v8/HzKy8vZsWMHkiTR1dXFvn372L9/PwcOHGD//v0LOZV5IcsyV199NRqNhhMnTiz58c+kv78fOD04FggEFzdms5n09HRycnIoLCwkKiqKmpoajh49SlNTE4ODg6HK8hC4H5lMJiIjI4mOjiYuLo7ExERSUlLIyMggLi5u2v6DXtipqakUFRXhdDrp7OycU1ElwWnmI6b6/f5Qcaeghc75mM8Y5szCkDNhMpmwWCy0t7fjdrvnvP+FEhMTQ05ODhEREQCkpqZOy/g4ceIEqqpSV1fH/v37qaqqEn3mFYykXh6vlcorr7xyzs+efvrpsB1HRKgKBJcZsiyTnp7O8ePHGR8fD5v42d3dzcTEBJs3bw7L/gSXHw6HAyDUkRQILjZiY2Pp7+/H6XTOOR1wy5Yt/PGPf+SNN97g1ltvDRW2GBsbQ5IkdDodXV1drFq1io0bN4a2u+eee/D5fEDg/v7aa69Ni15dSvR6PZmZmbS3t7Np06Z5RygtlO7ubuLi4sKakikQCFYOxcXFDA4OMj4+zuDgIF1dXQAYjUasVisOh4OpqSkMBkNIWI2Pj8disVwwujFY1Kq1tZXW1lZ0Oh1GoxGDwYDRaCQ+Pl5Evi8CNTU1jIyMkJCQQHp6eti8bBVFYWxsjIGBAYaGhpBlmfj4eBISErBarWddDwUFBZw8eZLDhw9TWFgY9my+uZKcnEx8fDwDAwNERkYiSRKRkZH09/czOjrK6OgoiYmJ5OTkCEsAgeAMduzYwb/8y7/w2GOPhfqjg4ODPPDAA7z55pt8+MMfDstxhKAqEFyG2Gw2zGYz7e3tREVFhSV1Jj8/n6NHj9Lb20thYWEYWim43BgfH0eWZSIjI5e7KQLBvIiJiUGSJIaHh0lLS5vTtkajke3bt/PKK6+wc+dODAYDdrs9FLGq1WqRJIni4uJp2+n1+mnCpVarDU1OLAdr1qyhubmZ+vp6SkpKlqUNfr9fiKkCwSWMXq8nNTU15LPpdrsZHx/Hbrdjt9sxm80kJSXhdrtxOp309vbS0dGByWQiPj6euLg4LBbLOVP68/PzQ9Xez3wFxVubzUZmZuYFgxJUVWViYiIkhC0Eh8OBVqtdtomqxWR8fJzh4WFWr14dKs7o8/mYmpoiIiIiNMEYZDbfpaqq9PX10dbWhtvtxmQykZqait/vZ2BggO7ubgwGQ0jADX6vVquV9evXU1tbS3V1NZmZmWRnZ4f/pOdAsCBWkLS0NDQaDQ0NDaiqSn9/P4ODgxQWFpKQkLCMLRVMQ3ioLiu7du3i3nvv5ZVXXuFXv/oVbW1tPPDAAxQVFVFVVRW24whBVSC4DJEkiby8PKqrq2loaKCgoGDBHT2tVkteXh719fVMTk4KD0zBnBkfHycyMlJ4lgkuWrRaLTabjaGhoTkLqhBI7yspKaG2thaDwYDZbKaiogK9Xk9vby/JyckXvLdmZGSwb98+Ojo6yMjImO+pzAqPx8Pg4CB2u52JiQkmJyeZmprC6/Wyf/9+CgsL0el0i9qGmdBoNCJVVyC4jAgKY+cSk4JRioODg/T09NDR0YEkSURERBAZGYnRaESr1aLT6dBqtaiqGko5t9lsIUFUVVWGhoZob2/n2LFjREdHk52dfc6I1dbW1lCRo/j4eDweDxaLJSQaqqrK1NQUo6OjjI2NYTabSUtLC0UaKooSanOwUFN+fv4Fvw9VVUOesV6vl+HhYRRFISEhYUVmAbW1tWEwGEKFmBRFob6+PjQ5GIwyTk1NDX3X50vd9/l8VFZWMjU1FRJMz4xOzs3NZXx8nIGBAXp7e3E4HNMmAHU6HSUlJXR0dNDa2kpkZORZNhHLTXJyMlFRUdTV1WG321EUhZqaGjQaDbGxsfT19eHxeIiLi5tToUyB4FJh06ZNVFZW8pGPfISKigoUReHRRx/l05/+dFh9mIWgKhBcpsTExFBQUEB9fT2xsbFh6SiUlJRQX1/Pvn37uPbaa4UwJpg1qqoyPj5OUlLScjdFIFgQcXFxNDY24vV65yUmrlu3jnXr1p21/EwftfORm5vL/v37GRoaWlRBtaqqiuPHj4eES61Wi8lkwmw2o9frGRsb4w9/+AMbNmwgIyNjSZ8HLpdLROkIBIIQsiwTExNDTEwM+fn5oQmgYBX14eFhvF7vOUU6s9lMYmIiSUlJ2Gw2/H4/LS0tjI2NUVNTw5YtW0Lrjo2NcfLkSfx+P4qikJiYyMTEBC0tLSHrFqvVislkora2loGBAWRZxmq10tvbS3d3N3q9Hq1Wi9PpxO/3hwSx84mhfr+f4eHhUBq4y+U6a5329nauuuqqRSvqNB88Hg+jo6MAHD58OLRcp9NRVlaG2+1mYmKC0dFRqqqqKCoqumD7FUVhamqK/Pz8UBTzmUiSRHR0dOgVtBs403dbkiQyMjIYHx+nqakJm80WNhuCcGE2mykvL6evr4/W1lY8Hg91dXVs3bqVhoYGFEVheHiY8vLy5W7qZclK9xgNByv9/Orr6zl06BBpaWmhgoMOhyOsE0tCUBUILmOSk5Pp6+ujo6OD2NjYBXewzGYz69ev5+DBg+zfv5+tW7eGqaWCSx2n04nH4xG+ZIKLmuDEwHIOVvv6+lBVdVEnJ1wuF8ePHycxMZGSkhJsNttZ1YZ7e3vZt28fr7/+OhERESQnJ5Oamkp6evpZ6Zvhxmq10t/fT0ZGxooSDgQCwfIjyzJRUVFn9TeCUZ0+nw9JkpBlGUmSmJiYoK+vj/b2dlpbW0ORqlFRUWRkZEybvFEUhYaGBgwGA8nJyaHiWFarlcnJSSYnJ/F4PHR3d5OXl4fb7Uav15OcnIzRaCQ5OZmhoSHsdjuTk5Oh/QYjNW0224znpKpqqDaC2WwmNjYWq9WKz+ejr6+PiYkJZFmmsLDwgvfEidEphnvHyCo6W4hcDPR6PRUVFfj9/tB3LssyBoMh9KxISkpCURRqa2s5efIkDofjvBGqOp0OnU43Kz/x+Ph4oqOjaWpqYv369dMm/4IZfYcOHaKjo2PZU/9nQpIkkpOTSUhIoLOzM7QsJiaGoaEhxsfHQ7YTAsHlxNe+9jUefvhh/vEf/5FvfOMbNDc38/73v5/S0lJ+8YtfTJsIWwhCUBUILnMyMjKorq4OW4GqoqIiHA4HJ06cwGazsXr16oU3UnDJMzQ0BCAEVcFFzejoKP39/cuW6g4wPDwMsKgRmidOnEBRFLZu3XpOC4Lk5GTuuOMOOjo6aGxspKOjg6amJkwmE6WlpRQUFCxatE9OTg5Hjhyht7d3mu+cQCAQnAtJktBqtWdN+NhsNmw2G/n5+QwODuL3+4mPj5+xAFB/fz8OhwOTyUR3d3dICJUkCbPZTERERKggEgQyGvr6+ujp6TlL/NNqtVgsFiIjI7FYLKGo1jNxu9309vbS09NDa2srKSkprF+/nuHhYXp7exkZGUGn05GRkUFqauqsihZ95vZv0t89gqpKpBUkEZcaQ+6adDJXp6Az6ckrSiU2Przi3GzEPlmWKSoqor6+ntraWhRFobu7G41GgyzLoe9XVVUGBgZQVRWn03nB/QZF08OHD9PY2HiWDZrZbCYjI4OOjg58Ph9+v5/U1NQVJ1BqNBqysrJC7xMSEkJ9687OToqKipapZZcxwkN1WfnOd77DH/7wB97+9rcDgWKGBw8e5HOf+xxXX301brc7LMcRgqpAcJkTExNDREQEHR0dYRFUAVJSUkIDbkVRzpvqeaHPBZc+ExMToYHAYkeuCQSLydTUFJIkER8fv2xtCKaGulyuRfOyHhgYwGKxXHD/siyTlZVFVlYWiqLQ399PZWUlb775Jq+99hopKSnExsaSkJBAfn5+2J4FkZGRoWid5ORkEaUqEAgWjFarJTk5+bzrREZGkpycjKqqaDQaMjIysFgsmM3mafc3r9fLyMgIiqKQm5tLTEwMiqLg9XrxeDzodDoMBsN5713Nzc10dXUhyzKJiYn09fXR39/Pm2++id/vJzIyMlSkaC731uziVPo6R0ADbfW9NNf2sv/VWjAb8Wtk9CY9n/ryXVx1w5pZ7zNcSJLEqlWrmJqaoq2tjaampmmRqgaDAVVV8Xg8xMbGkp6ePqv9WiwWCgsLqaurQ1VVVq1aNe27z8jICNkOOBwOjEbjihNUx8fHqa6uxmKxEB0dHfIUHhgYYGBggLi4OGGFI1hRPPbYY3zuc5/j4x//OE8++SQQiLb/0pe+xA9/+ENGR0fZtGkT//3f/31WQdbZUF1dfZaloU6n4xvf+Aa33HJLOE4BEIKqQHDZE/QIqq2tDVsxqdbWVgAOHTrEsWPHuPrqq8/yMHI4HLzxxhtMTk7yrne9a8HHDBYPEOLsxYXX6+XkyZNYLBby8vKWuzkCwYKIi4ujubmZwcHBZfMDtlqtAHR3d8/ad3Wu5Obmsm/fPrq6umZdfEuWZZKTk0lOTqayspKDBw8yODiIw+GgubkZu93Ohg0bwtbG1NRUKisrGR0dneaLJxAIBIuFxWI5733X6XRSXV0dilyVZRlFUYiLiyM/Px+DwTCrKNKhoSE6OzvJzMwkPT0dr9dLY2MjGo2GtLQ0EhMT512I6NNPPYjP66ehso3qA03UHGmntaGXMacfP+DxK3z1c79B1shcce3SRz1KkkRFRQUVFRUAoeCNoBeuqqqkpqbO+fyTkpKQJIna2lr8fj+FhYWhLAqNRkNpaSmqqrJr1y76+vpwu91ERUWRmJi4IibtxsfHURQFjUZDV1cXHR0d5OXl4XQ6mZiYoKamhpiYGBG4sJSICNVzcujQIX74wx9SWlo6bfnjjz/Ot771LZ555hkKCgp49NFHuf7666mvr5/zJMb56sNcddVV82r3TIi/KIFAQEJCQqgSaThSQjZs2EBqaioOh4O6ujr27NnDnXfeiV6vB6Cjo4M333wz5B01VzweD7W1tYyPjzM1NYXD4cDhcKDX63nPe96z4PYLlgav10tVVRV+v5+1a9cKMVxw0WMymbDZbPT09CyboBofH09cXBwHDx4kJiZmUaJls7Oz2bdvH2NjY7MWVM+kvLyc2NhYXnvtNYqLi5mcnKSmpobU1NSwpehbrVYsFgvd3d1CUBUIBCsCrVaLwWAI2QKsWrUKj8dDc3MzR44cobS09IKBDR6Ph/r6euLi4sjKysLn84UisdatWxcWuxmtTkPRxlyKNuaGlrkcHr71pT/wxs4aVI3EVx7+Pf+7KonUtOW9v8qyjCzLIWuGhZCYmIhGo6GmpobKykpKSkqmCdySJFFUVMTg4CC9vb309vYSFRV1lhXDcmAwGFAUBafTidVqZWRkhIaGBjZu3MjBgweXu3kCQYjJyUne97738T//8z88+uijoeWqqvLkk0/y+c9/nrvuuguAn/70pyQmJvKrX/2KD3/4w/M6Xk1NDR0dHXg8nmnLb7vttvmfxBmI0atAIECSJNLT0xkYGJiV39CF0Ov1ZGVlUVRUxFVXXYXb7ea5557jV7/6Fc899xyvvvoqERERpKSkzNlDr7+/nz/+8Y8cO3aMvr4+fD4fMTExREZGhqJUBSufoJjqdrspKys7q6CNQHCxkpqait1ux263L8vxZVnmhhtuQFVV2tvbF+UYwYrMC7GJycjIIDo6mu7ubjZt2kRkZCS7d+8+q8M7XyRJIiUlheHhYYaGhs5bwEQgEAiWAp1OR2lpKaWlpWg0Go4dO0Z/fz+ZmZmoqhrK8DofAwMD+Hw+srOzGRwcpLq6Go/HQ0lJyaJ6dxvNej739Xdz7c2lKDotPgm+/fhfF+14y0VQmPZ6vRw5coTm5mZ6e3sZGxvD4/GEoomDQQDHjx+ns7NzVgWwFpMzi0QqioLRaCQ+Ph6j0UhBQQGlpaUiOnWJkS6TFxDq9wZf5/Mn/ed//md27NjBddddN215a2srfX193HDDDaFlBoOBq666ir17957nm56ZlpYWysrKWLNmDTt27OCOO+7gjjvu4M477+TOO++c8/7OhfirEggEQCDVpa2tjc7OTgoKCsK239jYWK699lp6enrw+/34/X4sFgslJSW88cYbs364j4yMUFVVRUdHBxaLhR07dkwL5X/ppZdEhONFgtfr5fjx4yExdbF8HgWC5SA2Nhaj0UhHRwfFxcXLkgqo1+tRVXXRBk9jY2PAwgRVCPhtB4uLbN++nb/+9a+hNMVwkJiYSHNzMy+++CJ5eXlhq+gqEAgE8yVYgd1mszE4OEhra2uomOBs0tRdLheqqnLo0KHQNiUlJfNO8Z8r//rF29n5ZgM+v0JDQ++SHHOpsVgsVFRU0NjYyODgIC6XK/SZRqPBaDQSGxtLTEwMo6OjtLS00N7ezrZt25Y1/T82NpbY2Nhpy8bHx2loaECr1ZKUlERKSsqSXSuCy4e3+hU//PDDPPLII2et9+yzz3L06NHQ/etM+vr6gEDf7UwSExPnFSDw8Y9/nOzsbF555RVycnI4ePAgw8PD/Nu//RtPPPHEnPd3LoSgKhAIAEK+S21tbaSnp4c1fSU1NfUsD1UAv99/wQhVu93O/v376enpQafTUVRURHl5+VlCgcvlWraq2oLZExRTXS6XEFMFlySSJJGdnU1tbS3d3d3zSolfKD6fD1VVF+2eOD4+jlarXfCgLDo6GkVRGB4eJjExEZ1Ox9DQUNgE1fr6etra2lBVFYfDgaqqK8LrTiAQCCRJIiEhgbi4ONxuN4qizOqempGRgUajwWw2Ex0dPSvP1XDS0zOGF0Ajk5C6sBT7cKIoCh0dHSQlJc0662nIPcqAexi334NJYyTFlIBVF+iX6vX6UCGcYCq9w+HA5XLhdDoZGRlhfHwcvV6PLMuYTKYV+XyxWq1ER0czNjZGV1cXXV1dFBcXL2vxzMuGy8hDtbOzM+ThD8x4X+rs7OTjH/84L7300nn/Rt/6dzTfvtu+fft49dVXiY+PD1mDbN++nccee4yPfexjVFZWznmfMyEEVYFAECItLY3u7m7a29spLCxc9OP5fL7Q/4ODg7S0tODz+YiNjSUiIgK/3091dTVOp5O1a9dSVFR0Ts/VhIQEGhsbURRFRKquUHw+H8ePHw/9PoWYKrhUSUxMZHR0lI6OjmURVINp8+3t7UiShMvlor+/n8nJSSRJQqvVkpKSwvr16+d1v5yYmDiravV8qK2txWq1kpiYiCzLREVFMTIysqB9+nw+2traaGxspL+/n9TUVEpKSqirq8PhcBAREbGg/QsEAkE4CYpxs0Wv15Odnb2ILTo3I6NT/PO//gK/VkL2qey4tXxZ2vFWFEXhxIkTjIyMYLfbzyp0cyZ+1c/hkRP8tfcNjo/XT/tMRmZ15CqiycKqiSM/Op4rk7PRyDKyTk/75Chmg4HV+Wn0DI9xsr6J9i47yBJpeiO17f2kx0eBJGE26FFR0YRxTKKqKj/84m/Q6rU88IU7ZiUySZJEQUEBhw4dClnfBD14V6IALLg4sVqt0wTVmThy5AgDAwOhgnIQCK7atWsX3/ve96ivD/w99vX1kZycHFpnYGDgrKjV2RDMioWAlUdPTw+rVq0iMzMzdKxwIARVgUAQQqPRkJmZSWNjI+np6Ys+8DQYDPT19fGLX/wCIDTYN5vNoYe8RqPhbW9724wRrmdiMpmEh+oKp6GhQYipgssGq9VKX1/fskZFDgwMMDAwEBIrExIS6Onpoa+vj9HRUfx+PzqdjsjIyDkVsJqamlrw88Hj8TA6OkppaWlImI2JiaGtrW3WE2OKotDe3o7T6USWZfr6+uju7sbr9WKxWNiwYQOrV68O+dmKyTaBQCCYH36/wn3/8r+Mu91IsoQxQsOmjcn4fL5l9+bs7+9nZGSEtLQ0urq6GB0dnbFAVaejl0drnmLAPYw8QykZBYUT9lokqZYpt46WqjgiNZH8U+Emnv/7CXrGJwAwS1o8Th+qBLIHJH9ge8mvovVJKJKK5AdZAavZwP+77zqu27xqzufl9ys0n+jEMeHizz9+A7fTQ92RFlDh7k/cRETk7IR4s9lMRUVFKFNDr9cLMXUJkNTA61JmLud37bXXUl1dPW3ZBz7wAQoLC/nMZz5DTk4OSUlJvPzyy5SXByZrPB4Pb7zxBl//+tfn3LY1a9Zw/PhxcnJy2LRpE48//jh6vZ4f/vCH5OTkzHl/50IIqgKBYBrJycl0dnbS2trKmjVrFvVYV111Ff39/fT19RETE4Pb7Wbv3r1s3bqV+Pj4kE/RuaJSz2RychKDwSAGzCsUu93OwMAAq1atEmKq4LIgaGfi9/uXfLBpNpu54YYbiImJCaU5BdtQX1/Pm2++iSRJNDU1hdoIUFRUxMaNG6ftS1EUFEWZdg5Op5OYmIVVdu7p6UFVVVJSUkLL4uPjqampYdeuXXi93lDGQtD3TavV4nA4mJiYwO/3U1dXR0dHR2h7vV5PZmYm+fn506IZgucnng8CgUAwP57782HGnG7QSsiovP+eQhoaGmhubqagoGBeEWThwuFwYDAYyM3Npa+vD7vdfpag2jzZwReqn8SjBIpHKcwchBHUGc16L6tS+2nsga8efx2NQYPep0HSSDjwoQFQQdGC5pSgqmpA9aogBX5GAbvDzee++xe+/vTf+fA7t3HLdaUYDee343E43Dz+2V9z4OWTqA4XOgm0MugNOj74xbuItEXMWkwNYrFYRP9bsKxERkaepS1EREQQGxsbWv6JT3yCr371q+Tn55Ofn89Xv/pVzGYz733ve+d8vC984QtMTU0B8Oijj3LLLbdwxRVXEBsby7PPPrvwEzqFEFQFAsE0ZFkmKyuLuro67Hb7BcP3F3qs5OTkUFi/oijU1tZSXV3NnXfeOafBr6qqeDweWlpawjrrJFg4qqrS3NxMREQESUlJy90cgWBJcLvdaLXaC/pELxZnCpVnMjQ0hNFo5O6770aWZRRFweFwUFlZSW1tLQaDgZSUFGw2G83NzRw/fhxJkrjrrrtC67tcrgVHqA4NDSHL8rSoWFVVmZqaCnlxybJMfX09NTU1SJJEZGQkExMTobRFSZKoqKhg1apV+Hw+jEbjjM+NoKC6XL8LgUAguJhRFJW/vHYCVZKQJHjwvaWkJhvIyclhamqK2tpa7HY7aWlpF7QvUFU1rBONqqoyODhITEwMkiRhMBhwOp3T1hlyj/Klk9/Do3hQ3mJqeepxwlsDNiUJdBqF3ORB6rsT8MeAb0JG5zi1ogSoIJ2hy0r+U5aSb43ak2DC5eVbP36NJ3/0KvfftZkP3nvFWefS1TbId7/2AscOtAYWGHRIXh+y4uefvvJO0nITKdqQO6fvR7CMXEYequHi3//933E6nTz00EOMjo6yadMmXnrpJSIjI+e8rxtvvDH0c05ODjU1NYyMjGCz2cIaoS0EVYFAcBaJiYl0dHTQ2tpKWVnZkh1XlmXWrVvHzp07qa+vZ/Xq1bPedv369djtdnbt2sXY2Bhr164V0UgrhKGhIcbHxyktLRUpRoLLBqfTuSKLVGg0Gvx+Pz6fL1RMw2KxsG3bNsbHx6msrKSyshJJklBVFavVit1up62tjZycHBRFQafTUVdXh8lkoqCgYF732qioKBRFYWJigqioKCDg+ZqcnMw73/nO0D4VRaG/v5/e3l6GhobIyMggOTkZrVZLREREKOLmfJkMwd/BctrCjIyMYDabZ10sRSAQCFYKTz23m9bBUWSDxD03VnDv3Vexd+9eVFWlsLAQq9VKc3Mz3d3dREREEBUVxdTUFDExMaSmpqIoCp2dnTidThRFYXR0lJKSkgVnOkAgA8rlcpGQkAAEih12d3djsVhCHuZ/6H6FKZ8zJKYqKri8WjyKBvWUMqqVVAxaHzpZCYmrkgQGrY/YqEkGR6LwxfjROQLPpqtX57C5IIPsuBgURWFgdJLJCRdjDhf9IxP0D9jxeHz4PX6a24aQ/KeOpMJPn9/Hc995mcQ4K5uuLkQjS1QebKWjbQj8gQhXAFSJj/7nXdx89+YV15cQCMLB66+/Pu29JEk88sgjPPLII/Pe5wMPPDCr9X784x/P+xhnIgRVgUBwFsEq1SdPnmRkZCQsHZ7Zkp6eTnx8PNXV1eTn5896BttoNHLTTTexZ88ejh8/zvj4OFdcccWy+zpd7ni9Xpqbm4mJiVnS60ggWE5cLheDg4PLmgJ5LvLy8qirq6O9vZ38/PzQclmWueWWW3A4HAwMDDA6OkpsbCxpaWn8/ve/Z9euXRw+fJioqCgqKipobm5m//791NfXYzKZ8Pl83HzzzbNuRzAzoaenh6ioKDweD319fWcJtG/NZJgPwYgpp9M5KwuZcDMyMsLx48cxm82sW7dOPJcEAsFFwcSUi4e//WdqW/pABZ1BwxXlsezbtw+v14skSUiSRGpqaqgY49DQUGgCqa2tjc7OzpAvdkREBG63m8jISE6ePElZWdmCM+G6urowmUxER0cDgWfc5OQk4+PjpKWl4fK7eaV/byjF3+uXmfLpUBUp4IFKQDj1IzHl1aOTFSJ0nmkRq3GWKYbGIsEMRakJ/OuN29malznrNk5OufjRs3v4zR+PBr4zJFBVBnvG+MuvD52OZJQJiammCD0f/ewtXHvz0gW2CBaBSz1CdQXyzDPPkJmZSXl5eSijaTERPbp5oChKqIKuQLBQdDrdikxDjIuLIyoqisbGRtavX7+kbVy/fj0vvvhiqLM1W2RZ5sorr8Rms3H06FF++9vfhqoOWq1WkpKSZl10RbBwFEXh5MmT+P3+acKNQHApE7Qu0Wg0y1aJ+XyMjo4CnHMQazabycrKIisrK7TsxhtvpLW1lZGREQYGBjh06BBvf/vbmZiY4PDhw6F9zraYFAQiSjUaDSMjI0BAhPb7/aFBcTgJRoW6XK5QNOxSEfR6jYqKYnJyksbGxjllXwgEgvDg8DmY9E2homDRWojQLm7h1Yud47Vd/OS5Nzh4ohckiQ1rkthaloCi+ElOTsZqtU7zKdVqtcTHx0/rZ7vdbrq6utBqtaSmpoYmk/x+P/v27aOzs5Pi4uJ5t1FRFAYHB8nOzg5FcAbtYfr6+nC73ewaPYxbCYzbvX6JUZcJh0eHTzktg+g0Pkw6DwatH68i4fDpiNB5T+0PjDo/FpMbn9vKb+5/35zbaYkw8okHr+PFH+/DY9Qief3IHhU0p1VbrU5DfHIU1+0o4+Z3VBATO/cUZ4FAAB/5yEd49tlnaWlp4YEHHuD973//ogb1CEF1jng8HlpbW0U1cUFYiY6OJikpaUWlc0iSxKpVqzh06BDt7e1L6ktqMpmQZRmHwzGv7UtKSrDZbDQ1NTExMUFnZyculwtJkti0aROFhYVhbrHgraiqSmNjI+Pj45SVlV3QU0sguBRQVZX6+nrsdjtr165dtkjEsbExJiYmpg0wg6+urq6zvEsvhMVioaSkBAgU/3jhhRd49dVXuf3227nrrruoq6vj4MGDeDyeWae079y5EwhEEwWPodfrGR4ensupzgqtVotOp8PlcoV93xfC7Xbj8XhYvXo1Ho+H2tpa4uPjiYuLW/K2CASXE4PuIV7rf53j4ycYcA/gVtzTPs80Z3B94rVsit2IXl76yPWVitvjY9feBh793ov4FRWzSUdsbCRf/NjtxNnmVtQoWCjqrYyPj+Pz+RaUeQCELGtGR0fJzDwdMZqZmcng4CB1dXWcMDYgI+FTVPomI3F59WcFDXp8Gjw+MxF6NxEGDx6/jEkL8qlhmapChNGNWbswkfOHP/8wX/nMr7HZzHzq0buIiDAwYXfhdnqJjY8kIlJYwlxKSGrgdSmzEs/v+9//Pt/+9rf53e9+x49//GM++9nPsmPHDh588EFuuOGGsOstQlCdA6qq0tvbi0ajIT09XfgzChaMqqqh9EpgwR2LcGM2m8nMzKS9vZ2EhIQlqw5ZU1ODLMsL8m9NS0sLeSdBYDLk9ddfZ//+/XR0dJCWlkZOTo7ws1sExsbG6OjoYGRkhMLCwkWJOBMIViLt7e309/dTVFS05JGQZ/LXv/71gpk0DodjXvd0s9nM2972Nv7617+ya9currvuOsxmc2ifs7mnDg8P09/fz4YNG0K2CLIsEx0dvSiCanD/yzEZHjymRqMhISGBvr4+WltbiY2NXVGTqALBpcCoZ4gXep6lemw/ftWNJAUybk2yBhU9HkVLMKe63dHBj1p/ws/af0WspoTKQT9jHieqCladgSSTlfLYdN6TvY60CNt5j3upsHt/I794fj+1db2BlHe9xD23beCB92wN2zHcbjcNDQ1nRbjOh8nJSSYnJ6eJqRDI/svNzaWmpobx2AkUVIYdJpzeM4XzkFEpKjKgMuUxoJEVDFofHr8Go9Z/ag3QSCrvyVtY+n1mTgI//PU/T1tmjlj4OGRXQysv1zTRPzFJcWoCqxLjea2uBVmSeP/mtRSnLL79kKqqdHYMEx9vpaGmm+NH2oiJtXDozUauuLaIyEgTxesy0WhkjGYxgSFYXAwGA/fccw/33HMP7e3tPPPMMzz00EN4vV5qamrCqmkIQXUO+Hw+HA4HKSkpocGDQLBQgpF7AwMDJCQkrLj0/4yMDAYGBmhoaKC8vHxJBoDBYi7h/DvT6/Vcd911HDlyhI6ODg4ePMjRo0epqKggPz8fRVHQarVioiQMtLS04PF4yM/PJykpabmbIxAsCcHCTdnZ2aHiGMtF0GajoKAAVVWneUgpioLBYFhQZzI2NpZ169Zx6NAhfvnLX4b273a7L7BlgJaWFmRZPssKJDY2lsbGxjlZB8yW5RBUVVWls7MTWZYxGo1IkkRaWhrV1dVMTk7Oq2qtQCCYjtPn4O99f2Dv8E4cfucpO0oJ0KNRVXSyH53kx6Zz4lclJn0GXMppQcftd9OrHEZnNOH1RuHw6hj3Oul0jHFkuIMfNbzJvbmb+Ezp9WikS7OP2Nw2wKPffIHmtqHAAhmMeg1fefgdrCuZvVfo+fB4PDQ3NzM2NgZAUVHRgscUdrsd4CxBFQjdXyUF/AqMuoIWD2895un3KuDw6jFofSiqDPhDn2klDe/KLVlQexdCXd8g9QNDrEqIozApnsOtXUy6PfTZJ/jSn18Nrbe7sS3kDSsj8UJ1HfesK+Wl442UZ6Vyc1E+B2s7uao0h/K8VH63qxqDTsMdV5Sg02rw+RW0msB17vX60ek0gaCyvnESEqz4vH527qqlMD8JWZL4r++9THFRKlFmA08/9SqJiVbGOkfxef3IkoTiUzi0uwGrSY+qqGj1Giq25PLOB68iPXd5+0qLTtAb91LmIji/YIaWqqqL0g8Uguoc8PsDN9XlKGgguLQJCoder3fFCaqyLLNq1SoqKysZHBxcEqHA4/Esyt+ZLMts2LCBDRs2YLfb2b9/PwcOHODAgQNAYDarqKiI4uJiUTRknjgcDux2O8XFxcKvVnBZ0dzcjMViISMjY7mbgqqqmM3mRf0bLC4uRpZl7HY7qqqi0WhmfbzOzk7i4+PPus8nJCRQW1vLCy+8QG5uLkVFRWFrryzLS1KcAAL3QZ/Ph91up7+/n9WrV4fONSYmBr1eT39/vxBUBYIF0DHVxk9an6HN0Y6qSkiSigYdJq0HCRUVUJBwKVokwKD60KAQpXOh8SlM+Q2AFCo+FGt0oqgy4x4jo5Nm/KpMcOj9s+YDuP1e3pZYhF6jYW1cClV9fUx5PZQlJtE7NYFfVSmOS0Anr6x+/LkYHp/iuZcqeXl/Hb1948heNSQMrC9L4MpNqZQUJiPL4QmkcLlc9Pf3Y7PZyM/PD0uG2NTUFGazecYJOJ1OB4BFNjPqPC2m+n0SPrcWVZGQtQpag4/A5hKg4vNr8CsyaE6LqRLwrpx1xBjnHuihqioHBjr4W2cdEx43NoOZWzOLKItLYdzl4vkTJzja00OUwcBdxcWUJCailWX67ZM8d6Qan6Jg1Gl5as8B1FNtuWlVPi8dawTAbNC95YCBlZRTx1YV+Nm+Y8h++PvxBnYeaEDnk/jtnuNszE3jcF0nqgrtfaM4Rl38bU8NH33/1Tin3Pzvc3u544YyzGj49e8PU1GeSXZWPL/+w2EMBi3XbSukqqqDqqoOrr0yYKc2ODhBYpyFgd5xMrLjaG8aoKg0HXx+ejtHcE25ef1Plbzxp0o+8633suWGNXP+TgWCC+F2u0Mp/3v27OGWW27he9/7HjfddFPYJ+yFYjAPRIqWINys9GvK5/MBpzsnS3G8xRY0rVYr1113HR0dHSGv1q6uLiorK2lvb+e2225b1ONfqvT396PVaomNjV3upggES8bU1BTj4+MUFxeviPu5qqpLEm0/n+JKPp+PiYkJfD4fJ0+eZPXq1aG2pqamkpKSgtPp5ODBgzidTioqKsLSVkmSlixCtampKVRsKy0tLWRrEGxHdHQ0ExMTS9IWgeBSo8fRzw+a/5cae+cpwdOIBEioSBLYfSZMGg8RGjc6jYKiqvhPCasGyYdOUrBoPahIOPyG0H5VFWKNU0x69URHOBiejODM6MXn2o7ysxPVqEhIqoTqlJF8gXuXKqugUdHJMlqflnhDBHcUruam/HwyoqKxLFMwjqIojI+PMzw8jMvlIj09nchIK8/85QA/+N3eUASdpJFQFCgsSODqjbGsLckmLy8vrMENwYy82NjYsGWgud1uDAbDjJ8Fxy7rrcX8vK0dAK9Lg2dKD0rAC8Ivq3idOkxWF7I2MOGmAooqoZNPPy8kCd6VefWc23dgoI3P7H+BjskxtJLmlMwPP64/iEHSojg1eCdVZJ+MLEn8+uRJUEEjyxi8MopLAQn8iooauMhRgb/VN5665sHl8QXCUc/DtF6JCsqpycXG7iGC84x17f001/WjqvDGwUYcE4GMkzcONJJjiw6s39RP4aqAPZ1Oq+GK7QXs2l1H0eoUPvzQtSQnRbOmJJ3iNan0dY+SU5CE1+tHrw+M6TweH70dQzz60M8Y6B7l6x/7GR/83G3cct/2OX+3FwPCQ3V5eOihh3j22WfJyMjgAx/4AM8+++yijkuFoCoQCC5IcLC7VNE9iqIsiXgry/K0StZFRUUcPnyYkydPLkrK6eWAz+fDaDSK705wWTEwMLBiJhIURVmye/VcsdvttLe3YzabGRgY4OWXX6ajo4Prr78erVaLXq/nhhtuQFEU3nzzTaqrq0lPTw9LZsRSRqharVZGRkbIz8+f0RvdZDKF0l4FAsHs+VvvLp5ufg6fKnH2MFZFKyloJBWHX4/Dr8emc2DUeNEQEFXdqhZJ9aGVFCwaN26/Dv8pNUoKBCgSqXcz4TWi1/rx+LSn9hz4R6P3B6IbUcHkR52SkJTAS5VUvCh4ZQ+dkz6+d/AA3z24H51eZktKBtdm5rAqPo5hl5MYo4lYo4lxt5uC2FisYfTzV1UVp9PJ6Ogora2t+Hw+dDodAyNuKk+28czLLUy5vKABkIKBmdx7+wa2r47C6XRSWFgY9n5cR0fHnAsiXgiz2Ux/f/+MnxkMBkwmExGTFvyKjKpIeOwGUAJ+qUDgZ0nBNanHHH3askaSQHtKUJWRKYsuJNE4+0KCL3fX8VTdbmrGewHQG0FR/Kg+GUUJSKEuxQcGH6oso05pUN2nIpsl8CsKDo2CRgJZkULXX1AZPeNHKrJTOdjedfrgp5RWKaDFkhAZwYe3b+TFY/WUpidTU9dDZVMPmwszuLI4m28++zqyLPHe6yvwbvfx0pu13HfHJnxeP8/9+TA73lZCZpKNP7xQydXbV7GmOI3iwhSys+JJToziL3/819ChH/jQ1aGfc08Jr0ExNfhzZl4S3/3jJ/jxY3/mlV8fQKcXcpQgvPzgBz8gIyOD7Oxs3njjDd54440Z1/vd734XluOJK3iF8Yc//IFPfepTtLa28tGPfpQnn3zyrGVr167lE5/4xKJ0xiVJ4ve//z133HFH2Pd9KXP//fczNjbGH/7wh+VuyqIQHR1NZGQk7e3t2Gy2RY/AUhRl2aK8IiIiUFUVl8slvJLngSzLIXsUgeByQFVV+vv7iY+PX1ETCSuhLR6Ph66uLrq6uhgYGGBychIICI5BT+6GhgZeeOEFTCYTqampoYjVLVu20Nvby4EDB9ixY8eCz0er1eJyucJxWudFVVXGxsYwm82kpKTM+CwzGo14PB78fv+Ks/kRCFYiiqrwtdofsW/4OCHFaAZ8qoxP5ZSwqjDqjSCaKUwaLxoU/Mi4FC0RcqBon0njYdI/Xcy06lzYPQZMek9IUIWAyCbLp4S4UyIkOgXcpyIP/RJoVFBB1SpIHg0SEl6/wq7ONna1tyH7A8KrGtTOfKCXNaxPS+XG/Hzenl9A3AX6nqqqoqgqmnPcE/v7+zl5sgZJkhge9mOf0OA3qvz095VEmHRM+byndVQJIk0G3nXtWt5xVQEnT55kzZo1YX9+TExM0NXVRVZW1jkjSueD2WzG7XbPmNkW9KxubGxEK8lMTmlBkZEdILtkkMFnUUEroXo1KIqELAfcdy06V8gKQkHh5uSrLtgWVVWpGu7hPyv/zvHRnsBVKgeum+BLq1fw+yT8PvmUpyNIGhXVrKB6ZCRVmu5JKQOnhNFgdKosSWzJTudTV29nyu2lIiuVN5vb+duJBjrHxslPjOOmonyaBoaRJLixuACb2cTdmwMFtdSbVVxeHyZ9IHDlho2FaGSJKEsggvjG7aczTyrWnLYw+sRD14d+3ropb5a/oZkxmvQ89J/v4P5/34HZcgkXBxYeqsvCfffdt6Q6ghBUw8TAwAD/8R//wYsvvhjyhykrK+ORRx5hy5Yts97Phz/8YT7wgQ/wsY99LOSt9dZlWq2Wm2++eVHa2Nvbu+CKi4JLD0mSyMrKorq6mqGhoUX15RsaGsJutxMXN/uZ4HCSmpqKRqPh0KFDXHXVhTtQguksVyVtgWC5cLlcuFyuZbtnvZXg399yCaoDAwN0dHTQ29vL6OhoqAhWQkICxcXFZGZmTpusSktLY+/evXg8Hnp6eujr6+Paa69Fq9VSXl7Om2++SXt7O9nZ2QtqV1xcHA0NDYvm0Q2BAXVHRwdjY2OUlpaes0MfTH11u91i4k4guACKqvDVmv/hwEg15xJSA5z+zKdqUJHQSX7GvGZ08iQ62Y9fDaznU2V0snJKUDWEtpUk0GsUtLKKb6Zc1rce/pTAKoVcW0+tc+r2q6IGzCw1gWWqXw3YBahqQCDTgsfnZ19HJ/s6O/nyrtd57NrreUdR8Yxn2Nw9xEe/8VtGxh2syUrkhrJ88rITOHGym8zkaJ77+W7ik4wcqOrHYNDhmPTg96ukZgeyJ1weP1dvymVq0k58bARFq3K585pSNLJMW1sbsiwTExNznu947vj9/lBV7fT09LDu2+VyodVqzzkxlZSURFtbG/kaG0c8TjSToLWffjbKbglPnD/wiz/16zNovRh1geeohMSV8RuosM38+wAY8zg4ONjGN4+/QdP4yKmlp6JKFS1IKlqtPyTQarSBQpGKP+Dfq8qBvHBVpyJ5pl9gsiqhkSV0Gg3Xr86ja8xOUXICn7xmK5YzhOkr8rO4Ij9r2rYbstJmbK8kSSExFSDGOrdn0NDQEBMTE2RkZCx4QvCSFlMFy8YzzzyzpMcTgmqYeMc73oHX6+WnP/0pOTk59Pf3s3PnzpCH1myYnJxkYGCAG2+8kZSUlHMug9Od8Znwer0zpkvPpo2iIrfgXMTExBAbG0tNTQ25ubmkpqaGffbH5/Px2muvYTQa2bBhQ1j3PVusVitpaWkMDg4uy/EvdjQajYhQFVxWBKMez/dcXkqCgupyRPk3Nzeze/fu0KC8uLiY9PR04uLizinwpqen8573vAeAffv20djYGLJcyc3N5cCBAwwNDS1YUA1GRS2WoOrz+airq2NoaIiMjIzzihLBa2V0dFQIqgLBBfhV+4scGDnB+cXUs/GrMpKiopUVJr0GovUOZFQUwKtq0KEgS6CXfXiU6eMmCQXlLcdTVVD8b2mDEnivnhmm9daoNOmM/6XAxIvkB1XH6dxtNbB/n1/h0y//HYfby7b0DBqHhsmNiyEvLpZXjzfxqZ/8Bb+iotOoHG/ppaaqG7MTfKqC2aDFO+iksQ78Zg0ej0KU1cT4mJMrNudzTZSBssJUKkoymJqaorKyEll2UHn0KJIkhSbEh4aGwlqAdmpqCqfTSVlZWdgn+oxGIz6fD6/XO+N9XaPRsHbtWj48Es0/vvxnNBMyGhdIioSiPxXx6ZJQIlSkU+J4SqQ9tP3GmFL+Oe99Mz5P2yaH+EH9Ll7sPoFPDTx3DcbANeLzaVHV0/n5Pq8GrS4gqqoqaLTKqWvplKh65u4l0CDxL5s2o/VJ+BSFW0tXkx27MgKeBgYGGBgYoL+/nzVr1mCxWJa7SSsW4aF6ebD8+WCXAGNjY+zZs4evf/3rXHPNNWRmZrJx40Y++9nPsmPHjtB63/rWtygpKSEiIoL09HQeeuihUPrb66+/HopIfdvb3oYkSedc9swzzxAdHR3a7yOPPMLatWv58Y9/TE5ODgaD4SyfsNm2UZKkUNp6W1sbkiTx/PPPc8UVV2AymdiwYQMNDQ0cOnSI9evXY7FYuOmmm6aJT/fffz933HEHX/rSl0hISMBqtfLhD38Yj8cTWuc3v/kNJSUlmEwmYmNjue6665iamgICg8H//M//JC0tDYPBwNq1a/nb3/4W2jbYrt/97ndcc801mM1mysrK2Ldv33l/T4888ggZGRkYDAZSUlL42Mc+FvrM7Xbz7//+76Snp2MwGMjPz+d///d/gcDM6oMPPkh2djYmk4lVq1bxne9857zHUlWVxx9/nJycHEwmE2VlZfzmN7857zYrHUmSWLNmDWlpaTQ1NVFfXx924czlcjE1NUVubu6iRRBdiKNHj9Le3r4sx74UEBGqgsuNoaEh9Hr9ihNUlyNCNXjMt7/97dxyyy1UVFSQkJAw67YYDAYURQkVE5FlGZ1ON63/MF96enqwWCxERERceOU5MjU1xeHDhxkbG2PNmjXk5OScd32DwUBiYiLt7e1iAkogOA9jngl+0/XStGWqCg6PDrvLwIRbj9d/7vuLT5VRVQmnokNFQj6ldCrIoWI88jlyVj3eM9L9CQQx+r2h0NMAp95LnEr3P7Wy5D2jTWeKZeqpdc9cJL1lNRUefu1VbvzRM3z0t39hx9M/45on/oeP//LPeE8pNL5TgX2yT0WjCWxpizag02nYckUBO3as5Z3v2MBP/veDPPX9f+BDD17FA+/aQkVJIIU7IiKCtWvXEh8fj9VqJSIiAkmSQvfgcBIREYFWq6WhoQG73X7hDeZAcJx8viJ/ERERvC1tNbkx0WgdYBgD/aSKxqmGfo+yPiB2xkdModWomDRG7k6/mU8XfhCdfPo6qB8f4D+O/JWy33+d61/8Ab9tOYnLS+hakiSQNSp6gxdJCn6Pgd+P33faq1eSCAm4QOC68AaujKuysznxsY/ysW1beOiqzXzsmq0rRkyFwHPZZDKhqio9PT3L3RyBYNkREaphwGKxYLFY+MMf/sDmzZvP6Q0jyzL/9V//RVZWFq2trTz00EP8+7//O9///vfZunUr9fX1rFq1it/+9rds3bqVmJiYGZe1tbWdte+mpiaef/55fvvb384Yfj/bNs7Eww8/zJNPPklGRgYPPPAA99xzD1arle985zuYzWbe/e5388UvfpGnnnoqtM3OnTsxGo289tprtLW18YEPfIC4uDi+8pWv0Nvbyz333MPjjz/OnXfeycTEBLt37w6JwN/5znf45je/ydNPP015eTk//vGPue222zh58iT5+fmhY3z+85/niSeeID8/n89//vPcc889NDU1zVgd/je/+Q3f/va3efbZZykuLqavr4+qqqrQ5/fddx/79u3jv/7rvygrK6O1tZWhoSEgMDhNS0vj+eefJy4ujr179/KP//iPJCcn8+53v3vG7+wLX/gCv/vd73jqqafIz89n165dvP/97yc+Pv6iTiOXJInc3FwsFgv19fWMjY2Rn58ftkIsFouFyMhIuru7WbduXVj2OVeCfz/r169fluNf7Gg0mlBRnJVQ7VwgWEwURWFgYIDExMQVc70vV4Sqx+PB7Xbj8XgYHx+fszWMoig0NzeTmJg4bUJNq9UuWFB1Op0MDw9TUFAQ9u9lamqKY8eOYTAYKCsru6CwPjY2Frpm+vv7cTqdIsJHIDgHL/fvQzkV/aeqYHcbGXcZUdRgYaFAeKdJ6yXG7ECneasYKKGoUqhQlUXrRlKDQaSBRP2Z7giKKuP0nI5aVVVQfBKqIoMUSMVWnDJSMEJVowTClILC2KnlyKEmhsRUNfBDsHmhCK+3yrqqDAGPAolu1yRaQNIGihSlx0Xx2QevxjnmwhLhp76hjQ0VBRQWnn2Pi46eeRLJYrFMG1ctFhqNhnXr1lFbW0tlZSWZmZlkZGSEZdJveHgYWZaJioo673qyJPPMtXdz+19+jBysPaWA16qimFRMkW5SIh2UxsRxc/JVbI+rwKAJPIcGXXZ+33mIP3cdo3NqFFWVcaunPByQUBRQFA0ajYJGo4aiUPUGH26XjmBosnoqClk6Q0AP/s5NXgOp0dG8e80a7l+3Dv0K9taWZTn0nZ9PyBYgPFQvE4SgGga0Wi3PPPMMH/rQh/jBD37AunXruOqqq7j77rspLS0NrfeJT3wi9HN2djZf/vKX+ad/+ie+//3vo9frQ+kVMTExodT7mZbNhMfj4ec///k5BzCzbeNMfOpTn+LGG28E4OMf/zj33HMPO3fuZNu2bQA8+OCDZ3lV6PV6fvzjH2M2mykuLuY///M/+fSnP82Xv/xlent78fl83HXXXWRmZgJQUlIS2vaJJ57gM5/5DHfffTcAX//613nttdd48skn+e///u9p7QpG137pS1+iuLiYpqYmCgsLzzqHjo4OkpKSuO6669DpdGRkZLBx40YAGhoaeP7553n55Ze57rrrAKZFl+h0Or70pS+F3mdnZ7N3716ef/75GQXVqakpvvWtb/Hqq6+GvGlzcnLYs2cPTz/99EUtqAZJTEwkMjKSxsZGqquriY+PJy8vb8FG811dXUxMTCyrmJmbm0tlZaXoJMyTYAdZURRRbEVwyTMyMoLX611RdjlLHaE6PDzMnj17GB0dDVWX7u/vJy0tDUVR0Ov1M050vhWfz8fU1BSrV6+etlyv1y9YUG1ra0Ov15OYmLig/QTx+/2h331ra2tITJ3JbulMFEWhqqoKVVUZHx9HkiSR8i8QnAO/qvBCz+6AJqHC8JSZSa8BSVLPiP5TAxGoPi29E1aSI+1vEVVVfKqMBgWfMv2eGNQBzkztV1XwKBpGHCZUJDQELFDLY9N5csM7qBsbQq/RsC4+lZMDA0x5PeTGxHB8sI9Jj4cB+xSHu7s52NPNlN9zWjhVAwWogtYAIT341GenrF1DKttZabRS0N9Vw/u2lvGPN2zCajYyPj5OZWUlV24vITMzc8VM7L0Vs9lMeXk57e3ttLW10d3dTXJyMikpKRiN8/PRVFWVvr4+4uLiZvWMSY2MxujX4FUCGRBIYM7Scn9pCQ+t2UaU/vS9eMrr4i9dh/ll6wGaJvqRUJFl9VRRMj8RWj9+v4TDZTiV2q/i98tIkhIobBVM7dco+P3BvrCEqkpIp365wV9xsS2JP7/3gXl9B8tBdHQ0PT090zJLV0IRTIFguRCCaph4xzvewY4dO9i9ezf79u3jb3/7G48//jg/+tGPuP/++wF47bXX+OpXv0pNTQ12ux2fzxdKcV5oClpmZmZITN29ezdvf/vbQ589/fTTvO9975tVG2fiTME1OBg5UwBNTExkYGBg2jZlZWXTBglbtmxhcnKSzs5OysrKuPbaaykpKeHGG2/khhtu4J3vfCc2mw273U5PT09IrA2ybdu2aRGlb21XcnIyEPB1mUlQfde73sWTTz5JTk4ON910EzfffDO33norWq2WY8eOodFozit0/uAHP+BHP/oR7e3tOJ1OPB4Pa9eunXHdmpoaXC4X119//bTlHo+H8vLycx7jYsNsNlNaWsrAwABNTU0cPHiQ7OzsBXmrBqOSljMF0mKxEBMTQ0dHx7TrXDA73G43Go1GdK4ElwXDw8OYzeYVGWG4FAPrmpoajhw5gl6vp6Kigri4OPbs2UNjYyONjY1A4L6en59PWVnZea1c9Ho9Go0m5EkLASF0ampqQecyMTFBf38/BQUFC57kcblc9Pf3093dHRJ5IyMjKS0tvaCYCkyzY5qamiI2NlbcKwWCczDsHmPYMwaAw6tjyqdHllUU5XSUH4Asq4EIUhUGpyykWM9MK5dCguxbPVElAtt5len3BbszBiNWoo1aSm2pvC93A5vjs5EkicQIa2i9dcmna1ukWE4vZwP4FIVdHW0c6u7mpYZGWkdHQ6n+ikY9Xb3dH4xaZXrIogKSEvhMI0nEmSOoyEjigas3UJoemMDz+XxMTk4iSRIZGRkrVkwNIssy2dnZJCYm0t3dTXd3N52dnfOOWJ2amsLhcJCbmzvrbbLiouioHQAJ3vO2XD5x352h43r9Pv7eV8nPWl6nyzmEJIGigE6jxeOTUfwaQEWn9Z86HxWzyc2UI1jULCCqyvLpMYw8TVA9jaqCqkjISHxh3bVzOu/lJj4+nvXr19PS0kJnZycul+uimxhUVTVkLbS4B+LSj+C81M9vFghBNYwYjUauv/56rr/+er74xS/ywQ9+kIcffpj777+f9vZ2br75Zj7ykY/w5S9/mZiYGPbs2cODDz6I1+td8LHPFGTXr1/PsWPHQu/PjMg4XxvPxZmDhODD+q3LZuu3I0kSGo2Gl19+mb179/LSSy/x3e9+l89//vMcOHAglDr+1k7BTOnDM7XrXO1IT0+nvr6el19+mVdeeYWHHnqIb3zjG7zxxhsXTM97/vnn+eQnP8k3v/lNtmzZQmRkJN/4xjc4cODAjOsH2/DCCy+Qmpo67bOFRnCuNCRJIjExkZiYGFpbW2lqagoNXIO+RnMhISGB5ORkamtrKS4untWM82KQlpZGdXU1r7/+OrIshwTC4PWr0+koKipaNp/XlUxwgmild+wFgnDgcDhWnJiq1WqRJImenh7y8vIW7TgOh4NDhw6RnJzM1VdfHbofXnnllaE0TEmS6O7upqamhv7+fsrLy4mNjT1nRJLRaGRoaAhFUWhtbWX37t1YrVbKysrm1Ua3201tbS0RERGhide5Mjo6SmtrK16vF6fTiSzLJCYmkp6ejslkmtO9TqPRYLFYQt6wcxECBILLjUmfI/TziNOE3y/h9ejwuLUEBSyt1o/B6EWjVZAk8Pg1uH0aDNqzJ+aDXqkqakDCVMGtalHOKCli1Bj4/VVfwqBZWH9dK8u8LSuHt2Xl8JltV9Bjt+P2+4kyGmgYHibKYGDE4eTV1hZebGykzxGoqZEVFc1qWxxlSUm0Do5R0zfA6sR4/t91VxFtMoYmZbq7u2lsbAz5d19MEzNms5n8/Hyys7Pp7Oykvb2d4eFhiouL5xStarfbkSRpWl2RC7FldSad1f0AuIY9TE5OMqlV+FnLPp5rPYBPDShgGlmHXutHIykYtD70WnC49SiqhNenQacNeK7KqOh0frzewDV5Zlp/4DVdbQqK+Koio5FkvrH5VjYlZs66/SsBSZKwWCzodDoiIiKorKxk7dq1i+JPHm5UVWVkZITGxkaGh4eXuzmCSwQhqC4iRUVFoQJPhw8fxufz8c1vfjP00Hv++ecX5bgmk2nWg6gz2xhOqqqqcDqdIbFy//79WCwW0tLSgMDNeNu2bWzbto0vfvGLZGZm8vvf/55//dd/JSUlhT179nDllVeG9rd3795Qiv58MZlM3Hbbbdx222388z//M4WFhVRXV1NSUoKiKLzxxhuhlP8z2b17N1u3buWhhx4KLWtubj7ncYqKijAYDHR0dFwS6f2zQafTUVBQQGJiIg0NDRw5coT4+HiysrLm/IAtLy/nr3/9K7W1tcsWIVpQUEBnZydDQ0OoqhryBFUUBb/fj9/vJy4uLnQ9C04zOTmJ1Wq98IoCwSWAw+HAZls5xSIgIEquWbOG6upq4uLiKCoqCuv+FUVhz549dHR0ALB169Zpk0uJiYnTJnJXrVoVEkdffvllZFmmqKiIdevWnSUCFBYWcuTIEd544w0mJiaIiori9ttvn5dY4Ha7OXbsGIqiUFZWNu9Jnr6+PtxuNwkJCURERMw6vfRcREdHh8RlgUBwbjRSILLP7ZPxeHQ4poIi52kDUp9Pg29Si97gxWjyACoOrx6D1nnW/mRJQTkVCqqXfMgyODzTJ8bvy3r/gsXUmUg5o1+0Oe10NN+2zEw+f9XV9E5MYNLpiDlPkEdvby9tbW0UFRXR0tKCzWbD6XRe0D90paLVasnOziY2NjaU7bBmzZpZn8/o6CgWi2VOmQfXbi/kN7/aj3bSy/6d7Rwp/iU17kGUU466Go2KLEn4FRmnR4NW9mPSe5EAs97DpDtwbfgVGe0pawm9zndKUA0QTOsPaLNnej4Egvk0SLwjq4IHVm0kxxqeGhTLQUpKCv39/Xi9XiorK9m0adOsMjWWg9HRUbq7uxkZGVlSSzJpJvuOS4xL/fxmgxBUw8Dw8DDvete7eOCBBygtLSUyMpLDhw/z+OOPc/vttwMBX0afz8d3v/tdbr31Vt58801+8IMfrKg2hhOPx8ODDz7IF77wBdrb23n44Yf5l3/5F2RZ5sCBA+zcuZMbbriBhIQEDhw4wODgYMg37dOf/jQPP/wwubm5rF27lp/85CccO3aMX/7yl/NuzzPPPIPf72fTpk2YzWZ+/vOfYzKZyMzMJDY2ln/4h3/ggQceCBWlam9vZ2BggHe/+93k5eXxs5/9jL///e9kZ2fz85//nEOHDpGdnT3jsSIjI/nUpz7FJz/5SRRFYfv27djtdvbu3YvFYuEf/uEf5n0eK52oqCgqKiro7++nra2NQ4cOkZiYSFZW1qwrYAdTMJYzwtFisZzz76KyspLjx4+H/I0Fp1EUBYfDQUpKyoVXFggucnw+H16vd9q9ban9S89FeXk5IyMjHD58GJvNNu/ozLfi8/l49dVX6enpIT8/n5ycnFlF6AbtYEZHR6mvr+fEiRMMDAxw8803T1svOIl25MgRADZu3Djn79Lv99PX10dnZyeqqrJ27dpZP39mYmJigtjY2LBFkyqKsmzZFwLBxUS0LnBvGZkynxZTJZiWY3rqR49bhyQpGIw+1LMG+IEFEVpPKO1fg4Lbr8GrnhZW3p3+TrbHbQ3/iVwAWZJIvcBE9Pj4OA0NDaiqSlVVFYqikJmZOafozJWK1Wpl3bp1nDx5kmPHjpGSkoLFYiExMfGc93+Xy8Xg4OCci2qtyk+iJD+Z2soOnHYvfS8NolwJQWsIn0+DJKloNYGIZ58i4/JqMekDYxOdxo/Xr0VRAj64kgQaKZjXffa4xR/y7ZXQaRRuyVjDf6x9O1H6+T+TVgpRUVHk5ubS0tKyou1r7HY7VVVVGI1GIiIicDqd+Hw+UedBEDZEjy4MWCwWNm3axLe//W2am5vxer2kp6fzoQ99iM997nMArF27lm9961t8/etf57Of/SxXXnkljz32GPfdd9+KaWM4ufbaa8nPz+fKK6/E7XZz991388gjjwCBB+euXbt48sknsdvtZGZm8s1vfjPk+/qxj30Mu93Ov/3bvzEwMEBRURF/+tOfFlSJMjo6mq997Wv867/+K36/n5KSEv785z+HLAaeeuopPve5z/HQQw8xPDxMRkZG6Hv5yEc+wrFjx3jPe96DJEncc889PPTQQ7z44ovnPN6Xv/xlEhISeOyxx2hpaSE6Opp169Ytyne90pBlmeTkZBITE+nt7Q2J00lJSWRmZp43nUdRFA4ePIjFYgl7VFW4GBsbw2QyiXT/GXA6naiqelGk/QgECyVoBeJyuaivr6ejo4OBgQG8Xi8ajQaj0cjmzZtJT09f8rbJssw111zDn/70J1577TWuu+66BU8C+Xw+Xn75ZQYGBtiyZQurVq2a0/bBolCJiYloNBra29tnXK+kpASdTkdraysFBQWz3r/D4aC7u5u+vr5QFkFubu6CxNTx8XEcDgdZWVnz3seZjI6O0tfXJybkBIJZEKWPpNiaS323PVSU6cwq6aoKknzKm1gFj1uP3uBDI5+pqKrIqBg1XmRUfMjoJR9+ZMZ9ZkDCrDHz/sz3si1uy3Kc5gVxu92cPHkSq9VKVFQUnZ2d6PV66uvr2bBhw4oVsuaCXq+nrKyM5uZmhoeH6e7upq2tjby8vBkLLvf29qLVaudcENKj+DmxfQSpVkJ2QdQBFcca8MUGLqpAyr6E1y+j0yhIkoTXr8GoBgRVvTYgqM4kngZQT0enAqovINrdnlXE59ZeR5xxZVkELZT09HRSU1NX9DVoNptDfTWXy0VkZCTJycnzLoY2J4SH6mWBpKpnz+NdztjtdqKiohgfHz8rbdXlctHa2kp2dvbS/BFepNx///2MjY0tipXApcqlfG35/X56enro6OjA5/ORkpJCbm7ujA/fmpoaDh48yNVXXx22AWy4OXHiBIcPH2bz5s0UFBSs6E7EUtPf309tbS3btm1bsWk/AkE42blzJ93d3SiKgsViITk5GYvFgt/vp7Ozk7GxMdLT07FYLKHo1aCFyPleQMhmxGq1UlFRMa+oxsnJSf7+97/jcrm47rrr0Ol0tLe3Mzg4iFarxWAwkJ6eTkZGxnn34/P5eOmllxgaGmLr1q0L9mY9cOAAzc3NvPe9713QflRVZWxsjK6uLoaHh9HpdAuuHB1EURSOHDmCLMusW7cuLFkTR48eBQJFNUWUqkBwYV7s2s8/vf4aML0Q1ZmERrKqhCnCRVbsKFr5dE0FvewjzjCBVlbRSn5UVWLcZyLdlM6O5LezPqYCnbxy+yzHjh3D6XRSUVGBJEns378fv9+PwWBg/fr1l2R/y+Fw0NjYyMTEBBUVFdMmxvx+P4cOHcJms815Yu+J6lf4UeNezCch7s8KKOBJgL4Pnu7LB68nrUZBlgOKmFHnQ6/1o6ow4Qo8W3Ra36n1JSYdRoJiqk6rBFL7/UZuTS/l3vwKVtsSESwdDocDj8eD2WxmYGAg1P+Kj48PXUvn03wWSnDfZfd9FY3+0hrXvxW/x0XVzz63KN/jxYLozQkEgkVFo9GQnp5OSkoKXV1dtLa2EhkZedasctDvLui9ulLJy8ujra2N/fv3U1NTw80333zJieDzxeFwoNfrL8nOvUAwEzqdjtjYWDZu3HhWFM3atWvZu3cvTU1NaLXaUJGmoDAX/HmmZUBo/Z6eHjo7O7niiiumeZNeiKAFR0ZGBpWVlTz//POhgkhRUVEoioLL5aKhoYGYmBje/va3zxh5rygKu3fvZnBwkCuvvPKcdjdLzcjICM3NzaFCeKtWrTpviuhcsdvtTE1NsXbt2rBZ0Hg8HhISEoSYKhDMkjGn4ZxCapBg5CqooHCGmKoiAVatE62sEKOLoSx6G1tjryLGEINRc3H03SYmJsjMzAzdnwsLC/F6vSQlJV2yk/pms5nCwkIOHz7MgQMHiIqKIjExEVVVaW9vx+v1ztnKxqv4+WXLIQAcxeCqBGOPjG4U9F3gOVUWIXg9+RQJ/aloZ+WUF+rpKLTTP3m8mtB7rVahJCaVT66+jk3xK+NZebkxNDRETU3NtELVRqORsrKyBWWszAdJVZEu8djFS/38ZoPo0QkEgiVBo9GQmZlJf38/vb29REdHTxMijx07xuDgIGazGUVRVmwn0Wg0csstt9DR0cFrr71GbW2tKC5yiqmpKcxm84VXFAguEeLj44mMjJwxJVGWZbZv3866deswGo3zvqf19/eze/du/va3vxEZGYlOp0On06HX69Fqtej1+tBLp9MxOjrK4OAgY2Nj+P3+kGenJEls2rSJvLw87HY7bW1t2O12mpqaaGpq4umnnyY2Nhaj0YjRaMRisZCRkUFfXx/t7e1UVFSsGDF1cHCQmpqaQARIWRnR0dFh990O/r7C6bPm9XqFmCoQzIG/dzacTvNXAb8ECqBR4a1/mhJYDO5TbwKD/Gidi6viK7g97R5s+rila3iYCGYqnHnfmOl5cyliMBjYvHkzQ0ND9Pf309DQADDn2gxB6sb7cXi8KHYdKBKjG70k/0FF8qtEHoXhVEJh0JJ0WkQNoqrg98uAeipyNRCd6vFqSTVHc3/BerYkZLMqam42BILw4fV6OXnyJLGxsWRkZIQygqqqqhgcHLxgNo5AMB9Er04Qdp555pnlboJgBZOXl0ddXR0HDx4MpZp2d3fT1NREUlISY2NjVFdXU1ZWttxNPS8ZGRkkJCTQ2toqBFUC3rLDw8MrOrpYIAg3Op2OsbExVFU9p6C30EmGxMRE7rjjDiorK5mYmMDj8eD1enE4HPj9frxeLz6fD5/PF2pHUAwMvg8ua29vDxU3kSQJvV7PmjVrkGWZqqqq0ESXy+Wiq6uLlpYWIHDfDhaMCgfB4oPzob+/n7q6OuLj4yksLFy0ybdgNJjX6w3L/rxeL36/X/hvCwRzoGF8KKBx+YFJLYSK/KigUyDCP81fNdrsglMV229P2cwDOe9d1iKnCyV4X79cM380Gk3Ie9vj8aAoyryzwsZcTny9JvAGriGHVsdk7hSR9SqWEzBVKuHKmmlLCa0cKFLl8QdUfI2sEKExckVcGe/KWsfamNSL+jq7VAhOgBqNRkwmE4qiMDAwAEBMTMzSN0h4qF4WCEFVIBAsKTExMWzatIn29nY6Ojo4fPgwU1NTREZGcv3113PkyBGqqqpYvXr1ih94JiYmcvz48RUdUbtU1NXVERUVJWZ/BZcV8fHxdHd309zcvGBf0fOh1WrZsGHDOT9/+eWX6erqAk7bBkRGRhIXF0diYiLJycn09/ezd+9eBgYGKCgoYMOGDaGoJ0VR6O7uxufz8ba3vS20bHBwEIPBEPZK0kNDQ9hstjlv19vbS319PUlJSaxatWpRB7BBAcPj8YRlf0NDQ8AyDeoEgouWQMEpJnSnfgyM3iWkgDDmBMx+ICByGfU+CiyZfLTgfWRFpCxfs8OAoig0NzcDC5+YuxSYz5hAUVSeP3ycox09TPjd4NGcriclqYzn6LHUu0AjEXlQwm8G76magZIUUMNkSUWWFDw+GVWRKY9N4f7cK7gyoRCtLCrFryRkWSY2Npaurq5QnwjAZrOJgrmCRUMIqgKBYMnRaDTk5OSQlJTE3//+d0pKSigvL0eWZYqKimhvb2dgYIC0tLTlbup5GR0dJTIy8rIXU30+Hy6Xi+zsbDFDL7isiIqKIi8vj8bGRiIiIubs6RYuXC4XsbGxlJeXo9frsdlsZw0+rVYrRqMRs9lMbGzstM9kWWbNmjXs27eP6upqSkpKkGV5Tp6tc2nr2NgYa9eunfU2fr8/5MGdkpJCfn7+ot9rNBoNJpOJ8fHxOVeSnonBwUGio6NX/EShQLCSKLIl0j8+hV8FZEJimKoG/FIltwymgKBaFBfF9yseJN188adc+/1+Tpw4wdjYGKtXrxZi0Dx58pU3+Z/dh9BIEgoqWhl8FkLXkStRQ88/SiQ/I2Fql1DfVBm6MxDtLJ/y4jXqvERqrdyb9TZuz1iLVbe0PpyCuVFcXIzb7WZ8fBxZlrFarRgMhmVpi6QGXpcyl/r5zQYhqAoEgmXDbDaTmpqK1WoNiZKxsbFIksTQ0NCKF1RHRkaIi7v4PLnCjcvlAlhys3eBYCWQkpLC5OQkDQ0NmM1moqKilrwNqqpiNBpJT08/73rn+zw/P5/u7m6OHDlCUlLSovn0DQ0NoarqrEVKu93OiRMn8Hq9ZGRkLOnETWxsLIODg+e1dJgNXq+X0dHRRY1iFgguRe4tWMcrTS0BMfWtyKAqICmABp7cfA/p5tgZVrz46OjoYHx8nNLS0nlF8wsC/N/BKgD8pwrnyH4JFCXkv6uJ8uAzB1L9ja0qKCoJv1QZvVbCnKnlnVlr+cf8txGlF4L2xYIkSSEveIFgKbgowqra2tp48MEHyc7OxmQykZuby8MPP3xWGlZHRwe33norERERxMXF8bGPfSxsqVoCgWBxMJvNOJ3O0HutVkt0dDQnT56clq6x0mhra2NqaoqUlIs7pSwcBH9/ovMiuByRJIn8/HysVis1NTWByKklZqGCHwSiVK+88kqMRiOHDx8OU8vOJtgvm839YnJykuPHj2M0Gtm4cSM5OTlLGgUfFxeH2+1mdHR0QfsJisiXSzEZgSBcXJGcg1VzarL2zD996Yz/ZYl3ZK8hN+rSEFN9Ph/d3d2kpKQIMXUe+Hx+nv71mzz13G600tlSx8bcJOQoL5okJ/IpD97Bd0DXR1Qi6lVM7XBNcxr7bv48ny6+VYipgvmjXiavy5yLIkK1rq4ORVF4+umnycvL48SJE3zoQx9iamqKJ554AgikRuzYsYP4+Hj27NnD8PAw//AP/4Cqqnz3u99d5jMQCATnwmQyMTg4OG3Ztddey86dO9m5cydXXXXVohc6cjgcDA0NMTIywujoKHa7ncnJSXw+X8iPUKfTsXr16lAq7OHDh7HZbOTn5y9q2y4GXC4XGo3msi2aIBDIskxOTg6VlZWMj4+H3XN0qdBqtZSWlnLw4EGOHTs2p7T82RIUVC90v5iamqKqqgqTyURpaem0KtdLRVRUFFarlfb29gV5nw4MDIh0f4FgHsiShE1vxu7ygB9kn4Qqqag6AmKqpHJb1mq+uunm5W5qWHC73Zw4cQJVVVd8ltZKwudX2H2gkfRkG11D4/zkD/sBePtNa3i2oQaNLOFXVN6xrphH77yBnT11/FfN69TbAwWLkMBg1RGxSoO7xU1mjIWPPvAjtl9VxD33b1/GMxMIBCudi0JQvemmm7jppptC73Nycqivr+epp54KCaovvfQSNTU1dHZ2hiLGvvnNb3L//ffzla98BavVuixtFwgE58dkMuFyuaYVdrJYLFxxxRX86U9/wuFwLNqxh4aGeOWVV0Ip65IkERERgdVqJTExEaPRiKIoqKrK8PAwlZWVNDQ0sG7dOlwuF2lpaZe9f6qqqoyNjWE0GoV/quCyJujTFRTPlpJwRKgGKSwsZGhoiGPHjqEoCuvWrQvLfoMEI66am5spKSk563NVVUNFC5dTTIXAM8Fms9Hb2zvvfQQjXFetWhXGlgkElw+JERY6RsaQXYF7nIQEPvCbVDampvHkttsu6v6HqqpMTk4yMjJCd3c3kiSxdu1akfUzC6qPtTM6MkXn2AQ/+PlutFqZ/3r0PZgMOhRV5f1XV/D27UUc6+glPSaKG4sLALg2pZBrUwoZdE0y6nYQqTOQbI5CvSPQp/3y535DY10/jXX93PrOCiIiRB9XMHeEh+rlwUUhqM7E+Pj4tGiBffv2sWbNmmnptzfeeCNut5sjR45wzTXXzLgft9uN2+0Ovbfb7YvXaIFAcBbBDqPH45nWeWxra0OSJHJychbt2AcPHgRg8+bNxMbGYrPZzjtw7+3t5dChQ+zatQtVVcX9gsB3Mjw8TFFR0XI3RSBYViRJIikpia6uLnJycpZUBFRVNWyTO7Iss337diRJ4vjx46iqSkVFRVj2DYQmq86VRj88PExbWxvp6elkZmYum5gaxOVyLcgfenBwEEmShN+2QDBP7l5dwuHmbuCUmAqBglR+lY+s3XhRCV2qqtLX18fIyEio3WNjY3g8HjQaDTExMeTn54to9lnQ3jrIv33kpwBsvzkwOSchkZYYzQvf/wiqChEmPbnAxuyZ/cPjjRbijZbQ++Ak2h3v2kZzw5/ILbDxrUefY9+r7dz7j1fz3g9etejntZx4vV4gkK1yMf1dCQTLyUUZWtXc3Mx3v/tdPvKRj4SW9fX1nVWNNljltq+v75z7euyxx4iKigq9LlTQQbB4/O53v+PGG28kLi4OSZI4duzYrLb77W9/S1FREQaDgaKiIn7/+98vbkMFYUWjCTjD+/3+acu7urqIi4tbtBn6zs5OBgYGKC0tpbCwkPj4+AsO3JOTk7nlllvw+/04nc6LNq03XExMTNDY2EhqaioJCQnL3RyBYNlJSUlBUZTz9jsWg3D7tsqyzLZt28jPz6e6ujqsnqoOhwOXy3XOFHqn0xmyUFhuMdXv9zM2NobZbJ73Pvr7+4mNjRWWKALBPLmzoIg4U+Bv8Ezbvh25q7gmY/Em3cOJ1+tlZGSEhoYG6uvr8Xg8eDwe3G43iYmJrF27lm3btlFcXCzE1Fmi0cjIckD027I+h6985nb+54n3Y4uOwGzUE2Ga//d45duK+OPO/8dXvnUf1Yf7UBSVF/94mJNV7fzPd16is20oXKexYpicnOTNN9/kzTff5NChQwv2Dhew/N6mwkN1SVhWQfWRRx4J+ROe6/XWTnxPTw833XQT73rXu/jgBz847bOZZlIulAb32c9+lvHx8dCrs7MzPCcnmDNTU1Ns27aNr33ta7PeZt++fbznPe/h3nvvpaqqinvvvZd3v/vdHDhwYBFbKggnMwmqiqIwOjq6qAU8jh49SmRkJIWFhXPaTpZlMjIyMJvNrFmzZpFat/Lxer2cPHkSi8VCbm7ucjdHIFgRGAwG4uPj6e7uXvLiVOGOJpFlmS1btpCfn8+JEyf49a9/zaFDhxa839dffx1Jks5Z0M/tdmMwGFZEdExbWxter5eMjIx5be9wOJiYmBATTgLBApAkCZvRBEihYlQaWeJr196wIu4Tb0VVVVwuF6qq4nA4qKurY+/evRw/fpyBgQFyc3MpLy9n7dq1lJeXk5ubS3R09GVvITVX0jJi+e9nPsTX/uv9XPf2Uq7cnE9uZnjHDSaTiY999lZWl6ZwzY5sHvm3/+M3P9/Lt/7zD2E9zkrAZDKh0WiwWCzodDqqqqqoq6s7K+BFIBBMZ1mn/v/lX/6Fu++++7zrnFmMpqenh2uuuYYtW7bwwx/+cNp6SUlJZ4loo6OjeL3esyJXz8RgMGAwGObeeEHYuffee4HAAGa2PPnkk1x//fV89rOfBQIC+RtvvMGTTz7J//3f/y1GMwVhZiZBVZZl4uPj6ejoYP369WHvZPp8PkZHRykvL5/Xvrdu3crvf/97jh07xtatW8PatosBVVWpq6vD5/Oxdu1aMQgQCM4gNTWVyspKRkZGiI1dmqrTiyXeBkXVhIQEampqaGhoYMOGDfPen91uZ2BggLKysnNGqBqNRlwuF5OTk1gslhnXWQomJyfp6uoiKytr3in/g4ODaDSaJbsOBIJLEVVVaRkdRVJA8oMqgx+VcZcbywoaw9ntdjo6OhgZGUFRFPR6PR6PB4PBQG5uLrGxscJvPszkFiQt+jGuuLaY7W8rYvfu3SSl9mEfc5GZm8iRI6188Qu/JS8/kW99+31oNBd3X1ij0ZCTk0NjYyM5OTkkJSXR2NjI5OQka9asEZ6+80B4qF4eLKugGhcXN2tPqe7ubq655hoqKir4yU9+ctYAfsuWLXzlK1+ht7eX5ORkIFCoymAwhNX7S7Cy2LdvH5/85CenLbvxxht58sknl6dBgjlzrpT/kpISdu7cSXNzM/n5+WE9ZrDK9Hw7BxaLhaioKCYnJ8PZrIuG4eFhhoeHKSkpER0sgeAtWK1WIiMjaWtrIyYmZskGz4t1HFmWyc/PZ2pqiqqqqgUJnQ0NDUiSxOrVq8+5TkpKCr29vTQ0NFBeXr5s4sPAwABarXZBVlBDQ0PExMSEnnMCgWDuSJJEtMbAxKQbFTXgo6qDGPP8vY3DydTUFM3NzYyMjGAymUKTMKOjo1gsFpKSksTE80WOJElkZ2dzx70+LOYr2LC5mO9992VcLi8nqrtoauxjbMzBuopsdLqL936fmpqKx+OhpaWFVatWsW7dOk6cOMHRo0dZs2aNKPItEMzARXF37+np4eqrryY9PZ0nnniCwcFB+vr6pnmU3XDDDRQVFXHvvfdSWVnJzp07+dSnPsWHPvQh8cc/S4bcPfy5+38Ycvcsd1NmzUzeuYmJiUvuXyeYP8FOpqIo05anp6djs9k4ceLEWZ8tlKGhgPfRQu4NPp9v2f39louJiQn0er2IuhIIZkCSJPLy8piYmFhQdfi5cCF7o3BQUFCAJEmcOHFiXtsPDQ1RX19PcnLyeSdiggKu3W5flme5oig0NzfT09ODwWCYtxDicrmYmJhYVOsageBywefwgwqSIoECeGDS7VnuZjE2NkZlZSVOp5OioiI2btxIRkYG8fHxFBQUkJKSIsTUS4T09HSysjNxeoYZGxvjzrvWs35DNu97/xYe+eLv+Nz/e57vffel5W7mgsnKyiIlJYX6+npGR0dZt24dRqORyspKent7l9zO6KJmub1NhYfqknBR3OFfeuklmpqaePXVV0lLSyM5OTn0CqLRaHjhhRcwGo1s27aNd7/73dxxxx088cQTy9jyi4t9Qy9wfGwP+4f+uujH+uUvf4nFYgm9du/ePe99vXUQuRQDS0H4CP6uZhJN16xZw/j4ON3d3WE9ZktLC0aj8bx2IBfC7/dftoKqw+FYUJEWgeBSJyoqiqSkJFpaWkIR8YvNYj/3zGYzGRkZNDQ08Ne//pX9+/fT1dU1q23tdjuvvPIKer2e7du3X3D96OhoYmJilkVQHRwcpLOzk6SkJIqLi+e9n6GhISRJOqe1gUAgmD0+vzp94K5CTc/AsrVnamqKxsZGqqqqiIyMpKKigoSEBDH+uMTJycnBarXS1dVFenosX3/8bu7/wFU4nYHn/Niogx9852VefvH4Mrd0/kiSRH5+PhkZGTQ3N9PS0kJpaSnJycnU19dTX18vfFUFgjO4KNSA+++/n/vvv/+C62VkZPCXv/xl8Rt0ibIlbgcSEpvjbl70Y912221s2rQp9D41NXVe+0lKSjprwDUwMLAgoUywtLhcLmDm9Pvs7GwOHDhAe3v7WWmXiqJQXV2Nw+EgLi6O+Ph4rFbrWZEAiqJMW6YoCj09PaSlpS0oasDn8122VZunpqaw2WzL3QyBYEWTm5vL8PAwtbW1lJSUhDVKaXh4mJMnT+Lz+fD7/TidzrDt+3xs3rwZvV7P8PAwzc3N1NXVkZOTw9atW885weRwOPj73/8OBCx5ZjsZk5CQQF1dXahI1VIxPj6O2WwmLy9vQfsZHBwkJibmsp14EwjCSWpUJG3DY6CApAR8VNuGR7mK7CU5vtPppKamhvz8fFpbWxkdHUWn05GRkUFmZqaIQr1MkCSJxMREmpqa8Hg86PV6ZFniO9+7j6pj7bQ3DvDb5wI1XdZWZBETa7kovVUlSSInJwez2Ux9fT0TExOsWrUKq9VKQ0MDU1NTlJSUoNfrl7upKx7hMXrpI3p5ghBxhhRuSf3gkhwrMjKSyMjIBe9ny5YtvPzyy9N8VF966aXLslDQxUpQCJip6IcsyyQkJMwYpXTo0CFqa2vR6XTU19cDoNVqsVqtbNiwgeTkZOrq6ti/fz+yLIdeXq8Xn883reDdfPD7/QwNDVFXV0d8fDyRkZHU1NQwOTlJQUHBJVnV2el00tLSgsPhmHfVa4HgckGn01FUVMTx48epq6ujqKgobPtubGyktbWVyMhINBoNNpttSf4mjUZj6PmqKArHjh2jsrKSxsZGsrKysFgs5OfnMzk5ydTUFFFRURw4cACPx8ONN944J5uV6OhoAOrq6igrK1uM05mRsbExoqKiFrQPj8fD+Pg4q1atClOrBILLmyvysmgfOobGCRKBYFWDvHRelS0tLUxMTFBdXR3ygY6PjxdC6mVIQkICTU1N9Pb2otVqiY2NJTMzjszMOF596QR/+t0R4hOsHDzQzHe++SIbNuXy6NfefVFGLyclJWGxWKivr+fo0aOkpqayZs0a6urqqKyspKysTNRSEFz2CEFVsGIYGRmho6ODnp6Ah2tQJEtKSiIpKVDF8b777iM1NZXHHnsMgI9//ONceeWVfP3rX+f222/nj3/8I6+88gp79uxZnpMQzBmXy4Usy+ec5UxNTaWrqwu73R4ajFdVVVFbW0thYSEbN25kcnKSwcFBhoaG6Ozs5PXXX2fHjh1UV1djs9lIT0/H7/fj9/s5ceIEDodj3lWbz2xXb28v+/fvn7Zcp9PR1NSEzWbjiiuuuGTSPVtaWujs7ESv17Nq1SoRBS4QzAKbzUZ+fj4NDQ3k5uaGNdJSp9Nx1113hW1/c2VsbCzkR+33+7Hb7fT09FBbWxtax+VyoSgKd9xxx6yLkAYJPhNGR0fD1+hZoKrqgqNKg+n+cz1ngUAwMw9dtZlXTjQx5AgUA5UAm2FpilKNj48zODgIgNfrpbi4WHgjX8bodDpiYmJobW0FoKuri/z8fLRaLW+7YQ2l5ZlEWo089uU/oigqB/c34Xb5OLiviWibmdLyzGU+g7lhsVhYt24dXV1dtLW10dfXh8lkYnJykpGREVJSUpa7iSsXVQ28LmUu9fObBUJQFawY/vSnP/GBD3wg9P7uu+8G4OGHH+aRRx4BoKOjY9ps8NatW3n22Wf5whe+wH/8x3+Qm5vLc889N81OQLCycTqdGI3Gc87cZmZmhtL+V69ezcmTJ6msrCQrK4uNGzciyzJWqxWr1Upubi6rV6/mL3/5Cy+88AJut5utW7dOs5TIy8vj5Zdf5qWXXuKaa66Zd0fgmmuuAQiJuWNjY2RkZBAVFUVTUxPHjh1jz5493HLLLRd9BMPk5CQdHR2h1DZRsVogmD1xcXE0NDQwPj5+SUSu2+12jhw5QkdHB3q9ng0bNlBcXIxGo8Hj8dDa2orJZCIuLo6jR4/S1NQ0r4wUWZbJzs6etU9ruDAajSErmvkyPDxMVFTUZWsLIxCEG1uEiec+fA93ffPnjE+5MOm0xFsjluTYPT09mEwmFEXBbDaLiRIBmZmZoedcTU0Nx48fR5ZlrrzySuLiA8+79//DdrweP5u25vHGqzU88ZU/A/A/v/gwWTkXlyAvSRLp6ekkJSXR2dnJyMgIhYWFIrhCIEAIqoIVxGy8cl9//fWzlr3zne/kne985+I0SrDoOJ3O80aLms1mrFYrVVVVVFZWMjY2RlxcHFdeeeWMQqXVauXKK69k586dxMTEnOXPGxcXx+23385LL73Ezp072bZtGzk5OfNuf7Cw2pkUFhaiKAoHDx7E4XCc9flKxufzYbfb8fl8oWWDg4Po9XqysrIuenFYIFhq9Ho9Op1uyXxOF5OqqiqqqqqQZZni4mJKS0unZRcEI9iDrFu3jubmZpqamigvL5/z8ZajyKTRaGRsbGzex1YUJTTBJhAIwkdClIXv3H8bD37v17jcPv7p6d/zwuc/QNwiC6sGgwFFUSgpKcFgMFyUqduC8BIM5ABYu3Yt9fX1jI+PT6vbkJefxFcefw8Ar750AgBZltBoZI5VtvPXF45xy63llJZdPM8KnU5HTk7OgsZNlxOSeul7qF7q5zcbhKAqEAiWFafTSWxs7HnXKSkpoaOjA5vNRnt7Oz6f77zCXlpaGjfccAMRETN3ss1mMzfffDOvvPIKu3fvxuVyhdXfEE77/01NTa1oQdXn8zE+Ps7Y2BhjY2NMTEzMuJ4ouiAQzB9ZllEv4rQoRVHYs2cPLS0tZGZmsmXLlln5ppnNZmJjY+no6JiXoHqhe/1iEB8fT29vL+Pj46H7+Fyw2+34/f5Lxu5FIFhJdA2NoZy6lzo9XtoGRhddUDWbzbjdboxGoygyJzgLs9lMdnY2x44dw+l0zjj2uOb6YqJtZqxWM+mZsXz2/z1Hb+8Y9XW9/PQXH1mGVgsEgnAhngoCgWDZUFUVl8t1QT/T/Px88vPzURSFhoaGWaWYJCcnn/dzvV7PTTfdxGuvvRaKJF2/fv2c2n8+giLq5OTkikyJcblcNDY2Mjw8DAQiMKKjo0lOTiY6OhqDwTBNABJp/gLB/JEkCUVRlrsZ88LlcrFz506GhoZYu3Yta9eundP2mZmZHDlyZJoP9mxQVZWRkZEFF4iaKzabDbPZTFdX17wE1WD175U8kSYQXKxsX51NYrSF/tFJcuJjKExd/NTpqakp9Hq96AcJzonZbAYC18pMgqokSazbcDqqs6Iim7/8pZJ1FVl4vX4e++qfGByc4PNfuI2kpOilarZgsVFPvS5lLvXzmwUi3EggECwbbrcbVVVnXSCqr68Pl8tFdnZ2WI4vyzLXXHMNBQUFnDhxgl27doVN9Ah2rs4V8blc+P1+urq6OHToEJOTkxQUFLBp0yY2b97M6tWrSUlJwWw2o9Fo0Gq1oZdIcRMI5o8kSRdthOorr7zCyMgIV1xxxZzFVIDc3FwkSaKpqWlO2/n9fhwOBx6PZ0m/O0mSSEtLY2hoCK/XO+ftR0ZGsNls4p4pECwCsZFmfvOpe1kVHUtn+wjve/SXjE8tzPP4fHi9XgYGBsTftOC86PV6LBYLjY2N2O32C67/iX+7id/98RN8/JM3UVvbwxuv11Fzspudr9QsQWsFAkE4ERGqAoFg2XA4HACzElQVRaGpqQmdThdWbzpZltm6dSsmk4mqqir6+/ux2WzExMSQmZl5QTuCc6HVarHZbDQ1NWG32+ns7ESv11NRUbGk3kOqqjIxMcHo6Cijo6OMj4+jqiqpqalkZ2eL9DWBYAmQZfmijFDt6upiaGiILVu2zPu+ZTabiY+Pp729nXXr1s16O61WS1paGt3d3SiKsqTRYcHoUrfbPafCUm63m4mJCVH1WCBYRBo6B2npCWTXdA2O82Z1KzdvXr0ox2pvb8fv94dtIl9w6VJWVkZ1dTXHjh2jqKjovMXLJEkiKioQeFFQkERpaTpDQxNsv6KAP/+lkl/93z7ufs9mbr9t9s9MwcpDUgKvS5lL/fxmgxhJCwSCZcPhcCDL8nm9+BRFobGxkZqaGsbHx8nNzV0UT73y8nKio6NpbW1lbGyMnp4eqqurycvLY8OGDdMKr8yWwsJCqqur6erqIjU1ldHRUfbv379kgqrT6aSuro7x8XE0Gg02m428vLxQSqtAIFgazGYzU1NTy92MOaEoCpWVlVgsFvLz8xe0r+zsbA4cOMDIyMisvUVdLhdDQ0PExMQseaptUESda4RqX18fsiwTH39xVXAWCC4mMhNtGHRaPD4fEhJ5qecWrhbKxMQEMTExs/KMFlze6HQ6ysrKqK2t5cSJE+Tl5ZGamnrByGajUce3v/P+0PvPfeHX9A/Y+dWz+7jt1nKcTg9ms2Gxmy8QCOaJEFQFAsGy4XQ6MZlM5+xsNDY2UllZicPhwGazsX379kUVI7Ozs0NRCD6fj8OHD9PQ0EBnZyfr168nLy9vTvtbtWrVtIrXhw8fpq6uLqxtnglVVent7aW5uRmdTkdpaalIVxMIlpHIyEja29uXpWr9fFAUhWPHjjE8PMy2bdsWPImVm5vLoUOHaG1tvaCgqigKAwMDtLS0IMsyubm5Czr2fAhG7s9FUFVVlb6+PuLj40Xkv0CwiCTYLDzz/+7me7/bQ2V9F1/92ct866N3EGMN/0TxuYoMCQQzodFoKC4upqWlhaamJhwOB/n5+XN67t9zzxZ++au93P2ezXz5sT/x2ht1fOC+7dz3vm2L2HLBoiA8VC8LhIeqQCBYNhwOx3nT/aurq5Flmeuvv57bb7+dvLy8Jav4rNVq2bx5M7fccgsRERHs2bOHF198ka6urnmn7nq93kVvv9vtprq6moaGBhISEli/fj0xMTEXhYgjEFyqWK1W/H5/2KJUvV4vLpcLj8cTlv0F8Xg8/OlPf+IXv/gFx48fJycnZ8HRqUEURcFgOHeUjcvlorm5mX379lFXV0dkZCTr1q1blmh6rVaL2Wymr69v1tuMj4/jdDovWBBRIBAsnJRYK/uOt+J0e6lp7ef5VysX5ThJSUn09PQwOTm5KPsXXHpIkkRubi4FBQX09PTQ3Nw8Jx/wW25ey//94iFuv3Udhw63ArBrdwNPPPFX3ni9drGaLRAsCU899RSlpaVYrVasVitbtmzhxRdfDH2uqiqPPPIIKSkpmEwmrr76ak6ePLmMLb4wYgpdIBAsGw6Hg8TExHN+LkkSMTExpKamLmGrphMTE8OOHTtoaGjg2LFjvPLKK0RERJCdnU1hYeGcKjkPDQ3Nq2r0bHG73Rw9ehRVVSkpKZm3/6tAIAgvkZGRQCB9NBzV371eL5OTk/zxj3/k9ttvn5clyUw0NTUxMjLCmjVriIuLC5tf9fBwwO/QZrOd9dnk5CQdHR0MDg6i0WhISkoKFcdbLiRJIisri5qaGjo6OkhNTZ3RdkBVVSYnJxkeHqa/vx+j0UhUVNQytFgguLzQamUMei1urw9FVbFGzK646VzJzs6mt7eX/v7+sNy7BZcPKSkpqKpKY2MjGo1mXj68n/nUDl559SQTow5e/GsVf3uxiuHBCa68upC4eOsitFoQTiQ18LqUmev5paWl8bWvfS2U9fnTn/6U22+/ncrKSoqLi3n88cf51re+xTPPPENBQQGPPvoo119/PfX19aG+9EpDCKoCgWBZ8Pv9uN3u8w6aZVnG7/cvYavO3Y7CwkIKCgro6OigoaGBmpoa6uvrecc73jErby2fz8fY2Ng0C4Bw4vf7OXHiBAAVFRXnjQQTCARLi0ajISIiArvdHpYIRrPZjNVqxeFwcPjwYbZu3Xre9cfGxkIR/1lZWeecpGppacFms7F+/foFt/FMRkdHAaZN8oyNjdHe3s7o6ChGo5Hc3FySk5OX3C/1XMTHx5OcnExraysdHR2kpKSQmpqKwWBAVVX6+/vp6OjA4XCg1WqJiYkhLS1NZAMIBEuAUa/jvz5xFz//22E8Ti/ZCWdP1oQDSZJISkqiu7ub1NRU4aUqmBOpqan4/X5aWlrQ6/VzDhDZvjWf7Vvz+e1vD3Gssh2DRsP3v/syf3/xOP/+/24hJz9RPHMEFxW33nrrtPdf+cpXeOqpp9i/fz9FRUU8+eSTfP7zn+euu+4CAoJrYmIiv/rVr/jwhz+8HE2+IEJQFQgEy4LT6QQ4r6AqSdKc0mQWm6AYkZWVxfDwMH/+859pbW1l9eoLV5dta2vD4/EwMjJCW1sbWVlZYWuXqqrU1dUxNTVFeXm5EFMFghVIVFQUo6OjYfNR1ev1ZGdn09DQQH5+/jkLIR09epTq6uqQr2djYyMJCQmUl5cTGRmJ0WjEbrdTX1/P8PAwpaWlC25bEEVRGBkZYWxsDJ1Oh9FoRFVVuru7aWpqwmKxUFRURHx8/IobFEqSxKpVq8jMzKSrq4vu7m7+f3t3Ht5WeeaN/3u0S15kyZYly3u8O7azOEsNgRCGOASaFkgZWvrS0GnzNsPSQsrQ0s6UtMPSFspLWUramQzLMCX8phRaIEBCaRaSELIvTuLYiWx5kbzLlqxdOr8/UqsIO4mTyJaX7+e6zgU65znn3Mc5lqX7PM/9tLS0wGAwwOl0wuPxIDU1FUVFRdBqteNWjoaIzppbkoU9hyx4+c+f4uCxFrz9/HeQqo1tvdOhkVSdnZ1oaGhAZWVlTI9PU19OTg7cbnfkwdyl/K1buXI+/uEfZuLff/IGDh9sRuupDvzz//kdbv/mInzp1vnQp03MnnvTniieXaayv13fwMBA1GqlUnnB76OhUAj/+7//i8HBQdTU1MBiscBut6O2tjbqOIsXL8auXbsmbEKVn/4orn7zm98gPz8fKpUK1dXV2LFjx3nbb9u2DdXV1VCpVJgxYwbWr18/TpFSrLndbgA4bw1VQRAuuV7peBAEIZIYvpAjR45gcHAQdrsdO3bsQEdHR8ziaGpqQldXF8rKyibscAii6S41NRUejydmdVQBYP78+VCpVNi9e/eI75Uulwt1dXXIysrCrbfeiq997WuoqanBwMAAPvjgA/zhD3/Aq6++ij//+c9obGxEdnY2Zs6cGZPYBgYGsHHjRrzzzjuoq6vDwMAAfD4furq6Iueqrq5Genr6hEumfpZKpUJhYSFqamqQn58Pl8uFhIQEVFdXo7KyEjqdjslUojhJ050dhq9RK6CSx76f0OnTp7F//35IJBL09PREypcQXQyTyQSfzzcs6XQxUlI0+Nnj/4h/XXczwiERCIfx+m//ijtqn0D90dYJ1QGFpp/s7GxotdrI8vjjj5+z7dGjR5GYmAilUok1a9bgzTffRHl5eaRu/efLARqNxouqaT/e2EOV4ub111/Hfffdh9/85je48sor8dvf/hbLly/H8ePHR6zbZrFYcMMNN2D16tV49dVXsXPnTtx1110wGAxYuXJlHK6ALoff74dEIjnvbMgSiWRCfkAIh8PYuXMnVCoVKioqRrWPz+dDXl4errvuOrz33nv46KOPsGLFisuuyRUKhWC1WpGTk3POHmpEFH86nQ4ymQydnZ0xq8Unk8lQWlqKgwcPIhgMRtVSdTgc2L59OwCgpqYmsq2kpAT5+fmw2+3w+XwIBAKR+m6xqsUKAMePH0cwGMSiRYtw+vRpnDp1Ck1NTZEaoxkZGRM6kfp5MpkMOTk5MasrS0SX7ytLZ8Pt8mHXp6dxsK4Vi+YXxOzYoijC7/dDFMXIw3On08n69HTRtFotlEolOjs7L6vOdkKCEtf8w0xok9R4/8392PbuYYRCYfzbt/8LmbmpuHnVlTDnpqGwIiuG0dOlmk41VFtaWpCc/Pe6vufrnVpSUoJDhw7B4XDgjTfewKpVq7Bt27a/H/Nznw1jNbJrrDChSnHz1FNP4Vvf+ha+/e1vAwCefvppfPDBB3jhhRdGfKqxfv165OTk4OmnnwYAlJWVYd++fXjyySeZUJ2E/H4/FArFOd8gg8Eg3G73hJzgo66uDr29vVi8ePGoEhDBYBB+vx/l5eXQaDRYunQp/vjHP8JisVz28LHBwUGIooi0tLTLOg4RjS2JRILU1NRIPdFY8Xq9kMvlUe9F9fX1+PTTTyGXy3HVVVcNK62iUCjGNDHY0dGB+vp65Ofno7CwEIWFhRgYGEBLSwtyc3MhlUqxd+/eqEQvEdHFEgQBb757EN19g/jNK9timlANBoNwOp0Azk4s6HQ6I6OriC6GIAjQarUxG6EyZ8EMVFXnobg0A/19g/jwf/eiy+bAb3/2JwgSAV+orUSXvR8/fubrUCjlMTkn0fkkJydHJVTPR6FQRCalmjdvHvbu3Ytf//rX+MEPfgAAsNvtUfMNdHZ2nncS63jjGCWKC7/fj/3790fVyACA2tpa7Nq1a8R9du/ePaz9smXLsG/fPgQCgTGLlcbGUEL1XE6dOoXBwUEUFxePY1QX5nK5cPjwYWRlZY16xk673Q5RFCO9GoaSG7EYJupyuSAIAmefJZoEtFotXC5XTCfbc7vdkEgkCAaD8Hq9OHjwIHbv3o309HTcdNNNMa3XPFqnT5+GTCaLmizLYDCgq6sLTqcT6enpCIfD5x2hQEQ0GksXlUHuDyNXr43pqCa5/O+JKKfTidLSUvZQp0smlUpj+rdfKpVg5apF+Kf7luHZP34XT71+NwoqsrDstoXY/v5R1B9pQePxdqy+/ld4+l/fiNl56SKI02S53B+TKMLn8yE/Px8mkwlbtmyJbPP7/di2bdsFJ1+NJ36SpYg9PR9ge+cfcXX6LViYumxMz9Xd3Y1QKHRRNTLsdvuI7YPBILq7u2MyczKNnwslVLOysnDw4EHU1dXFJSFwLjt37oQgCKN+Y29ra8O2bdug0WiQnp4O4GyvByA2CdWhLw/hcJh1/IgmuOTkZIiiCKfTiZSUlJgcs7y8HFarFRs3boy8t+Tn5+Oqq66K23uCXC5HKBSC3W5HVtbZoYd+vx9dXV145513Ir11+J5FRJfLmJwAwR3Cnu2ncPKkDWVl5pgde+bMmairq0NaWhpMJlPMjkvTz1iWMEs1nu0Z+LMN3wIALLi2HINOL6RSCTxuH47ts4zZuYkuxo9+9CMsX74c2dnZcDqd2LhxI7Zu3Yr3338fgiDgvvvuw2OPPYaioiIUFRXhscceg0ajwe233x7v0M+JCVWK2N75RzgCXdje+ccxT6gOudgaGSO1H2k9TXx+v/+8QwMGBwchCALcbveESRY2NTXBZrMhMzMzkrg4n/r6euzZswdarRZLly6FQqGAzWaLJGX1ev1lx6TX6yGKIvr6+lhDlWiCS0hIgFQqhcPhiFlC1Wg0Yv78+RgYGEBycjJSU1NhMBji+p5ZWVmJ9vZ2fPTRR1iwYAGkUil6e3uRm5uLOXPm4OTJk5FEKxHR5dCo5ZD4QhBEET1dTqAsdsc2GAzIyMhAZ2cn3G73sPIpRKPl8/kuOOt5rJRUZUf+/9+euyOScKXxNZ1qqI5WR0cH7rjjDthsNmi1WlRVVeH999/H0qVLAQAPPvggPB4P7rrrLvT19WHhwoXYvHnzhJ50mQlVirg6/ZZID9WxlpaWBqlUOqw36vlqZJhMphHby2QyFoifhM7XQ7WpqQk7duxAQkICamtrJ0QyFThbYDs5ORltbW344x//iMTEROj1eiQmJiI5OTlS77WzsxOdnZ1oa2uD2WzGtddeCwDYtWsXGhoakJiYiOuvvz4m9WBUKhUkEgm8Xu9lH4uIxpYgCDAYDGhra0N2djakUmlMjlteXh6T48SKSqXC8uXL8eGHH+KTTz4BcLZm1lDNVIVCwYQqEcVEmj4RUpcPgihi79aTWHR1SUyPX1hYCIfDgVOnTmH27NkxPTZNH6FQKC7fZz6bXCWKtw0bNpx3uyAIWLduHdatWzc+AcUAE6oUsTB12bj1TFUoFKiursaWLVtw8803R9Zv2bIFX/7yl0fcp6amBm+//XbUus2bN2PevHlRdY5o4guHwwgEAiP+u3V1dWH79u3Q6/Wora2dUBOWZGRk4JZbboHb7UZzczPa29vhcDjQ3t4e1WN1qKbpzJkzUV1djebmZnz66afwer0oKSnBvHnzYlY70Ov1IhwOIyEhISbHI6KxlZeXh46ODrS2tiI3Nzfe4YwZhUKB66+/Hu3t7UhOTkZiYiIkEgksFgsUCsWE7m1ARJNHcbEJwt9GrJ050Y5QKAypNHaJK6lUiszMTJw5c2bCzzZNE1dGRgbq6+sjo0loGhDFs8tUNtWvbxSYUKW4Wbt2Le644w7MmzcPNTU1+N3vfger1Yo1a9YAAB566CG0tbXhlVdeAQCsWbMGzz33HNauXYvVq1dj9+7d2LBhA1577bV4XgZdgs7OToiiGOnROSQYDGLHjh1Qq9UTLpn6WRqNBmVlZSgr+/u4MrfbDYfDAVEUYTAYoFAoEAwGsXXrVlitVuj1elx77bUxH5bvcrkAgJNSEU0SKpUKmZmZkfeFocRiMBiERCKZMD3yY0EikQzrierxeKDRaJiUIKKYSNEn4sZ/nI93/3cfGo6348DuRsxfFNsJTTUaDcLhMLxeL9RqdUyPTdODyWRCa2srTp8+jdmzZ/NvINEUwYQqxc1tt92Gnp4e/OxnP4PNZkNFRQU2bdoU6bFjs9lgtVoj7fPz87Fp0ybcf//9eP7552E2m/HMM89g5cqV8boEugSiKKKlpQWpqanDkoD79u2D0+mM1BudTDQaTVRtLa/Xiy1btqC3txdz5sxBZWXlmCRKXC4X5HL5pPt5EU1n+fn5GBgYwOHDhzF79mz4fD588MEHSEhIwOLFi2NWX3Ui8ng8fABERDF1/cr5+ODNAwh7/Njx7uExSagCZ0dR5eTkxPTYND0IgoCCggIcOXIE/f39U/rvPJ3FGqrTAxOqFFd33XUX7rrrrhG3vfTSS8PWLV68GAcOHBjjqGgs9fT0YHBwEMXF0R92Ozo6UF9fj+LiYpjNsZuhNR4GBgawefNmeL1eLFmyZMw+fIuiiI6OjphMbkVE40cqlaKqqgqHDx/G/v37YbPZIJPJ4PF48O677+LWW28950OScDgMt9s9zhHHhs/nw+DgINLT0+MdChFNIUVlZqx7+nY88cDr2P7uIdSunIeKefkxO75KpUJWVlZk2P9ULtdCY2coMR8Oh+McCRHFytQZV0ZEE54oirBardBqtcOG+x85cgQqlQrz58+PU3Sx0dHRgXfffRfBYBDLli0b02Rqc3MzvF4vsrNZcJ5ospHJZKiqqgKAyPtFbW0tAoEAPv30U9hstmFfutra2vDWW2/BarXG7fe+qakJmzZtwh/+8IeoUSQXIooiGhsbIZVKkZGRMYYREtF0NO+qEsyumYGwz49f3vMyBp2xnayzoKAAmZmZaGpqgsi6gXQJhuZbiNU8CjTBidNkmeb420xE48br9WJgYAAzZ84ctt5ms6G0tHRSf8iw2Wz4y1/+ArVajWXLlo3ZsNZQKIRTp06ho6MDubm5HD5LNEnJ5XLMnj0boVAIg4ODMJvNyMrKQmNjIxobGyGXy2E0GqFQKNDf34+enh4kJSXh2muvHfdhp36/H9u3b0draysSExMhk8nw0UcfoaKiAnPnzj1vSROfz4cTJ07A4XCgrKxsUr/PE9HEdddPbsa+zUcR8AXQdqYTxbNi9z4pCAJSU1PR1taGvr4+jg6ii8aEKtHUw99mIho3Q1+4P//Fu76+HuFwGKWlpfEIKyY6Ozvx0UcfQaPR4IYbboBKpRqT84TDYRw6dAiDg4MoLy/n0FmiSU6r1SIjIwNNTU0wGo247rrr4Pf70dHRAavVCpvNBlEUodFoxrQe8/kMDAzggw8+gNfrxbx581BeXg4A2L17N44dOwav14tFixaNuG9fXx+OHz8OQRAwe/Zs1o0jojGj1SfgF//fvehs7UVRVex78et0Omi1WjQ2NmLevHlTahJBGnsOhwNSqRRKpTLeodA4YA3V6YEJVSIaN0M1Af1+f9T69vZ26PV6JCcnxyOsy9bT04MPP/wQKpUK119//ZglUwGgubkZLpcLc+fOjcwOTkSTW35+Pjo7O9HS0oK8vDwoFApkZ2dPiHIefr8fW7ZsQSgUwg033IDU1NTIturqalgslnPWdO3p6cHRo0eh0+lQVlbGyfOIaMwVVmShsCJrTI4tCAKKi4uxb98+2Gw2ZGZmjsl5aOoZmvfAYDBAKpXGOxwiihEmVIlo3AiCALlcPiyhKpfL4fXGttbVeOnr68PmzZshl8uxbNmySMH5seB2u2G1WpGTk8NkKtEUolKpkJmZiZaWFpjN5gmTeAyHw/jrX/+KwcFBLFu2LCqZCgB79uyBKIr4whe+MGzfwcFBHD9+HKmpqaioqIAgCOMVNhHRmElISIBMJosM3yYaDbfbDY/Hg8LCwniHQuMlLJ5dprKpfn2jwHEKRDSulEolfD5f1Dq1Wj1s3WTgcDjw7rvvwuPxYMaMGWOaTBVFEadOnYJKpeLsskRTUG5uLgRBgMViiXcoEV6vF3a7HTqdDgaDIbJ+YGAAhw8fRlNTE0pLS4eNLhBFESdPnoRKpUJZWRmTqUQ0ZYiiiEAgALlcHu9QaBLp6emBRCKBTqeLdyhEFENMqBLRuBFFEX6/f1jNKbVaDb/fP2xG64nu/fffR3d3NwDg6NGjeP/998859PVydXR0wOFwoLi4mDW7iKYguVyOvLw82Gw2OJ3OeIcDANBoNFiwYAF6enqwbds2hMNhHD9+HH/84x9x8OBB6PV6zJo1a9h+XV1dcDqdKC4u5uQbRDTlKJXKMfu8R1NTT08PdDodP8NPJ+I0WaY5fsolonHjcDjg9/ujJlIKh8Noa2ubdAXaBwYGMDg4iNmzZ2PBggWw2WzYvXs33n77bVxzzTUwGo0xO1cgEMDp06eRnp7OJ9tEU5jZbEZ7ezsaGxsxe/bsCdGzs6ysDKFQCPv27cN7772Hvr4+GI1GLF68eMRe+X6/H42NjUhNTYVWq41DxEREY0cQBOj1evT29kIUxQnxPk0Tn8fjgdlsjncYRBRjTKgS0bjp6OiAWq2Oqv/Z0NCAnp4eLFq0aFI9tT1z5gxkMhkWLFgAjUaDgoIC6PV6fPTRR/jggw+QmZkJiUSC2bNnX3YS9PTp0xBFkXWXiKY4iUSCoqIiHD58GHa7HRkZGfEOCQBQUVGBUCiE+vp6GI1G1NTUjJhMDYfDqKurAwCUlJSMd5hEROPCYDDAZrOhr68Per0+3uHQJCCRSCbdSDy6PAIAYYr34OTjJCZUiWgcuVwupKSkRJ7m+/1+HDx4EAaDYdIlC9va2qDT6aKSCjqdDitWrMDOnTvR29sLn8+HlpYWlJWVYc6cOZc09LWlpQV2ux3FxcUTZqIaIho7Op0OJpMJjY2NSElJgVqtjndIAIBZs2aNOLx/iCiKOH36NAYGBjB79my+XxHRlKXT6ZCcnAyLxQKdTsdeqnReoigiGAxOqo4jRDQ6/K2muNm+fTtWrFgBs9kMQRDw1ltvXXCfbdu2obq6GiqVCjNmzMD69evHPlCKGZVKBa/XG3l9+PBh+Hy+EWeInsiCwSB6e3tH7D2mUCiwZMkSrFy5El/5yleQl5eHuro6/OlPf0J7e/uozyGKIs6cOYPTp08jJydnwvRUI6KxV1hYCLlcjpMnT0IUJ373BlEU0djYiLa2NhQWFnKoPxFNaYIgID8/H06nEz09PfEOJ+aGEoA+nw+Dg4MYGBiAx+OJd1iTlsvlQjAYREpKSrxDofEkitNjmebYQ5XiZnBwELNmzcI3v/lNrFy58oLtLRYLbrjhBqxevRqvvvoqdu7cibvuugsGg2FU+1P8aTQadHR0RF77/X7I5fJJVxfUZrMhFAohMzPzvO0UCgWuvvpqFBUVYdeuXdiyZQtKSkqwYMGC8z6lFkURp06dgs1mQ0FBAbKzs2N9CUQ0gclkMpSWluLQoUNoa2tDVlZWvEM6p3A4jJMnT6KzsxPFxcWsEUdE04JOp0NKSgqampqQlpYW73AuWSAQQF9fH3p7e+FwOBAIBBAKhUZsazAYkJeXh4SEhHGOcnLr7e2FVCpFcnJyvEMhohhjQpXiZvny5Vi+fPmo269fvx45OTl4+umnAZydKGPfvn148sknmVCdJDQaDXw+H0KhEKRSKcxmMxoaGtDd3R01UdVE19bWBqlUCpPJNKr2GRkZuPnmm7Fnzx6cPHkSHR0dWLx48YhPqj0eD06ePImBgQGUlpaO+hxENLWkpKREJj6ZqAnVUCiEuro69PX1YebMmTAYDPEOiYho3GRkZODEiRMIBAKQy+XxDmdURFGEy+VCT08Pent7MTAwAABISEhAWloalEolpFIpZDJZ1H+dTieampqwd+9eGI1GpKSkQCqVQi6XR5XzomjhcBg2mw2pqakc8j/NCOI0qKE6xa9vNJhQpQhnoA8t7lPI1hQjST7xegzu3r0btbW1UeuWLVuGDRs2TKoPMtPZUC1Aj8eDxMREZGZmQhAEtLa2TqqEam9vL3Q63UV9MJJIJKipqUFmZiZ27dqFTZs24Ytf/GLU0+qOjg6cOnUKcrkcs2bN4tAgomlOJpPB7/fHO4wRBQIBHDt2DC6XC5WVlZyYhYimncTERABnR91NpM9soijC4XCgv78fMpkMMpkMgiDA4XCgp6cHfr8fMpkMOp0OJSUl0Ov1UCqV5z1mYmIijEYjbDYbrFZr1IgzjUaD3NxcpKenM7H6OZ2dnfB6vaisrIx3KEQ0BphQJQBnk6m/PvU9eEIuqKWJ+F7xrydcUtVut8NoNEatMxqNCAaD6O7uZo3JSWBoAie3243ExEQoFArodDrY7fY4R3ZxRFGEVCq9pH1zcnKg1+vxzjvvYMuWLVixYgUUCgW8Xi9OnjwJg8GA4uLiS5rAioimjlAoBL/fPyFnBfZ4PDhy5AiCwSBmzZrFYYxENC0NfRY81xD58RYOh9HR0YHm5ubInAWfnV1eo9HAaDQiNTUVycnJF91jUiKRIDMzE5mZmRBFEeFwGC6XC1arFSdOnIDFYkFOTg5MJhN7Y+Ls9wWr1Yq0tDSWSZiOxL8tU9lUv75R4Dd2AgC0uE/BE3IBADwhF1rcp1CuXRjnqIb7/FPPock6+DR0cvD5fAAQ1ZvYaDTi1KlTCIfDk+bD1+Xeb4mJiViyZAk2b96MrVu3ora2Fq2trZBKpUymEhEA4MSJE+jv70dRUVG8Q4nicDhQV1cHmUyGuXPnRkYeEBFNN4ODgwAQ12SZKIpwOp3o6+uDzWaD1+uFwWBARUVFpAdtKBRCOByO6Wg+QRAglUqh1WpRWVkJl8uF5uZmnDp1KlIGZjobKuHldrtRWloa73CIaIzwWzsBALI1xVBLEyM9VLM1xfEOaRiTyTSsJ2NnZydkMhlSU1PjFBVdjKGi7J+dATorKwsnTpyAzWa74CRPE8nlzrwtlUohkUjg9XoRCATQ3t6O7OxsJlOJCACQnJyMnp6eCfP3LRAI4PTp07Db7UhJScHMmTNZaoeIpjW32w2pVHrB4fJjpampCa2trQgGg5BKpUhLS0NlZeWwBK9UKr3kkVWjlZiYiLy8PHR1dUUSuKPtKNHU1ASHw4HZs2ePaYzjxWazoaGhAQqFArNnz+YojmlKEEUIl/l9caKb6tc3GvzmTgCAJLkO3yv+9YSuoVpTU4O33347at3mzZsxb948fqmbJHp7e5GSkhL1ASsjIwNyuRy7du3CsmXLJvyHDpvNhu7ubuTk5FzyMcLhMD788EMoFApcd911OHPmDABM2IlniGj8mc1mWK1WtLS0oLCwMG5xeDwedHR0oLW1FQBQXFyMjIwMjgwhomlPEIS4lWXx+/1oamqC0WiE2WxGUlJS3Ed6aTQaFBQU4MyZMzh48CCqqqou+B2tpaUFTU1NADCpRqudi9vtRn19PUwmE4qKisY8kU1E8TW537EoppLkOpRrF45bMtXlcuHQoUM4dOgQAMBiseDQoUOwWq0AgIceegjf+MY3Iu3XrFmD5uZmrF27FidOnMB//dd/YcOGDXjggQfGJV66PMFgEP39/cMmLpFIJKitrcXg4CAsFkucohu906dPQyaT4Yorrris40ilUmg0GlgsFthsNhQWFvLBABFFyGQypKWlob+/f1zPGwwG4XK5YLfbcejQIezZswctLS1IT0/HggULYDabmUwlomnN6/WipaUFbW1tcSt7YrPZIAgCCgsLodVqJ0QiUhAEZGdnY+7cufB4PKirqztvwrm9vR2nT5+OjFybqJMwXoyWlhYoFAoUFxczmTrdhafJMs2xhyrFzb59+7BkyZLI67Vr1wIAVq1ahZdeeikyi+SQ/Px8bNq0Cffffz+ef/55mM1mPPPMM1i5cuW4x04Xz+FwQBTFEWeCNhgMcYjo0gwODkYm1LpUEokE5eXl2Lt3LxQKBebMmYO0tLQYRklEU8HlJi49Hg/cbjeUSiU8Hg+cTicEQUBiYiISExOhUqng8Xgi5XMUCgVOnjwZ+QKckpKC0tJSGAwGfjEkIvqbY8eOwe12IyUlBQUFBZf9Xh0Oh+H3++F2u+F2uyEIApKSkpCYmAiJRAJRFOHz+SJD6V0uFywWC7Kzsyfkw/ikpCRUVFTg8OHDaGhoQHFxcdTPKBwOo6WlBRaLBZmZmUhMTER/f/+EmdzrUvl8PtjtduTn50+IBDfFF4f8Tw9MqFLcXHPNNeetQ/nSSy8NW7d48WIcOHBgDKOisdLd3Q21Wj3pJzAZmljL5/NdVs0slUqFzMxMzJo1i8lUIhqRVCqF0+mE3W6HyWQa1T6hUAhdXV2w2WzDercqFAqIoohAIADg77M/S6VShMNhiKIItVqNsrIyqFSqy3pwREQ0VQWDQWRlZWHGjBmXfAy/34+6ujo4nc6oXpxDiUdRFCEIApRKJXw+37DvTAaD4bLOP9ZSUlJQUlKCkydPIi0tLVIPvKenBw0NDfD5fMjOzobJZML+/fthNBqh0WjiHPXlaWxshEwmg9lsjncoRDROmFAlojEXCATQ2dmJvLy8Ebe7XC4AmBRPc5OSkuB2u3Hw4EHMnDkzkojQaDSjjt/hcKClpQXFxcVIT08f44iJaLLKyMhAa2srTp48CQBITU0d1hspGAyit7cXLpcLLpcr0ssnJSUFZWVl0Gq18Pv9UCqVkYdAfr8fLpcLg4ODUCqVSEtLi8wUrVQqJ/2DLyKisSSKIjo6OiAIAsxm80U9YA+Hw/D5fDh8+DDC4TDy8/Mhl8shl8uh0WigUqkgiiJcLhcGBgbg8/mgUqmgVqshk8kgkUggkUigVqsnfPkVg8GAkydPRnqeBoNBHD9+HElJSaiqqoJGo0FdXR2USiWKi4vhdDojvXInm66uLnR1daG8vJwTzF6GYDA4dX5+4t+WqWyqX98oTJG7lYgmMpvNBuBscmAke/bsgVwuR0FBwXiGddFEUYRcLkdqaiqCwSD2798f2aZUKpGdnY2MjIxzDo11u91obm5GR0cHkpOTL2tiKyKa+hISEnD11Vfj5MmTkaRqdnZ2pFdSZ2cnGhsbEQgEoFAokJiYiOzsbBiNxqikqEqlijquQqGAXq8fVoIlJSVlbC+IiGgKqKioQHt7O9ra2tDa2or8/HxkZmaeN8E5NIlUe3s7AECtVmPu3LnD3p+Bs71Uk5OTJ/xErRcylEjt7OxEcnIyOjo6IIoiysvLIyMmHA4HzGYz+vv7ceTIEeTn5yM3NzfOkV+8trY2pKSkTKoyZhOJy+XC0aNH4fP5kJmZicLCwgn/wIAIYEKViMaYKIpoa2tDenr6iHWebDYbWlpaMHv27Ak/1EcQBFRWVuLEiRMIBoMwGo0wmUwQBAHt7e1obGxEc3MzkpOT4XK5IIoidDodUlJS4HA40NHRAaVSiaKiIs6STUSjIpFIUFZWhszMTDgcDlgsFvT09EAURXg8HhgMBhQUFIz4pZyIiGIvKSkJJSUlmDFjBiwWCxobG2G321FcXDwsCTrUm7WxsRHA2TkhZDLZOT8XTyVyuRzFxcWwWCzYs2cPJBIJTCZTpJyMzWZDIBBAYmJi5KFhV1fXpEuo+v1+OBwOlJSU8LP9JZJIJPD7/VCpVGhra4NEIsGMGTMm989TFM8uU9lUv75RYEKViMZUd3d35Gnj54XDYXz66adITExEVVVVHKK7eFqtFvPmzcPp06cjHwRLSkpQXl6O/Px8tLS0wOPxID09HYIgoLe3d1gidTIOZSKi+BEEAVqtFlqtFomJiejq6oJUKkVqauqIE/0REdHYG0oYmkwmNDQ04MCBA5HPeIIgQCqVQiKRwOv1wmg0oqCgYFrVph4qiWA0GtHS0oKurq7I6KzOzk6cOnUKMpkMzc3NCIfDKCwsRGNjIzwez6QqPdPV1QVBEDgnwmXQaDTIzMyEzWZDTk4OrFYr+vr6kJ6eDoPBMKnuB5pemFAlojHV1tYGrVaLpKSkYdvcbjf6+vqwYMGCSZVklMlkKCkpQVpaGurr67Fv3z7U1NRArVajuLg4qu2MGTMQCAQiH6qJiC5HampqZHIPIiKKv+TkZMydOxddXV3w+/0AzvZMDYVCCAaD0Ol00/p9WyqVIi8vLzKXQjgcjvRIBc6WoSkoKEB/f/+k65Ho9/vR3Nw8Yo1zujh5eXno6OiA0+lERUUFOjo60NTUBIvFgjlz5ky6EhiCeHaZyqb69Y0GE6pENGYGBwfhcDhQXl4+4vahBOO5ao5OdKmpqTCbzWhtbT3vB0B+wCIiIiKaugRB4ESjoySRSDB79mzI5XKoVCoIggCPx4MjR45AqVSio6MDKpUKOp3uoib8Gm+iKOL48eMAgKKiojhHM/nJZDLMnDkThw8fhlKpRHl5eWQ049D8E0QTDROqRDRmOjo6IJPJzjkEZmgWx6Gi9ZORy+VCUlLSpHuiTkREREQUD59PjkmlUqSnp8PtdqOtrQ2BQAByuRwVFRXQarVxivL8BgYG4HA4UFlZOaETv5NJSkoKSktLceLECahUKuTl5SEtLQ3d3d2Tb6Iq1lCdFphQJaIxIYoi7HY7jEbjiEPdw+EwDh48CACT+kNIOBzGwMAAbDZbZIIqIiIiIiIaHYVCgbKysshrv9+P48eP49ChQ6isrJyQ9cK7urqgUCgmZGyTmdFohNfrhcViiXTMaWtrg9PpZC9VmnBY0I+IxkRfXx/8fj9MJtOwbeFwGFu3bsWJEydQWlqK/Pz8OEQYG+Xl5TAYDKivr4/M4EpERERERJdGoVCgqqoKycnJsFgsECdYTzhRFNHV1QWDwcDOFGMgJycH2dnZaGxsRE9PDzQaDRoaGhAOh+F0Oifc/TASITw9lumOPVSJaEzY7XYkJCQgMTFx2LatW7eipaUF8+bNQ0VFRRyiix2ZTIbS0lKIogiHwxHvcIiIiIiIJj2JRIKcnBwcPXoUAwMDE2rov8/ng8/nY+/UMSIIAgoKCgAALS0tKCkpQX19PY4cOQKHw4GUlBQUFxdDo9HEOVKa7thDleLi8ccfx/z585GUlIT09HTcdNNNqK+vv+B+27ZtQ3V1NVQqFWbMmIH169ePQ7R0sQKBALq7u885BL63txc5OTmTPpk6RBRF+Hy+SV26gIiIiIhoItHr9ZDJZOjr64t3KFFcLhcAjNhxhGInKysLgiDA6/UiNzc30nnF4/Hg5MmT8Q3uQoZqqE71ZZpjQpXiYtu2bbj77rvxySefYMuWLQgGg6itrcXg4OA597FYLLjhhhtw1VVX4eDBg/jRj36E7373u3jjjTfGMXK6kAMHDmDnzp0QRfG8s52OVFd1srLZbHA4HMjIyIh3KEREREREU4IgCEhJSZlwo8A8Hg8kEgkUCkW8Q5nSlEolsrOz0dLSAqPRiISEBABAZmYmXC7XpBj6T1Mbh/xThCiK8IU9UErUY14L5v333496/eKLLyI9PR379+/H1VdfPeI+69evR05ODp5++mkAQFlZGfbt24cnn3wSK1euHNN4afQ8Hg/S0tKQnZ193h6bU+UP4ODgIBobG5GRkQGDwRDvcIiIiIiIpgytVguLxQKn04mkpKR4h4NwOAyXy4VwOIxwOAypVBrvkKa03Nxc2O12tLa2YubMmejq6kJycjLC4TD6+/uRkpIybB+/3w+Xy4WkpCTI5fLxDxoAxL8tU9lUv75RYEKVAABt7tN4tfnnGAj0IFmeiv+T+0NkagrG7fz9/f0AcN46NLt370ZtbW3UumXLlmHDhg0IBALxe7OkKHK5HCqV6rx1juRyObxe7zhGNTZCoRDq6uqgVqtRWFgY73CIiIiIiKaUjIwMdHV14dChQ6iqqrqsWqqhUAgSiWRUnYdEUURfXx8GBgYQCoUiCVSHwwGv14u8vLwpNeJuopJKpUhKSoLP54NGo0Fubi5CoRCUSiUOHToEnU4Hs9mMpKQkKJVKdHV1oaGhAYFAAABgNptRXFwc56ugqYoJVYIoini1+edwBs7WpnEG+vBq88/xYOnvxmXWQlEUsXbtWixatOi8NTXtdjuMRmPUOqPRiGAwiO7ubg63niBkMhmCweB52xiNRjQ0NCAYDEImm7xvQ42NjfB6vaiurubTaSIiIiKiGJPJZKiqqsLRo0dx5MgRZGdnIy0tDQkJCaP+rupwONDa2oqenh6YzWYUFRWds204HEZnZydaWlowODgIhUIBqVQKiUQCiUSCxMREVFZWckKkcSSXy+F2uyOvpVIpFixYgK6uLrS3t6Ourg7A2RIRoijCYDAgNzcXR44cQTgcn6noBVGEMEVGZJ7LVL++0Zi8mQyKGV/Yg4FAT+S1iDAGAj3whT1QScf+D8U999yDI0eO4OOPP75g28//0RwaNj4eiV8aHblcHnkieC75+fk4efIkWlpakJ+fP06RxUYgEEBnZyc6OjowMDCAkpKSSD0fIiIiIiKKraGkakNDA1paWtDU1ASlUgm9Xg+1Wg21Wo2UlJRhIxZFUURbWxsaGxuhVqshiiLUavU5z+NyuXDs2DF4vV6kpqaiqKgIWq2W3zXjzO/3D+uEI5VKYTKZYDKZ4PF44Ha7I5ME6/V6BAIB+P1+6HS6OEVN0wETqgSlRI1keSqcgT6ICEOABElyHZSSc/+xiZV7770Xf/7zn7F9+3ZkZWWdt63JZILdbo9a19nZCZlMhtTU1LEMky6CRqNBR0cHRFE854eP1NRUyGQyNDc3T4qEajgcRm9vL+x2O3p6zj580Ov1qKio4L1HRERERDTGpFIpSktLUVxcDIfDgZ6eHvT396OzsxOhUAgAkJycjLS0NKSlpUGlUqGxsRHt7e3Izs6OzNdhtVrhcrmQmZkZVZO1u7sbJ06cgEajQWVlJTtMTBCiKMLpdMJsNp+zzVBS/bP6+s6Ovo1bQlUUzy5T2VS/vlFgQpUgCAL+T+4PIzVUk+Q6/J/cH47pkzhRFHHvvffizTffxNatW0eVVKupqcHbb78dtW7z5s2YN28e66dOIHq9Hi0tLZFC4J9ntVqxe/duhEKhuCUjg8Egzpw5E5mdU6FQQCaTIRAIwOfzwefzwe/3R/5/qMdtYmIiCgoKkJ6ezlk9iYiIiIjGmUQigV6vj8y9IYoi/H4/ent70dPTg6amJpw5cwZyuRzBYBAlJSWR0nBz5sxBd3c3uru7YbfbkZ6ejtzcXLS3t6OtrQ1paWkoKytjKa8JQhRF2Gw2BAIBJCcnX9R+bW1t0Gq1/M5GY4oJVQIAZGoK8GDp7+ALe6CUqMd8WMPdd9+N3//+9/jTn/6EpKSkSM9TrVYbebr00EMPoa2tDa+88goAYM2aNXjuueewdu1arF69Grt378aGDRvw2muvjWmsdHG0Wi2kUil6enqGJVSDwSC2bduGpKQkXHvttTAYDHGJMRAIoL29PTJ05LM1X4cSrEqlEsnJyVH/zyfVREREREQThyAIUCqVyMjIQEZGBkKhEPr6+tDX1weDwRA1C7xWq4VWq8WMGTNgt9thsVjQ2dkJiUSCoqIimM1mDu+fILq7uyPzVaSlpV2wp6nP50NXVxeAs9/1BgYGUFVVNR6hjkwEEJ/yreOHHVQnX0LV5/Nh4cKFOHz4MA4ePIjZs2dHtlmtVtx999346KOPoFarcfvtt+PJJ5/kU4lREgRhXGqmAsALL7wAALjmmmui1r/44ou48847AQA2mw1WqzWyLT8/H5s2bcL999+P559/HmazGc888wxWrlw5LjHT6AwVax8YGBi2raWlBaFQCDU1NXFLpgJnh4UkJiZCrVZj5syZCIfDkQmyOFsnEREREdHkJJVKI8P+z0UQBGRkZCA9PR12ux0pKSnsODHBnDp1KvJdbaRRj58VCARw+PBheDweCIKAcDgMvV7P+qk05iZdQvXBBx+E2WzG4cOHo9aHQiHceOONMBgM+Pjjj9HT04NVq1ZBFEU8++yzcYqWzkUcRb2Nl156adi6xYsX48CBA2MQEcXKUD2jkpKSYdusViuUSmVck6lDkpKS0N/fDwCRof9ERERERDQ9SKVSZGZmxjsMGkEoFILP50NfX19kxOC59PT0wO12Y/78+UhISJgQE1cLoghhitcYnerXNxqTKqH63nvvYfPmzXjjjTfw3nvvRW3bvHkzjh8/jpaWlkjB4l/96le488478eijj56z5sZQjcQhI/WqI6LRCQaDOHXqFPR6PUwm07DtdrsdJpNpQvQC7e/vh1arjXcYRERERERE9BlVVVVoa2uL1MTV6/UoLi6GSqUa1nZoXTh8dow9yzbQeIl/VmOUOjo6sHr1avz3f/83NJrhw9J3796NioqKqNnfli1bBp/Ph/3795/zuI8//niklopWq0V2dvaYxE80HfT09MDn86G4uHjYHzKXywWPxxMpCh9PPp8Pbrebw0CIiIiIiIgmGK1Wi/LyclxxxRUoLi7G4OAg6uvrRxzparPZIJVKJ9aIQxGAKE7xJd4/5PibFAlVURRx5513Ys2aNZg3b96Ibex2O4xGY9Q6nU4HhUIRmfBoJA899BD6+/sjS0tLS0xjJ5pOXC4XVCrViE8O29raACDqoUe8DD29JCIiIiIiovhyOp1RI4eHyGQymM1mFBUVoa+vDz09PVHbOzo60NHRgeLi4vOWBaD4e/zxxzF//nwkJSUhPT0dN910E+rr66PaiKKIdevWwWw2Q61W45prrkFdXV2cIr6wuCZU161bB0EQzrvs27cPzz77LAYGBvDQQw+d93gjde0WRfG8Xb6HZu/+7EJEl2ZwcPCcBd07OzuhUqnG5XfM6/Wet07vUNK3s7NzzGMhIiIiIqL46u7uxpkzZ2Cz2TAwMHDO7wqiKMLv98Pj8bATxjgYKhm3f/9+1NXVnfPfZajDjtvtjqzzer1oaGhAenr6sM51cRf33qPjtFyEbdu24e6778Ynn3yCLVu2IBgMora2FoODg5E2v/zlL/HUU0/hueeew969e2EymbB06VI4nc5Y/wvFRFxrqN5zzz346le/et42eXl5eOSRR/DJJ58Me+Iwb948fP3rX8fLL78Mk8mEPXv2RG3v6+tDIBCYeL9cRFOUy+U655B+h8Mx5jVLh/4gd3Z2QqFQwGQyISMjA2q1GsFgEF6vF4ODg7BarfB6vSPWeSUiIiIioqmlubkZg4ODkSSpUqmE0WiE0WiERCKBw+GILJ/tKWk2m1FcXByvsKc0t9uNI0eOIBAIwGw2o729Hb29vdDpdGhra4PX60VhYSFEUcSJEyeQkJCArKwsAGcT3ydPnoRUKkVRUVGcr2R6+/w8REqlcsTewu+//37U6xdffBHp6enYv38/rr76aoiiiKeffho//vGPccsttwAAXn75ZRiNRvz+97/Hd77znbG7iEsU14RqWloa0tLSLtjumWeewSOPPBJ53d7ejmXLluH111/HwoULAQA1NTV49NFHYbPZIgmdzZs3Q6lUorq6emwugIgi/H4//H7/OXuoKpVKeDyeMY2htbUV3d3dKCoqwuDgINrb22G1WiGXyxEIBCLtkpOTUV1djaSkpDGNh4iIiIiI4i8UCsFkMqGwsBBOpxMdHR2R7wpDhoYiJyUlQSaToaWlhZNWjyGbzYZQKIR58+ZBpVLB7XajsbERwN9HHGo0Gni9XrjdblRXV0MikUAURTQ3N8PhcGD27NmQy+VxvpIRhAFM9bmx/taB+/PzED388MNYt27dBXfv7+8HAOj1egCAxWKB3W5HbW1tpI1SqcTixYuxa9cuJlQvVU5OTtTrxMREAEBBQUHkCUVtbS3Ky8txxx134IknnkBvby8eeOABrF69msP4icbBUFf9od/Pz0tMTBxW8ybWZLKzb2lmsxmCIKCgoADd3d3weDxQq9VQq9VQqVSQy+Wc/ZGIiIiIaJrQ6/Vob29HdnZ2ZELqwsJC9Pb2AgBSUlIi3yWGOBwOlggbI+FwGL29vdDr9VCr1QCAGTNm4ODBg0hJSUFFRQVaW1vR1NSEhISESI/UvLw8NDc3w+l0Ijc3FykpKfG9EEJLS0tUzm00tWxFUcTatWuxaNEiVFRUAEBk7qPPjzA3Go1obm6OYcSxMykSqqMhlUrx7rvv4q677sKVV14JtVqN22+/HU8++WS8QyOaFlwuFyQSSeQP4uclJSXB5/PB7/eP2QyMKpUK4XAYfr8fSqUSUqmUJT+IiIiIiKa5/Px8dHd3o76+HrNmzYIgCJBIJOcdMSuVShEKhcYxyunB6/Xi6NGjcLvdKCgoiKxPTk7GFVdcAZlMBkEQkJCQgI6ODsyaNQt9fX04duwYjh07huTkZMyaNQs6nS6OV3F+gihCuMgao5PN0PVdylxE99xzD44cOYKPP/54+HE/1/HpQvMixdOkTKjm5eWNWKw4JycH77zzThwiIiKXyxXpnepyuaDRaCCR/H3eO41GA+Bs136DwTAmMQwlcwcGBiLnGKqlnJ6ePibnJCIiIiKiiU0qlaKkpASHDx+G3W4/57wPnyWTyRAMBid0QmcyamhoQDAYRHV19bDRjUPD94PBINra2pCQkABBEKDX61FZWYlwOAy9Xs9/j0ns3nvvxZ///Gds3749MuIcQGR+k8//fnZ2dk7YTlKTMqFKRBPPwMAA9Ho9+vv7cejQISgUCmRkZCAzMxONjY3Yt28fZDLZmNa4UavVSEhIQF1dHXQ6HSQSSaTMgEajOWc5AiIiIiIimtp0Oh1SU1NHlVD1+/1oa2uLzC5PsdHb24uenh6Ul5ef87uZKIo4fvw4AoEAqqqqIusnco/UYUTx7DKVXeT1iaKIe++9F2+++Sa2bt2K/Pz8qO35+fkwmUzYsmUL5syZA+Ds7+G2bdvwi1/8ImZhx5Lkwk1ouujytuHkwD50edvG/FwvvPACqqqqIt3Da2pq8N577513n23btqG6uhoqlQozZszA+vXrxzxOGp1AIACPx4Pk5GT09fVBLpcjLS0NVqsVTU1N6O3thUQiwVe+8pUxrXMjkUhQXV2NsrIyBAIBDA4OoqioCDKZDGfOnBmz8xIRERER0cSn1WrhcrlGHPH6WWfOnIkk9NgbMjb8fj8aGhqQkpJyzhGLoiiioaEBfX19KC8vP2c5OZp87r77brz66qv4/e9/j6SkJNjtdtjt9sjE1YIg4L777sNjjz2GN998E8eOHcOdd94JjUaD22+/Pc7Rj4w9VAnuoBOvW59Co+twZF1h4izclrMWGtnYzIKelZWFn//85ygsLAQAvPzyy/jyl7+MgwcPYubMmcPaWywW3HDDDVi9ejVeffVV7Ny5E3fddRcMBgNWrlw5JjHS6A3NfpmcnIz29nakpKSgoKAANpsNiYmJCIfDaGxsRDAYHPNYJBIJjEYjZDIZbDYbGhsbIYrisCLzREREREQ0vSQnJyMUCqG3txepqanDtouiiEAgALfbHTVhEl2ewcFBHD16FOFwGMXFxedMUre0tKC9vR0lJSWR2d8nJfZQHeaFF14AAFxzzTVR61988UXceeedAIAHH3wQHo8Hd911F/r6+rBw4UJs3rwZSUljk5e6XMwwEF63PoXTrqNR6067juJ161P45oyHx+ScK1asiHr96KOP4oUXXsAnn3wyYkJ1/fr1yMnJwdNPPw0AKCsrw759+/Dkk08yoToBDAwMQC6XQ6FQYGBgAAUFBejv74coikhJSYkMlens7BzzYfeiKOLMmTNoaWlBUlISZsyYgfT09FHNNkhERERERFOXVquFTqdDfX095s+fH1WObKh3ZHt7OwRBmFxDzCcoURTR2dmJhoYGKJVKzJ49e8QyCqIowmq1wmKxIDc3d1Q1bmlyuVCvcOBsL9V169Zh3bp1Yx9QDHDI/zTX5W1Do+swRISj1osIo9F1eFyG/4dCIWzcuBGDg4OoqakZsc3u3btRW1sbtW7ZsmXYt28fAoHAmMdI5+d2uxEMBrF///5IEtXhcEChUECtViMlJQUymQxdXV1jGoff78fhw4fR2tqKwsJCzJ07F9nZ2UymEhERERERBEFAaWkpwuEw6uvrI0keURTR2NiI9vZ2GAwGiKKIhISEOEc7ubndbhw5cgQnTpyATqfDnDlzzplMPX78OCwWC/Ly8pCXlzf+wcbaUA/Vqb5Mc+yhOs31+G0X3G5QZY7JuY8ePYqamhp4vV4kJibizTffRHl5+Yht7Xb7sJndjEYjgsEguru7+QQrzgoLC5GSkoL+/n4kJCQgISEBDocDKSkpEAQBgiDAYDDg1KlT0Ov1KCoqGpM4jh8/DrfbjVmzZo1prVYiIiIiIpqclEolSkpKUFdXh08//RQymQyhUAhutxvFxcUwm83w+XxQKBTxDnVSCgaDsFqtaGlpgVKpRGVl5YjlFYaIogiHw4Hk5GTk5uayZi1NGkyoTnOpivMnIi+0/XKUlJTg0KFDcDgceOONN7Bq1Sps27btnEnVz7+xDj1N5Btu/CmVSmRmZiIz82zyPRQKwel0wmQyRdosWbIEW7Zswc6dO6HVapGenh7TGERRhNPpRG5uLpOpRERERER0TgaDAWVlZXC5XAgGg/B6vcjOzo501OEIt4vn9XrR2dkJq9WKcDiM3NxcZGdnQyqVjtje7/ejvb0dTqcTUqkUAwMDsNlsMJvN4xz5GAgDmOppivCFm0x1TKhOcwZVJgoTZ+G062jUsH8BEhQkVo5Z71QAUCgUkUmp5s2bh7179+LXv/41fvvb3w5razKZYLfbo9Z1dnZCJpOd92kXjY+mpiZ4PB6kpaVBr9dH6qdqtdqodm63G4mJiWOS8AwEAgiFQiwcT0REREREF2Q0GoeNgqSL19XVhaamJgwODkIQBGRkZCA3N/ecSWmPxwOr1YqOjg4AgE6nQ1JSEpKTk6HRaMYzdKLLwoQq4bactXjd+hQaXYcj6woSK3FbztpxjUMURfh8vhG31dTU4O23345at3nzZsybNy+qkDiNP1EU0draCgDo6OiARCKBUqmEXC6P+oPY398Pt9sNqVSKEydOYNasWTGNw+PxAAD/CBMREREREY0xURRhsVhgtVqRmpqKvLw86HQ6yGTnTjOJoogjR44gFAohLy8PGRkZU/L7vCCKEKZ4jdGpfn2jwYQqQSNLwjdnPIwubxt6/DakKjLGtGcqAPzoRz/C8uXLkZ2dDafTiY0bN2Lr1q14//33AQAPPfQQ2tra8MorrwAA1qxZg+eeew5r167F6tWrsXv3bmzYsAGvvfbamMZJF+b1ehEMBlFVVQW1Wo2uri50d3fDYDBElWMwGAy46aabsGvXLhw9ehSVlZWQSGI3L57D4YBEIhmx0DkRERERERHFRiAQwPHjx9HX14eCggJkZWWNqhRfX18fPB4P5syZM2w0I9Fkw4QqRRhUmWOeSB3S0dGBO+64AzabDVqtFlVVVXj//fexdOlSAIDNZoPVao20z8/Px6ZNm3D//ffj+eefh9lsxjPPPIOVK1eOS7x0bk6nEwCQmJgIhUKBnJwc5OTkjNjWZrNhYGAAwWAQTqfzsv6Ier1euN3uSC3d9vZ2pKenn7NGDxEREREREV0el8uFY8eOIRQKYdasWdDpdKPet729HQkJCUhOTh7DCCcAUTy7TGVT/fpGgQlViosNGzacd/tLL700bN3ixYtx4MCBMYqILpXT6YRSqRzVLJj19fUQBAG1tbWXnEwdKjFgsVgQDn+m7q8gICsr65KOSUREREREROfncrlw4MABaDQazJ49+6JGB/b396O7uxulpaWcWJqmBCZUieiyOJ1OJCUljaptcnIyenp6LnnmRo/HgxMnTmBgYABZWVlRQ0skEsmUrL9DREREREQUb+FwGCdOnIBarcacOXMuamSgKIo4ffo0EhMTp8dEYGEREKZ4D87wFL++UWBClYguWTgchtPpPOcQ/89TqVTnnHhsNOrr6+H3+1lzh4iIiIiIaBydOXMGHo8Hc+fOvegya93d3RgYGMCsWbPYO5WmDCZUieiShEIh1NXVIRwOIzU1dVT7dHV1XVSNnc/yeDxwOBwoLS1lMpWIiIiIiGicDJVdy87ORmJi4kXt19nZicbGRuj1+kv+LjjpsIbqtMCEKhFdtGAwiKNHj8LlcqGqqmpUf1T9fj/6+vpQVVV1Sefs6OiAVCqFwWC4pP2JiIiIiIjo4gmCAL1eH5lkWC6XQyaTQa1Ww2w2j1h6zel0oqGhAQMDA0hLS0NRUVEcIicaO0yoEtFFCQQCOHz4MLxeL6qqqkbdW9RqtUIUxVGXB/g8URQRCoVgsVgwY8YMSCSSSzoOERERERERXZyioiK0trYiGAwiEAjA7Xajs7MTVqs10nNVEARIJBJ0dHTAbrcjISEBs2bNmj49UyOmQQ9VTPXruzAmVInoonR0dMDlckEikeD06dNISkpCYmIikpKSkJCQcM6aOG1tbVCpVJf8xzQvLw8KhQKNjY3o7+/HzJkzL2pWSSIiIiIiIro0arV6WC9Tv98Pq9UKq9WKcDgcWS+Xy1FcXIyMjAzWTKUpiwlVIrooZrMZCQkJcLlccDqd6OvrQ1tbGwBg5syZIw7Jd7vdaG1thdlsvuSepYIgIDMzE0lJSTh+/Dj27dsHg8GA5ORkJCcnQ6PR8I81ERERERHROFEoFCgsLER+fj5CoRBEUYQoipDL5Rc9cdWUwhqq0wITqkR0USQSCXQ6HXQ6HYLBIBoaGuB2u5GRkQG9Xj/iPnv27EE4HEZ1dfVlnz85ORnV1dVoamqCw+GAzWYDAOh0OsyaNeuyj09ERERERESjJ5VKp3cClaYlJlQJABASg7AO1sMTckEtTUROQgmkAm8POjeXy4W6ujr4/X6UlZXBaDSO2K69vR3Nzc2oqqpCcnJyTM4tl8sjw02CwSD27NkDpVIZk2MTERERERERXbKwiClfYzQ8xa9vFJgxm+ZCYgg7ut7Erq53MRjqj6xPkGpxheFGXGW4GVKBT5ooWigUwuHDh6FUKlFdXQ2NRnPOtkePHkVCQgJmz549JrG4XC4EAgGYTKYxOT4RERERERER0WdxmuxpLCQG8T9NP8cW+2tRyVQAGAz1Y4v9NfxP088REkNjHsvjjz8OQRBw3333nbfdtm3bUF1dDZVKhRkzZmD9+vVjHhsN19nZiUAggJkzZ543mQoAGo0GoVDokmunnk8gEIDVaoVarYZWq4358YmIiIiIiIguihieHss0x4TqNLaj6y3UOw/g3F3RRdQ7D2BH15tjGsfevXvxu9/9DlVVVedtZ7FYcMMNN+Cqq67CwYMH8aMf/Qjf/e538cYbb4xpfBRNFEW0trYiNTUVarX6gu3VajW8Xi+CwWDMYvD5fDh9+jR2794Nh8OBvLw8TkhFREREREREROOCQ/6nqZAYxK6ud3Hhuh4idnW9i6sMN41JTVWXy4Wvf/3r+I//+A888sgj5227fv165OTk4OmnnwYAlJWVYd++fXjyySexcuXKmMdGI3M4HBgcHERhYeEF2waDQTQ2NiIjIwMy2eXfP+FwGGfOnEF7ezsEQUB2djaysrIgl8sv+9hEREQUP263Gx0dHcjIyIBKpYp3OERERJdOFM8uU9lUv75RYA/Vaco6WD9smP+5DIb6YR2sH5M47r77btx444247rrrLth29+7dqK2tjVq3bNky7Nu3D4FAYEzio+HcbjcEQUBKSsp52/n9fuzYsQNerzdm9VPb29vR2tqKnJwc1NTUID8/n8lUIiKiSS4cDuPTTz9Fc3Mz9uzZgxMnTqClpQVdXV1wuVwQ+aWNiIiIJhj2UJ2mPCHXmLYfjY0bN+LAgQPYu3fvqNrb7fZhM8kbjUYEg0F0d3cjIyMj5jHScDKZDKIoIhwOQyodPmFZOBzGiRMncPjwYQSDQVRUVAz7d7sUwWAQzc3NyMjIQF5e3mUfj4iIiCaGnp4eAEB1dTX6+vrQ2dmJ7u5uhEJn6/jn5uYiPz8/niESERGNXljEhUcDT3LhKX59o8CE6jSlliaOafsLaWlpwfe+9z1s3rz5ooZ1fb5O5lCPBdbPHD9DPUIDgcCICdXm5mbs3bsXRqMRNTU1F+zJOlpWqxWhUIjJVCIioinG6XRCqVQiKSkJSUlJyMnJgSiK8Hg8+PTTT2Nah52IiIgoFphQnaZyEkqQINWOath/glSLnITSmJ5///796OzsRHV1dWRdKBTC9u3b8dxzz8Hn8w1L1plMJtjt9qh1nZ2dkMlkSE1NjWl8dG6fTaiOlAwfSm4vWLAgZslUr9eL1tZWZGdnQ6lUxuSYRERENDFIpVIEg0FYLBaEQiGEQiGEw2G43W5IpVLk5OTEO0QiIqLRYw3VaYEJ1WlKKshwheFGbLG/hvN3RRdwheFGSIXhPREvxz/8wz/g6NGjUeu++c1vorS0FD/4wQ9G7PlYU1ODt99+O2rd5s2bMW/ePNbRHEdDk0udq7eIRqMBAHg8nss+VzAYhM1mQ2trK6RSKbKzsy/7mERERDSxJCYmQiKRwG63QyqVQiqVQiKRQC6Xo7S0lA9TiYiIaMJhQnUau8pwM6yD9ah3HsDISVUBJUnVuMpwc8zPnZSUhIqKiqh1CQkJSE1Njax/6KGH0NbWhldeeQUAsGbNGjz33HNYu3YtVq9ejd27d2PDhg147bXXYh4fndtne6iOJBYJVVEUYbFY0NbWhnA4jPT0dOTk5ESSuURERDR1pKam4sorr4x3GERERLEhYur34JzilzcakngHQPEjFaT4et4PsdT0NSRItVHbEqRaLDV9DV/P+0HMe6eOls1mg9VqjbzOz8/Hpk2bsHXrVsyePRv//u//jmeeeQYrV66MS3zT1VDPkb6+vhG3azQaSCQSWCwWhMNhhMPhi659dubMGVitVmRmZqKmpgZlZWVISEiIRfhERERERERERJeF3b2mOakgxTXpX8FVhptgHayHJ+SCWpqInIQSSIXxvT22bt0a9fqll14a1mbx4sU4cODA+AREIxIEATNmzEBDQwP0ej0MBkPUdolEgvnz52PPnj3YuHFjJJl6yy23IDHxwpOb9fb2oqWlBYWFhcjKyhqTayAiIiIiIiIaE6yhOi0woUoAztZUzU+cGe8waJIwm81wOByor69HSkrKsBq2ZWVlkMvl6OjogN/vR3NzM/x+/6iOHQ6HAQB6vT7mcV+uQCCA3t5epKamsvwAERERERER0TTFjAARXTRBEKDVatHV1RVJgH5eYWEhCgsLcebMGTQ3N4840dhIdDodJBIJenp6IvVYx5vL5UJTUxN8Ph/0ej1SU1MRCARQX18Pv98PuVyOvLw8mM1mCIIQlxiJiIiIiIhoAgqHAYz8PXnKOEceYDphQpWILlo4HEZLSwvS09MvOPPuUE/Orq4uaLXa87YFztZo1el06O7uRnZ2dkziHa2hRGp3dzfUajWSkpLQ1taG5uZmAGd7zebn56OtrQ0NDQ2w2WyYO3cuJBKWoyYiIiIiIiKaLphQJaKLFg6H4ff7R1UTNSsrC2lpafj0009hMplGtU9aWhrq6+vhcDiQkpISg4gvrLm5GRaLBSqVCqWlpUhKSoLNZkNVVRVEUUQwGIRer0cwGITBYEBvby8AsIcqERERERER/R1rqE4LTKgS0UWTyWQwGo1obW1FVlbWeXtoSiQSXH311fjzn/+MP/zhD5BIJJDJZFGLXC6PLAkJCZG6rIcOHUJ5eTnS09PH/Jr6+/sBADNmzIjUhwWA9vZ2ZGdnw+fz4fTp03C73QAAtVqNyspKJlSJiIiIiIiIphkmVAmDwX4c7NuGbl87/GEvFBIV0pRmzNEtRoLswkO0aXrKyclBR0cHDh48iJycHKSlpZ0zuZicnIzly5fDZrPB7/fD7/cjEAggEAggGAzC7/fD4XBEer4Cw3t+jnVStby8HMeOHcPx48chk8kwY8YMZGRk4PTp07BarZFEb25uLpKTk6FSqZhMJSIiIiIiomjsoTotMKE6jbW5T2Nn99s46tgJEWEIkECECAECRITxge2/UZlyJa5MW4FMTUG8w6UJRqPRoKqqCs3Nzairq4NGo0F2djaMRuOIPVZTU1ORmpoatS4YDKKzsxNtbW2QSCSRMgLBYBDBYBAZGRlITk6+YJ3WWJDJZKiqqkJXVxdSU1MjtV9LSkpQXFzM5CkRERERERERAWBCddra27MFf2pbDwECwn+bfU5E6G//ReT1UcfHOOLYgS9nrsH81KVxipYmKp1Oh+bmZvh8PoTDYRw+fBhKpRIVFRXn7bEKAK2trbBYLHC5XPD5fFAqlcjJyYHZbEYgEMCOHTvQ2tqKJUuWjGoyq1iQSCQwGo3D1jOZSkRERERERKMSFvH3zMoUFZ7i1zcKTKhOQ3t7tuCtthcAAOIFfsmHkq1D7ZlUpc/TaDSRHqQSiQQdHR1wuVzIyclBSUkJVCrViPtZrdZIotRoNKKwsBDJycmR7SaTCR0dHTh16hQSExORlJQ09hdDRERERERERHQB555JhqakVncj/tS2/pL2/VPberS5T8c4IprsiouLUVFRAYlEAoVCgaKiIkilUpw4cQIffvghLBYLAoFA1D6BQAB+vx9SqRShUAglJSVRydQhSqUSCQkJOHnyJMLh8HhdEhEREREREdElEcXwtFimOyZUp5ld3e9AwKUNXxYgYGf32zGJY926dRAEIWoxmUzn3Wfbtm2orq6GSqXCjBkzsH79pSWGKfbS0tIi/zZerxezZ89GRUUFAoEAPv74Y7zzzjv4+OOPYbFY4HQ64XA4EAgEIvVKExISznnskpISuN1uWK3WcbwiIiIiIiIiIqKRccj/NDIY7MdRx87IMP6LFUYYRx07caP5n5AgG96b8GLNnDkTH374YeS1VCo9Z1uLxYIbbrgBq1evxquvvoqdO3firrvugsFgwMqVKy87Frp8CQkJqK6uRl1dHRoaGpCXl4fa2lo0NTXBarWivb0dFosFCoUCKpUKTqcTBQUFKCoqOu9xk5KSkJOTg6amJgwODiInJ4fD/4mIiIiIiGhiEsWpX2NUnOLXNwpMqE4jB/u2QbzEZOoQEWEc7NuKRYYvXXY8Mpnsgr1Sh6xfvx45OTl4+umnAQBlZWXYt28fnnzySSZUJxC5XI6qqiqcOXMGTU1NaGtrQ15eHsrKyjA4OIju7m7YbDYMDAzAaDRi7ty5UCgUFzxuXl4elEolrFYr9u/fD51Oh5ycHKSkpHDCKCIiIiIiIiIaV0yoTiPdvnYIkEBE6JKPIUCCHp8tJvE0NDTAbDZDqVRi4cKFeOyxxzBjxowR2+7evRu1tbVR65YtW4YNGzYgEAhALpfHJCa6fBKJBIWFhcjMzITFYsGpU6fQ2tqKnJwc5ObmIj8/H+FwOFLqYTQEQYDZbEZGRga6urpgtVpx+PBhaDQaJCUlITExEQkJCUhMTBxVgpaIiIiIiIhoTIgicIEJwCc99lBlQnU68Ye9EC/zl1qECF/Yc9mxLFy4EK+88gqKi4vR0dGBRx55BFdccQXq6uqQmpo6rL3dbofRaIxaZzQaEQwG0d3djYyMjMuOiWJLrVajvLwc2dnZaGpqwsmTJ3HmzBlkZWUhIyNjVEnwYDCIM2fORF5LJBLI5XKUlJREarAO9XwNhc4+KEhMTER1dTV7rhIRERERERHRmGBCdRpRSFQQIFxWSlWAAKVEfdmxLF++PPL/lZWVqKmpQUFBAV5++WWsXbt25HN/LkEm/u2JCBNnE1tSUhIqKysxODiI1tZWWCwWNDc3Iz09HQkJCVCr1VCr1VCpVJBI/j5PnlKphNvtxvbt24cdUy6XY9GiRSguLoYgCBBFER0dHTh58iQ0Gg3vCSIiIiIiIoqPcBgQLq/c4oQnTvHrGwUmVKeRNKU5JjVUU5Wx7w2akJCAyspKNDQ0jLjdZDLBbrdHrevs7IRMJhuxRytNPAkJCSgpKUF+fj7a2trQ1dUFu90eSYwP1dTNzMyEWq1GTU0NKisrI/t7vd7Ifnq9HhaLBa2trQDO9mQVRREpKSkoLS2Ny/URERERERER0fTAhOo0Mke3GB/Y/vuya6jO0V0Ts5iG+Hw+nDhxAlddddWI22tqavD2229Hrdu8eTPmzZvH+qmTjEKhQH5+PvLz8yGKInw+HzweD3p7e2Gz2dDa2gqNRgO1Wg2lUgmZTIb+/n709/dDKpWiuLgYeXl5GBgYQE9PD6RSKaRSKWQyGdLS0qJ6uRIRERERERGNK9ZQnRaYeZhGEmRaVKZcCckl/rNLIEFlypVIkCVfdiwPPPAAtm3bBovFgj179uArX/kKBgYGsGrVKgDAQw89hG984xuR9mvWrEFzczPWrl2LEydO4L/+67+wYcMGPPDAA5cdC8WPIAhQqVTQ6XQoKChATU0NSktLodPpIIoiBgYG0NHRAYlEgrKyMlxxxRXIy8sDACQnJyM/Px85OTnIzMyE0WiEVCqN7wURERERERERUZTt27djxYoVMJvNEAQBb731VtR2URSxbt06mM1mqNVqXHPNNairq4tPsKPEHqrTzJVpK3DEseOS9hUh4sq0FTGJo7W1FV/72tfQ3d0Ng8GAL3zhC/jkk0+Qm5sLALDZbLBarZH2+fn52LRpE+6//348//zzMJvNeOaZZ7By5cqYxEMTg1QqhclkgslkincoRERERERERBdNDIchTvEaquJF1lAdHBzErFmz8M1vfnPEPM4vf/lLPPXUU3jppZdQXFyMRx55BEuXLkV9fT2SkpJiFXZMMaE6zWRqCvDlzDV4q+2Fi973y5lrkKkpiEkcGzduPO/2l156adi6xYsX48CBAzE5PxERERERERERXbqBgYGo10qlEkqlcli75cuXR01O/lmiKOLpp5/Gj3/8Y9xyyy0AgJdffhlGoxG///3v8Z3vfCf2gccAh/xPQ/NTl+KmzH+GAOGCw/8lkECAgJsy/xnzU5eOU4RERERERERERJOQKE6PBUB2dja0Wm1kefzxxy/6x2WxWGC321FbWxtZp1QqsXjxYuzatStm/yyxxh6q09T81KUwq2dgZ/fbOOrYCRFhCJBAhAgBQuR1ZcqVuDJtRcx6phIRERERERER0eTX0tKC5OS/z7MzUu/UC7Hb7QAAo9EYtd5oNKK5ufnyAhxDTKhOY5maAvxjzn240fxNHOzbhh6fDb6wB0qJGqnKDMzRLUaCTBvvMImIiIiIiIiIJoewCAhivKMYW3/roZqcnByVUL0cgiB87hTisHUTCROqhASZFosMX4p3GERERERERERENI0MTUptt9uRkZERWd/Z2Tms1+pEwhqql0AUp/iTBhp3vKeIiIiIiIiIpgBRBMTwFF9il8PIz8+HyWTCli1bIuv8fj+2bduGK664ImbniTX2UL0IUqkUwNl/WLVaHedoaCpxu90AALlcHudIiIiIiIiIiIhix+VyobGxMfLaYrHg0KFD0Ov1yMnJwX333YfHHnsMRUVFKCoqwmOPPQaNRoPbb789jlGfHxOqF0Emk0Gj0aCrqwtyuRwSCTv40uURRRFutxudnZ1ISUmJJO2JiIiIiIiIaPIRwyLEKV5D9WJH2e7btw9LliyJvF67di0AYNWqVXjppZfw4IMPwuPx4K677kJfXx8WLlyIzZs3IykpKaZxx5IgcqxxlIGBAWi1WvT3949YWNfv98NisSAcDschOpqqUlJSYDKZJnTBZSIiIiIiIqLJ7EI5n1gce4nsK5AJU3v0aVAM4K/BP4zJz3GyYA/Vi6RQKFBUVAS/3x/vUGiKkMvl7JlKRERERERENBWIYQBTvBOeOMWvbxSYUL0EEokEKpUq3mEQERERERERERHROJtURUDfffddLFy4EGq1GmlpabjllluitlutVqxYsQIJCQlIS0vDd7/7XfYkJSIiIiIiIiKicSGGxWmxTHeTpofqG2+8gdWrV+Oxxx7DtddeC1EUcfTo0cj2UCiEG2+8EQaDAR9//DF6enqwatUqiKKIZ599No6RExERERERERER0VQxKRKqwWAQ3/ve9/DEE0/gW9/6VmR9SUlJ5P83b96M48ePo6WlBWazGQDwq1/9CnfeeSceffTRaVskl4iIiIiIiIiIxglrqE4LkyKheuDAAbS1tUEikWDOnDmw2+2YPXs2nnzyScycORMAsHv3blRUVESSqQCwbNky+Hw+7N+/H0uWLBnx2D6fDz6fL/K6v78fwNnZ2YiIiIiIiIiIaGoYyvWI4tgNWQ8iAEzxEfFBBOIdQtxNioTqmTNnAADr1q3DU089hby8PPzqV7/C4sWLcerUKej1etjtdhiNxqj9dDodFAoF7Hb7OY/9+OOP46c//emw9dnZ2bG9CCIiIiIiIiIiijun0wmtVhvTYyoUCphMJnxs3xTT405UJpMJCoUi3mHETVwTquvWrRsxmflZe/fuRTh8tivxj3/8Y6xcuRIA8OKLLyIrKwv/+7//i+985zsAAEEQhu0viuKI64c89NBDWLt2beR1OBxGb28vUlNTz7sfTTwDAwPIzs5GS0sLSzzQlMR7nKY63uM0HfA+p6mO9zhNdbzHJzdRFOF0OqNGN8eKSqWCxWKZNpOjKxQKqFSqeIcRN3FNqN5zzz346le/et42eXl5cDqdAIDy8vLIeqVSiRkzZsBqtQI4mxnfs2dP1L59fX0IBALDeq5+llKphFKpjFqXkpJyMZdBE0xycjL/sNGUxnucpjre4zQd8D6nqY73OE11vMcnr1j3TP0slUo1rZOM00lcE6ppaWlIS0u7YLvq6moolUrU19dj0aJFAIBAIICmpibk5uYCAGpqavDoo4/CZrMhIyMDwNmJqpRKJaqrq8fuIoiIiIiIiIiIiGjamBQ1VJOTk7FmzRo8/PDDyM7ORm5uLp544gkAwK233goAqK2tRXl5Oe644w488cQT6O3txQMPPIDVq1fzqRERERERERERERHFxKRIqALAE088AZlMhjvuuAMejwcLFy7ERx99BJ1OBwCQSqV49913cdddd+HKK6+EWq3G7bffjieffDLOkdN4USqVePjhh4eVcCCaKniP01THe5ymA97nNNXxHqepjvc4EQGAIIqiGO8giIiIiIiIiIiIiCYDSbwDICIiIiIiIiIiIposmFAlIiIiIiIiIiIiGiUmVImIiIiIiIiIiIhGiQlVIiIiIiIiIiIiolFiQpUmnUcffRRXXHEFNBoNUlJSRmxjtVqxYsUKJCQkIC0tDd/97nfh9/uj2hw9ehSLFy+GWq1GZmYmfvazn4FztNFElZeXB0EQopYf/vCHUW1Gc98TTWS/+c1vkJ+fD5VKherqauzYsSPeIRFdknXr1g17zzaZTJHtoihi3bp1MJvNUKvVuOaaa1BXVxfHiInOb/v27VixYgXMZjMEQcBbb70VtX0097TP58O9996LtLQ0JCQk4Etf+hJaW1vH8SqIzu9C9/mdd9457L39C1/4QlQb3udE0wcTqjTp+P1+3Hrrrfjnf/7nEbeHQiHceOONGBwcxMcff4yNGzfijTfewPe///1Im4GBASxduhRmsxl79+7Fs88+iyeffBJPPfXUeF0G0UX72c9+BpvNFln+9V//NbJtNPc90UT2+uuv47777sOPf/xjHDx4EFdddRWWL18Oq9Ua79CILsnMmTOj3rOPHj0a2fbLX/4STz31FJ577jns3bsXJpMJS5cuhdPpjGPEROc2ODiIWbNm4bnnnhtx+2ju6fvuuw9vvvkmNm7ciI8//hgulwtf/OIXEQqFxusyiM7rQvc5AFx//fVR7+2bNm2K2s77nGgaEYkmqRdffFHUarXD1m/atEmUSCRiW1tbZN1rr70mKpVKsb+/XxRFUfzNb34jarVa0ev1Rto8/vjjotlsFsPh8JjHTnSxcnNzxf/3//7fObeP5r4nmsgWLFggrlmzJmpdaWmp+MMf/jBOERFduocfflicNWvWiNvC4bBoMpnEn//855F1Xq9X1Gq14vr168cpQqJLB0B88803I69Hc087HA5RLpeLGzdujLRpa2sTJRKJ+P77749b7ESj9fn7XBRFcdWqVeKXv/zlc+7D+5xoemEPVZpydu/ejYqKCpjN5si6ZcuWwefzYf/+/ZE2ixcvhlKpjGrT3t6Opqam8Q6ZaFR+8YtfIDU1FbNnz8ajjz4aNZx/NPc90UTl9/uxf/9+1NbWRq2vra3Frl274hQV0eVpaGiA2WxGfn4+vvrVr+LMmTMAAIvFArvdHnW/K5VKLF68mPc7TUqjuaf379+PQCAQ1cZsNqOiooL3PU0qW7duRXp6OoqLi7F69Wp0dnZGtvE+J5peZPEOgCjW7HY7jEZj1DqdTgeFQgG73R5pk5eXF9VmaB+73Y78/PxxiZVotL73ve9h7ty50Ol0+PTTT/HQQw/BYrHgP//zPwGM7r4nmqi6u7sRCoWG3cNGo5H3L01KCxcuxCuvvILi4mJ0dHTgkUcewRVXXIG6urrIPT3S/d7c3ByPcIkuy2juabvdDoVCAZ1ON6wN3+dpsli+fDluvfVW5ObmwmKx4N/+7d9w7bXXYv/+/VAqlbzPiaYZ9lClCWGkyRs+v+zbt2/UxxMEYdg6URSj1n++jfi3CalG2pdoLFzMfX///fdj8eLFqKqqwre//W2sX78eGzZsQE9PT+R4o7nviSaykd6Xef/SZLR8+XKsXLkSlZWVuO666/Duu+8CAF5++eVIG97vNNVcyj3N+54mk9tuuw033ngjKioqsGLFCrz33ns4depU5D3+XHifE01N7KFKE8I999yDr371q+dt8/kepediMpmwZ8+eqHV9fX0IBAKRJ+cmk2nYU8Kh4Rqff7pONFYu574fmlG0sbERqampo7rviSaqtLQ0SKXSEd+Xef/SVJCQkIDKyko0NDTgpptuAnC2x15GRkakDe93mqxMJhOA89/TJpMJfr8ffX19Ub33Ojs7ccUVV4xvwEQxkpGRgdzcXDQ0NADgfU403bCHKk0IaWlpKC0tPe+iUqlGdayamhocO3YMNpstsm7z5s1QKpWorq6OtNm+fXtUDcrNmzfDbDaPOnFLdLku574/ePAgAES+uIzmvieaqBQKBaqrq7Fly5ao9Vu2bOEXEJoSfD4fTpw4gYyMDOTn58NkMkXd736/H9u2beP9TpPSaO7p6upqyOXyqDY2mw3Hjh3jfU+TVk9PD1paWiKfx3mfE00v7KFKk47VakVvby+sVitCoRAOHToEACgsLERiYiJqa2tRXl6OO+64A0888QR6e3vxwAMPYPXq1UhOTgYA3H777fjpT3+KO++8Ez/60Y/Q0NCAxx57DD/5yU84HIMmnN27d+OTTz7BkiVLoNVqsXfvXtx///340pe+hJycHAAY1X1PNJGtXbsWd9xxB+bNm4eamhr87ne/g9VqxZo1a+IdGtFFe+CBB7BixQrk5OSgs7MTjzzyCAYGBrBq1SoIgoD77rsPjz32GIqKilBUVITHHnsMGo0Gt99+e7xDJxqRy+VCY2Nj5LXFYsGhQ4eg1+uRk5NzwXtaq9XiW9/6Fr7//e8jNTUVer0eDzzwQKQsBtFEcL77XK/XY926dVi5ciUyMjLQ1NSEH/3oR0hLS8PNN98MgPc50bQjEk0yq1atEgEMW/76179G2jQ3N4s33nijqFarRb1eL95zzz2i1+uNOs6RI0fEq666SlQqlaLJZBLXrVsnhsPhcb4aogvbv3+/uHDhQlGr1YoqlUosKSkRH374YXFwcDCq3Wjue6KJ7Pnnnxdzc3NFhUIhzp07V9y2bVu8QyK6JLfddpuYkZEhyuVy0Ww2i7fccotYV1cX2R4Oh8WHH35YNJlMolKpFK+++mrx6NGjcYyY6Pz++te/jvj5e9WqVaIoju6e9ng84j333CPq9XpRrVaLX/ziF0Wr1RqHqyEa2fnuc7fbLdbW1ooGg0GUy+ViTk6OuGrVqmH3MO9zoulDEMW/zcRDREREREREREREROfFGqpEREREREREREREo8SEKhEREREREREREdEoMaFKRERERERERERENEpMqBIRERERERERERGNEhOqRERERERERERERKPEhCoRERERERERERHRKDGhSkRERERERERERDRKTKgSERERERERERERjRITqkRERESTRFNTEwRBwKFDh8bk+IIg4K233rrk/bdu3QpBECAIAm666abztr3mmmtw3333XfK5RvLSSy9Fzh/rYxMRERERDWFClYiIiGgU7rzzzgsmCcdadnY2bDYbKioqAPw9gelwOOIa1+fV19fjpZdeGvfz3nbbbbDZbKipqRn3cxMRERHR9CGLdwBERERENDpSqRQmkyneYVxQeno6UlJSxv28arUaarUaCoVi3M9NRERERNMHe6gSERERxcC2bduwYMECKJVKZGRk4Ic//CGCwWBk+zXXXIPvfve7ePDBB6HX62EymbBu3bqoY5w8eRKLFi2CSqVCeXk5Pvzww6hh+J8d8t/U1IQlS5YAAHQ6HQRBwJ133gkAyMvLw9NPPx117NmzZ0edr6GhAVdffXXkXFu2bBl2TW1tbbjtttug0+mQmpqKL3/5y2hqarron83g4CC+8Y1vIDExERkZGfjVr341rI3f78eDDz6IzMxMJCQkYOHChdi6dWtUm//4j/9AdnY2NBoNbr75Zjz11FNxSdwSERER0fTGhCoRERHRZWpra8MNN9yA+fPn4/Dhw3jhhRewYcMGPPLII1HtXn75ZSQkJGDPnj345S9/iZ/97GeRRGY4HMZNN90EjUaDPXv24He/+x1+/OMfn/Oc2dnZeOONNwCcHWJvs9nw61//elTxhsNh3HLLLZBKpfjkk0+wfv16/OAHP4hq43a7sWTJEiQmJmL79u34+OOPkZiYiOuvvx5+v/9ifjz4l3/5F/z1r3/Fm2++ic2bN2Pr1q3Yv39/VJtvfvOb2LlzJzZu3IgjR47g1ltvxfXXX4+GhgYAwM6dO7FmzRp873vfw6FDh7B06VI8+uijFxUHEREREVEscMg/ERER0WX6zW9+g+zsbDz33HMQBAGlpaVob2/HD37wA/zkJz+BRHL2GXZVVRUefvhhAEBRURGee+45/OUvf8HSpUuxefNmnD59Glu3bo0M63/00UexdOnSEc8plUqh1+sBXPwQ+w8//BAnTpxAU1MTsrKyAACPPfYYli9fHmmzceNGSCQS/Od//icEQQAAvPjii0hJScHWrVtRW1s7qnO5XC5s2LABr7zySuRaXn755ch5AeD06dN47bXX0NraCrPZDAB44IEH8P777+PFF1/EY489hmeffRbLly/HAw88AAAoLi7Grl278M4774z6uomIiIiIYoEJVSIiIqLLdOLECdTU1EQSjwBw5ZVXwuVyobW1FTk5OQDOJlQ/KyMjA52dnQDO9jLNzs6OqpG6YMGCMYs3JycnKqn5+Ymc9u/fj8bGRiQlJUWt93q9OH369KjPdfr0afj9/qjj6/V6lJSURF4fOHAAoiiiuLg4al+fz4fU1FQAZ38+N998c9T2BQsWMKFKREREROOOCVUiIiKiyySKYlQydWgdgKj1crk8qo0gCAiHw+c8xqWSSCSR8w8JBALDYvt8LJ8VDodRXV2N//mf/xnW1mAwjDqWkc71eeFwGFKpFPv374dUKo3alpiYGDnOuX7GRERERETjiQlVIiIiostUXl6ON954Iyrpt2vXLiQlJSEzM3NUxygtLYXVakVHRweMRiMAYO/evefdZ2g2+1AoFLXeYDDAZrNFXg8MDMBisUTFa7Va0d7eHhliv3v37qhjzJ07F6+//jrS09ORnJw8qmsYSWFhIeRyOT755JNIT92+vj6cOnUKixcvBgDMmTMHoVAInZ2duOqqq0Y8TmlpKT799NOodfv27bvkuIiIiIiILhUnpSIiIiIapf7+fhw6dChqsVqtuOuuu9DS0oJ7770XJ0+exJ/+9Cc8/PDDWLt2baR+6oUsXboUBQUFWLVqFY4cOYKdO3dGJqU6V8/V3NxcCIKAd955B11dXXC5XACAa6+9Fv/93/+NHTt24NixY1i1alVUz8/rrrsOJSUl+MY3voHDhw9jx44dwybA+vrXv460tDR8+ctfxo4dO2CxWLBt2zZ873vfQ2tr66h/ZomJifjWt76Ff/mXf8Ff/vIXHDt2DHfeeWfUz6W4uBhf//rX8Y1vfAN//OMfYbFYsHfvXvziF7/Apk2bAAD33nsvNm3ahKeeegoNDQ347W9/i/feey9mvXqJiIiIiEaLCVUiIiKiUdq6dSvmzJkTtfzkJz9BZmYmNm3ahE8//RSzZs3CmjVr8K1vfQv/+q//OupjS6VSvPXWW3C5XJg/fz6+/e1vR/ZXqVQj7pOZmYmf/vSn+OEPfwij0Yh77rkHAPDQQw/h6quvxhe/+EXccMMNuOmmm1BQUBDZTyKR4M0334TP58OCBQvw7W9/G48++mjUsTUaDbZv346cnBzccsstKCsrwz/90z/B4/FcdI/VJ554AldffTW+9KUv4brrrsOiRYtQXV0d1ebFF1/EN77xDXz/+99HSUkJvvSlL2HPnj3Izs4GcLYm7fr16/HUU09h1qxZeP/993H//fef82dDRERERDRWBJHFp4iIiIgmpJ07d2LRokVobGyMSohOVFu3bsWSJUvQ19eHlJSUMT/f6tWrcfLkSezYsSNq/TXXXIPZs2fj6aefHvMYiIiIiGj6YQ9VIiIiognizTffxJYtW9DU1IQPP/wQ//f//l9ceeWVkyKZ+llZWVn42te+FvPjPvnkkzh8+DAaGxvx7LPP4uWXX8aqVasi2//nf/4HiYmJwxKsRERERESxxB6qRERERBPEK6+8gn//939HS0sL0tLScN111+FXv/oVUlNT4x3aqHg8HrS1tQE4WzvVZDLF9Pj/+I//iK1bt8LpdGLGjBm49957sWbNmsh2p9OJjo4OAEBKSgrS0tJien4iIiIiIoAJVSIiIiIiIiIiIqJR45B/IiIiIiIiIiIiolFiQpWIiIiIiIiIiIholJhQJSIiIiIiIiIiIholJlSJiIiIiIiIiIiIRokJVSIiIiIiIiIiIqJRYkKViIiIiIiIiIiIaJSYUCUiIiIiIiIiIiIaJSZUiYiIiIiIiIiIiEbp/wdNjYe6njXQ0QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# where are these tracks?\n", - "borders = gpd.read_file(gpd.datasets.get_path(\"naturalearth_lowres\"))\n", - "tracks = gpd.read_parquet(tracks_path)\n", - "tracks = tracks[tracks.track_id.isin(set(data.index.get_level_values(\"event_id\")))]\n", - "\n", - "f, ax = plt.subplots(figsize=(16, 7))\n", - "\n", - "# plot landmasses and political borders\n", - "borders.plot(ax=ax, facecolor=\"none\", edgecolor=\"grey\", alpha=0.5)\n", - "\n", - "# plot tracks with colourbar for wind speed intensity\n", - "divider = make_axes_locatable(ax)\n", - "cax = divider.append_axes(\"right\", size=\"5%\", pad=0.15)\n", - "markersize = np.exp(tracks.category)\n", - "tracks.plot(column=\"max_wind_speed_ms\", ax=ax, s=markersize, cax=cax, legend=True, cmap=\"viridis\")\n", - "cax.set_ylabel(\"Max wind speed $[ms^{-1}]$\")\n", - "\n", - "ax.set_xlim(-130, 180)\n", - "ax.set_ylim(-60, 75)\n", - "ax.set_title(\"Tracks of storms with observed outage data\")\n", - "ax.set_xlabel(\"Longitude [deg]\")\n", - "ax.set_ylabel(\"Latitude [deg]\")\n", - "\n", - "# second legend for saffir simpson storm classification\n", - "saffir_simpson = ax.legend(\n", - " handles=[\n", - " Line2D(\n", - " [],\n", - " [],\n", - " color=plt.get_cmap(\"viridis\")(0.8),\n", - " lw=0,\n", - " marker=\"o\",\n", - " markersize=np.sqrt(b),\n", - " label=np.log(b),\n", - " )\n", - " for b in sorted(set(markersize))\n", - " ],\n", - " loc=\"lower left\",\n", - " title=\"Saffir-Simpson scale\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "75841142", - "metadata": {}, - "outputs": [], - "source": [ - "def categorical_cmap(cmap_name: str, categories: list) -> dict[str: tuple[float]]:\n", - " scalar_mappable = matplotlib.cm.ScalarMappable(matplotlib.colors.Normalize(0, 1), cmap_name)\n", - " return {code: scalar_mappable.to_rgba(i / len(categories)) for i, code in enumerate(categories)}\n", - "\n", - "# create some colourmaps and persist between plots\n", - "\n", - "# make a country colormap\n", - "countries = sorted(set(data.index.get_level_values(\"country_iso_a3\").values))\n", - "country_cmap = categorical_cmap(\"tab20c\", countries)\n", - "\n", - "# make a cmap for wind speed thresholds\n", - "thresholds = sorted(set(data.index.get_level_values(\"threshold\").values))\n", - "wind_cmap = categorical_cmap(\"plasma\", thresholds)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "2daa83eb", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMYAAAJaCAYAAADEeUvOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhTZdoG8PtkbdqkTfd9oS2llJa27LuAgoKg4Ki4IaKOOuIoOo442+cu7uKCzrjBMOqIjoLIKiIIsi9taSlLKS2l+94szXryfn/EHBrSlrYkXZ/fdfW6zMnJyZuUPp7cec/zcowxBkIIIYQQQgghhBBCBhhRTw+AEEIIIYQQQgghhJCeQMEYIYQQQgghhBBCCBmQKBgjhBBCCCGEEEIIIQMSBWOEEEIIIYQQQgghZECiYIwQQgghhBBCCCGEDEgUjBFCCCGEEEIIIYSQAYmCMUIIIYQQQgghhBAyIFEwRgghhBBCCCGEEEIGJArGCCGEEEIIIYQQQsiARMEYIYQQQgghhBBCCBmQKBgjhBBCCCGEEEIIIQMSBWOEEEJIP7J69WpwHCf8SCQSREVFYfHixSgrK+vp4QG4OMbi4uJOP3bfvn149tln0djY6LZjesqzzz4LjuOctvXGcfY2bf2O3aG130lPef7555GSkgKbzebR5/n0008RGRkJvV7v0echhBBC+ioKxgghhJB+aNWqVdi/fz+2b9+O3//+9/jvf/+LyZMn9/kPx/v27cNzzz3nEppcf/312L9/P8LDw3tmYB3UV8bZk9r6Hfcn5eXleO211/D8889DJPLs6fiiRYvg4+OD1157zaPPQwghhPRVkp4eACGEEELcLzU1FaNGjQIATJs2DTzP44UXXsD69etx55139vDo3C84OBjBwcE9PYzL6ivjJJ71zjvvQK1W46abbvL4c0kkEjz44IN44YUXsGzZMnh7e3v8OQkhhJC+hGaMEUIIIQPAuHHjAADnz58Xtv3666+4+uqroVKp4O3tjQkTJmDTpk1Oj3NcepaVlYWbbroJvr6+8PPzw1133YWamhphv3vuuQdxcXEuz9vRS9fOnj2LxYsXY/DgwfD29kZkZCTmzp2L3Nxcp2P9+c9/BgAMGjRIuFx0165dbV6i2JnXeOLECdx+++3w8/NDaGgo7r33XjQ1NV127ACwadMmZGRkQC6XY9CgQXjjjTda3e/ScdbU1OCBBx5AdHQ05HI5goODMXHiRPz0009Ojzt16hRuv/12hIaGQi6XIyYmBnfffTdMJpPHXmtn9i0oKMAdd9yBkJAQyOVyDB06FCtXrmz1PWjvtbT3O+7s83T0d9IZc+fOxahRo/Dxxx8jPT0dCoUC0dHReOaZZzp8SaTZbMann36KO+64o9XZYqdOncLChQsRFxcHuVyO0NBQzJw5E6dPn+7yuO+8805oNBp89dVXXT4GIYQQ0l/RjDFCCCFkADh79iwACLOVfvnlF8yYMQPDhw/Hp59+Crlcjg8++ABz587Ff//7XyxYsMDp8fPnz8ett96Khx56CCdOnMA//vEP5Ofn4+DBg5BKpVc8vvLycgQGBuKVV15BcHAw6uvr8e9//xtjx45FVlYWhgwZgvvvvx/19fV477338N133wmXI6akpLTas6uzr/F3v/sdFixYgPvuuw+5ubn4y1/+AgD47LPP2h37jh07cOONN2L8+PH46quvwPM8XnvtNVRVVV32dS9cuBDHjh3DSy+9hKSkJDQ2NuLYsWOoq6sT9snJycGkSZMQFBSE559/HoMHD0ZFRQU2bNgAs9kMuVzu0dd6uX3z8/MxYcIExMTE4M0330RYWBi2bduGRx99FLW1tXjmmWc6/Fra+x135nmu5HfSnqNHj0Kj0eDtt9/GX//6V4SGhuKzzz7D888/j+joaNx///2XPcbBgwdRV1eHadOmudxXUFCA0aNHY9q0aXjrrbcQFBSE8vJybNmyBT4+Pl0ed1hYGJKTk7Fp0ybce++9XT4OIYQQ0i8xQgghhPQbq1atYgDYgQMHmMViYVqtlm3cuJEFBwczlUrFKisrGWOMjRs3joWEhDCtVis81mq1stTUVBYVFcVsNhtjjLFnnnmGAWCPP/640/N88cUXDAD7/PPPGWOMLVq0iMXGxrqMx/H41sZYVFTU5uuwWq3MbDazwYMHOz3366+/3upjWztmZ1/ja6+95nTMhx9+mHl5eQn7tWXs2LEsIiKCGQwGYZtGo2EBAQGXfe1KpZItXbq03eNPnz6dqdVqVl1d3eY+nnitHd332muvZVFRUaypqclpv0ceeYR5eXmx+vr6Tr2Wtn7HnXmezvxOOqq0tJQBYPHx8ayxsVHYbjabWVhYGJszZ06bj73uuuvYF198wRhj7NVXX2UAhL/Flp555hnm7e3NeJ5v9Tg2m42pVCpWUVHhsq2mpqbd8d95550sNDS03X0IIYSQgYgupSSEEEL6oXHjxkEqlUKlUmHOnDkICwvDli1bEBoaCr1ej4MHD+Lmm2+GUqkUHiMWi7Fw4UKUlpa6XLZ1aV+yW2+9FRKJBDt37nTLeK1WK15++WWkpKRAJpNBIpFAJpOhoKAAJ0+e7PTxuvIab7jhBqfbw4cPh9FoRHV1dbvPc/jwYdx0003w8vIStqtUKsydO/ey4xwzZgxWr16NF198EQcOHIDFYnG6v7m5Gb/88gtuvfXWNnuTefq1trev0WjEjh07MH/+fHh7e8NqtQo/s2fPhtFoxIEDBzr8WtrSmee50t9JWw4fPgzAfompn5+fsF0qlSIxMRG1tbVtPvbIkSPIzMwEYJ8dyXEcgoKCXPYLCgpCc3MzFi9ejL1794Lneaf7i4uLIZfLERYWJmwrKChAcHBwq8drKSQkBNXV1bBarZd/sYQQQsgAQsEYIYQQ0g+tWbMGhw8fRlZWFsrLy3H8+HFMnDgRANDQ0ADGWKsrI0ZERACA06V8AJw+iAP2ht6BgYEu+3XVE088gX/84x+YN28efvjhBxw8eBCHDx9Geno6DAZDp4/XldcYGBjodFsulwNAu8/f0NAAm83m8v4Aru9Za9auXYtFixbhk08+wfjx4xEQEIC7774blZWVwvF5nkdUVFS7Y/Dka21v37q6OlitVrz33nuQSqVOP7NnzwYAITDqyGtpS2ef50p+J205cuQIpFIpbrnlFpf7ysvLER0dDcAe8v79739HREQEEhMT8dVXX6G5uRlDhgwBYH/fpFIpxGKxy3EeeughvPLKKzh06BAmTZqE8PBwPPbYY9BoNMjPz8fQoUPR0NAApVKJkSNHAgCOHTuGjIwMPPjgg1Cr1UhJSREunW7Jy8sLjDEYjcYuvweEEEJIf0Q9xgghhJB+aOjQocKqlJfy9/eHSCRCRUWFy33l5eUA4DL7pLKyEpGRkcJtq9WKuro6ITTx8vJyagTv0N4smpY+//xz3H333Xj55ZddHq9Wqzt0jJa68hq7wt/fHxzHCUFWS61tu1RQUBBWrFiBFStWoKSkBBs2bMDTTz+N6upqbN26FQEBARCLxSgtLW13DN3xWtt6bsfMtCVLlrS6z6BBgwCgQ6/FHc9zpb+Tthw5cgRBQUFOs9AAe8+wc+fO4R//+AcAYNmyZThx4gSysrJgtVoxceJEpKenC432g4KCYDabodfrXfqGSSQSLFu2DMuWLUNpaSk++ugjvPDCC/Dy8sKrr76K559/HsXFxfjggw+Ex2RlZeHIkSNYu3YtPvzwQ9x99934+OOP8eqrrzodu76+HnK53GlWISGEEEJoxhghhBAy4Pj4+GDs2LH47rvvnGYI2Ww2fP7554iKikJSUpLTY7744gun219//TWsViumTp0KAIiLi0N1dbVTc3Oz2Yxt27Z1aEwcxwkzkRw2bdqEsrIyp20dmcXV1dfYFT4+PhgzZgy+++47p5k4Wq0WP/zwQ6eOFRMTg0ceeQQzZszAsWPHAAAKhQJXXXUVvvnmmzZDxu56ra3x9vbGtGnTkJWVheHDh2PUqFEuP47wtCOvBWj9d9yZ53Hn76SlI0eOoKamBo2NjcI2nuexbNkyxMXF4Y477kB5eTk+/vhjrFmzBqGhoYiMjMTEiROFyygBIDk5GQBQWFjY7vNFRUXhb3/7GxQKhXD54/Hjx5Genu60X1ZWFp577jmMGzcOIpEICQkJYIy5HO/cuXNISUnp6ssnhBBC+i0KxgghhJABaPny5cLKeP/73/+wYcMGzJ49G3l5eXjjjTfAcZzT/t999x2eeuopbN++HStWrMCDDz6I9PR03HrrrQCABQsWQCwW47bbbsPmzZvx3XffYebMmS49ktoyZ84crF69GitWrMDPP/+M119/HYsXL3a57C4tLQ0A8M4772D//v04cuQItFqtW15jV73wwguorKzEjBkzsH79enz77be4+uqrL7uKYFNTE0aMGIE33ngDGzduxC+//II33ngDW7duxYwZM4T93nrrLVgsFowdOxYff/wxdu7cia+++gp33HGH8Nq767W25p133kFJSQkmT56M1atXY9euXfjhhx/w9ttvY/r06U77duS1tPU77szzdOZ3wnGcEPC2paioCHV1dYiIiMAtt9yCrVu3Yv369ZgxYwaOHj2K//3vf5DJZNixYwfGjBmDkJAQ4bE1NTVOwZjjuRw90RweeeQRLFy4EGvWrMGuXbvwzTffYObMmZDJZHjwwQcB2Ff1bC0Yc1xOCgAnTpwQwjcHm82GQ4cOtboSJiGEEDLg9Wjrf0IIIYS4lWPVw8OHD1923z179rDp06czHx8fplAo2Lhx49gPP/zgtI9jZcKjR4+yuXPnMqVSyVQqFbv99ttZVVWV076bN29mGRkZTKFQsPj4ePb+++93eFXKhoYGdt9997GQkBDm7e3NJk2axPbs2cOuuuoqdtVVVzk9/i9/+QuLiIhgIpGIAWA7d+5sc6XLzrzGS1f168jqmQ4bNmxgw4cPZzKZjMXExLBXXnnlsq/daDSyhx56iA0fPpz5+voyhULBhgwZwp555hmm1+udHpefn89uueUWFhgYKDzHPffcw4xGo8dea2f2LSoqYvfeey+LjIxkUqmUBQcHswkTJrAXX3zR5b3qyGtp7Xfc2efpyO9Eq9UyAOy2225zeXxLX3/9NQPA9u3bxxYuXMh8fX2ZSqViN954I8vPzxf2e+utt9itt94q3K6qqmJeXl7s6NGjTsebPHkymz17ttO29957j02ePJmFhIQwuVzOBg0axO69915WWFjIGGPMZDIxmUzGdDqd8JiSkhIWFhbmdJzBgwe7/P3v2LFD+DsmhBBCiDOOsVbmWhNCCCGEwL4C33PPPYeamhqP9akipKds3rwZc+bMQU5OjjBTrTVPPfUUPvjgAzQ1NbXaNL/l8e655x4cPnwYPj4+uOuuu/Dzzz9Dq9U6XSr87bffYsGCBTh//rxT77721NXVITw8HFVVVfD39wcAbNiwAStXrhQuWW5uboZarUZTUxMUCoXw2IULF+LcuXPYu3dvh56LEEIIGUjoUkpCCCGEEDIg7dy5E7fddlu7oRhg7y82YsSIdkMxALjuuuswe/ZspKWlYcqUKRg8eDBSUlJc+ufddNNNGD16NJYvX97hsQYGBuKOO+5ATEwMxowZAwBCzzWHEydOICEhwSkUKywsxNq1a12a8RNCCCHEjmaMEUIIIaRNNGOMDHSMMfj7++Pee+/FW2+95bbj5uXlCauQOlas9ISdO3eioKAADzzwgMeegxBCCOnLKBgjhBBCCCGEEEIIIQMSXUpJCCGEEEIIIYQQQgYkCsYIIYQQQgghhBBCyIBEwRghhBBCCCGEEEIIGZAoGCOEEEIIIYQQQgghAxIFY4QQQgghhBBCCCFkQKJgjBBCCCGEEEIIIYQMSBSMEUIIIYQQQgghhJABiYIxQgghhBBCCCGEEDIgUTBGCCGEEEIIIYQQQgYkCsYIIYQQQgghhBBCyIBEwRghhBBCCCGEEEIIGZAoGCOEEEIIIYQQQgghAxIFY4QQQgghhBBCCCFkQKJgjBBCCCGEEEIIIYQMSBSMEUIIIYQQQgghhJABiYIxQgghhBBCCCGEEDIgUTBGCCGEEEIIIYQQQgYkCsYIIYQQQgghhBBCyIBEwRghhBBCCCGEEEIIGZAoGCOEEEIIIYQQQgghAxIFY4T0cfPnz4e/vz9uvvnmnh4KIWQAoJpDCOlOVHMIId2Jas7ARMEYIX3co48+ijVr1vT0MAghAwTVHEJId6KaQwjpTlRzBiYKxgjp46ZNmwaVStXTwyCEDBBUcwgh3YlqDiGkO1HNGZgoGCN92vLlyzF69GioVCqEhIRg3rx5OH36tNM+cXFx4DjO5WfJkiVtHvfZZ5912T8sLMzTL4cQ0st9+OGHGD58OHx9feHr64vx48djy5YtLvt98MEHGDRoELy8vDBy5Ejs2bPnssfuymMIIf1bR2pOR86FLkXnOYSQ1nSk5nS1ftB5jvvZbDYYjUb6aeOH5/kOv5cSD/6eCPG4X375BUuWLMHo0aNhtVrxt7/9DTNnzkR+fj58fHwAAIcPH3b6o8jLy8OMGTNwyy23tHvsYcOG4aeffhJui8Viz7yIyxg5ciRMJpPL9h9//BERERE9MCJCBq6oqCi88sorSExMBAD8+9//xo033oisrCwMGzYMALB27VosXboUH3zwASZOnIh//etfmDVrFvLz8xETE9PqcbvyGE+hmkNI79GRmtORc6HW0HkOIeRSHak5QOfrB53nuJ/ZbEZRURFsNltPD6VXU6vVCAsLA8dx7e/ICOkCnufZSy+9xBITE5lcLmchISHsrrvu6ulhserqagaA/fLLL23u89hjj7GEhARms9na3OeZZ55h6enpnX7+oqIiBoB9++23bPLkyczLy4uNGDGCFRUVsZ07d7LRo0czhULBpk6dyurq6hhj7nkvd+7cyX73u991eryE9BW9teYwxpi/vz/75JNPhNtjxoxhDz30kNM+ycnJ7Omnn27zGF15DGNUcwjxlL5Ucy7VkXMhOs8hpHfpSzWnK/WDznPcy2azseLiYlZQUMD0ej0zGAz0c8lPc3Mzq62tZfn5+ay8vPyy7ynNGCNdsnz5cvz3v//FRx99hPj4eJSWluLUqVNdPt7LL7+Ml19+ud19tmzZgsmTJ7e7T1NTEwAgICCg1fvNZjM+//xzPPHEE5dNjQsKChAREQG5XI6xY8fi5ZdfRnx8fLuPyc7OBmCfKvzyyy9DqVRi3rx5WLhwIZRKJVauXAnGGGbPno1PP/0Uf/7zn93+XhLSH/XGmsPzPL755hvo9XqMHz8egL3GHD16FE8//bTTvjNnzsS+fftaPU5XHuNANYcQz+grNac1lzsXcqDzHEJ6j75WczpTP+g8x/2sViuam5sREREBb2/vnh5Or6VQKAAA1dXVCAkJaXdmIwVjpEu2bduG66+/HtOmTQMAxMbGYuLEiV0+3kMPPYRbb7213X0iIyPbvZ8xhieeeAKTJk1Campqq/usX78ejY2NuOeee9o91tixY7FmzRokJSWhqqoKL774IiZMmIATJ04gMDCwzcfl5OTA398fX331FYKCggDYGzj+/PPPTpc0jB49GpWVlQCu/L289tprcezYMej1ekRFRWHdunUYPXp0hx9PSF/Qm2pObm4uxo8fD6PRCKVSiXXr1iElJQUAUFtbC57nERoa6vSY0NBQ4W/+Ul15jAPVHEI8o6/UnEt15FwIoPMcQnqbvlRzOls/6DzH/RxtgmQyWQ+PpPdzBIcWi6X9S349OseP9Fuvv/46E4lEbMaMGezDDz8Upq4yxlhhYSHbsGGDcHvdunVs6dKlHh/Tww8/zGJjY9mFCxfa3GfmzJlszpw5nT62TqdjoaGh7M0332x3v3nz5rFFixY5bZs+fTpbtmyZ07aUlBT23nvvMcbafy8JIXa9qeaYTCZWUFDADh8+zJ5++mkWFBTETpw4wRhjrKysjAFg+/btc3rMiy++yIYMGdLq8bryGAeqOYR4Rl+pOZfqyLlQa+g8h5Ce1VdrDmOXrx90nuN+BoOB5efnM4PB0NND6fU6+l7RqpSkS5588kmcPHkS11xzDd577z0kJiaiqKgIgH1absvpqsePH0d6enq7x3NMjW3vp72VS/74xz9iw4YN2LlzJ6Kiolrd5/z58/jpp59w//33d/r1+vj4IC0tDQUFBe3ul5OTg3Hjxjlty87OxtixY4XbRqMRZ86cQUZGBoD230tCiF1vqjkymQyJiYkYNWoUli9fjvT0dLzzzjsAgKCgIIjFYpdvQKurq12+KXXoymMcqOYQ4hl9pea01JFzobbQeQ4hPasv1hyHy9UPOs/pvXgb6+kh9B7dFNSRfsxoNDK5XM42btzIdu3axdRqNRs8eDDLyMhgzc3N7He/+x37y1/+wsaNG8diYmJa/cahrq6OFRQUtPvT3Nzs8jibzcaWLFnCIiIi2JkzZ9od5zPPPMPCwsKYxWLp0muMjIxkzz33XJv7NDU1MY7j2IEDB4RtxcXFDAArKioSth05coRxHMc0Gk2rz+N4LwkhrevJmtOa6dOnO32bOWbMGPaHP/zBaZ+hQ4detvl+Zx9DNYeQ7tHba05nzoXae410nkNI79Dba05r471c/aDzHPe6khljFt6+AF12SSPbmlfJsksanbZ7wuLFixkAlp+fL2xbtWpVq4s4LFq0iD322GPC7TVr1rDU1FSmUqlYQEAAmzhxIjt06FCHn7uj7xX1GCOd9tprryE0NBSjR4+GWCzGJ598An9/f0yYMAH+/v5ITU3Fl19+iejoaAD2bzVmz56Nl19+GS+++CJ++OEHl94YAQEBl20S25olS5bgyy+/xPfffw+VSiV8E+Hn5yc02wMAm82GVatWYdGiRZBIXP/Zv//++1i3bh127NgBwP5Nw9y5cxETE4Pq6mq8+OKL0Gg0WLRoUZtjycnJgUgkwvDhw4Vt2dnZUKvViIuLc9ovPj4eKpWq3feSEGLXm2rOX//6V8yaNQvR0dHQarX46quvsGvXLmzdulXY54knnsDChQsxatQojB8/Hh999BFKSkrw0EMPCftcWnM68phLUc0hxDP6Ws3pyLkQnecQ0nv1tZrTkfpB5zm9E2MMewtq8fZPZ1FSbxC2xwQo8Pg1iZiSFHTZBeo6S6fT4euvv0ZAQAA+/fRTvPHGGx1+7J49e/Doo4/ihx9+wMSJE6HX67F7927I5XK3jhGg5vukC4xGI15++WWUlJRAqVRi4sSJ+Pnnn+Hv7w8AKC0tFQp3c3MzbDYb7r33XgD2qbl+fn5uG8uHH34IAJg6darT9lWrVjk12P/pp59QUlIijONStbW1KCwsFG6Xlpbi9ttvR21tLYKDgzFu3DgcOHAAsbGxbY4lJycHycnJToFcVlaWy1TnnJwcYarv5d5LQkjvqjlVVVVYuHAhKioq4Ofnh+HDh2Pr1q2YMWOGsM+CBQtQV1eH559/HhUVFUhNTcXmzZud6selNacjj7kU1RxCPKOv1ZyOnAvReQ4hvVdfqzkdqR90ntP7WG32UOxP3+Ti0isoS+oN+NM3uXjzljRMHBwEich94dhXX30FHx8fvPTSS/jrX/+K5cuXQyqVduixBw8exIgRIzBp0iQAgFKpxOzZs902tpY4xhhdWErcprS0FLfddht+/fVXAMChQ4fw1ltv4auvvgIA3H333XjggQeEf9yEEHIlqOYQQroT1RxCSHeimkNaYzQaUVRUhEGDBsHLy6vDj5u3cr/TTLFLxQZ6Y93D49q8vyvGjx+P8ePH4/nnn0dYWBjWrFmDm266CatXr8aKFSuQnZ3ttP8999wDtVqNFStWYN++fZg6dSr+9Kc/YebMmRg1ahRUKlWnnr+j7xU13yduVVRUhIiICOH28ePHkZaWJtzOzc1td/lwQgjpDKo5hJDuRDWHENKdqOYQd8m50NRuKAYA5+uakXOhyW3PmZ+fjwMHDmDRokVQKpWYP38+Pv300w4/fsKECdi6dSsKCgqwYMECBAYG4uabb0ZNTY3bxuhAwRhxq9TUVBQUFCAtLQ2nTp1Cbm6uULytVit0Oh3UanXPDpIQ0m9QzSGEdCeqOYSQ7kQ1h7gDb2Oo1Bg7tG+Vxui21So//fRTpKenC5e/Llq0CNu2bUNZWRmkUiksFovLYywWi9OlltOnT8f//vc/VFdX4/DhwygsLMRjjz3mlvG1RJdSXsbbb7+NTz75BIwxXHPNNXjnnXfc3pCOEEIcqOYQQroT1RxCSHeimkPIlevKpZQ5F5qwePXRy+636p6RSI++8r51FosFkZGR0Ol08PX1BWBv/u9YsOGqq67C9ddfj9raWqcgbNy4cVi4cCGWLFnS6nHfe+89fPTRR8jNze3QOOhSSjeoqanB+++/j6NHjyI3NxdHjx7FgQMHenpYhJB+imoOIaQ7Uc0hhHQnqjmE9Jz0aD/EBCja3Sc20NstoRgAbNiwARqNBseOHUN2djays7ORk5ODf/zjH/jss88wevRohIaG4u9//zv0ej3MZjNWrVqFEydO4MYbbwQArF+/Hp9//rlw6WRRURG++OILj6wySsHYZVitVhiNRlgsFlgsFoSEhPT0kAgh/RjVHEJId6KaQwjpTlRzCOkZVhvD49ckoq0FJ0UcsPTqBFjdeBnl7bffjuTkZISFhQk/jz76KMrLy7F3715s3rwZp0+fRnx8PMLCwrBq1Sps3boVUVFRAICAgACsWbMGKSkpUCqVmDp1KkaPHo0333zTLWNsqV8HY7t378bcuXMREREBjuOwfv16l30++OADYVrdyJEjsWfPHuG+4OBgPPnkk4iJiUFERASuueYaJCQkdOMrIIT0JVRzCCHdiWoOIaQ7Uc0hpO+SiDhMSQrCm7ekucwciw30xpu3pGFKUhAkbSVnnbR582asWrXKZXtQUBAMBgOmT5+OxMRErF+/HlVVVaivr8fu3bsxceJEYd8pU6bgxx9/RE1NDXQ6Hc6fP4/33nsPSqXSLWNsqV8HY3q9Hunp6Xj//fdbvX/t2rVYunQp/va3vyErKwuTJ0/GrFmzUFJSAgBoaGjAxo0bUVxcjLKyMuzbtw+7d+/uzpdACOlDqOYQQroT1RxCSHeimkNI38ZxHCYODsL6JeOx6p6ReOWmYVh1z0ise3gcJg4OGtD9/gZM832O47Bu3TrMmzdP2DZ27FiMGDECH374obBt6NChmDdvHpYvX45vvvkGu3btwsqVKwEAr7/+OhhjeOqpp1p9DpPJBJPJJNy22Wyor69HYGDggP5HRsiVYoxBq9UiIiICIlHfyPOp5hDSd1HNoZpDSHeimkM1h5DOMJvNqKqqQlxcXIeb71+K4zgwAOI+UnO6qqPN9yXdOKZexWw24+jRo3j66aedts+cORP79u0DAERHR2Pfvn0wGo2QSqXYtWsXHnjggTaPuXz5cjz33HMeHTchA9mFCxeEa877Gqo5hPQ9VHOcUc0hxLOo5jijmkNI62JjY/HPf/4TBoPhio4zfPhwiGUyN42qbxuwwVhtbS14nkdoaKjT9tDQUFRWVgKwLxU6e/ZsZGZmQiQS4eqrr8YNN9zQ5jH/8pe/4IknnhBuNzU1ISYmBmfOnEFAQIBnXkgfZLFYsHPnTkybNs1paVZC701rGGP4Znc1Hv7dMKhUqp4eTpdRzek59HfVNnpvLiqr5/HRdgO0Boarkw1YNCeFas4lqOZ0DP1dtY3em4su1PL46CcD9EaGmSkG3DWbas6lqOZ0DP1dta2/vjdmsxl1dXWdmjFmsjDUam2w2QA/hQ3nCk70mRmq3WHABmMOl07DZYw5bXvppZfw0ksvdehYcrkccrncZXtAQAACAwOvbKD9iMVigbe3NwIDA/tVgXIHem/syuqtCPETQyq2/y3eehWHh+H699oXUc3pfvR31TZ6b+wKKy34dLcOJkgQHyXGlOE+AKjmXIpqTsfQ31Xb6L2xO11mwae7tbBwKgyOEWNiGtWc1lDN6Rj6u2pbf31vjEYjGhsbIZFIIJFcPtIxmG2o09nAIIaXHPBR2AOx/lBz3GXARoRBQUEQi8XCNxgO1dXVLt90dNbKlSuRkpKC0aNHX9FxCBmITpVZsPxbDT7+UQfeTcsF9wZUcwjpnfJKzHhrgxbNJobEMAn+PE8FlXffPz2imkNI75RTbMY7G7UwWoCkCAn+dKMvVAqqOe2hmkNI1+lNNlQ32mBjgELGIdRPDLGbVp7sT/p+Fe4imUyGkSNHYvv27U7bt2/fjgkTJlzRsZcsWYL8/HwcPnz4io5DyECTXWQ/WTRZAIOZwcr39Ijch2oOIb3P0UIz3t+sg9kKpMZIsXSuCt7y/nFqRDWHkN7nwBkTPtiig4UH0uOkeGyOCgpZ//iASjWHkN5HZ7ChpskGBsBbziHYTwQRhWKt6teXUup0Opw9e1a4XVRUhOzsbAQEBCAmJgZPPPEEFi5ciFGjRmH8+PH46KOPUFJSgoceeqgHR03IwLTvlAn/3qmHjQEZg6R4YIYSUknfKtxUcwjpO+q0PD7ergNvA0YmyHD/NT6QiKnmEEI8o7qJx6od9vOccUkyLJpGNYcQ4jlmq72nGAAovTgEqkR06WQ7+nUwduTIEUybNk247WjeuGjRIqxevRoLFixAXV0dnn/+eVRUVCA1NRWbN29GbGzsFT3vypUrsXLlSvB8P5ruQogH7ThuxFe/NgMAJiTLcPdUnz45xZdqDiF9R6BKjIVX+eBclRV3TvHuk9+gUs0hpO8I8RPj9sneqGjgsWCSN0R98AMq1RxC+g6ZhEOAUgSrjcHfxzkU4zgOCQkJFJS1wDHG+k8Tn15Go9HAz88PtbW11CCyBYvFgs2bN2P27Nn9qgmiOwzE92ZrlgHf7rcvNXzNcDlumeh6slhXV4egoCA0NTXB19e3J4bZJ1DNad1A/LvqqIH23jDG0Gxi8PFq/3JJqjkdQzWndQPt76ozBtp7QzXHvajmtG6g/V11Rn99b4xGI4qKijBo0CCnVSkZY7AxtDvBwMYYRByHKq0RejMPH5kEoSq5sN2dpk6div3790MqlYLjOMTExODZZ5/FLbfcAgBCkL5hwwZUV1fD398faWlpeOSRR3D99dcDAO655x58+eWXkMvlEIlECA0NxfTp07Fs2TIMGjTosmNo6726VP9opEEI6bMSwySQSYAbRitwayuhGCGEuIPNxvDF7mYs/04DTbOtp4dDCOnneBvDv3fq8eo6LXRGqjmEEM9izH7pZFUj3+YCZowxlDYa8O3xcmw+VY1fztVh86kqfHu8HKWNBnhiztSrr74KnU4HjUaD1157DXfeeSfOnz+PxsZGTJgwAefPn8emTZug0Whw9uxZPProo9iwYYPTMR5++GFotVo0NTVh27ZtkMlkyMzMxMmTJ902zn59KSUhpPdLDJfi+dv9EKgS9/RQCCH9lJVn+GyHHofPmsEBOFNuxahEWU8PixDST1l4hk+263DsnAUcB5ytsCJjENUcQohn2BhDTZMNBjMDB8BsYVDIOZd9ShsN+PlsLS6NvzQmK34+W4vpiUGIUis8MlGB4zhcf/31UKvVOH36NPbt2weJRIL//e9/kEjssZRYLMasWbMwa9asNo8zaNAgvPvuuzhz5gyeffZZrF271i3joxljHkBLChPSNouV4bMdOpTUWoVtFIpdGao5hLTNZGFYuUWHw2fNEIuA38/0oVDsClHNIaRtRgvDe5u0OHbOAokIeOhaJYViV4hqDiFts9kYqhttMJoZRBwQ7CeCopUVtkUch8MXGl1CMQcG4HBpo8eu3rHZbPj+++9hNBqRmZmJbdu24Xe/+50QinXWzTffjF27drltfBSMeQAtKUxI64xmhnc2abH/tBkfbNHBylOLQ3egmkNI65pNNqzYqEVeiQUyCfDIbCVGJ8p7elh9HtUcQlqnN9rw9gYNTpZaIZcAj85RYUQ8hWJXimoOIa3jbQyVjTxMFobYEAligiXwbiUUA4AqrQkak7XV+xw0RiuqdSa3jvEvf/kL1Go1fHx8cNNNN+Hvf/87goODUVtbi4iICGG/goICqNVq+Pn5wcvLC01NTe0eNzIyEvX19W4bJ11KSUg/ZrPZIBK5FkfGGBhjrd7nKTqjDe9s1KK4moeXFFg8ve8tU04I6Ts0zfZQ7EItD4WMwx+vV2JweP9pvEsI6V0a9Tas+EGLsnoePnIOj81RYVAofdQihHiGzcZQ28SDiaWQXOYjnY0x6M3th2IOerMVNiZz28yx5cuXY+nSpQCAs2fPYu7cufDz80NQUBDKy8uF/QYPHozGxkYUFxdj0KBBl+13VlZWhoCAALeMEaAZY4T0W2VlZThy5AgsFovTdsYYCgsLcfz48W5b9rpBZ8Nr6+yhmNKLw59u9MWQSPqASgjxHAb7ZZQqBYc/z1NRKEYI8SjG7JdRqn04/Hk+hWKEEM9iv/1IRECouv22NCKOg4+sYzXJRybx2OWUiYmJuP7667Fx40bMmDED3333XZc/j3777beYOnWq28ZGwRgh/ZDVakVRURF0Oh2ysrKEcMwRipWUlKC+vt6t00/bUt3E49V1GlQ08FD7cHhqni/iQuhkkRDiWX7eIjw+V4Vl830RHUQ1hxDiWf5KEZ64QYWn5vsiMoBqDiHEs8QiDgEqMcL8xZBKLh9khark8JW3X5t8vSQIUXqu5cT58+exefNmpKWl4fHHH4fJZMKtt96KkydPgud5mM1m7Nu377LHePzxx7F//348++yzbhsbBWMeQA0iSU+TSCTIzMyETCZzCsccoRgAJCUlITg42ONj+f6QAXVaG0L8RHj6Jl+EB1CjfXejmkOI3flqKw6eudgbI8hXfNlvUUnnUc0hxK6w0oojZ83C7RA/MYJ9qea4G9UcQuzOlFuQde5izZFJuA63prExhtHRarS1NwdgdJQatstcwthZy5Ytg1KphFKpxMSJE3HNNdfg//7v/+Dv74/9+/cjPDwc1113HVQqFRISErBmzRps3LgRarVaOMYHH3wAlUoFX19fXH311dDr9Th27BiGDh3qtnHS1xkesGTJEixZsgQajQZ+fn49PRwyQPn4+CAzMxNZWVnQ6XTYs2ePcF9SUhKioqK6ZRwLp/pAJuEwf6wCvt6UxXsC1RxCgNNlFry/WQuzFVApREiJpksnPYVqDiFA/gULPtiihdUGqBQqahHhQVRzCAFyz5vx4VYdGAMev77z9UbEcYhWKzA9MQiHLzQ6NeL39ZJgdJQa0WoFODdeRnm5VSODgoLw/vvv4/33329zn9WrV2P16tVuG1NbKBgjpB9zhGMHDx4Utg0aNMjjoVhFA48wtQgcx8FLymHRNB+PPh8hZGDLKTbjX9t0sPDAkAgJ9fYhhHjUsUIzPt6ug9UGpERJqEUEIcSjDhaYsGqHHrwNSIuVIsxfgjJd54/DcRyi1ArE+HujSmtEs4WHj8x++aSNMbeGYn0NTd8gpB9jjKGiosJpW01NjUtDfnc6ctaM59Y2YdNRo8eegxBCHA6cMeGDLfZQLD1OisfmqKCQDdwTO0KIZ+09acI/f7SHYiMTpHjkehXkUqo5hBDP2JVnxKfb7aHYmMEyPHydErIO9BRri4jjwPM8ZFYDYtUKoaeYpxru9xUUjBHST7VstA8AkZGRLj3H3G1PvhEf/agDbwPK63m3X6NOCOm9DAYDysrKWr2vqakJ1dXVbn/OnblGfPqTHjYGjEuS4aFrlR1qQEsIIV3xY7YBq3fqwRgwaagcD8xQQtrB/j6EENIZjDFsOmrAF7ubwQBMTZXjvmt8OtxT7HLHLiwsBKPPagIKxjyAGkSSnnZpKJaUlIQhQ4a02pDfXbZmGbBml71wT0mR4/5rfAb8Nw/dhWoO6WkWiwXHjh3D6dOnhbrj0NTUhOzsbJw4ccKtK+GeLrPgyz3NAIDpaXIsvto9J4vk8qjmkIEor8SMb/YZAAAzM7xw91RviERUc7oD1RwyEOUUW7D+oL3mzB7phTsme9NnKw+iYMwDlixZgvz8fBw+fLinh0IGKJ7nUVtbC8C50b6Pjw+Sh6RCJpNBr9dDq9UKj7HZGAzNnQ/KGGP4bn8zvt1vL9yzMr1w11V0stidqOaQniaVShEeHg4AOHv2rBCOOUIxnufh5+fn1qbJSRESTE2VY+4oL9w2iU4WuxPVHDIQDYuWYvJQOeaPVeDm8e5tUE3aRzWHDETD46QYlyTDLRMUmD/Wm2qOh1GnSEL6IYlEghEjRqC+vh5hYWHC9p3bC/DrznO4+/eZ8FGJEBAQAMAeiq1bexzFhfV48LEJUKrkHX6uL/c0Y1eeCQDwu/EKXJepcO+LIYT0CfHx8QCA4uJinD17FhqNBnV1deB5Hmq1Gunp6RCLxVf0HLyNgbfZlyfnOA53TKYTRUKI51h5BsYA6W81Z+FUqjmEEM+x8AwcAImYg4jjcO/VPlRzugnNGCOkn5LJZE6hmMXCI/tIGbQaE9Z8nAWb1R5+OUKxg3vPo7pKi+JznbvUKTpQDI4DFk71plCMkAEuPj4ecXFxAIDq6mrotBZUl4lbDcXKS5tw7HBph49tsTL8a5sO/9yqg5W398Sgk0VCiKeYrQwfbtXho+068DaqOYQQzzJaGN7fpMVnO/SwUc3pdjRjjJABQioV44E/jsdH7+1HRZkG/3p3Hx54dAJ+3XkOB/eeB8cBCxZmIjU9vFPHnTLMC0kRUoT5X9lMEEJI/xAYGIji4mJYrQyH9xjQrG9GQEABZl6fLOxTXtqEj97dB4PBArlcgmHDw9o5ov1k8YMtWpwstUIiAkpqecSH0ikMIcSV0WiFl5drfbDZGKwWHjL55WtHs8mGlVt0OFNuhVQMlNXxiAmmmkMI8Qy90YZ3N2lxroqHTAJUNHghMpBqTneiGWOEDCA+Sjke+ON4hEf6Qqsx4c0XdzqFYiPGRF/2GM0mG1b/rIPWYBO2UShGCAEu9hQDAImEQ/QgKQDgpy1n8OOmUwAuhmLNzRZExagRPziw3WPqjTa8tUGDk6VWyCXAo3NUFIoRQlr105bTeOfVX9DYYHDabrMx/O/LbHy8cj+Mhvb7qWoNNry5QYsz5VYoZByWzlVRKEYIaRVjDEajtdX7eN4Gs7n1+1pq1Nvw+np7KOYt5/DEDb4eD8U4jkNCQgI40KqUDhSMeQCtnEJ6Mx+lHL9/ZLzTtunXJnUoFNM02/DG91rsPWXGx9t1nhoi6SSqOaQ3aNloX61W46qrrsK0mUkYkioDYA/H/v3RISEUi45V4/5HxkOhkLZ5zEa9Da+t16KoioePnMOfbvTF0Ki29yfdg2oO6Q20Wi3Onz8v3DYYLDhy4ALqavT44O09OHPafp8jFDty4AIuFDfifFFDm8es1/J4bZ0GJTU8VAoOT96oQlIE1ZyeRjWH9EaMMWzbeArvv74bWo3R6T6et2Htf7Lw2QcHYTa1HY7VaOw1p6yeh583hz/PUyEhzLOhGOOtEIvF8K46DdOB72E+fVDYPpBRMOYBtHIK6c1sNnsRb+nQvvOortS28Qi7Oi2PV9dpcKGWh6+Cwy0TvD05TNIJVHNIT7NYLMjJyXFptB8fH+8Ujp04XtnhUKy6yV5zyut5qH04/Hm+CoNoplivQDWH9DSz2YysrCwUFhbi3LlzAACFQooHH5sAP7UcjfVGfPnZcRSdKxdCMZGIw22LRmBISkirx6xs5PHqOi0qG20IUIrw1HxfminWS1DNIb1Rs96CY4dKUV2lw7/e2SeEY45QLPtIGYrP1ePC+cZWH19Wb8Vr6zSo0dgQ5GuvOVEeninGGIPp2I+ofmwE6v9vJhrfWYy6f8xA9WMjYDr2Ixhz/wyyX3/9FbNmzYK/v79wjvjaa6/BbDaD4zjhSgOHXbt2Qa1WC7fvuececByHjRs3Ou2nVquxa9cut42TgjFCBpCWjfY5Drjhd6nCZZX/endfm+FYRT2PV77ToLrJhkCVvXBHB9HJIiHETiqVYvDgwa2uPhkfH4+0DOcZqbHxAe2GYgCgNzJoDTYE/3ayGBlANYcQYieTyYSFPoqLi4VwjLc1I3OcBApvDs16hg/fOuIUimWMjGzzmHqjDTqjDWFqEZbNVyFMTW0iCCFt81HK8OCjE6D2VwjhWFOjQQjFRCIOd903CglJQa0+Xmdg0BkZIgLEWDbfFyF+nq05jLfCdGQLGt64A3zFWaf7+IqzaHjjDpiObHHrzLGNGzdi1qxZuPbaa1FQUIDGxkasXbsW+fn5qKio6PBxAgMD8de//hU2m+3yO3cRBWOEDBCXhmILFmZi0rR4p55jrYVjxdVWvLZeg0Y9Q7i/CMvm+yKUThYJIZcIDw9HZmZmq6tPbv6uxGnbrzvPCT3H2jIoVIKlc1R4ar4vgn2p5hBCnMXExCAxMRGAPRw7fPgwcnNz4eXN4dobnQOw2TemtBuKAUBCmBSP/VZzAlRUcwghlxcY7OMUjr309+1OoVh7i5oNifyt5sxTQe3j+ViGE0ug+fzvAGsjXGI2aD7/Ozixe76IZIzh0UcfxbJly7B06VIEBdkDwuTkZKxevRqxsbEdPtaCBQvQ3NyMzz//3C1jaw0FY4QMEDbehob6ZpdG+y0b8huNVuh05ouPYQxrdumhMzLEBovx53m+8FdS2SCEtO7SZcVbNtqPjlXjuddn4fp5KQCcG/I75F+woKjq4jeVieHSbjlZJIT0TS3DMa1WC8YYgoKCcOGccy3a/2uxS0N+AMg9b0ZJzcWakxQhhUpBNYcQ0nGBwT4u/ZtvvCWt1VAsu8iMsrqLNSc5Ugofr+6pOebTB11mil2KrzgL8+lDbnm+goICFBUV4fbbb7/iY0mlUrzwwgv4v//7P5hMJjeMzhVVfkIGCIlUjEUPjMF9D49zabTvCMd+/8h4xCdeXCFOxHH4w7VKjBksw5M3+tLJIiGkw0wmKz5ZecClp9hV1yQ6hWPZR8oAAEcLzXh3kxbvbNSiuonvyaETQvoQb++LPU8ZYzi8txFHD9ovn5w9LwUBgd6oq9HjX+/ucwrHDhWYsHKLDis2alGroZpDCGmf2WxGQ4Pr4h08b8PWH044bdu765xLQ/69p0z4YKsOb/+gRYPOc5cEtobZePC1pR3al6+7AGa78ppYU1MDAIiMbH+27uTJk6FWq4WfOXPmtLrfbbfdhsDAQHz44YdXPLbW0KdcQgYQqVSMpKGtN531UcoRFx8AwN5o3yHYT4zfz1DCS8a1+jhCCGmNXC7BvFvTEBcf4NJo3xGOpaaHITUjHHtPmvCvH3XgbUBylAQBNDOVENIBtbW1yM3NBWAPxfKOmXD6RCM4Drht0QhMvSYRDz42wSUc25VnxCfb9eBtwNAomplKCGmfxWJBVlYWcnJyUF9fL2zneRu+XHUYudlV4Dhg5vWDnXqOOcKxn3KMWP2zHowBw2Kk8PXu3s9VnEgMcVBUh/YVB0aDE1355eSOSyfLysra3W/Pnj1obGwUfi5tsu/AcRyWL1+Ol156CRqN5orHdyn6vwAhfRDP8ygoKIDV6toc0Ww2o6CgoMvNCXfmGvG3L5qQU2y+/M6EENKO4ZkReGjpxFYb7V91TSLuum80dp4wY/VO+8ni5KFyPDBDCYmYgnhCSPscoRhjDMHBwZgwfjKsZhk4Dhg+Wg5ff/vlNv4B3kI4ptEYsemIAV/sbgYDMDVVjvuu8aGaQwhpl1gshkKhgM1mw/Hjx1FfX+8Sio2d4ocpVyc49Rz75zv78M0eDdbubQYAXJMux6JpPhCLur/myIaMhTg8sd19xOGJkA0Z45bnS0pKQlxcHL766iu3HA8AZs6cifT0dLzxxhtuO6YDBWMesHLlSqSkpGD06NE9PRTST508eRIXLlxAdna2UzjmWL78woULOHPmTKeOyRjDxiMGfLmnGbwNOFPuvhVJiGdRzSG9maiNkz/GGL4/bMDXv50szszwwsKp3m3uT3oPqjmkp5nNZuTl5Qmh2LBhw6DwluHhx6/CnN/FIzxKiuLiYtTV1QGwh2MPPDoe8VePx64C+zGuH+mFOyZ7Q8RRzentqOaQniYSiZCamoqgoCAhHCsuuoCS87VCKDbnxvGQyWRCQ34/fwVKJaH4Mdf+mWreGAVundBzNYfxVvje9SLAtREBcSL43vWi21al5DgO7733Hl555RW89957Qj0+c+YM7rvvPpw/f75Lx33llVewYsUKGI3Gy+/cCRSMecCSJUuQn5+Pw4cP9/RQSB+1/9diFBfWuWxnjGHbxlPwVYVAIpFAo9Hg8OHDsFqtQiim1+shk8nA83yHp5naGMPXe5vx/SF77425o7xw83iFW18T8RyqOaQv2pNvwuaj9pOam8YpcPN4hUvzftI7Uc0hPU0mkyElJQWhoaEYNmwYRCL7RxqFtxSTp6YiMTERMTExCAgIEB6TVSbGgWL7f98yQYF5Y72p5vQRVHNIb3BpOHa+pBAjJ3ph4nS1EIo5BAb7YOjMMWj2szfgv2OyN64f1bPnOZxYAvmoWfB/8kuXmWPi8ET4P/kl5KNmuW1VSgCYM2cOtmzZgk2bNiEhIQFqtRo333wzkpOTER7e9oqd7Rk1ahRmzZrl9ib87nvVhAwgjDFYzh6BbLDrN1fMxsNSlANZwoguH3/L+nyIJRLc//A4xCUECs+5/utc7N9TjCMHvHDb4sE4f74IBoMB+/fvh0gkgslkgkwmg0qlQlVVFerr6zF+/HhIJG3/qfM2+8qT+07ZL51cMNEb16R7dXnshBDSEeOGyHGowIzRg2W4ahjVHEJI54SEhCAkpPW+qTExMS7bJg6V40ihGROT5Zg0VO7p4RFC+iGRSIT4+HjU1tYCAGQyDpmZQ5xCMYdZY31xulqDaWleGJfUO2oOx3GQj5iJkNGzYTp9ELa6UogDoyEbMgaMt3okuJs0aRK2bt3a6n2MMZdtU6dORWNjo3B79erVLvusXbsWa9euddcQAdCMMUI6jTEG3dcvoe5vV0O/9SPn+2w8Gt9/EHV/nwHjkS1dfo74wYEwm3h88sEBFBfWOYViHAdcOycZgwbFCt+EWiwWmEwmiMViqFQq1NXVgeM4DBkypN1QzMoz/HObDvtOmSHigMXTfSgUI4R4jIVnwkmQTMLhiRtUFIoRQjymZc3xknL4840qCsUIIV2m1+uRnZ3ttO3kyZNCQ34LfzHoUcg4LJvv22tCMQdOLAHP82gOSYJ87I1CTzF3zhTriygYI6QLmMU+u0rz2ZNCOOYIxYy/fg2AgfGWLh//jsUjkTgkyB6OrTyAFa/8IoRit9yZgVHjYiASiZCcnOz0OJ7nhVBs2LBhbX6T6iAWASqFCBIR8NC1SkxI7l2FmxDSfzSbbHh7gxbrDxqEbdRPjBDiKXqjDW+u12LT0Yt9aKjmEEK6Sq/XIysrC2azGT4+Ppg4caJTz7ELFfV49TsNtmb1/vMcxhgKCwvB0DvH1xMGdixISBdwHAfVnc8BAPQbVkDz2ZMAs8FccMQeioklUC9dDcXYG7r8HDKZBPc8OAar/3kIZ8/UoqLM3ivMEYoB9sazOTk5rT4+OTn5sqGY47XcNcUb01LliA6ickAI8QxNsw3vbNSipJZHaR2Pqale8FfSd3OEEM9o1Nuw4gctyup5VDTymJIih6831RxCSNeYTCanUCwzMxMymQypqanIy8tDSUUTVmwyQmP2Qr3OiMlD5fDxoprTl9Bvi5AucIRjPjcsBQBoVj3ltlDMQSoVQ+3v3AA/KNgHAFwa7bdsLgsAxcXFTqtVttSot2HtXj2sv031FYk4CsUIIR5Tp+Xx2noNSmp5qBQcnrxRRaEYIcRjajQ8XlunQVk9Dz9vDk/NU1EoRgi5IjKZDMHBwU6hGGDvORYSPRQ/lw6BxuwFfyWHP8/zpVCsD6LfGCFdxHEcVHc847RNljLJLaGYo6fYkYMXnLY7eo6dOnVKCMVUKpVwXbujYaLBYEBubq7LcWuaeLy6ToOfckz49kDzFY+TENI9mI2H8dAPrd5nM+phzPqxm0fUMZUNPF5bp0VVow0BShGemu+LmGAK4gkhnlFWb8Vr6zSo0dgQ5CvCsvm+iAykmkMIuTIcxyEpKQkjR450arR/odaK19froDVJEOpnrznh/uIeHCnpKgrGCOkiR0+xlsy5u1wa8nfFpnX5Qk+xW+/KwItvzb7Yc+yDA/CWB0OtVjs12k9NTcVVV10lzB5raGhATU2NcMzSOiteXadBrcaGYF8Rrk6jhteE9AWMMTStfAgNb9wJ7TfLne6zGfVoeOUWNLxyCwx73Ls6z5U6X2PFa+s1qNfZEKYWYdl8FcLUdLJISF/BN1a1up0x1uZ9PamoyorX12nRqGeICBBj2XxfBPtRzSGEuAfHcU6Lmp2tsOD19VpoDAzRQWI8Nd8XgSqqOX0VBWOEdIFTo32xBOo/fX7xssoWDfm76tC+806N9h09xxzh2JercxASEu7SaF8kEmH48OEIDQ0FAJw6dQpWqxWFlVa8vl6LpmaGqEAxlt3kiyBfKtyE9AUcx0ESMwwAoPtmuRCOOUIxc/6v4LxUEIcO6slhuqio56E1MMQE208WA+hkkZA+Q7/1I9Q8mglT/l6n7YwxaP/zN9Q+NQnWsjM9NLrWldXz0JsYBoWK8dQ8FdQ+9DGHEOI5F+p4GMwMieESPHkjXbLd19Hc4j6uXF+GcO8I4RI6B8YYKprLEeET2UMj678YY2j64A8uPcW8xswF0KIhv1gCnxn3duk5RoyJxqCEIKHRPnCxIf8Xnx3FpGnxiIwMgtlsgFKpdGq0LxKJMHToUIjFYoSHh+NMBcPKLVqYrUBCqAR/vF5J170T0scob1wKANB+8X/QfbMczGSA5ewReyim8EXA376DLGlMzw7yEuOGyCGVcBgaJYG3nGoOIX0Fs9lgOroFzKhDw/Kb4f+X/0GeMlEIxfQb3wcAmAsOQxKZ1MOjvWjSUDnkUiAtVgYvKa20RkhfwjfVoHnrv6C85S/gRM5fpFnLC2A8uhXKuX/sodG1blqqF7zlHDLiZJBTzenzKBjrw/IbcnGk5iCS/IZibMgEIRxjjOFg9T6caTqJUcFjkeKf1sMj7V84joN0yDgY9n4L9dJVQk+xi6tVMjRv/wzS2FSnxzHGhP0uZ96taZBKpS7bZTIJFj80VrgdHx/f6uNFIhGSk5NhMDN89L9GmK1ASrQED1+nosJNSB/VMhzTb1gBAL0uFDt2zoyEMAn8fvvWdGSC7DKPIIT0NpxIBP8/f4n612+HOednIRwzHdkkhGK+978N76l39vBIgaOFZiRFSKBS2GvO6ER5D4+IENJZjLei/qX5sBYfB19zAX4PfyCEY9byAtQ9Oxu2xipwcm/4zLyvR8d6uMCElGipMMlg7OC+WXM4jkNCQgJE9LFQQF/hesDKlSuRkpKC0aNHe/R55CL7H+KZppM4WL0PjDGnUKzlPsS9fGbci+B3s1wa7VdUVOD88FsQ+Npepw+qjDEUFRXh7NmzQkDmCTzPg+d54bZCxuGBmUqMHSzDgzO8IKMovF/qrppDep73tb93ui1LHttrQrFdeUb8c6sOb2/QwmD2XJ0jPY9qTv/HyRQI+PN/IUufDmbSo/7ZWU6hWE9/OAWAn3KM+Oc2HVZs1MJkoZrTn1HN6d84sQTKm54ERGIYdv8XTR88DGbjnUIxScwwKMbN69FxbjlmwEfb9XhnkxZma9+tOczGQywWw4+vB8qzwerOCds94ddff8WsWbPg7+8PtVqN9PR0vPbaazhz5gw4jkNjY6PT/qtXr0ZGRoZwOy4uDgqFAkqlEr6+vhg1ahR27tzp9nFSMOYBS5YsQX5+Pg4fPuzR50nwS8LE0CkALoZjLUOxiaFTkODXe6a49zeS4Bin2yaTCWfOnEFNbS1OVWths9kAXAzFiouLceHCBZc/fnfheR7Hjx9HTk4OGnQWYXtKtBR3XyVDbk4WTp486dFgjvSM7qo5AKCzaLt0H7lyjp5iLZmytrs05O9ujDFsOmrAF7ubwQAkRUggd53wSvqR7qw5pOc4wrGWvCbd0uOhGGMM3x9qxtq99tW1h0RI6Yu/fo5qTv+nGDcP6qWrhHCs7h8zUPfMdUIoFvh/GyHyDeyRsTHG8L/9zfjugAEAkBwphbSPtk1ljAFVJ2Db/jyw522ww6vAdr9lv111wu2fEzdu3IhZs2bh2muvRUFBARobG7F27Vrk5+ejoqKiw8f573//C51Oh8bGRtx///248cYbYTQa3TpWCsb6uEvDMQrFeo5cLkdaWhpEIhFqampw4sQJ2Gw2IRQDgMTERPj7+wuPaa/4dLYwNTc3o6lJg90FXvi/LxtRVmsGAJjNZmRlZUGv16O+vh4mk6nzL44QAMXac1hf9A3ONJ5yue9E/XGsL/4fyvQXemBk/Z9To32FLwJf/AmqO58H4NyQvyWe54WA3lPsJ4sGrD9oP1m8fqQXbp/sDVEHLhknhPRujDFov3rBaZvp8GaXhvzdycYYvvq1GRuP2D8QzRujwC0TFB1qU0EI6d2EcAyApeAIbE01kEQP7dFQzGZj+PyXZmzLstecm8crcNM47z5Zc5iNBypzwQ58DOiqne/UVdu3V+a6beYYYwyPPvooli1bhqVLlyIoKAgAkJycjNWrVyM2NrbTxxSJRLj77ruh1WpRUlLilnEKx3br0UiPiPcdDAl38asyCSdBvO/gHhzRwBUYGOgUju3atcspFIuJuTjLTKvV4tixYzCbzS7HqaurQ05OjtNlkZfjo1SiyDIcJ+rCYLSKsePQeRgMBiEUk8lkGDFiBLy8vK74dZKBqdZYAxtsOFD9q1M4dqL+OI7WHoKN8agz1vbgCPsnxhgaXr/DpdG+zw2PwTDjEQD2cEy/aaXwGJ7nkZubi9zcXI+FYzYbw5pdzfgx236yeOtEb8wb2zdPFgkhzi5ttO+7aLlwWWXD8pt7JByz8gyrdujxc679C747Jnvj+lEUihHSn0h/W4XbQRwUDU6p7pGxWHmGj7brsTvfBI4D7p7qjWszFT0yFnfgRGKwvPUA2pp8wcDy1rssftBVBQUFKCoqwu233+6W4wGA1WrFqlWrEB0djbi4OLcdF6BgrM9z9BSzMquwzcqsQs8x0v0c4VhLCQkJTqEYYwz5+floamoSwrHm5mbk5eUBAPLz81FfXy8k4U1NTcjLy2szKLPyDJ/+pMe+AgYOwJjwMkR5XcD+/fudQjFvb2/PvGgyIIwMGoOhavuiEo5wzBGKAcDwgEwMD8zsySH2SxzHwfvqReCU/k6N9k0mE8qSZ6Fq7N2wqkIgTp8B4GIoVl9fj4aGBuj1+ss+R1OjETzfeoBWX9fc6v9Pvt1vwK8n7SeL90zzwYx0Ct0J6Q9cQrH734bP9Uuceo71RDj29d5mHDhjhogD7rvGB9PSqOYQ0p84eoq1ZMr6Ueg51t2+2N2Mo4VmiEXAAzOUmJzSt2sOqzvnOlPsUrpqoefYlaqpqQEAREZGXvGx7rzzTqjVavj4+OBPf/oTli9fDpnMvQs8UTDWh13aaH9i6BSXnmMUjnU/xhiampqctmk0GqdZGxzHIS0tDXK5HM3NzTh69Cjy8vJQX18vHCM4OBixsbFoampCdnY2qqurhdlnLZksDB9s1eFQgb1w/36GD+ZNCnPaJz09nUIxcsU4jsOo4LFO4VjLUCwjaGRPDq9fU0y4CSHvH3dqtO/l5YXMzExoxyxA4c1vI7eiCSaTSQjFRCIR0tPToVKpLnv8T97fjy9XHXUJx84X1WPF8l3YuM6178T04XKE+Inw0LVKTBxKC70Q0m8wBluzBoBzo32nhvy8Bcyo69ZhzUj3QrCvCA/PUmJcEtUcQvqTSxvth35SBPUTa1wa8nenazO9EOQrwh9nqzAqsW+vss1sNsDQ0LGdDQ1g7MqvNnBcOllWVtbq/VKpvSGtxWJx2m6xWIT7HL744gs0NjbCaDRi//79ePLJJ7F169YrHmNLFIz1YUdqDrr0FLu059iRmoM9OcQBp2WjfQAICAhw6Tnm4O3tjczMTMjlchgMBuh0F08wxWIxkpKSoNVqkZ2dDZ7noVarXaaMNptseGejFrnnLZBJgCWzlEiP5XDunHPSX1BQ0KnLMglpiyMca0kh9qZQrBuIvP1ctimVSmRmZkKsVEOr1WLv3r1OoVjLnobt0elMyM2ucArHzhfV49OVB2A0WlFa0gSr1QbedjEcC1SJ8dxtfhgR37dPFgkhzjiRCH4PvIuA/9vo0mi/tkkHzS3LEfjMJniNuNbpvgsXLnSqmXJHtKw5wX5iPH+7H9LjqOYQ0p8w3or6Vxe4NNq/tCG/fvOHHh9Ly5oTphbjhdv9MCym768oxIlEgKJj54RQ+IPjrjwmSkpKQlxcHL766qtW7w8PD4dMJkNRUZHT9sLCwjYvk+Q4DpmZmZg4cSI2bdp0xWNsiYKxPixKGQ0JJ3FptO8IxyScBFHK6B4c4cByaSiWmJiIjIyMVhvyOzjCsUvxPI+9e/fi6NGjQiiWnp4Osdj5mm+xiIONAQoZh6VzVRgSDqeeYkOHDoVYLEZjY2One5YR0pb8hlyn2wa+udWG/KR7KJVKpKenO20bNmyYSyjGGGtzVdwFCzMhFnNCOFZUWCeEYoMSA3HfH8ZCb+bw0v80OFp4sS+iREy9fQjpjziRCPLUKU7bHC0fikorUCoNdrrvwoULKCgowMmTJ6HVumeF4notjxe+1iCnmGoOIf0ZJ5ZA/fCHkCaPd2m07wjH5JkzPb4ibp2Wx/Nfa5BX0j9rDhcYDyhD2t9JGWLfzx3Px3F477338Morr+C9995DXV0dAODMmTO47777cOHCBdx+++34+9//jvLycthsNuzbtw+ffvop7rzzzjaPm5ubiz179ri0LrpSFIz1YeHekZg/aEGrq08m+CVh/qAFCPe+8mt6SceYzWaUlpYCcG6037Ihf21tLTQajdPjmpub2z2u40PvpaEYAMilHP44W4mn5qsQG8hcGu2Hh4cjIyODwjHiNpf2FLu05xjpfjzPu8wSLS4udpqazhjDqVOncOzYsVZndJj5KmSO8xLCsQ/f3usUijUZOby2ToMLtTy+2dcMC8+E526rub/VaqXL+ckVYYzhnOZsq/+OeJsVRdrCHhjVwOXt7Y2EhAQA9hrjqDuOUAwAYmNjoVQqr/i5qhp5vLpOi7J6Hl/vbYaVp1pCSH8mGzIWgc9tbXX1ScW4efB/+htwMs81vq+o5/HKdxqU1/P4Zp8BNlv/qznMxoNLnQegrbCPA5c6z62XrM6ZMwdbtmzBpk2bkJCQALVajZtvvhnJyckIDw/Hu+++i+TkZIwfPx5qtRoPPvggXnnlFcybN8/pOLfffjuUSiWUSiVuuOEG/OEPf8Dvf/97t40TACSX34X0ZgpJ2wWivfuI+8nlcmRmZqKpqQlRUVFO9znCMcfsL4fa2lrk5tpn3yiVShiNRpfjOj54OoKxygYeeSUWXPNbo2sfLxF8vERobm6G1Wp1abTv5+eHjIwMZGdnw2KxgOf5VkM2Qi7n0lAsI2ik8IH1ZGMeDlT/CgBIUif32BgHmpaN9kUiERITE1FUVCRchp2RkSH0aRCJ7N+FnTxpvwQ/PDxcCMobGxsRGiHD+CnB+HXnxeWv73lgDGp0wNs/aNDUzBDsK8Ljc1WQijnwPI/jx49DLBYjNTVVOD5g/6IgKysLarUaSUlJtGoc6ZJD1ftxuikflc3lGB86Wfh3xNus2FWxA2X6C9BbdEgNSL/MkYi7OL70O3v2LIqLi1FaWgqr1b4AVGxsLOLj46/4772k1ooVP2ihNTCE+InwxA2qfjVrgxDSutZqR3V1NYxGo9MiZg4lJSWQy+UIDQ29ouctrrbinY1a6IwM4f5iLJ2jgkjU/2oOJxKDhaWBG/d7++qULRvxK0PsoVlYmtvP2SZNmtRmPzCZTIZ3330X7777bpuPb63HtidQMEaIG6lUqjYbXQcGOn8D4gjFHI32hw0bhoqKChw5ckTYRywWw2AwICsrC5mZmShv5LDiB3vhVsg5TEy+2Hy25WWZlzba9/PzQ2ZmJry8vNy+ggcZOMScPVBt2Wi/Zc+xk415ELuhJwHpmEtDMUdPMbVajaysLJdwLCnJPru4rKwMJ0+eBM/zqKqqAmCvNUEBg7Djhzyn5/js85M4I45Gs4khMkCMpXNVUPvYf8d6vR5NTU2w2WzIy8sTwjFHKKbX62GxWBAXFwe5nBplk84LUYTiTNNJnNWcAQCMD50MG+OFUEzMiRHkFXyZoxB3axmOuTsUK6iw4L1NOhjMDNFB9g+ovt70/xVCBiK9Xo8TJ+yL/zDGEBsbK9xXUlKCs2fPguM4+Pj4dHmm6ukyC97brIXJAsSFiPHYHBWUXv235nAcBxY6DKLw4bDVnQNnaLD3FAuMt88oG8BfZFIwRvq9uro6qNXqVmdJ1dTUICgoyGNFgDEGs9ns8qHQ0Y+sZSim1WqFSxEc44mMjERlZSV0Oh027z6Jn85FwWgBYoPFGB7r2giyvZUnfX193fjKyECU7D8MQV7BCFI49ydwhGODVPEu9xHP4XkeRqPRpdG+oyF/VlYWTCYTzGYzpFIpOI5zCsfOnDkjzPgL9I/F2n/nCZdPTpwyCP/+phDZ5nBAxDDot5NFnxYni76+vhg+fDiOHz+O2tpa5OXlISkpCTk5OU6XdFMoRrpqkK/9sr1fK3fhrOYMbMwGI29EeXMpxJwYV0deizDviB4e5cB06XkTx3FXfC6VV2LGh1t1MFuBweESPDJbCW95//2ASghpn4+PD+Li4lBUVITCQvul87GxsUIo5rjd1VAsu8iMf/2og5UHhkRK8MgsFbxk/T8Y4kRi8DwPjcgf6ohYcCKxsH0go2CM9GuVlZXIz89vtXl9UVERioqKEBoaipSUFDDGnC4FcnB8S9Hafe1hjOHkyZNoaGjAiBEjoFBcvLTVZrNBJBJBJpMJlxm1XDnScUlmbGwswsPD8cMvBdh1PgI8A5IiJHhktgqKAVC4Se/TVvDFcRyFYr/RarVQKpWtfkjUaDRQqVRuCeNlMhkyMzNhMBicLtEGLoZjjm9SHTiOQ2JiosvS2d9+mQ+jkRd6isnkEgwuleJoqRgSXQMipA3wko5wGUNAQIBTOFZbWyuMreUl3YR0lSMc21O5E+e09g9CFIo5c5xTdPa+rmrZU0wkEsFmswmXusTHd71p8/FiC8xWIC1GigevVUIupfMcQga6QYMGAYAQjpWUlAg9VOPi4q6o5uQUW2DlgYxBUjwwQwmpZODUHMYYCgsL7Sub9/Rgegn6GqYdp0+fRkZGhvCjUCiwfv36nh4W6QSFQtFq43lHKAbYv40oLS3FsWPHhEsCHBhjKCgocFlNsiOsVis0Gg1MJhOOHTsGg8EAwD7LIycnB01NTeB5HiaTCRzHYfjw4QgLCwNg/1AbFxcHjuOQVybBzvMx4JkIw2OleGwOhWL9FdWcvq+2thZHjhxBfn6+S8PwsrIyHDlyRJgt6g5yudwlFHNQKpVOoRgAoS/YpRiYUygGAA/MDcL0RB5+Facgk7Y9GyQgIADJyc595TIyMigU6wP6Ss2JUcY63VZIvBGqCO+h0fQuRqMRhw4dQnV1tct9Wq0WBw4cQFNTk9ue79JG+1dddRUSExMBODfk74rbJnnjjsneeHgWhWL9VW+vOYwxXNCdb33BD8ajTH+hB0bVu9hsNpw+fbrVvsgWiwWnTp1y+Tx1pQYNGiQEZO4KxQDgrqu8cftkbzx07cAKxUjrKBhrx5AhQ5CdnY3s7Gz8+uuv8PHxwYwZM3p6WKQTHI3nW4ZjhYWFQigWHx+PiIgIFBUVQaPRIDs7WyjmjlCstLQUNTU1aGxs7NRzS6VSZGZmwtvbWwjHdDodcnJy0NjYCLFYjIyMDOESR8fssZYqG3h8ukMPGwPGJcnwh+uUkFHh7reo5vR9jgC9qqrKKRwrKyvD6dOnAcDjK8O2FbpZrVbk5OSgoaEBYrFYWLkWAEaMl+H6+bHILbUJK06KOA63zwzGI49PxG13j2izEa3ZbMb58+edtp07d67TXyaQ7tcXao6j0X5LOosW+6v20KqnAEpLS9Hc3IwTJ044hWNarRZZWVkwGo3COc+Vam5udrp8ydFTLCYmxikc02q1HT7m0UKzsOKkSMRhWpoXNdrvx3p7zTlccwA7y7fjWO1hp/rCMx6/lO/AjrJtKGga2Ctwnz17FmVlZTh27JhTOGaxWJCdnY3y8nKcOHHC7c97aUucriwkxhjD4bMm8L+tOCkWcZie5gVxP2y0TzqPgrEO2rBhA66++mqXb99J73dpONZUeARgDPHx8YiLixMuR5KIReDqC4VwzBGKAUBycjICAgI6/dyOlSod4dihQ4ecQjE/P792Hx/mL8bN4xWYlibH4qt96GRxAKGa0zeFhIRg2LBh4DhOCMdKS0uFUCw6OhqJiYke62tYVlaG3Nxcl1DKZrPh4MGDaGxsFHqSqdVq4cOsj1KM7w5o8M9tOnz6kx62Fh8IomLU7YZijkb7jnBfJBIJPccoHOs7emPNabn6pJgTY2bUbEwOmwYOHM5qzlA4BiAhIQFhYWFgjAnhmCMUs1qt8PX1RWpqqluey9vbG8OGDRNmarSsY45wLDk5uc1FiFpijOF/+5vxz206rP5ZP+B/jwNRb6w5vjL7efmJhuNCOOYIxUr1JRBzYvhIutbPqr+IiYmBQqGA0WgUwjFHKKbVaiGVSpGQkODW52zZU8yhsLDQ5Uu59tgYw9pfm/HRj3r8ZxfVHOKqXwdju3fvxty5cxEREQGO41qdqvvBBx9g0KBB8PLywsiRI7Fnz55Wj/X1119jwYIFHh4x8RQ/Pz+o1WrEGk8iQ78HcaZ8REdFCfcrlT4YKy9Ehn4PvGuPY/fu3U6hWERE1/uYyOVypKc7LyU/ZMiQNkMxxgCD+WKxnpmhwO2TvCEawKuE9BVUcwjgGo6dOWNfUc/ToZjJZEJBQYFLKMUYw7lz52AymQAAiYmJUKvVYIyhsbERjAGn9Uk4UWe/lDs6SAwbz192luylodiIESMQFRWF4cOHUzjWTfp7zfm18hchFHP0FBvkm4BJYVOFcOxo7aGeHmaP4jgOQ4cOFcKxvLw8HD58WAjFMjIyIJG4r6VwSEhIm6tPxsTEOJ0vGY1GFBQUuNQAxoDPftJgW5Z9tkl0kNjpeAaDxW3jJe7V32tOsjoFY0ImALCHY0dqDjqFYtMiZiDCJ+oyR+nfvLy8kJmZKYRjhw4dwsGDB4VQLDMzs8vN8FvTMhSLi4vD9OnThcsqOxqO2Rjw+S9G7Mi1nwdFB0kG9OqLpHX9OhjT6/VIT0/H+++/3+r9a9euxdKlS/G3v/0NWVlZmDx5MmbNmoWSkhKn/TQaDfbu3YvZs2d3x7CJBxQVFaGurg48Z1/JMc50GlW7V4G3WsGYDezo55BWZAGcSNgHAAYPHnxFoRhgv2zq5MmTTtsKCwuFnmNO+9oYjjcOxoqNzWg2XTyRpOLdN1DNIQ4hISEuvb8SEhI8+rcsl8uRlpbmEko5mtUC9svHo6KiwBjDqVOnkHM8F9kNScgu8wEH4M4p3rguQ4bc3FxkZWWhpqamzeezWCwwm80ujfYdDflFIhEMBoPHLx0dyPp7zUlWp8BL7OXSaN8RjinE3kj0TWrnCAODIxy7dOaNu0OxzrDZbMjOzsaFCxdw8uRJIRyz8gzHGpJxtFgEMIa56SZcm3lxcaKqCi1ef/5n7Nvtnss/iXv195oDOIdjJxvzUKovgYhCMSeOcEwqlcJqtcJsNgOA20MxvV7vFIo5eoq17DlWWFgInU7X5jEsVoaj9UNxoMAKEQfce7UPrh7u5bYxkv6jX69KOWvWLMyaNavN+9966y3cd999uP/++wEAK1aswLZt2/Dhhx9i+fLlwn7ff/89rr32Wnh50R9RX9Sy0b5s6EwYdVHwKtiMsKYcVP3yGUJ85eBKDwOcCJWR16JG2+IEraoK4eHhXT6xdDTad1w+OXToUJw7dw7Nzc04duyY02qVFp7h0x1GXGgOA2ewoaDCivQ42ZW/AaTbUM0hDmVlZWhoaHDadvLkSaSkpHg0HAsMDERaWhpyc3NRW1uLXbt2CfclJSUhqsVMWU4sw69l8Sg3+EHEMdx7tRKjEiQ4fvy40IdMKpW28ix2Pj4+yMzMhEgkcmm0HxAQIDTgb+8Y5Mr095oT6h2O+YMWQCpy/Tc0yDcBUcqYVu8biHQ6nTAr1KG+vh4hIT2zWrBIJEJCQgLy8vJQVVUFAIhPTMbKLTpUGIIBZoNP6WkgzBeMhdln2FZo8a9390KnNePw/hKMmRALiaRff4ff5/T3muMw2G8IDlXvE26rZWqEe0f24Ih6H7FY7HI+4+4g3sfHBykpKTAYDEIQ5uC47eXl1WYYZzQzrNxqQJUxCBIx8OBMJTIG0WcrwP6FSkJCAkBzLwT9Ohhrj9lsxtGjR/H00087bZ85cyb27dvntO3rr7/GAw88cNljmkwmp5MSjUYDwP6tumMFDXJxNZHueE/KysqEFZLi4uIQGRkJIBI6G4O88EcEaE7AqgHASVEVfjUKNF4AGCIiIlBdXY2mpiYcO3YMaWlpnS72PM8jLy8PTU1NEIvFSE1Nha+vL9LS0pCTkwODwYAjR44gIyMDEMvx0XYDTpXxEMGGe6bKkRLJ0b+b3/SH94FqTs/pzpoDABUVFcKqbZGRkfD19cWpU6dQWVkJm82GIUOGeDQc8/X1xdChQ5GXlydsS0hIQGhoqNN7sL0gCOV6HiLwmBhehGBJELKzG4Qgf9iwYfDx8Wn3fZPL5QBaf28ds1f64r/FvjjmS/WnmmPh2z52e/f1lO6uOTqdDsePH4fVaoVKpYJMJkNdXR3y8vKQnJyM4ODgbhnHpdRqNZKTk3Hy5ElUVFTim2MqlGmVEHM80ryLUdpci/27a8FxwIgxUVj1zwMwNJsRGeOHxQ+OAmM8LJaBMeOUak7reqLm8IzH3spfAP7i/6frm+txpPIg0gNH9MqrOLq75lgsFuTm5rqE8Y7PNY5zA3cIDAwUnvNSji/7HPc1NTWhpKQEQ4cOhVgsxrubDCio4CHmrLh9tAViXRlMJnsv1L7OYrGAMQabzdbplhU2MEjEYpy3VKGqJB9hPkFIDx4Cq42HRNT5RQ3aM3XqVOzfvx8ymQwikQjR0dG49tpr8fTTTwv/b7JYLHj55ZexZs0alJeXIygoCDfffDNeeOEFIfTctWsXpk2bhokTJ+LXX38Vjm8ymRAREYH6+no0NDS0uVJ7RwzYYKy2thY8zyM0NNRpe2hoKCorK4XbTU1NOHToEL799tvLHnP58uV47rnnXLbv3LmTlq1vxfbt27v1+fLy8pw+KEI03XmHSh6AfSquoycQYD/hrKiouOLnb/lH3NLWn3bjUO0wNFp8IeZ4jA7IR/WZRmw+0+ruA1Jzc3NPD+GKUc3ped1dcwAITfcddDqdENZ3p5ycHOTk5Dht8zH5Qi4aihEBJ+HHaZCb61zn9u7d251D7FWo5rSOak7n9ETNufSSosOHD3f7GNoSJStCrWgIRgXkw1+uRdRvp2E2nMORo+eQNtqxZxN27vqpp4bZI6jmtK4na44fgpxul6MK5dji0ee8Uj1Rc1rS6XTYsWPH5Xf0sAsXLgAA1GZ/yEWDMTowHw0XdGgAeuQczBMkEgnCwsKg0+mES1k78hgfHx/sLT2Kt4/9ByXai+d9MapwPD5iIaZEjXJ7+Pvqq69i6dKlYIzh5MmTeP755zFy5EgcPnwYoaGhuOOOO1BQUICvv/4aGRkZKCwsxEMPPYSZM2fil19+Ea48UKlUKC4uxpkzZ5CUZG+j8P333yMkJAT19fVXPM4BG4w5XPqLZ4w5bfPz8xOmgF/OX/7yFzzxxBPCbY1Gg+joaEybNk1Iu4k9Fd6+fTtmzJjRLZfYWCwWp+dhzAaWvRYoO+q0X4lsMLzSbkBYeLiwzfEtrM1mQ1pa2mVXkbwUz/MwGAxQKpUwGAw4evQobDYbkpKSEBAQgAatFR/vZGi02CATWXFV9DnIrY3d9t70FXV1dT09BLehmtP9urPmaDQa5ObmIiwszKVBdU1NDU6dOoX4+HhotVo0NTUhPT3d6VISx0xTnueRlpbW6fEyxlBUVCQsHuLv7/9bg32GwMBAJCcnC0uc6/V6zOWBfb9q4OPjI4w1ODgYQ4cOvdK3ok+jmtM6qjkd050158KFCygqKoJKpXKa3c4Yw+nTp1FdXd2jf9OMMej1ehw7dgw+PlZE+Z+AyaDDNddcA5lMhs3f5+PAnmJh/6efuwbePgPvUieqOa3r7pqzt/IXlOjOQ8yJMCV8utDb8EzTKRytsS/0MTwgA8MChrv9ua9Ed9acgoICVFRUQCqVYvjw4cLscJPJhJycHBiNRvj7+yMtLc2j42iNVqvF8eO54Hn74iMzU1NRXlmDvOM6+Pj4ICwsDElJSb1y1l9nGY1GXLhwAUqlssOXJNvAsLv0CP60+w3YmPMssxJtBf60+w28OeVJTIwc4faZY4C9NqSkpODzzz9HZmYm3nrrLcyaNQsbNmzAqVOnhMtjk5KSsG7dOiQkJOCLL77APffcA8B+if7ChQuxevVqvPzyywCAVatWYfHixVi2bNkVj2/ABmNBQUEQi8VO32AAQHV1tcs3HR0ll8tbnToqlUp7VcjB26wQi1r/1bd3n7t11/viEood/S9QdgjgROBGLwYMjWC53yLBfArQxYGTRAsF09/fHyNGjIDFYkFAQECXnttRrCQSCSIjI1FaWoqCggIkJyfDSxkKraERCokVU6MLkRTti8LCql73b6an9Yf3YiDXHBuzQcS1Pm29vfvcrTvel8DAQIwdOxZeXl4uJ14RERHw9/eHWCzG0aNHYTabkZubK6zuxPM8cnNzodFoIBaLwfN8p74RZ4yhsLAQZWVl4DgO8fHxqKiogFgshs1mw/lKHdbmNOLh2YFQexlx/Phx4XICjuOE8dbW1qKyshLR0dHue2P6mN7099NVA7nmXPpBvKP3uVt3vC/x8fHw8vJCSEiIS8uH1NRUlJWVISIiwmOXDmk0Guh0OmGhotLSUlitVsTFxSGvsAZr9wNjQgvhI+bAcYCUYzDBPmsjKCAGOUcrwLe4ZG3Pz8W4fr5nezH2Rr3p76er+kPNSfAfjApTGa4Kv9qp0f6woDSIJWIcrzuGWHWcy3MPpJqTlJQEq9WK+Ph4p95eUqkUI0eOxOnTp5GcnNxt/6atVisA++esZpsvdlakYXTQGXBaLfbv3w/GGAAgLCxMWDG8P+B5HhzHQSQSdbi+iwC8few/LqGYg43ZsCLrc1wVPbrV+91FIpHgxhtvxPbt2yESiTB27FiXHnJ+fn6YNWsWfvzxRyEYA4DFixdj+vTpeOGFF1BZWYkjR45gxYoVbgnG+v4Ftl0kk8kwcuRIlymn27dvx4QJE67o2CtXrkRKSgpGj/bsP6quqDfWYV3x1yjTl7rcV6a/gHXFX6Pe1H++tboUy/ovcOFiKMZFZoJLnAYu7Xf2HU5vBU5vc3qMSqXqUih2KY7jMHjwYOF6+FOnTqHkbA4mh5/CNTEFGBrnL0wLJf3PQK05jaYGbCj+FrVG19UNK5vL8cP576CzaHtgZJ6jUCiEEy9m48EKfwH77SREoVAIqzgq5WL4a04i69gx6PV6p4U6MjIyoFKpOvW8ZrNZuOw7KSkJkZGRkEgk4HkejSZv/HR+MGr1MqzZ2YRjx7JgtVqFE0qxWIwRI0YgNjYWgP0bYcelCKRvGsg154fz36HR1OByX2VzOTaVrEezte9fttZSREREq31QOY5DVFSUx0Ixg8GA7OxsnDp1CmVlZdBqtThz5gzOnTuHHfvP4J8/MVRqxDhUHgaZzHkW2LnCSny44lfotGZERPnhurnJAIDdPxdi07p84cMs6Tv6Q82JVsbipkG3tbr6ZLI6BTfG3QJ/ufNMtQZTPTaWrIfG3OTymHJ9GbZc2ACj1XUl+r5KIpFg+PDhrTa89/LyQnp6ult7jLXHarUKrSJOlxrx+vdalDcAZw1DXPbtLzPFrkROzWmnyydbc15Tjpya0+3u4w6RkZGor69HbW2t8MXKpSIiIlxWR09KSkJsbCx+/PFH/Pvf/8aCBQvc9u+tXwdjOp0O2dnZyM7OBmBfnTA7O1tYMviJJ57AJ598gs8++wwnT57E448/jpKSEjz00ENX9LxLlixBfn5+r+rr4HCy8QSarc3YWb7dKRwr01/AzvKf0GxtxqmGEz04Qs/iwlIBsVQIxYTtjnBM4gUEey6c4jgOYt9BMMrtyw03NjbCT27C4Fj7JU4DvWD3dVRzXGXXHYXG0oTtpVucwrHK5nLsKNuGJnMjjtdl99wAPYwd+TfY8W/Ajv5HCMcAQCayYYT5IIYYshDSdBwHDx50CsU6e9k2YP9mPTMzE8nJyYiKioJUKkVGRgb0CMb24ngYeSlCVFaMCjoNnrcKs9IA+8wStVqN+Ph4p3CsvLzcPW8E8QiqOa6O1hxEo7kBP5ZucgrHHDWn3lSH3LqsHhxh/+Hl5YXw39pPnD59GhqNBoMGDUKVXon/5fjDxEsQ4KXHlJhyoQdOXFwcAODoPgOMBh7BoQo88MfxmDZzMObdOgwAhWO92UCoOXJx2x+yW7vvcPUBNJjqsO3CJqdwrFxfhp3lP6LWWIO8hhyXx5ErZzQaodfrcarMhhUbdWg2MSSGSTAnTe+yr+N8Z6DibTZU6ms7tG+Vvg58Jxv6d1ZZWRkCAgIQFBTU5rlmeXl5q4vHLF68GJ999hlWr16NxYsXu21M/fpSyiNHjmDatGnCbcc16osWLcLq1auxYMEC1NXV4fnnn0dFRQVSU1OxefNm4UNBfzQudCLMvAkX9Oexs3w7pkXMAMCws/wn2BiPGGUsxoVO6ulhegwXkQ7MfA6cl6/rfYnTgKiRrd7nLvkXLPhgixZWmwrTo70RpLB/a+3r60uhWD9ANcfVxLApMJQaUGOswvbSLZgRNQtWmwU7yraBZzwivKMwNmR8Tw/TY7jIEWDl2cCFw2AAMHIhYDWB7V0JUWMJmNQb9dKLl5gkJyd3KRRzUCqVTt/inipn2FIQCYsNCFboMDnsHKSwwdfXF6GhoSgsLAQA4Tkdl2AC9tU1r2QsxPOo5riaFD4V20u3oN5Uhx9LN2Fm1PUw8gah5kR6R2FU8NieHma/wHEcEhMTAdh7nZ0+fRpNiMSu0njYmAih3lpMjiyC+LcvBYKDg4WZqDYrEBAkwx+WTobCW4qCggIwcQ1uvHUovv/6JKqrtLDZGMRi53Mjo9EIsVjc6mVaer0eXl5eQh9F4n5Uc1xNDp+G7aWb0WhuwLYLm3Bt9PXQWXTYWf4jeMYjyicGmYG9b3Ztf6BUKsEFpGP3CQtsTIRov2b8LsOGkqKzACBcagjYF2HLzMxsdXbtQCAWiRDmE3T5HQGE+gRC7MGVO61WK77//nvMnj0bM2bMwFtvvYWioiKnyyk1Gg22bNmC119/3eXxCxYswOOPP45BgwZh5MiRKC4udsu4+vW/jKlTp17226aHH34YDz/8sFufd+XKlVi5cmWvTKbFnBhTIqZjd/nPuKA/jx1lW4X7YpSxmBJ+dbf1++kp7QVfngzFjp0z4+MfdbDagDBvLdRyo3Df6dOnwXFcjy2pTtyDao4rqUiGa6KuxU+l21BjrMLmku+F+yK8ozAt4ppu62vYE7jIDAD3gh3+zB6OWQyAUQP8FoqdCZoBXfPFD3GFhYXw9fWFQqG44uc+XGDCpzv04G1AcgSQpiyERGT/95mYmAi1Wo2AgAD89JPz6m+OcCw6Otrl8ifSu1DNcSUXe2FG1CwhHNtw/uLKd5HeUZjaz2tOd2sZju3O0+FgRRAYOMSqdRgbcg7i32rO4MGDhVULAWDBolQkJEYJoZhjwZCUFBXueXAMBicHQyx2Ph81GAzIysqCRCJBZmamUzim0WiQnZ0NPz8/pKamUjjmIVRzXCkkCsyImi2EY+uLvxHui/KJwVXhV0PsgUbmBNiTb8R/9vBgTIRY3yaMDStGSbH936dYLMbo0aNhNBqxZ88e5BythbbpCKZMHeUUjvG8Dds2nsKkqfHw9etYE/u+Kj14CGJU4e1eThnrG4H0YNdLUd3l1KlTeOGFF9DU1IQnnngCoaGhmD17NubPn4/PPvsM6enpKCwsxB/+8AckJCTgzjvvdDmGSqXCzp07O91y5HL6dwLSQ3rzJQbAxXBMzF0s0hJOMiBCsZ6y96QJ/9xmD8WiVY2YElWE6MhQTJs2zann2KUNSwnpiN5ecxzhWEtysVe/D8UcuMgMcKPvtd+ozLOHYhIFzgTNQEWzGGKxGKmpqVAoFDAajcjKyoLBcGX9SBhj2HPSBN4GZMZxGOmfJ4RiAJCbmwudTtdm8MVxHIVipE29veY4wrGWfCRKCsU8hOM4+PqpUdgYCAYOg3zrMSu5TgjFAPtlTMOHDxdmodY1lMBiNTiFYsnJyQgLC0NKWhikUtcgwWazged56HQ6ZGVlwWKxALgYijn6JtIlmP1Pb685jnCsJV+pH4ViHsTb7Oc5jAFTUuS4f4YPxNzFv/0RI0bA29tbCE8KT5rx85YanMwvuXgM3oa1a7Kwa/tZfLJyP3jes5cP9jSrjcfjIxa2+XlfxImwNPMuWG3uDaCXLVsGlUoFPz8/3HTTTQgLC8ORI0eERTnWrl2LG2+8ETfffDN8fHwwbdo0pKamYvv27W2ei44aNQpDhrg3wKOzgwGqsrkcPLv4j55nPCqayxHZSrNJcmW25xjx9V77JZPxfnUYHXYBkRHhQk+xwYMHA7Cv5HTmzJmeHCohHlNndO5rYLVZ0GBuQJDXAJklGeL8P28j54UKvQhiycWeYn5+fjh27JgwK8KxWmVXcByHh69TYduxJqhNx4Wly4cNG4a8vDxotVpkZWX1yHLqhHSHBlO9022zzQStRQu13L+HRtR/1dTUIP9EHqZEiVDYGIDkgBo0Ndrvk8lkMJvNOHfuHICLK2XyPI+jR48Kx0hOTm6zAbODj48PRowYgWPHjgnhWEJCAk6cOAGr1Qo/Pz+kp6cP2EulSM+6tOaYbCborTr4yqglgSeIRRwevV6FfadMmJLMISur0On+M2fOID09XbgdEq5ERake6/57BsHBQQgOUWLtmixkHy2DSMRh5vXJLrNU+xuJSIwpUaPw5pQn8fax/zjNHIv1jcDSzLswJWqUW9v77Nq167L7yGQyPPfcc3juuefa3Gfq1KlobGxs9b64uDi3fCHSv3/7pFWORvsAEOUTjUifaDAwl4b85MrlFJuFUGxmuhfunOyFqMgIp0b7LVerdDSlJaQ/cTS9BoAQRSgC5UHgGe/SkL+/YhYD2N6VTtsUlgakGI8iI/3iDAq5XI4RI0ZAoVCAMdbp/8kzxpB73izctlkN8DdfDMUyMjKgUCiEFS8tFguOHz9+5S+QkF6mZc0J8gqBn0wNi83i0pC/P2KMgdUWtn6fjQerO+e257Ixhl+P1yAvLw+MMUSFB2JmhhdafqYaNGiQ0Dfm3LlzKCsrczlOeHj4ZUMxB0c4JpVKodPpkJOTQ6EY6XGORvuAveb4Sv1g4o0uDfnJlbHZGPJKLp7nKL1EuGqoSJhp7+XlhdTUVEgkEjQ1NQn1AQDu+8M4RET5Qac1459v78W7r+0WQrG77huF1PTwnnpZ3YrjOEyMHIH1N76LVTNfxCuTHseqa1/EuhvewcTIEQO65zUFYx7Qm5cxd4Rijkb7UyNmYGrENYj2iYWN8RSOuVlarBRjBsswb6wCN09QICYmGkOGDHEpOo5wLCYmpodGSvqy3lxzHB9QHY32Z0TOwszo2Qj2CoXFZu734ZgQijUUA1JvcNOeBjfmfjBOhBBzCVRnNzitVukIxzIzM+Ht7d3h57HZGP7zSzPe3aTDlmP2yzC9vLygVquFUMzxgdGxWqVjWjshndVXak6kdxSujZqN66LnIEAeCCNv7NfhGGMM7MT3YHveBju70/k+Gw92ZDXYnhVg5Ve+Qh5vY/j0Rw3+/asYJ+uCEBISgpiYGKG5vlqtBmDvoRoQECCEY601Sa6urkZTU8fDAx8fH6GvmUNKSgqFYv1Yb645jlDM0Wj/2qjrcW30HKhl/jDwzRSOuYmVZ/jkJz3e2ajDrjx7n2aTySTMtPfy8kJmZiZCQkKEJvtNTU3Iy8sDACi8ZXjgj+MRFqFCc7MFFWUaABhQoZiDRGRflTxGGoKrY8YKPcUkA/yyXwrGPKA3Xwdf2VwuhGKOnmKOnmOOcKyyufUlU0nHWHkGK2+f6SHiONx/jQ+uH6lwmiHWmoGc0JMr05trTqGmQAjFHD3FHD3HHOFYsbb12Q39ATv06cVQbNKj4NRR4CIzIBp9L8CJ7A35T2xweoxcLu9UKGblGT7arseefBM4DlAp7P9rF4lESE1NdQrFHKRSKTIzM5GcnHzFr5EMPL255pxuPCmEYo6eYo6eY45wrFBT0NPD9JzfPtiw3G+FcMwRiqEsCwBnrz1XwGJl+Oc2HQ4V8uA4hhB/b6SkpMDX1xcpKSlISkpCZmYmoqOjERsbC19fX2HmWEBAgHCcwYMHQ61Wg+d5ZGdndzgc02g0KChw/h3m5uYKPcdI/9Oba86pxhNCKOboKeboOeYIx85pzvb0MPs0k4Vh5RYdDp81QywCfLzsn5kcs+sdoZij/YRKpRLCMZutxZePXhKXBvtBIT7d90J6EcaYfWVyaskooK9WBpgRQWPgJ/NHvG+iU+M9RzhWpClEgu/gHhxh32a2Mvxrmw5eMg73XeMDEcdR4EUGtPGhk+En88dQdYpT02tHOHam8RRS/Ptvnytu6PVguhpwY38PTn2xh6OwWmX+D+Dir+ry8U0Whg+36nDiggViEfD7GUqMTLjYqFQkEglLlV9KIpFQk2rS70wKmwr/hgAM809zqjmOcOxM02mk+g/vwRF6DsdxwNA59s85p7eB5X4LMBtYQ7E9FOPE4MbeDy686zXXaGZ4f4sWp8uskIiBh65VYXhsgHCuExYWJuzrmNXFcRwYY7BYLKivt/dhSkpKQnR0NCIiIpCTk4PGxkZkZ2cLPRfb0rLRvp+fHxITE3H8+HGh59ilq1US4mlTwqfjRMNxpPqnOzXad4RjZzVn+m3NAQBm1ICd2gIubT44sXOjdKapBDu/H1zqjeC6GMg3m2x4b7MOZyuskEmAP1ynRGqM/XkcgRgAl56sKpUKI0aMgEgkQmVlJXjehm8+P44zJ52vUvjo3X144NEJCAv37dL4SP9BM8YGGI7jkOiX1OpqFGJOjES/JApyushgZnhnoxbHz1uQdc6Msrret6Q0Id1NxImQGjC81ZXgpCIZhgUM79c1hwsYBG7G/zmFYsJ9kRngrv4rOO+uNQPXG214+wctTlywQCYBHr1e5RSKETIQiUViDA/MbLXmyMVeSAtI7981h+PADZ0DDLGvBMzy1rktFNMZbXhzgwany6zwkgJL56iQHidrdyZ8y/scvX6AiwGaWCxGeno61Go1GGNO+1xKq9U6hWLp6enw8/Nz6jnWcrVKQrqDRCRBeuCIVlefVEgU/brmMMbADvwLKNoDduAjMP5i/y+mqQT79R3g7A7g9I9dOr6m2YY3vtfibIUVChmHx+eqhFDMQaFQtLlQkVKpFILy7/57XOgpdvfvR+PZV68Teo599O4+VFZoujRG0n9QMOYBvfk6eOIZWoMNb3yvwZlye+FeOleF6CCakEm6B9Wc3o1rp2dDe/e1x8ozvLlBi8JKK7zlHJ64QYWUaJolQboH1ZzejeM4cMmznTcGJV5RKGaxMry+Xoviah5KLw5/utEXQyI7XnM4jsPQoUMxfLjrzBlHOJaZmYnAwMA2jyGTySCTyVwa7bdsyO/t7Q2xeGD3yemPqOb0ThzHgUudD4hlQPUpIRwTQjGTFvCLBAZN6vSxTRaG19ZrcKGWh0rB4c/zVEgM7/p5Tm52uVOjfW8fe88xRzi25qPD4Hnb5Q9E+i0KxjygN18HT9yvXsvjtXUalNTYC/efblQhKYI+oJLuQzVn4JGIOUxJkcPP236ymBBGNYd0H6o5vZvQU6ylmtMuDfk7QyrhMGmoHP4+Ijw1zxdxIZ3/8o/jOKEp/6XEYvFlFwNxLE7S2uqTPj4+GDVqFFJSUtq8fJz0XVRzei8uKBHchIcvhmPbXwD75Q0hFOMm/hGcXNnp48qlHCYMkSNQJcKy+b5XPOEgOTXUpdG+IxyLHxyI2xaNgFhMtWMgu6J/YV999RUyMzMxZMgQd42HkD6lspHH2xu0qNfZEKAU4fG5KoT50zeVhBDPYIwJl2RMTfXCmMEyeMvpRI4QYufUaP+3yydZQ/HFnmMAuMRpHT9ei5ozI90LE5N7tubIZG1fLt7W5VSEEM/ighKBCQ+D7VkBGH5b9VcZ2qVQrGXNmTXCC1NT5U41x2w2w2w2Q6l0Pa5er4dYLIaXl5fLfbcvGtFq/fD2keHBRyf028tdScdd0f/Z1qxZg8mTJ0OlUmHSpEn44x//iM8++wzZ2dl0fT/pM9pqPu1Y6aQ9TXobNAYbQtUiPDWfQjFCiOcUVVnxxvda6I0Xp/p39wfUuro6GAyGVu+rqqqi//cT0oMYY2BH/u3SU8yp51jut2Dn9nToeGcrLHhzgxbNpp6rOYSQPkJ2SVAlkdl/OuFMuQVv/6CF0Wz//MVxnEsolpWVhWPHjkGr1To9Vq/XIysrC1lZWTAajS7Hbi/4GoihGMdxSEhIGJCvvS1X9H+3zZs3o7q6Gp988gnKysrQ0NCAtWvXYsKECcJKEIT0ZufPn0d+fr5LAMYYw+nTp1FUVNRuODYkUoo/zlbhqXm+CFRRKEYI8YxTZRa8ucHex/C7A60HU55WV1eH48ePIysryyUcKy0txYkTJ5CdnQ2ep4VHCOkJHMeBC0kGRBKnRvtODfmlCsA/5rLHyisx4+0f7KtPbjjcMzWHENI3CD3FWmq84NKQvz05xWas+EGLk6VWbDraes0RiUQQi8WwWq3IysoSwjFHKGY2myEWi4XLqY1GI86dO9fqsbRaLYqLiwfk6tw2ZoNYLIZZbsJ5XRGqDVXC9oHMLV/7/OMf/8C+ffvw+eefY9u2bSguLsbUqVMxefJkdxy+z6EGkX1Dc3Mzzp07h6qqKqdwzBGKlZeXo7i4GDqdzulxeSVmlNdf/OCXEi2Frzd9g0p6DtWc/i27yIx3NmphsgDJkRLcMsG7R8ahVCrh5eUFo9HoFI6VlpbizJkzAAB/f3/q7zMAUM3pvbi4CeBmPuvSaN8RjnFX/w2cf2y7xzh81oT3N+tgtgKpMVLMH9szNYcQB6o5vdeljfa52a+Am7zUpSF/ew6cMeGDLTpYeCA9ToobRrd+WbREIkFGRgZ8fX2FcKyqqkoIxZRKJTIyMiCTyWCz2ZCdnY3S0lL7OFsEYFqtFllZWTh37hzKy8vd9l70BYwxlOkvYF3R19hWuhF7Kndi64UfsK7oa5TpL7g9KJw6dSo4jsNPP/3ktP31118Hx3FYunQpgN9mB3p7Q6lUCj/z588HAOzYsQN+fn44f/688PiSkhKo1Wps377dbWN1y9mrXq8XlkIFgJCQEHz++efYsWOHOw7f51CDyL7B29sbw4YNA8dxQjhms9mEUAwAUlJSoFKphMccKrCfLL79gwYNuoGdqpPeg2pO/7XvlAkfbtXBygMZg6R49HoVvGQ9M+3d0fhaoVAI4djZs2eFUCwmJoam5Q8QVHN6N06hdtmm0WhQVlbW6n01NTWoqakBAOzON+LjH/XgbcCoBBmWzFJCLqW/adKzqOb0TvbLt1e7NNp3ach/pu3wYmeuEZ/+pIeNAeOSZHjoWiWkkrZrzqXh2IkTJ1xCMcA+uyw+Pl44Jzl9+jQYY0IoZrVa4evri5CQELe+J72ZjdlQqi/BrvKfoLVonO7TWjTYVf4TSvUlbp85NmTIEKxatcpp2+rVq5GcnOy0bd++fdDpdMLPunXrAABXX301Fi5ciMWLFwutju69917cfvvtmDFjhtvGeWXLO/xm8eLFuPvuu/Gf//xHWGa5ublZSGgJ6a0cxfDEiROoqqpCVVWVcF9KSgrCwsKE27vyjPhydzMYgKQIKVQKOlEkhHjOTzlGrN3bDAAYP0SGRdN8IBb1bN1xhGPHjh2DwWBASUkJAArFCOnNHEE2z/NgjCE6Olq4r6amBnl5eQCAJnkGNmXbZwtMSZHjzineEPVwzSGE9F4cxwGjF4Plfgtu5N1OjfaFhvyFv4BLmunyWMYYNh014vtD9tnn09PkWDDJG6IOnEdIJBIkJSXhyJEjwrbExESX5vohISFITk7G4cOHUV1djUOHDsFkMgmhWHp6utPknv5OxIlwpOYgGNrorw2GozWHEK1sf1ZxZ912221499130dTUBD8/Pxw8eBCMMYwdO7bDx3j11VeRnp6O999/HwBQVFSE9evXu3Wcbpkx9txzz2Ho0KGIj4/HzJkzcfvtt2PMmDG46aab3HF4QjwqJCQEw4YNc9o2dOhQIRRjjGHzUQO++C0Um5oqx33X+EAippNFQohnGM0MPx23N4+9ergc90zv+VDMQS6Xu3zDGhkZSaEYIb2UXC5HVFQUAKCgoAAXLlwAcDEUY4zB1z8Uewvs+1+X6YW7rqJQjBByeZwqFKIJD7e6+iQXlAjR2PvAiV3DJ52RYVee/Txn7igv3NbBUAywX612/Phxp215eXkuDfkBIDg42OlxVqsVKpVqwIViAFBtqHKZKXYpjaVJ6DnmLmq1Gtdddx3++9//AgA+++wzLF68uFPH8PHxwerVq/HXv/4Vf/3rX7F69epWVya9Em4JxsRiMd58802cOnUKd999N8aOHYtVq1bh008/dcfhCfEoxhjq6+udttXX1wtTNb/db8C6g/ZvM64f6YU7Jne8cBNCSFd4yTg8PleFWyYosGBi76o5paWlTn0eALTakJ8Q0jtwHIf4+HjExtpnARQUFODYsWNCKBYaGorM4cl4Yq4vFkz0xu/Ge1PQTQjxKJVChKVzVLhjsjduGNPxmtOy0b5SqcT48eOdeo61Fo5dSiaTQSJxy4VzfYaN2aC36C6/I4Bmq97tl1MuXrwYq1atgsFgwLfffouFCxe67DN58mSo1Wrh57nnnnO6Py0tDQqFAhEREZg4caJbxwe4KRgDgK+++gpvvfUWKisrMWrUKMyaNYv+p0p6vZaN9gEgKCjIqefY9hwjtmXbv824ZYIC88bSySIhxDN4G0NhpUW4HaoWY2aGolfVnJaN9mNiYjBx4kSnnmMUjhHSO10ajjU2NsJqA2yKKAwdOhQikQjhAWJck+7VwyMlhPRXFitDUZVVuB0VJMG0tI7XHIPB4NJoX6FQuDTk1+v1wmMuXUQNsK+y3XLhtYFAxIngI+3YDCtviQ9EnHsXUrr66qtRWVmJF154AePHj3dqV+SwZ88eNDY2Cj/PPPOM0/2PPvooxo0bB5FIhLfeesut4wPcFIw9/vjjeO211yCXy1FYWIiFCxdi7ty5aG5udsfhCfGIS0OxlJQUDB8+3KkhfxBXhLgQMRZN88HMjNZXSCGEkCtlsTL8c5sOr6/XIq+kY0ubd7fq6mqXRvutNeTnef4yRyKE9ASO4+Dr6wsAsNo47CkdhP/lBOJ0Of3NEkI8y2hheG+zFq+v1+BMueXyD2iFXC6Hn5+fS6P9lg35fX194eVlD9u0Wq1wyaVKpcLkyZORmprqNAliIIVjIYpQqKS+7e7jK/VDiCLU7c8tEolw991345VXXun0ZZQAsGHDBmzevBkff/wxVq1ahWeffRanT5927xjdcZDPP/8cu3btwosvvogPP/wQZ86cQUhICJ588kl3HL7PoSWF+waDwSA022/ZaD8gMFgIxzQN1XhkpgiThsp7cqiEtItqTt9mNDO8s0mL7CILOA7ge+mCtwEBAfDz83NptO8Ix7y9vREbGwuxWNzDIyWeRjWnb3L0FDPzYuy6kIAKvS/AGCqranp6aIS0i2pO36Y32vDWBg1OllohEnX9PEckEmHYsGHIzMx0abTvCMfS0tIgFoths9mQm5sLq9U+Qy01NRVSqVToLe0IxwbSYoE2ZsOo4LHg0PqVCBw4jAwe4/bLKB0ef/xx/Pjjj5g7d26nHldXV4cHHngAK1euRGhoKMaNG4clS5bgnnvuceuXsW4JxmQymVPaKpVK8eabb+Kbb75xx+H7HFpSuG/w9vZGRkaGUyimN9rwxnotsstVGDZsGNLT0+HnqxIe0963CgPpGwfSu1DN6bt0Rhve3KDB6TIrvKTA0jkqpMfJLv/AHuA46Wxt9Um5XI7Ro0cjMjKyh0ZHuhPVnL7HEYo1W8TYXZGMGoMScokN06ILwZpOCQ35CemNqOb0XY16G15br0VRFQ8fOYc/3eCLoVFdb3ovEonabJovkUiEL+ccIZparQYAp8c4wrGQkJABdd4i4kSI8onB1IhrXGaO+Ur9MDXiGkT5xLj9MkqHgIAAXHPNNW3+/iZMmAClUin8jBkzBgDw8MMPY8qUKbj11luFfZ9//nk0NTXhzTffdNv43NJ17r777sOiRYuwZs0aYYp2c3MzRCLPvKmEuIufnx/8/PwAAE3NNry9QYuyeh4VjTzGDwmCSnHx33BtbS2Ki4tbXcWktLQUdXV1SEtLo3/3hJAOadDZ8PYPWlQ08FB6cXhsjgpxIb27GWx7s8FophghvZPRaEReXh50Zgl2lw9Bo0ECXwWHx+b4waIJwvnzehQUFMDX11c4JyKEkCtV3cTj7R+0qNXYoPbhsHSuCpEB3Xee4+fnh+HDh7c6KywkJMRlhe2BgOM4RPpEI1oZi+rmKjTzenhLfBCiCIWN2dze13bXrl1t3rd69Wrhv9ubYLJ27VqXbXK5HPn5+VcyNBdu+QT/zDPPIDY2FrGxsZg9ezbuuOMOjBkzBkuXLnXH4Ukv1WDU4I0jq2HiXfvhlGgr8P7/s3ff4VGVaRvA7zM9yUx6J42EkoT0EJpUKRo69gbWdV2wIGv300UXRVGxLMFdxboqKiooiigoVXClJBASSgKEkJDeptdzvj/GGRgyCWEyNXl+18V1mXNmTt45JnfOPPOe5y35zGVTMZ2tSW7Cy9/IUdtqQpA/g0fnymyKYiaTCcePH4dcLkdJSQkMhvP3xluaUbe0tFhvzSSEkO7I1SxeXi9HXZsJIQE8PDY30KuLYizLoqqqCizbOdMNBgPOnDlDs2YJ8VISiQQxCUPxa00q2jUChMl4eGxeIBIihNaG/ImJidYPtwkhpLea5Ua8vF6OZjmLiEBz5liKYizL2r2eIO7BY3gwmUwQ6kRICEiy9hRz1UwxX+GUV8/n8/Hmm2/iyJEjmD9/PsaMGYOvv/4aTz75pDMOT7wQx3F4ePvL+OzYD3h0x6s2xbFqRR3u3bIU7x9Zj/ePrPfgKHumttWIFevlaJKzCP8zuOPCbN+g8vl860wxhUJhLY5dvEKbvRU2CCHkYjI/BqkDBIgM4uHxa2SICe0820qtVuPUqVN2C07t7e1u7YtRXl6OU6dOobS01OZi1mAwoKSkBCdPnsSpU6fcNh5CyOUZkhyD9AQ/xITw8Pi8QEQFmzPHslplcnKyV62ASwjxXRzHoencSYRLlBgQan5vFRFozhyWZXHkyBGUl5dTccyDOI7DyZMn6UPNCzjl4+mzZ8/iww8/hMlkQmpqKq688kqkpqY649DESzEMg4U5N2Hxtpew+1wxHt3xKl6Z8Aga1C24d8tSNKpbMTBoAOYNmuzpoXbrdIMRb36vgErHITaUj4dmSMEY9QA6r0Apkfhj0OBhqKwog0KhwK5du6z7Lm5GTQgh3WEYBvMnBkClZWHSdc4ck8mEgwdLoNOzMBqNGDx4sDVf2tvbcejQIZhMJohEIrfcChAbG4vm5ma0tLSgtLQUmZmZMJlMKCkpgUKhgFAoRFSU81cxIoQ4B49hcOeVAVBrTTAZdLgwcyzZYjCYoNEaESijBYcIIY7TarVoamzA8HAT/KXBMGkHAwFSa1GsubkZPB4P7e0KCIUSyChziBdwyoyxGTNmYN++fVCr1fj0009RWFgIqVSK/Px8ZxyeeKkR0Zl4Y9ITkPBF2H2uGDd9/wju2Py0tSj2zpSlCPML9vQwu1XVaIRKxyE+jMGcYTrUnG7EweJzqKtXWB9T36BA5ckWlJScw7Fj7UhOGWZzjNjYWCqKEUIu6Ui1Hu9tVcLEmj+dYwCcrmxEcck5NDQobR7LsgDDiwYQhbM1TaioqADHcTZFsZCQEISFhbll7KGhocjKygKPx0NLSwuKi4tx8OBBa1EsNzcXUqnULWMhhPTMoSo9PvhVCdaaORxOVTSiuPgcmppUNo81GEw4WHwOBw+eQ4dc64nhEkJ83MGTevx3uwpiiQQ5OTkQCfnQqoUoOVSP+ga5TVEsLS0DJyo6cLD4HBQKnaeHTohzZozV1taipKTEpul4R0cHSktLnXF44sUsxbH7tj6PM4o6AECcNMonimIAMClTAgGPg66xHm1NLPz8zE31y8sbAQAMA5SVNVofLxDwoFHbvoFVKBQwGo1drrBBCCH7KnV4b6sKJhZIjBBgSrYEDAMIhXxwHFBWbu5PGBUlhcFgQnFJHbRaDnw+DyYTi5qaGrS3t0Oj0ViLYllZWW5teG8pjpWUlKCjowOA+TZzKooR4n1+P6HDB7+owHJAcpQAE4ZJwDAMBH9mTumRemRmRCMiIsBaFFMq9RCJ+BDw+3efGULI5dt9VIePt6vAcUBKtABjUgORnZ2Ng8VnwXHMn++nVOD/WRQ7XaWGSmWAWMQHn0+TC4jnOeUv32233YYdO3bYbAsKCsLYsWOdcXifU1RUhPT0dBQUFHh6KG4RHRBu87VMFACpyN9mW3V1OxoabQtKgPn+5orKZrR3uO/TyYOn9FBpz9/TPm6YHzKHRYBhAI3GYFMcu7AoxuczGBDLR3V1JQAgLCysU88xQjyhv2WOr9lZrsW7P5uLYgWDRJiYYb5lgGEYpKVGICZGZi2O1dbKUVxSB4VCB6GQh/z8OKSlpgAAlEqlx4piFjKZzOZrgUAAf3//Lh5N+irKHO+2rVSL97aai2KjhogwNs2cOTweg/S0SERFSa3FsXPn5DZFsbzcWAQEiDz8CgixRZnj3X4u0eCjbeai2Lg0MUYNMWdIcHAQcnMGAFDBPE8+AjGxg22KYnl5sfD3p8whnueUwthTTz2FBx98EM8//zz++OMPaDQaZxzWZy1atAjl5eXYt2+fp4ficpZG+xc62nrKpiF/c4sKFZUtKCtrQOMFxTGO43D8RDOqqztw6FAdDAaTy8e79ZAWb29W4l+blNAbzzcbjIqUYtiwKGtx7GJ8PoO4AQJrUSwhIQFZWVnIzc2l4hjxuP6UOT11prodzc2qTts5jkNFRTPkbpq2v7lYg/9uV4MDMD5djHumBEBwwSejFxfHjh1vshbFcnNjIZOKOxWeJBKJzQxtd7E02r+QTqfr1JCf9H2UOd6J4zh8v1+Dz3apAQBXZopx5+QA8HnnM+fi4tjRY01UFCNejzLHO3Ech/X/U2PdHvN7/6tyJJg/0R+8PzOHZVmcPXsWQDMsxbGaGi0VxYhXcsqV9dy5cyESiXDkyBHcddddCA0NRWpqKm688UZnHJ54KUtRzNJTbMu17+LfU5619hyzFMfCQv0RHW2+ADtS1mDta1FR2YLaWjkAYPDgMAiFrpv9wHEcvvtDjS9+M18sDoziQ3DRt7MUx+yJiZahufkcANtG+1Kp1KY41tbWZvd7dzcuQohzNTWpUFnZgsOl9TbFMY7jcOx4M6rPdqCk5ByMRtcV4zmOw9d71fh6r/li8epcCW6bcP5i8UIMw2DwINteYQNiAyGTiq09xS5UV1dn7TnmLpaimKWn2IgRI5CTk2PtOUbFMUI8i+U4fPmbGt/+Yc6cWcMluGmsP3h2+p/yeAyGDLbNnPi4ICqKEUJ6jOU4fLZLjU0HzHf9zBvph2tH+1l7Ll/YaJ/P4yExwXbGeVx8IBXFPIhhGKSkpMA8k48ATuoxVl5ejqamJohE5h9uvV6PsrKyThfzpO/gOA5P7Hq9U6P9ML9gvDHpCetqle8f+QZ/y74J6WnmVdPq65U4esx8e2JdnQIMw0daWgRiYwJdNlaW4/DFbjV+LTXPEJk7wg/T8yV2m+V39UazplaOIYOHgOOUiI+Pt3mupTimUCg6rQ7X2tqKiooKZGdnQyKR2Oyrq6tDbW0tsrOzqT8ZIU4UFuaPyMgANDaqcLi0Hulp5tu9T1S0oKHBXBwfPDgcgour407U2MHi11LzxeI1o/xQmNd5pVsLS0+xC52pbgfDGHH27DGb2ycbGhpw7Ngx1NTU/Pk6Brtl4Y/y8nK7jfazsrJw+PBhtLS0oKKiAkOHDnX5WAghndW1mbC9zHydc+MV/piSLenysfYy59TpVgQEiBAREeDScRJC+oaaFhN2levAALhlvD8mZpzPnItXn7T0FAPOf4B28mQr/CQCREW57j0gsc9kYsHn89HRyuLMqToEh/ghKTn0z+39t8ekU175zJkzUV5ebv1aJBIhNzcXd9xxhzMOT7wQwzBYNuYBDI8a1qnRvqUh/9gBebhj2Fzr49PTIhH959R9C1cXxUwshw9+UVmLYreM88eM4X5230jWNyhseopZWHqOnahog1AUYve5UqkUMTExNts4jkNlZSVUKhUOHjwIrfZ8H7W6ujocPXoUcrkcdXV1Fx+OENILPB6DYelRiIwMsGlsX//narPp6ZGIiZZ1d4heiwrm429XSzF/gn+PimKW2ydHFMRZb6s8XaWA0SS26SkWGxuL1NRUAEBNTQ0aGhpc+josUlJSEBAQ0KnRvqUhv1QqRVJSklvGQog3amhUQqm0f4t2TW0HdDqjS7//gFAB/jpNijuvDLhkUezCnmIjR8TZ9By7eLVKQgixJyFcgHumSHH31ACbohhgnmWuVCptimKW2yczhoWAYTQAGJSVN9lte0Fch+M4HCtrxIrnf8Hq13/DZx8cwOqVu7Hi+V9wrKzR6XcjTJw4EWKxGFKpFCEhIZgwYQL27duH7du3Izg4uNPjly5dirlz51q/TkpKwoYNG5w6pq44pTBmMBgwb948/Pe//0VjY+fCAumbkoPj8c5U+6tPjojOxFuTnoSfwDYo+QLbHzlXr3y0dpcav5/Qg8cAd08JwKRM+xeLFxfF+HwGKSmhdhvy21tEwB6GYZCVlQU/Pz9otVprccxSFAOAAQMGID4+vpevkhByMUtxLCIiwKYY78qimM7Aob7t/O2ZGQkijB9mmzk6nQ4qlfki0GRibYpiQ4cGQSSCteeYeXp7OGJjB9k02rcUx2JiYhAVZf/2b2eTSqUYMWKE3dUnQ0NDUVBQALFY7JaxEOJtmptVOHKkwVpwulBVVRuOH2/GweJzMJmce7ux1sChof185uQMFGFMate/hyYT26nRvlQqtuk5dvEt6Bbt7e04d+6cU8dPCPEtah2Lxo7zmTN8kAgjB3fOHLFYjNzcXGRkZHVqtB8VFYq83HiEhoitmdPaqnbny7gsWq0WRqP9DzZUKpVPtZEwmViUlzbg43f/QHOjbc43N6rw8bt/oLy0wel/q15++WUolUrU1dUhLy/PpvDlTZxSlRg7diwmT56Mf/3rX0hOTkZMTAyuvvpqPP744844POkDLI32LT3FLI5c1JDf2SZnSRAq5WFhoRSjhti/WDQYTDh+vBkAIJOJwOczyMsbgKTEEJuG/KGhfpBIBAiU9fzNn0QiQW5urrU4tmfPHpui2JAhQ9xyGxQh/RHDAIKLivFCgWuK8Wodizc2KrBig9zmjeqFdDodDh48iIMHD0KpVILP5yEi3N9aFDtxvAzFxcXQ6/XW4pifnwhBwZ1nnMXGxiItLc2t+dHd96IcI/1ZUJAEMpkIBgOLg8W1UKnMxbHq6nacPNUKAIiOljn1FhWllsXKb+V49Vs5muQ965fI4zEID/Pv1Gifx2MwdEgoeDwNAD1aW+ttZg1Yeh0eO3YMzc3NTnsNhBDfIVezeO1bBV77VoFWxaUzx8/PD2FhIQgL8+/UaD84OAjZ2QMQGiqGUMhAKu383qqtrQ319fVOfx2XQ6PR4ODBgygpKelUHJPL5Thw4ADKysp8pjjG5/Pww4YydDUpjOOATRvKXHY7pUQiwd13341z586hpaXFJd+jN5zSY+zBBx+0/rfl9rHDhw+jtLTUGYcnPu7iotjQoeE4eACIigxAY5MWR8oakAEgMrLzTARHsBxnbTYbE8LHsluDIOR3/aZNKOQjOzsGDQ1KDBkcBoPBBJHI/KsR9eeYNGoDEhODYTCwEIkury+RpTi2Z88e67awsDAqihHiQpZG+3V1Cpvth0vrkZUZjfBw5/XRkatZvPG9AmebTfAXM1BqOdibx8Xj8SAQCP680DqEpKShGDgwHMHBPBw5UgqDwQCJRAKNxgi1mkVaaoRDmUMIcS+hkI/cnFgUl5yDQqHHocPmFgmnq9rAMHwkJ4diYFKI075fu4rF6xsVONdqQoCYgUrLIeISXSlYloNeb0Ryciji44Os1zmA+QNCjuMhJTkQFZWnUFPDgs8HkpOT0dHRgUOHDll7HYaEOO91EEJ8Q4vChNc3KtDQzkLmx0Cl4xDag8n3DMNgUEoYEhOCbTIHAEwmI5SKKugNRpw7x7Npx9DW1oZDhw6BZVmIRCKEhoY6+RX1jNFohNFohFarRUlJCXJyciAQCCCXy63FMr1eD5ZlPbJa+OWqOtXaaabYxZoaVThzqhWJyc4/52q1GmvWrEFiYiLCwsIu/QQ3c/r/QYZhMHjwYFx77bVYunSpsw9PfFBLi9paFEtLi0B0lDlJhw6NsK5WWX60EQZD71eIa1WyWLZOjvKzBuu27opiFsFBEgwdEg6GYToFd1SkFElJIX/uc+wN6sWrVapUKuh09nuREEJ6x1IUO3fOnDupQyMAABER/t3eKuSIFoUJL6+X42yzCYF+DB6dI0NKtP3PnIRCIXJychAgDYTBGIaKynYcP15jLYrJZDIMHpyOw6WNKDlUB7lcR0UxQnyEpThmmTlm4eyiWGOHOXPOtZoQHMDgsXmBSIrs/nNuluVw5EgD9u+vhUZj6FQUKzlUh+Lic4iOHoAhg1MAAGfOnEFxcbFNUczS65AQ4nkKpQ5Go/2ZSh0dWrCsc3pF1beZsGK9uSgWKuXhsXmBiA/v+dwae++tAPM1UXx8HBiwOHXqFKqqqgDYFsVCQ0MRFBTklNfhCJlMhtzcXJtiWGtrq7UoFhQUhOzsbAgETplr5FIsy6K9TdOjx7a3aZz28wMATz75JIKDg5GcnIxjx47hu+++AwB0dHQgODjY5t9LL73ktO97uby/tEl8Xnh4AAYODOnUaN/SkD82VoaszGgIhb272GpoN2HFn29Q1+5SweTEX+jeuLCnWHh4OCQSiU3PMUKIczU1qaxFsfR0c+8cAEgdGnlBQ/5GGI29K8bXtZnw8jcKNHawCJOZLxbjLnGxKBQKkZuTBaHQBIBBTa0WeoPQpihmMLAICBDB359WqyXElwiFfISE2N76HOHE2ak1LUasWC9Hs5xFRCAPj88LRGzopa+djEYWao0eOr0JBw+eg1ptvtXTUhSTy3XQ6ozQ642Ij4/H4MGDAZhvoaSiGCHeRy7X4uDBcygpOdepONbUpMKBg7UoK2vodXHjTJMRKzbI0apkER3Mw+PzZIgOdl4OJCUlITk5GQBw6tQpazHeUhTLzMz0eO7YK475WlEMMN+1EBzS9WJQFwoO8QOP57y7mpYvX4729nbU19dj8+bNyMrKAgAEBQWhvb3d5t8TTzzhtO97uagwRtwieWCo3dUnGYZBWmokQkP9e3X8s83mi8UWBYvIIB4Wz5KB78RfaEdd3Gg/MzMTeXl5nRryE0KcJyIiAIkJwZ0a7Vsa8sdEm4vxAoHjF1u1rebMaVOxiAkxv0GN6uHFokgkQsawGAAKWBrs+/sPsBbFZDIxcnNiHPqwwGQydblSpV6vp/5AhLhQVVUbqqs7bLYdLK7t1JDfEdXNRryyQYEONYe4MD4evyYQ4YE9zRxLTzGhtTgml2utRTGBgGdtxA+Y3wheSCqV+sRtQoT0G3+2YumQ62yKY83NapQeqTf3kOplu5bTDUa89q0CCg2HhAg+HpsXiFCZ84tUFxbH2travKooZiGTyZCSkmKzLSMjw2eKYhZJyaEIj+z+w5qIyACX3EbpC1z2V+6uu+7C+++/D5Op97fH+ZqioiKkp6ejoKDA00PpFyrrDHhlgwJyDYf4cD4enxeIMBcE9+XiOM66gtOFjfYvbsjvjc0HiW+hzLHFMAwGDQqzu/okj8cgPT2y06yOyxUm4yMiiIekSD4enRuIEGnP/5wqlUqUlZUBaIWlOFbfoOl1UYxlWZSWlqKsrAxnzpyx2afX61FSUoLS0lJaPZr0GmVOZ1VVbdZG+0l/3joplZ5vyN/b4li4jIfwQB5SogV4ZI4MQf6XdwkvEglsimP79tfaFMVkfy4sZGm0f6GzZ8/i1KlTNg35CXEnyhxbgTIxcnNjIRDw0CHXobTU3KS+/GgDOM7ct3lYemSvZv1EBvEQKuVhSKwAj8wJhMzPdcXxi2+XDAwM9JqiGGButH/y5EmbbaWlpV2uVumtTCYWM+YO67JmyjDA9LnDnL4qZW8ZDAZotVrrP72+9x822eOyn3CO47B27VpkZ2e76lt4rUWLFqG8vBz79u3z9FD6vCPVery+UQGNnsOgGPPFYuBlXiy6CsMwyM7OxqBBgzo12rcUx4YOHYoBAwZ4cJSkL6DMcT+JkMFDM2T4++zLu1hUKpUoLi6GwWBAoEyG7Kxkm/1hoSKHbyvn8XjWi8uTJ09ai2OWophSqYRQKERAgPNu7SL9E2WOrYYGpbUolpwcisSEYABAVma0tedYccm5Xr3Z8BfzsHimDA/PkiFA4th1jkgkQFZmtM221NSITkUxy+2TEyZMsN5WeebMGSqOEY+hzOnswuKYXGHuW+ysohgABEh4WDJbhodmyuAnct1dOJaeYheqqqqy9hzztItvn7R3W6Wv4PN5SM+MwoK/jOg0cywiMgAL/jIC6ZlRLluV0lE33HAD/Pz8rP+mTZvmku/Tq/l/n3/+ufXN/cU++OADAOiXM8aI++yv1ENvBDIShLjvKinEQs/fPnkhgUCAhIQEu/skEgkVxQjxIb8f16FVyWJ6vnm22eW+OVWr1dai2IU9xS5UdUYOgZCPxATHVusZOHAgAOD06dM4efIkDAYDWltboVQqIRKJkJubS4UxQpwsIiIAYWH+CAqSYGBSCAwG8wJAlob8JSV1iI8Puuw3G7uP6qDWsZiWY86c3s7YMBhMKCu3zZyKE82QSUUQiXg4fPhwp55i8fHx5sdVVODMmTOQyWSIjIzs1TgIIc4RKBMjPj4Ip06db5OQOjTc4aLY9iNamFhgcpbEfPxeTDZQKHRQKHSIje3cSqe5WQWGYcDj6Tr1FLPMUD116hQA2KxW6W4KhcJuT7Hc3FwUFxdbi2OW1Sp9AcMwSB0WiWFZ0ag61YqONg2CQ/yQmBwKk4m1mcjhDNu3b7e7feLEiWhvb++0/eLFG91ZIO3V/8GPP/4YDz74IDQaDbKzs5Gbm4vc3Fzk5eVh2LBhEAqFXjUNkvQ9t00IQGwoH1dmSiDoweqThBDiiF8Oa/H5bjUAIClSgPT4y2+ML5FIEBgYCL1eb9NoXyYTI2NYOPYfOAmDQYLKynaIRSJE27kVtCcuLI5VV1cDABXFCHEhHo9Bdla03TcUQiEfw4cPuOw3Gz+XaLBuj3kFsaRIAYbE9m4xjgsb7QsEPGRkRKGiohkqlQEHD55DXl4s0tLScO7cOWRkZNhcv1uKY0qlEhERETbHlcvlqKqqwrBhwzpd8zc1NaGpqQlpaWlOf7NFCDE32q+qarPZduhQHXJyzDPJeorjOGw6qMWG/5kzZ2CUAMlRjpcJtFojDhabe59xHDBgwPniWHOzCof/vPWTxzR06ilmKYRZimNSqRTh4eEOj6U3hEIhBAIBAgICbBrtWxryFxcXQyKR+FwPRj6fB5PJhKAQBvGJMdYPbbxtppi79erVb9q0CY2NjVizZg1qa2vR1taGL774AmPGjIFMJkNeXp6zxkmIVclpvXWVFQGfwbQcPyqKEUJcguM4fL9fYy2KXZkpRmqcYxeLPB4PmZmZyMjI6tRo399fglEjByMmxryCZll5I1pb1Q6P++LZqGFhYVQUI8SFuiv8XE5RiOM4rP9dbS2KXZUjweAYx9+gsiwLnc7QqdF+WKg/sjKjEOB/viF/QEBQl6tPxsfHIzU11ea1WPoaNjc3W2/BtGhqasKRI0dQX1+P2tpah8dPCLGvqUllbbQfEWH++27pOWZvtcqucByHr/ZqrEWxmcMlGBjZu4ktYjEfMTHmD/eOHW9Cba15pXBLUYzjgPDwAKSmJiMsLKxTo31LQ/7Y2FiEhXWeQd9VjymO46wzdp1BIpEgLy/P7uqTMpkMw4cPR3p6us8VxgDzuTL3TaPb4y2cMufvmWeewZ49exATEwMAaGxsxIIFC+zeYkmIoziOwze/a7C5WItx6WLMn+BPn0ASQlyG5Tis+02NrYfNvTtmDZdgVoFfr3KHx+PBz0+MhPhgNDapbBrti0QipKVGggEDvcGE4GDHFgiw9BS7UF1dHfz9/ZGYmOjw2AkhrsVyHNbuVGN7mTlzrhnlh8I8xxcKYVkWR44cgcFgBI8XZdNo32AwoKzs8J8FcylYjgOPx7usAh+Px0NGRgZKSkqs/cmys7PR2tqKI0eOgOM4REZGIjY21uHXQAjprKXl/OqTkZFSDBkcgqrTQFZWDEpLG63Fsdzc2G5nAbEsh//uUGP3UXPm3HCFP6ZmS3o9PoZhMHiQuaB19mwHjh1vQkuLGs0tKmshL2NYFHg8BlFRUXZzJykpCRzHddp3+vRp1NTUIDc3F1Kp1Lqd4zgcO3YMHR0dyM3NhVgs7vXrAMzFsa74+/s75XsQ7+CUwphKpYJQeH6Kd2RkJD755BNMnDjRGYcnBCzL4dOdauwsNwd3VFD3F2+EENIbJpbDx9tV2HPM/KnkjVf4Y4oTLhYtkpJCkJAQ3KkPCMMwSE2NAMfBoR4hFzbat9w+2djYaO05BoCKY4R4IaOJwwe/qvBHhR4MgFvG+2NiRu8yR61Wo62tzXzLTBCQm5tmLYqVlJRAoVBAq9UiKzsBYpEEEsnlvy0ICgpCTk6OtTi2Y8cO677IyEifnU1BiDcLCBBCLBYgMFCCYemRMJnMDeBlUhFyc2NRXHwOwSF+3V5HGEwc1mxR4uApAxgGWDAxAGPTnFNMAjoXx5qaVQBsi2KWx3V3jAuZTCY0NTXBYDCguLjYWhyzFMXq6uoAmG/xvvi2b0IuxSl/qe68804sWLAALS0t1m1qtRo1NTXOODzp54wmDu9uUWFnue7P4PbHVbmOf4JKCCGXcrTGgD3H9OAxwJ1XBji1KGbR1QWruSHt5RfFWJbtVBQLCAjAwIEDrX3HTp48iXPnzvVq3IQQ5ztSbcAfFXrwecA9UwN6XRQDAKlUipycHPD5fHR0tKOy4ih0Op21KCYUCpGbm4ugQKlDRTELS3HsQuHh4VQUI8RFJBIhhucPsLv6ZKBMjJEj45GSHNpt0anktB4HTxkg4AH3TZM6tShmwTAMQkNs37OFXqJg1x0+n28thlmKY0ql0qYoNmzYMCqKEYc4ZcbYc889h8ceewzJyckYOXIkwsLCsG3bNlxzzTXOODzpx3QGDv/+SYkj1QbwecBfpkqRnyLy9LAIIX1cRoII1432Q2QQH7nJvpE5PB4PCQkJqKys7NRo31IYa2xs9FgTW0JI13IGijB3pB8SwvnITHRe5lw8o+u3334DAGtR7MJbkXrj4p4/BoMBHEe9awhxFbG467fxkm72WRQMEqOujcWgaMcWFOqJCxvtWxw/0QyGYWwa8l8OS3ZZimJ//PGHdd+wYcMQFRXVqzGT/sspH+Pw+Xy89tprOHbsGBYsWICRI0figw8+wHvvveeMw5N+iuM4rP5RgSPVBogEwAPTZVQUI4S4jFLLQqE536z2qlw/nymKWURHR2P06NF2G+0PHDgQw4cPh0jkW6+JkL5Krmah0p7PnBn5fk4tilkEBQVh2LBhNtuysrKcVhSzNNoHYF2hraOjo1NDfkKIZ3WoWWj05wvWswv8XF4Us/QUmzQxGfHxQQBsG/I7QigUdpqlmpSUREUx0itOmTFmERMTg9tuu82ZhyT9GMMwuDJLgrMtKiy8WopBMa4JbkIIaVexeH2jAkI+8Pc5gfAT+W4PQ3sryvVkHyHEfVoUJry+UQGpmIeHZ8sgFroucwwGA06fPm2z7eTJk8jOzu51JliKYpZG++np6VAoFJ0a8lP2EOJZTR3mzAmR8vDQTBlEAtdljlZrQOmRhk6N9i9uyC+VihAUdPm3jZ9fUfG82tpaREZGOq3gT/ofh2eMvf/++5gzZw6uuOIK3HTTTfjvf/8Lo9HozLGRfurCqffZSSK8eFswFcUIIQAAlUHj0L7uNHaY8PJ6Oc61mtChZiFX92yJc0IIcUR9mwkr1ivQ0M6iTcVCrnFd5lzYaF8oFGLo0KHg8/nWolVvZnSxLIvKykqbohiPx7Pevmn5PvX19Zc+GCHEZWpbjXh5vRxNchZtShZKF2YOYO6BNmhQGCLtNNofPCgM8fFBSIgPQmDg5fc1u7jR/pAhQzr1HCOXxjAMUlJSaDG7CzhUGFu6dCnuuece7Nu3D3w+H/v378ftt9+O1NTUTkvEE3I5zrWa8OLXcjR1nL9Qk7jwU1RCiO/4qeo3zPn2ARxvPd1p3wdH1uPmHx5Fvar5so5Z02LEivVyNMtZRAbx8Pi8QEQF08wGQohrnGkyYsUGOVqVLKKDeXj8mkBEBLomcy4uiuXm5mLAgAE2RaveFMd4PB6ys7MRFxfXqdG+pTg2cOBAxMbGOuslEUIu06kGI15Zr0CHmsOAUD4emxeIUJnrr3Pi44KQkRFld/XtwYPCMGhQ2GUXZS4uig0bNgxxcXF2G/KTrrEcBz6fD4aRoKlJhfYOjXW7s02cOBFisRhSqRQhISGYMGEC9u3bh+3bt4NhGEilUshkMiQmJuLJJ58Ey54v2i5duhRz5851+pi64lBh7P3338fNN9+M6upq7Ny5E5WVldi7dy/i4uIwYcIEnDhxwtnjJP3A6QYjXtkgR1WjCWt3qz09HEKIF2E5Fl8c/xGt2g7ct/V5m+LYB0fW418ln6FG2YAdNft7fMyT9Ua8ssF8sRgXZr5YDHfRG1RCCDlxzoDXvlVAoeGQGPHnG1Sp61ZtNBqN0Ov1nRrtXzijS6fT9eqOD39/fwwZMsTu6pNBQUEYOHAgzUggxEOO1hiw8ls5VDoOA6P4eHSuDMEB7lsptqvffYZhHMoFjuOsC31c2Gj/woxjWZbuYusGx3FoaVZjz95qHDh4DkfKGnHgwDns2VuNlma1SxZNefnll6FUKlFXV4e8vDxrsSsoKAhKpRIKhQKbN2/Ghx9+iA8//NDp37+nHPrNaG5uxl133QWB4HyLspEjR+LXX39Ffn4+nnzySacN0NNOnz6NSZMmIT09HZmZmVCpVJ4eUp90rNaA176TQ6nlkBTJx51Xdm4cTUh/QJljH4/h4c1JTyIjfDA69EprccxSFAOAhdk34cahV/foeMdqDVj5nRxqHYeUaAEemSNDkL/7LhYJ8RaUOe5RVm3AGxsV0Og5DIkV4O9zAiHzc23m+Pn5ITc31+7qk0FBQcjNzUVeXh7E4su/nYkQR1HmuMehKj3e+l4BnRFIixNgyexABEhcf53DsqzNrJ8LmUymXhVeeDweMjMzkZub26nRvqU4lpubi+DgYIe/R1/Gchyam9U4XFoPjcZgs0+jMeBwaT2aXVQcA8yLs9x99904d+4cWlpabPalpaVh7NixOHDggEu+d0841Hx/yJAhaGho6LSdx+PhwQcfxB133NHbcXmNO+64A8uWLcO4cePQ2tpKFw8uUHJaj//8rITRBAwdIMD9hTJIfLjxNSG9QZnTNZkoAEVXPo1Fv76AI80VuHnTY9Z9C7Nvwj2Z1/b4WKFSHvxEDAbHCPC3q6UubXxNiDejzHGPMBkPYiGD9HgB7p0mdWnj6wv5+/t3uS8wMNAtYyDkQpQ57hEu40EkZJA1QIB7pkoh5Ls+c1iWRVlZGQDzjK4LZ5IajUaUlJQgKCgIgwYNcngmKY/HQ0hIiN19QqEQQiH1pe4Kj2FQUdnS7WMqT7YgIsI1E1TUajXWrFmDxMREhIWF2ewrLS3Fzp078dRTT7nke/eEQ2Xj+++/Hy+++KLd+3f9/Pz6zJTpsrIyCIVCjBs3DgAQGhpqM0uO9N7e4zq8vdlcFMsZKMRDM6goRvovypxLsxTHLjQlYdRlFcUAIDLIfBvT/dOpKEb6L8oc94kO4ePJawNx31XuK4oR4m0oc9xnQJgAT10biHunuacoBgBKpRLNzc1oampCWVmZdeaYpSgml8tRV1cHnU7nlvEQW+0dmk4zxS6mVhvQ0aF16vd98sknERwcjOTkZBw7dgzfffcdAKCjowPBwcHw8/NDVlYWZsyYgYULFzr1e18Ohwpj//nPf1BdXY28vDx89tln1nt95XI5XnvtNcyZM8epg3TUzp07MWvWLMTGxoJhGGzYsKHTY1avXo2BAwdCIpEgPz8fu3btsu6rqKiAVCrF7NmzkZeXhxdffNGNo+/7TCyHX0u1YDlg9FAR7rtKCiFdLBIfRpnjHl+d+Nnm6331R+w25L/Y1sN6HKrSW7+ODOJD4KaLRUJcgTLHe3Ec8FOJDkeqKXNI30GZ4704Dth0UIfjtecLH1HBfPB57sucwMBAZGZmgmEYa3HMsgiIXC6HQCBAbm4uJBKJ28ZEzDiOg07bs95rWq3RqbdTLl++3LpC8ebNm5GVlQXAfEt/e3s7lEol3nnnHezatQtqtef6jDtUGIuOjoZMJkNlZSVuu+02BAYGIi4uDhEREaioqMDf/vY3l92bejlUKhWys7OxatUqu/u/+OILLF68GE8//TSKi4sxbtw4FBYWorq6GoB5NZ9du3ahqKgIe/fuxZYtW7BlyxZ3voQ+jc9j8OAMGa4Z5Yc7rgxwa3AT4gqUOa53YU+xBemzO/Ucs4fjOBzrSMQ3/9PhPz8pbVa9JcSXUeZ4J47jcFQ+EN/u0+PtzUq0KihzSN9AmeOdWI5DWUcKvj+gx6pNCnSo7ff4cofw8HCb4tiuXbtsimIymcxjY+vPGIaBWNKz2ZkSicCtdwDy+Xz85S9/QXp6OpYuXeq273sxh+aubty4EQBw7tw57Nu3D/v377f+O3PmDMaMGYOAgADk5eWhoKAAr7zyilMH3VOFhYUoLCzscv/KlStx991345577gEAvPHGG/jpp5/w9ttvY/ny5YiLi0NBQQHi4+MBANOnT0dJSQmmTp1q93g6nc5maqhcLgdg/iNgMHQ/bbG/YDkO5dXmc2QwGCARAlMyBTAZjaDLRlh/TujnxZavnA/KHNf65Oj3+M/hdRBBiL9kXosF6bOh1Kvx952vorzlJB7c+iJen/g4BockWp/DchzW7tKgUpkAAJieJ0KwPwuDwXMXjd6EMsc+XzkflDnex8Ry+GSnBqeUcQCAWcPFkEkocywoc+zzlfNBmeN9TCyHj7apUaWKBQNgzggx/IUmGAyee2cVFBSEIUOG4NixY9ZtGRkZkEgkbv//1lczx2AwgOO4bhc7uFhwkB/8/ITd3k7p7y9EUJBnZvQ988wzGDduHB555BEMGDDA7d+/Vzd1x8bGYs6cOTa3TlZVVWH//v3Wgtl7773nscJYd/R6PQ4cOIAnnnjCZvu0adOwZ88eAEBBQQEaGhrQ1taGoKAg7Ny5E3/961+7POby5cvx3HPPddq+bdu2bpuf9hcsBxxuH4wadTQyg6PpE6Ju0Lmx5clptc5CmdN7oeDhSdmN5i+qgE1VmwAAczAcc2TDAQAVe8tQAXPjV5ZjUNI2BOc0kQA4ZAZXwnSuHpvOeWDwXo4yxxZljn39LXMul4ljUNyainptOAAO2cEV0J1twKaznh6Z96HMsUWZYx9lTvdMHA8HW1PRoA0DAw45IcehqmrCpipPj6yzC2+p9YS+ljkCgQDR0dFQKpXWtlaXIpMFYvCgMBwure/yMYNSwsBxnEd6xg8fPhzjx4/HCy+8gNWrV7v9+zu922FSUhKSkpJw3XXXOfvQTtXc3AyTydRpqdeoqCjU15t/WAQCAV588UWMHz8eHMdh2rRpmDlzZpfHfPLJJ7FkyRLr13K5HPHx8Zg0aVKnlRf6G4ORw/u/alGjNoLHAHyGxdSpU2nlkIsYDAZs2bKFzs1FLl7S1xdR5vSegTXit9qDmBg/otM+pV6N0uYTGB2bAwDQGzm8u1WDcxoTeAyQHXwcd8zJgVCY5+ZRezfKHPsoc+zrb5lzvLUK/yldh+dHL4JUZPsmfO+5Emyu2o3/G/lXCPlCaA0c3tmiQb3WBD4PyAk+igWz8+j36iKUOfZR5tjX3zLncmj0HP79swYNWhOEfCAnqBy3zc73+O+V0WhEaWkpFAoFBAIB4uLicObMGXAch/DwcKSmptqsVulqfTVztFotzp49C6lUelk928LD/ZGVGY2KyhabmWP+/kIMSglDeLi/U4ti27dvt7t94sSJaG9v77T9p59+sv63u2+r7PfLgFz8P/7iCumlpgxfSCwW211yuL8vHavVc3j7ZwWO1Roh4AP3TPZDTVljvz8v3aFzY6svnQvKHMcJIcTU5Cvs7gsRBmF8QIH1621lGpSdNV8s/mWKH6qPNPXZ8+IMdG5s9aVzQZnjGCNrwv/9/i9UK+rwwI7leHvKM5CJzEvY76o5gEd/WwkDa0RaxCDMT5+Fnw9pcKzWBLEA+Os0P5w61NInz4uz0Lmx1ZfOBWWOe2wqVqOizgSJELjvKj9UFrd6/LwYjUaUlZVBqVRCKBRae4oFBQWhtLQULS0tOHHiBIYNG+bW4hjQ935mTCYTGIYBj8e77HMZHu6PiIgAtLdroNOZIJEIEBQk8dhMMW/h3p9ILxIeHg4+n2/9BMOisbGx0ycdl6uoqAjp6ekoKCi49IP7OKWWxWvfyXGs1gixEHhopgxZif2+Hkv6Icoc95qSJcG4NDEWz5IhI4Eyh/Q/lDm9I+DxsWL83xEslqG89ST+tvWfUOhV2FVzAI/sfBUG1ogpCaNwU6r5Df7VeRKMSRXh4dmBSB1AmUP6H8oc95qR74dRQ0R4ZG4ghsR4R+ZotVqo1epOjfYvbMivUCj6XL8vX8MwDEwmEzhOi4gIf2tPsf5cFAP6cWFMJBIhPz+/0/3GW7ZswZgxY3p17EWLFqG8vBz79u3r1XF8nd7I4ZUNClQ1miCVMHhkTiBSB/SdSj0hl4Myx/XaVSyMJvOKyDwegwWTAjAkljKH9E+UOb03JCQR/57yD2txbMKXd+Ch7S9Zi2KP5j4APvgAzCtt33mlFCnR3vEGlRB3o8xxvTYlC5YzX+cI+AzuniJFYoT3ZI5UKkVubq7d1SfDw8ORnZ2N3Nxcu7MAiXtxHIeTJ0+C+/PnifTxWymVSiUqKyutX58+fRolJSUIDQ1FQkIClixZgvnz52P48OEYPXo03nnnHVRXV+O+++7z4Kj7DpGAQcEgEXaUafHwrEDEhvI9PSRCXIoyx3Pq20x4faMCQ2IFuHNyAHj9/FMv0j9Q5riepTh20w+PWLeNjM7EovT78fLXKmQlijB/onN7shAzhULR6c01YH5Dp1KpIJVKPTCq/o0yx/UMrBFCXue36NXNRryxUYHhKSLcPM57M8fe76xFaGioG0dCyOXp04Wx/fv3Y9KkSdavLc0bb7/9dnz44Ye48cYb0dLSgueffx51dXXIyMjApk2bkJiY2KvvW1RUhKKiIphMnlsm93KwLNvlvcnd7euJGfkSTMwQQyrpt5MTST9CmeMZZ5rMF4tKLYeqRiPUOg5SiXdeMBLiTJQ57tGgarb5Wi6X4bVvVdDogFMNRmj0HPzFlDnOVF1djcrKSgwZMgRxcXHW7RzH4cSJEzh37hwyMzMRHh7uwVH2P5Q5rvVL9e8oKlmL1ZOfQXTA+Z/tijoDXvuuDSaTACfq9NAZ/CEReXCghPRBfbowNnHixEtOD1y4cCEWLlzo1O+7aNEiLFq0CHK5HEFBQU49trPV19ejuroaOTk5EIlsE7aqqgptbW3IysoCn9+z2V6VdQb8cECLv14lhUTIgGEYeoNK+g3KHPc7cc6AVZuU0Og5JEbw8dBMGRXiSb9BmeN6lp5iAJAoi4FGEQlx/Y3QAEiMZPDwTBn8xZQ5zqbX6wEAJ06cAADExcVZi2K1tbUAQH2KPIAyx3UMrBFFJWtRJT+He7csxTtTlyI6IBylZ/RY9WMHWFYABb8CaZkqSERXenq4hPQ5Tv9LfuWVV+K2225DeXm5sw9NnMxkMuHkyZNQKpUoLi62XoQA5qLYqVOn0NbWhqamph4d70i1Hq9vVOBItQEb92lcNWxCCAEAHK7S442NCmj0HIbECvD3OYGQ+dEbVEKIc1zcaP+pjJeRpPwb+JBAzi/HMclKsDy63nGFlJQUJCQkADAXx2pqamyKYmlpaYiJifHkEAlxKiFPgNWTn0GcNAo1ygbcu2Upthxpxr82ycGyfHQISjGuoBo3pE269MEIIZfN6e8gtm/fjs8++wxZWVmYP3++sw9PnIjP5yM3NxcikQgqlcpaHLMUxQAgOTkZ0dHRlzzW/ko9Vm1SQm8EhsULMbvAz9XDJ4T0Y39U6LB6sxIGE5CdJMRDM2XwE9HsVEKIcxhZE/5V8qm1KDYr4m9492cNTCyDIfEGNIV8hPL2Y/j+1A5PD7VPYhgGKSkp1lsl7RXF6uvrYTQaPTlMQpwqOiAc70xdijhpFLStg/HFToDjeGgV/IEJBQ1YmHud1/YWI8TXOb0wxrIsFAoFvvvuu377SY4vLSns7++PvLw8a3Fs9+7dNkWxpKSkSx5jV7kW72xRwsQC+Ski3D9dCrGQQpsQd/GlzHEWy+2So4aIcN9VUogElDmEuEt/yBwBj49VVz6NW1Nn4IWxDyHITwAeA1yRKsKSGZH499T/w1+zbsBNQws9PdQ+q6WlBc3Ntv3dAgMDERMTg+rqapSXl6OkpAQsy3pohMRd+kPmWFiKY0ZGBQBoEu5ARsZpLMy5nopixGksHz6Q81xyz0lAQACmT5+OFStWuOLwXs/XlhS2FMcuFB8f36Oi2E/FGny8XQ2OA8ali3Hv1AAI+BTahLiTr2WOM6THC/HktYG4czJlDiHu1l8yJ9I/DH8ffgeEPAGykkR48tpA3D4pAHwegyEhifhrFr1RdaWAgIBOPW7lcjlKS0utKyOGhob2apEo4hv6S+ZYbD2zF+3CYhwLWI5qyWcobixDg7rF08MifYTJZAKfz0dzczMOHDhgzVNnL24hlUqt//h8PsRisfXrwsJCzJw5E08++aTNc+Li4mwW+ACAa6+9Fg8++CAA4I477gDDMPj+++9tHhMcHIzt27f3arx9uvk+6ZkOjQFtjY0221pbW6HT6aBleQjyE9p9nlLL4qcSLQDgqlwJrh3lRxeIhBCX4DgO3+3TYMRgMWJCzG+UEiPoTxghxDVYjsO3f2hwRaoYkUGUOe7GcRyqq6tt3qgJBAIYjUZr79ukpCQkJyd7aoiEOBXLctjwPw1axbuxuvxjAMCUISk42KCz9hyzNOQnxFEcx6G0tBTr1q1DQ0ODdXtUVBSuv/56ZGdnO+39vFKptP73xIkTMXfuXCxevNi67bXXXsO6deusX1dUVEAoFOLQoUPQarWQSCTgOA47d+7EO++8Y31cWFgYnnrqKUyfPt2pH4z0+Eg8Hg98Pr/H/4hv+LbkHF756jfr7ZMxMTHW2yp//e0P3P3+/1DTZr+xrFTCw+JZMlw/xg/XjfanohghxCVMLIePtqnw/X4t3tiogM7Q/YpYhBDSG0YTh/e2qrDpgDlzDEbKHHe7sKfYoEGDIJFIOvUTE4vFnhgaIU5nMHF4Z4sKPxZrsf2PAWA4Pv6SeR3+Mepv1p5jluJYvar50gckxA6TyYRDhw6hqKjIpigGAA0NDSgqKsKhQ4ecPnOsK5MmTcKBAwegUCgAmHvVT548Gbm5udi7dy8A4MiRI2htbcWECROsz7vxxhuhVqvxySefOHU8Pf7o69lnn7UpfHzwwQdQKpWYNWsWoqOjUVdXh++//x4BAQG46667nDpI4hosx+H06SpcOcDcmyEgfADS0oZCpVLht//thxgGzEsA9p1sRNzwRADmi8XaVpP1U9OEcAESwukTVEKIaxhMHNZsUeLgKQMYBphd4Ec9DAkhLqM3cvjPT0ocPmMAnwfMGeEHIfUwdLuAgAAA5xvta7Va1NTUWPfzeDz4+dFCT8T36QwcVm9WoPysERxMOCf+DvdkzcN9WTeAYRhrz7F7tyxFrbIRh5tP0Kwx4hA+n49169aB4+x/2MNxHNatW4ecnBy3jCcnJwcymQy7d+9GYWEhtm/fjsLCQiQkJGD79u2YNGkStm/fjuzsbISGhlqfJxQK8c9//hNPPvkkbrzxRqd9SNLjGWNLly7FP/7xD/zjH/+AVCpFdHQ0qqqq8MEHH2D58uX48MMPcfr0aURHR8Pf398pg/NVvtIgkmNZjIoxz+7bVAU8urkeR2rl+HhfA149YEKHHogOAMYlmS9OdAYOq39UYsV6OSrrDB4cOSHkQr6SOZdLa+Dwrx8UOHjKAAEPuG+aFFek0QwBQjytr2aORs/hze8VOHzGACEfWHi1FCOHUOZ4QlxcHEaNGmVttH9hUQwwvzHq7+83+pO+mjkqLYvXN5qLYiIBcN/VEtw/tsBaFLOwFMeWj1uMaYljPDjivkur1aK0tBQGQ+f3uAqFAuXl5T6/0EdlZWWnmWIXa2howMmTJ90yHh6Ph/Hjx2Pbtm0AgB07dmDChAmYMGGCdZulQHaxm266CWFhYXj77bedNx5HnrR69Wo89thjkEqlNttlMhkee+wxrF692imD81W+0iCSz+cjLy8XyYMGo50fDKXOhAXv78e7u6rQrAW0gQnIzMhAeHg41DoWb36vQGm1OSy0dCsTIV7DVzLncqi0LFZ+J8fRGiPEAuCBGTLkpYg8PSxCCPpm5ig0LF79Vo4T54yQCIGHZsqQlUSZ40n+/v6orq62NoZOSkrCmDFjIJFIoNPpUFxcDK1W6+FREnfoi5nToWbx6rcKnKw3wl/MYMlsGYYny3DN4Cl229NEB4RTUcxFOI7DkSNH0NTUhJKSEpvimEKhQHFxMerr662th3wRy7JobW3t0WNbW1vdVgScNGkStm3bhoqKCojFYsTHx2PkyJE4dOgQVCoVdu7cabcwxjAMli9fjhdeeAFyudwpY3GoMFZbWwuBwP7tcwKBAPX19b0aFHEfkUiEpIR4vHVzls32q4ZF4uYxgxAZGQn5n8FdUWeEn4jBw7NkyEigi0VCiOus26PG6QaT+WJxTiDS4+0vAkIIIc7w+W41qptMkEoYPDI3EEMHUOZ4Wn19vU1RLDk5GRKJBHl5eZBIJNBoNCguLvb5WRykf/pspwo1LSYE+jF4dI4MKdGUOZ7CMAxSU1MhFAqhUCisxTFLUcxoNCIwMBBJSUmeHqrDeDyeze2I3XHnar+TJk1CcXExvv32W2sfMYlEgpycHLz77rtoa2vD+PHj7T532rRpyM7OxquvvuqUsTjUHCotLQ0rV65EYWEhhMLzv8R6vR6vvfYaUlNTnTI44h4cx+GjPdU2236rbMGRWjliAgPw+kYFGtpZyPzMRbF46ilGCHGx68f4o0PN4brRfhgQRplDCHGtm8b6Q6XlcONYf+vKt8SzwsPDERgYiNDQUJvVJy3FseLiYiQlJbntDRwhznTr+ABoDUrcOj7AuvIt8RypVIrc3FwUFxdDoVBg9+7d1l5cgYGByMnJ6XJikK8YNGgQoqKiur2dMioqCikpKW4bU2ZmJkJCQvDaa6/h5Zdftm6fMGECXn75ZeTn5yMwMLDL57/00ku48sorodfrez0Wh/6SLFu2DL/99huSk5Px0EMPYfny5XjooYeQkpKCvXv3YtmyZb0eGHEPjuPw7x2n8e6uKgDAwokDkZdgvq3ywc9KsWxdBxraWYTJeHh8XiAVxQghLqPQnP/UP0DCw0MzZVQUI4S4zIWZI/Mzr7RNRTHvIRAIkJuba1MUs5BIJBgxYgRiYmI8MDJCHHNh5gT68/DwrEAqinkRS3EMgLUo5u/v3yeKYoB5Vcrrr7/e7q26gHnm3PXXX++2VSkt33PChAmor6+3WXnSss3ebZQXGj58OAoLC6HT6Xo9Fof+D8+YMQObN2/G008/jaKiIrAsC4ZhMGLECHzwwQeYMmVKrwfmy4qKilBUVOTWHypHXFwUWzJ1EG4blYBbRsbjwbWHcbC6HXXKDiQGB+GxeYEIldIncoR4I1/JnO6cajDize8VmDXcD1OyJZ4eDiGkG30hcyrqDPjXD0pcO9oPE4ZR5ngrPr/rokF3+0jf0hcy51itAUWbFLhpbAAtJOTFLl6xkeO4Lldx9DV8Ph/Z2dlYtGgR1q1bZzNzLCoqCtdffz2ys7O7LJz1xvbt27vc99VXX3XaNnnyZLvn/cMPP+y07YsvvsAXX3zRm+EBcLAwBpgHO3nyZKjVarS1tSEkJIRWh/nTokWLsGjRIsjlcgQFBXl6OF3iANS0aQCcL4oBgL9IgLduzsKDaw+jtOYM7pg0jIpihHgxX8mcrhytMV8s6ozA/pN6TMoUg89z/h9lQohz+HrmlJ7R498/KaE3Avsq9BiXJgaPMocQr+XrmVNyWo///KyE0QT8UanDmFSRS4oPpHcsPcUAcxGJZVloNBqUlJQgJyfHpoWUr2IYBpmZmcjJyUFlZSXa2toQGhqKlJQUmEymfv1z2as5gR0dHfj999/R3NyM6dOnU2HMx/AYBs/NSUNhRhTGDg4HAByq0uPIGQNuGe+Pt27OwpFaOUYM7FmjPkIIuVwHT+nx7s9KGFkgPU6AhYUyKooRQlxmX4UO7/2igokFMhOFuO8qKRXFCCEus+eYDh9tU4HlgJyBQtw7Vdqviw/e6uJG+zk5OdBqtdaeY32pOMbn82EymRAWFoaBAwdaZ9/291m4Dk8D+uc//4nY2FgUFhZiwYIFOH36NADzTLKXXnrJaQMkriXg8axFsd9P6LD6RyW2l+nw2zE9/EUCKooRQlzmt2M6/Psnc1EsL1mI+2fIIBbSxSIhxDV2lGnx7hZzUWzEYBEWXi2FSECZQwhxjV8Oa/HBr+ai2OihItx3lRRCyhyvw3Ecjh8/blMUEwgE1p5jltUqq6urL30wH8FxHE6ePOnpYXgVhwpjq1evxnPPPYe7774bP/zwg839nzNnzsQPP/zgtAES99hWqsV7W83BPWqICKOGiDw9JEJIH7b1kBYf/qoCxwFXpIpw7zQphHy6WCSEuMaPBzX4ZIcaHICJw8S4e0oABJQ5hBAX+W6fBp/vVgMAJmeJcceVATQj3ktZbi+Miorq1GjfUhyLiYnBwIEDPThK4moO3Uq5atUqLFmyBCtWrOjUBHHw4MGoqKhwyuCI63Echx8OaPHtH+ZeY5MyxbhprD94NMWXEOJC7J8fqEzLluC6MX50WwEhxKXYPxeDm54vwdwRlDmEENdiWfN1zpwRfpiRL6HM8XJisRjDhg2zu08qlSItLc3NIyLu5lBh7NSpU7jqqqvs7pPJZGhvb+/NmHyer6ycwnIc1u1RY+sh8/KmM4dLMLuALhYJ8TW+kjkXmpbjh8QIAYbECihzCPExvpg50/MlGBQjwNABvt8fhpD+xhczZ84IP6TFCSlzCPERDt1KGRQUZLO854WqqqoQGRnZq0H5ukWLFqG8vBz79u3z9FC6VdtiwrZSc1Hsxiv8MWeEP71BJcQH+ULmGE0cvv1DDbWOtW4bOkBImUOID/KFzDH8mTlag3nWBsMw9AaVEB/lE5lj5LDhf2roKHMI8UkOFcYmT56MFStWQKVSWbcxDAOj0Yi33367y9lkxLvEhwtw9+QA3HFlAKZkSzw9HEJIH6U3cli9WYnv92vx9malTV9KQghxNp2Bw6pNCny/X4t3fqLMIYS4llbP4c0fFPjhgBbvbVV6ejiEEAc4dCvl888/j4KCAqSnp2PevHlgGAarVq1CcXExqqur8eWXXzp7nMRJtAYOSg2L8EDzcqwFg8UeHhEhpC/T6M1vUE+cM0LIB6ZmU58NQojrqLQs/vWDEicbjBAJgCmUOYQQF1JoWLz5vQJnmkyQCIHJWTTZgHg/hmGQkpJCfx8v4NCMsUGDBuG3335DWloaVq9eDY7j8PHHHyM8PBy7du1CQkKCs8dJnEClZbHyOzle/VaBViV76ScQQkgvKDQsXv1WjhPnjPATMVg8S4asJFrxlhDiGh1qFq9sUOBkgxH+YgZLZsuQHk+3MhFCXKNNac6cM00mSCUM/j4nkG6fJF6P4zjw+XwwDIOmpiZ0dHRYtztbUlISNmzYYLOtqqoKDMOgvb0ddXV1uOWWWxAdHQ2ZTIbk5GQ8/PDDnY6zc+dOMAyDxx9/3OljtHBoxhgApKenY/PmzdDpdGhpaUFISAj8/PycOTbiRO0qFm9sVKC21YQAMQOFmkWo1KG6KCGEXFKrwoTXNypQ385CKjEXxRIjHP6TQwgh3WqSm/D6dwo0yVkE+ZszJy6MMocQ4hqNHSas/E6BFgWL4AAGS2YFIiaU7+lhEdItjuPQ3NyMyspKaDQa63Y/Pz8MGjQI4eHhbp1FNn/+fCQkJODYsWMIDAzE6dOnsXv37k6Pe++99xAaGoqPPvoIL7zwAgQC5/99d6gysnPnTiiV5vunxWIxYmNjrUUxpVKJnTt3Om+EpNeaOkxYsV6O2lYTggMYPDpPhsRIulgkhLgGx3F4Z4sK9e3mAvxj8wKpKEYIcRmO4/Dvn5RokrMIk5kzh4pihBBXYTkOq39UokXBIjKIhyeuoaIY8X6WolhpaalNUQwANBoNSktL0dzc7Na+nL///jvuvPNOBAcHg8fjISUlBbfffrvNY+RyOb766iusWrUKSqUSP/zwg0vG4lBhbNKkSSgvL7e77/jx45g0aVKvBkWcp7bFiJfXy9EkZxERaL5YHBBKF4uEENdhGAYLJgYgJVqAx+bJEBNCF4uEENdhGAZ3TArAoGgBHp8XiMggyhxCiOvwGAZ3XBmAwTHmzAmTUeYQ78cwDCorK7t9zMmTJ906Y2zs2LFYvHgxPv74Y5w4ccLuY9auXYuAgABcf/31uPbaa/Hee++5ZCwOFca6qyIaDAbweP37Fr2ioiKkp6ejoKDAo+OobjJixQYFOtQcBoTy8di8QEQEUnAT0td4S+Zo9Of/NsSG8vH4PBldLBLSB3lj5sSHmwvxIdQmgpA+xxszJylSgEfnyhDoT5lDfENHR0enmWIXU6vV1p5j7vDll19i1qxZeOONNzBs2DAkJibis88+s3nMe++9h1tvvRUCgQALFizApk2bUFdX5/Sx9Pg3WS6Xo7q6GtXV1QCA+vp669eWf8ePH8dHH32E6Ohopw/UlyxatAjl5eXYt2+fR8cRKuMhOICHlChzcAcHUHAT0hd5Q+aUntHjif+241itwbrN3idO1S1q/OPbcmgNpk77Dp3twIrNJ8C6cQo3IeTyeUPmlJw2Z05FXfeZQwjxfd6QOfsqdXjiv+041WC0bqPMIb6C4zhotdoePVar1TrtdkqhUAiDwWCzzfK1UChEYGAgli5dioMHD6KtrQ0PPvggFixYgKNHjwIASktLsW/fPuvtlZMmTUJsbCw++ugjp4zvQj2+p+7111/H888/D8AcAvPmzbP7OI7j8NRTTzlndKRXpBIelsyWQSJkIBZScBNCXOOPCh3e/0UFEwvsLNMhtYsVmYwsi4c+P4y6djWalHqsvCETEqF5Rtmhsx24/7Ni6I0sYoMluG0UrW5MCLFvzzEdPtqmAssBu4/qMDiGVoEjhLjOznItPtmuBgfgt6M6JEdRWxriWxiGgUQi6dFjJRKJ04q+iYmJOH36tM22kydPIjw8HAEBATbbpVIp/v73v+PFF19EeXk50tLSrLdNXn311dbHtbe34/3338cTTzzhlDFa9Pi3etq0aZBKpeA4Do899hgeeOABJCTYvnERi8XIzMzEhAkTnDpI0nO7j+pgNHGYmGH+wQ+i6b2EEBfaUabFpzvMF4sjBotw55UBXT5WwOPh0SuCUXNOjbdLW7Hky1KsvCETx+uVuP+zYlwVx2JIKB+F2VHuewGEEJ/yy2EtPt+tBgCMSRVhwcSuM4cQQnprc7EGX+813342Pl2MW8f7e3hEhDgmKCgIfn5+3d5O6e/vj6CgIKd9z9tuuw3/+Mc/MHXqVOTk5KC6uhpLly7FrbfeCgB49NFHceuttyI9PR0A8PHHH0OlUiE/Px96vR6ffPIJXnrpJZuG/A0NDcjPz8fOnTsxfvx4p421x4Wx0aNHY/To0QAAlUqFv/zlL4iNjXXaQEjv/Vyiwbo9GjAA4sP5SImmT1AJIa7z40ENvvnd/Md1YoYYN4/zB6+bT5iMRiOgbkW4BPhbJvB2aSumrNwNg9GEWUnAmBgAMEGnUkDmJ3bLayCE+AaO47BxvxYb95kzZ0q2GNeP6T5zCCHEURzHYf3vGvxYbL79rDBXgnmj/Oj2SeKzOI7DoEGDUFpa2uVjUlJSwHGc037Ob7/9digUCtx6662oqalBeHg4rrvuOixduhQAoNPpcNNNN6G2thZCoRBpaWn49ttvkZSUhC+//BJ6vR4LFy6ETCazHjM6Ohpz587FmjVrPFMYu9BTTz0FvV5vd59KpYJIJIJQSEUZd+E4Dhv+0GDTAXNwT82W0BRfQojLcByHr3/X4Kc/Lxan50swd8SlLxYFAgFyc3NRXFyMcGhxXwbw7yMmXJ1kKYoBaWlpCA8Pd/ErIIT4Epbj8OVuNX4p1QEA5ozww4x8593qQQghF2JZDp/uVGNnuTlzrh3th6tz/Tw8KkJ6h2EYhIeHIzMzE5WVlTYzx/z9/ZGSkoLw8HCn/m1lGAYPPPAAHnjgAbv733rrrS6fe8MNN+CGG26wu++rr75yyvgu5FD15C9/+Qt0Oh3Wrl3bad+9994LPz8/rFmzpteDI5fGchzW7lJj+xFzcM8d6YfpeXSxSAhxHQ5Am5IFAFw/xg/Tcnp+sejn54fc3Fz8b98BRPjp8cyfC0xxHDB4aCpiYmJcMGJCiE/jgDaVOXNuHuePKzN71ieFEEIcwXJAu4oFA+C2if4Yn06ZQ/oGS3EsIiIC7e3t0Ol0kEgkCAoKcupMMV/kUAOqbdu2Yfbs2Xb3zZo1C7/88kuvBkV6xmji8N5WFbYf0YEBcOt4f8zIpym+hBDX4jEM7rwyAA/NlF5WUcziRLMerx4w2mz78Qzw0o5Gu6tVEkL6Nx6PwT1TpVg8U0ZFMUKIywn4DP56lRSLZ8moKEb6HIZhYDKZwHEcIiIirD3F+nsNwaHCWENDQ5ef6kdHR6O+vr5XgyI9U3xajz8q9ODzgLunBlgb7hNCiLPpDBx+KtaA/XP5ZgGfQUaC6LKPY1l9clQka7N9RDRwtMbckJ+KY4QQjZ7DzyXnM0fIZzAsgdp0EEJcQ61jseWQFtyfmSMSMEiPp8whfRPHcTh58qT15504WBgLDg5GZWWl3X2VlZU2zdGI6wxPEWFGvgQLr5Zi5GBqVE0IcQ2VlsXr3ynw1V4N1u1RO3wcI8ti6XfluCqOtfYUS05OhkQisTbkP1rTiq8O1Dpp5IQQX6TQsHjtWznW7dFgw/+6Xj2LEEKcQa5m8coGBb78TY3v92s9PRxCiAc4VBibNGkSli9fjtbWVpvtra2teOmll3DllVc6ZXCkM4WGhVZvruwyDIO5I/2RlXT5szYIIaQn2lXmi8WTDUb4ixkMT3E8b/gMg6eukNk02k9KSkJubq61OPZIPh/XZEU4afSEEF/TqmSxYr0cZ5pMkEoY5CX37hqH5Tgcq1PY3ac1mHCyUdmr4xNCfFuLwoSX18tR02JCoB+DnIG9myXGchxONans7tMZTahudfwDRkKI6zhUGFu6dCmampowePBgLFy4EC+88AL+9re/YciQIWhqasJzzz3n7HESAK0KE1asl2PVjwoYjDTtkRDiWk1yc+bUtpoQ5M/g0bkypEQ7fsFoMpnAGM2fxKalpVlvybc05JdIJAgQcNDp6NNaQvqjhnZz5tS3swgJ4OGxuYFIinR8lW2W47Ds+2NY8P5+7DjRbLNPazBhyZeluPPDgyg/J+/t0AkhPqiu1YSXvpGjsYNFmIyHx+YFIj68d5nzwg/HcNuafdhf1WazT2c0Z85dHx7osnBGyOWiWyEvrafnyKHC2NChQ7Fr1y7k5OTg3XffxTPPPIM1a9YgJycHu3btwtChQx05bJ9RVFSE9PR0FBQUOO2Y9e0mvLxegfp2Fk0dLDrU7KWfRAjpF1yRObWtRqxYL0eTnEV4oPliMS7M8YtFABAIBMjOzkZWVlanPpWW4lh2djZCQkJ69X0IIa7lisw522zOnBYFi8ggHh6/RoaYUH6vjslyHNR6E4wsh0fXlVqLY5ai2O+nWmFiOWiNdE1FiDdzReacaTRixQY52lUcYkJ4eHxeIKKCe5c5RhOHRoUeWiOLB9ceshbHLEWxvSdbodab0K4xOOMlkH6Mzzf/rOr1eg+PxPup1eZZmkJh9x/uO/wuJzs7G7/88gs0Gg3a2toQGhoKiYSavwPAokWLsGjRIsjlcusqD71R3WTEG98roNBwiA7m4eFZMoTKehfchJC+w9mZozdyeGOj4s+LRT4eniVDiNShz1E6EQqFCA8Pt7vPz88Pfn6Xv8olIcS9nJ05WgOH1zear3PiwsyZE+jf+8wR8HhYNi8dHIAt5Y14dF0pXpg3DOuLz+H3U63wE/Lx1s1ZyEsI7vX3IoS4jrMzR61jsXKjAmodh8QIPh6aKYPMr/eZIxLw8Or1GXhk3RH8VtmCB9cewivXZ+KzP85i78lWSIQ8/OvmbMoc0msCgQD+/v5oamqCUCgEj3d5P79Go3l1eK1Way2y9TUcx0GtVqOxsRHBwcGXfJ29+vi/o6MDv//+O5qbmzF9+nQqjLnAiXMGrNqkhEbPISGCj8VOCm5CCOmKSMDglnEB+KlEi/unSyGVUOYQQlxHImRw81h/bC/TYVGhFP5i52WOgMfDC/PSAZiLY49/fQQArEWx/ESaoUpIf+Mv5uGmsf7Yc0yHhYUy+IkYpx1bLODbFMceWHsIAKxFMcoc4gwMwyAmJganT5/GmTNnLvv5JpMJzc3NqKqquuyimq8JDg5GdHT0JR/ncGHsn//8J1566SVoNBowDIN9+/YhJCQEkydPxtSpU/HEE084emjypyPVeqz+UQmDCRgSK8D9050b3IQQciG9kYNIYM6Y3GQRsgcKwWMocwghrnFh5hQMFiN/kMglmSPg8fDszFRsKW+0brt++AB6g0pIP3Nh5oweKsbIIa7JHLGAjxfnpWPCK7us2+4Yk0iZQ5xKJBJh8ODBDt1O2dbWhpkzZ2L//v2QSqUuGJ13EAqFPZ4R51BhbPXq1XjuueewcOFCFBYWYsaMGdZ9M2fOxDfffEOFMScIDuBBKGCQFifAX6+SWoOcEEKcbc8xHb7bp8Ejc2QIDzT/AaGiGCHEVXaWa/HjQS0enRuI0D9v1XZV5mgNJjz61RGbbZ/97yxyE4IxYYj9W7sJIX3Lr6Va/HLYnDnBAa7NHJ3RhCe+KbPZ9uFvZ5CXEIzhSVQcI87D4/EcumtPJBLhzJkzEIlEdNffnxyaN7dq1SosWbIEb731FqZNm2azb/DgwaioqHDK4Pq7uDABnpgXiL9dTUUxQojrbD2kxQe/qtCiYLHrqM7TwyGE9HGbizX473Y1muUs9hxzbeZc2GjfT8jHf+bnYmp6ZKeG/ISQvonjOHy/X4O1u9Ro7GDxvxOuzZwLG+1LhDwU3ZKNKwaFdWrITwjxLg4Vxk6dOoWrrrrK7j6ZTIb29vbejKnf4jgOm4s1OHHu/EolMaF8CPhUFCOEOB/HcfjuDzW++M28WsuUbDHmjKDm94QQ1+A4Dt/sVePrvRoAQGGeBDPyXfdJtcHE2hTF3ro5CwVJIXhhXrpNcWx3BRXHCOmLWI7Dl7+p8e0f5syZVeCHaTmuyxy9kbUpiv3r5myMTgnDq9dn2BTHDpyh4hgh3sahwlhQUBAaGhrs7quqqkJkZGSvBtUfcRyHr/Zq8PVeDVZtUqJdRUuHE0Jch+U4fLFbjY37tQCAuSP8cMMYf7p9khDiEizL4ZMdavxYbM6c60b74ZpR/mBcmDkCHoPUaGmnRvuWhvxT0yMR7C/EgBD6QICQvsbEcvhomwpbD5tniN14hT9mF/i5NnP4DGKDJJ0a7Vsa8l8xKAwBYgFCA0QuGwMhxDEO9RibPHkyVqxYgTlz5ljvSWUYBkajEW+//XaXs8mIfSzL4b871Nj95y1MM4dLrPe+E0KIs1kuFvceNzfrvGWcPyZlUn8BQohrGE0c3v9FhX2VejAA5k/0x7h012cOwzB44MoUXJM3AHEXFb8sxbFGuQ6xwVQYI6QvMRg5vLtFieLTBvAY4PZJARiTKnb59+UxDJ6cPhS3jIzHwPAAm32W4liTQt8pjwghnudQYez5559HQUEB0tPTMW/ePDAMg1WrVqG4uBjV1dX48ssvnT3OPstg4rBmixIHTxnAMMCCiQEYm+b64CaE9F96I1DTYgKPAe6cHIBRQyhzCCGuozNwONdqAp8H3DNFiuGD3DdbgmGYLt+ECng8KooR0gdpDRzq2kwQ8IB7p0mRm+y+zOExTKeimIVYwKeiGCFeyqHC2KBBg/Dbb79hyZIlWL16NTiOw8cff4xJkybh008/RUJCgrPH2SdpDRze/lGB8hojBDzgnqlS5KfQ1FpCiGv5iRgsninD2WYThiUIPT0cQkgfFyDhYfEsGeraTEiLo8whhLiWzI+Hh2fJ0CRnMXQAZQ4h5NIcKowBQHp6OjZv3gydToeWlhaEhITAz48q4Jfjp2INymuMEAuAhYUypMdTcBNCXEOhYVFWbcCooebZYYH+PAxLoFu2CSGuIVezOFZrwIjB5swJDuBRmwhCiMu0q1hU1hmtM1JDZXyEyvgeHhUhxFc4XBizEIvFiI2NdcZY+p3p+X5oaGcxOUuClOhe/68ghBC7WpUsXv9Ojvp2FiwHt/TZIIT0X81yE17fqEBjBwsGQMFgyhxCiOs0dpiw8jsFWpUs+Dz33jpJCOkbel2NaWpqgkaj6bS9r9xOKRAIkJGRAQAYPnw41qxZ06vjdahZyPwY8BgGQj6De6dJnTFMQkgf4ezMaWg/f7EYEsDDwEgqwhNCznN25pxrNeH1jXK0qziEyXhIiKDMIYSc5+zMqWk24o3vFehQc4gI5CE+nGaJEcfV1dUhODi4051wHMehtrYWUVFREArpLq++yKGrFYVCgYcffhhr166FVqu1+xiTydSrgXmL4OBglJSUOOVYta1GvLFRgfxkEW4c69olygkhvsmZmXO22YjXNyqg0HCIDOJhyWwZwui2AkLIBZyZOVWNRrz5vQJKLYeYEB4enhWIECndPkkIOc+ZmXOy3oC3flBCreMQF8bH4lkyBPlT5hDH1NfX4+jRo5BIJMjNzbUWxziOw8mTJ1FdXY26ujrk5+eDx6Ofs77GocLY4sWL8dlnn+Huu+9GVlYWxGKaIn8ppxvMF4sqHYdjtUZoDYAfzfIlhLhIZZ35YlGj5xAfzsfimTIE0sUiIcRFjtca8K9NCugMQFIkHw/OkEHmR5lDCHGN8rMGFP2ogN4IpEQL8MB0KQIklDnEcZae6RqNBsXFxcjNzYVEIrEWxQAgJiaGimJ9lEP/V3/44Qe89NJLWLVqFe69917cfvvtnf55g507d2LWrFmIjY0FwzDYsGFDp8esXr0aAwcOhEQiQX5+Pnbt2mWzXy6XIz8/H2PHjsWOHTscGkfFOSNe+04OlY7DwCg+Hp0rg5+IZosR0td4S+a0KVm8vlEBjZ7DoBgBHplDRTFC+iJvyZwmOYs3vjcXxYYOEODvswOpKEZIH+QtmVPfbsJbP5iLYsPihXh4loyKYqTXxGIx8vLy4OfnB61Wi+LiYpSVlVmLYkOGDEFcXJyHR0lcxaEE0Wq1yMzMdPZYnE6lUiE7OxurVq2yu/+LL77A4sWL8fTTT6O4uBjjxo1DYWGh9YcfAKqqqnDgwAH8+9//xoIFCyCXyy97HO9u1UBnANLiBFgyO5CCm5A+ylsyJ0TKw1U5EmQkCLF4pgz+YsocQvoib8mciEAepmRJkDNQiIdmyCDxog//WJaFSqWyu89oNHbZEoQQ0pm3ZE5UEA8TM8TITxHh/ulSiIXekznEt11cHGtsbARARbH+wKF3S9OnT+9U/fdGhYWFWLZsGa655hq7+1euXIm7774b99xzD9LS0vDGG28gPj4eb7/9tvUxlhU3MzIykJ6ejhMnTlz2OIwskJcsxAMzZJBQcBPSZ3lL5gDArAI/ulgkpI/zpsy5ZpQf7rtKCqHAezKHZVmUlZXhwIEDnd58G41GlJSU4ODBg3YXkSKEdOYtmcMwDG64wh/3Tg2AgO89mUP6BpFIhMDAQJttYWFhHhoNcReHeoz93//9H6677jrIZDLMmjXL7g9KaGhorwfnSnq9HgcOHMATTzxhs33atGnYs2cPAKCtrQ3+/v4Qi8WoqalBeXk5kpOTuzymTqeDTqezft3R0QEAGBatxrX5Usjb9S54Jb7HYDBArVajpaWFVvW4CJ0b+1pbWwGYm1/6KndmjuV8ETP6veoanRv7KHPs87XMMRqNaG5uhkKhwO7du5Geng6ZTAaj0YiysjIolUoIBAI0NjZCKnXeKuH0e9U1Ojf2UebY52uZ4yn0e9W1yz03HMfhzJkzqK2ttdm+c+dOZGRkQCKRuGqobtUXMsfZHCqMWZbYffTRR/Hoo4/afYy3r0rZ3NwMk8mEqKgom+1RUVGor68HABw9ehR//etfwePxwDAM3nzzzW4LfsuXL8dzzz3Xafvjtw3D484dPiH9UktLC4KCgjw9DIe4M3OGDBni3MET0k9R5tiizCHEtShzbFHmEOJavpw5zuZQYezZZ58Fw/SNaasXvw6O46zbxowZg9LS0h4f68knn8SSJUusX7e3tyMxMRHV1dVO/YErKCjAvn37nPqc7vZ3te/i7fYed+E2y3/L5XLEx8fj7Nmznaap9tblnpuePP5yz01PtnX1tavOja+fl46ODiQkJHj9TNSeoMy59H7KHNf+bl3435Q5lDmUOY5njrf/Le/pc3r6+rvbTplDmWPRHzLHFT8/9rZT5nS9nTKHMsfZHCqMLV261MnDcL/w8HDw+XzrJxgWjY2NnT7p6CmxWAyxWNxpe1BQkFN/Efl8/mUf71LP6W5/V/su3m7vcRduu3h/YGCg09+kXu656cnjL/fc9GTbpb529rnpK+fFl5dHpszp+X7KHNf+btl7PGWO/a8pc2xR5vjW3/KePqenr7+77ZQ5lDn9KXNc8fNjbztlTtfbKXMoc5yt12eiqakJ1dXVnf55O5FIhPz8fGzZssVm+5YtWzBmzBgPjapnFi1a5PTndLe/q30Xb7f3uAu3OTLuy3W536Mnj7/cc9OTbT05d85E58XzKHN6vp8yx7W/W3Reev61L6PM6fl+RzPH2/+W9/Q5PX393W2nzKHM6U+Z44qfH3vbPf3zQ5nTNW/4menvmeN0nAM6Ojq4u+++m/P39+d4PJ7df95AoVBwxcXFXHFxMQeAW7lyJVdcXMydOXOG4ziO+/zzzzmhUMi99957XHl5Obd48WIuICCAq6qqcsr37+jo4ABwHR0dTjleX0HnpWt0buzzlfNCmeOd6Lx0jc6Nfb5yXihzvBOdl67RubHPV84LZY53ovPSNTo39tF56cyhWykffvhhfPbZZ7j77ruRlZVld4qrN9i/fz8mTZpk/dpyj/rtt9+ODz/8EDfeeCNaWlrw/PPPo66uDhkZGdi0aRMSExOd8v3FYjH+8Y9/eO358RQ6L12jc2Ofr5wXyhzvROela3Ru7POV80KZ453ovHSNzo19vnJeKHO8E52XrtG5sY/OS2cMx13+Gp3R0dF48skn8dBDD7liTIQQQgghhBBCCCGEuJxDPca0Wi0yMzOdPRZCCCGEEEIIIYQQQtzGocLY9OnTsWvXLmePhRBCCCGEEEIIIYQQt3Gox9j//d//4brrroNMJsOsWbMQFhbW6TGhoaG9HhwhhBBCCCGEEEIIIa7iUI8xHs880YxhmC4fYzKZHB8VIYQQQgghhBBCCCEu5tCMsWeffbbbohi5NIFAgIyMDADA8OHDsWbNGg+PyHucPn0ad911FxoaGsDn8/H7778jICDA08PyqOPHj+PGG2+0+Xrt2rWYO3eu5wblJV5//XWsWbMGHMdhypQpePPNNymf7KDM6RplTmeUOV2jzOkZypyuUeZ0RpnTNcqcnqHM6RplTmeUOV3rr5nj0Iwx0nvh4eFobm729DC80oQJE7Bs2TKMGzcOra2tCAwMhEDgUA23T1IqlUhKSsKZM2f6/R+1pqYmjBo1CmVlZRAKhRg/fjxeffVVjB492tND8zqUOV2jzOkeZc55lDk9R5nTNcqc7lHmnEeZ03OUOV2jzOkeZc55/Tlz6DeCeBXLL+G4ceMAUK86e7777jtMnjy53we3hdFohFarBQAYDAZERkZ6eETEl1DmXBplji3KHNIblDmXRpljizKH9AZlzqVR5tjqr5nj0KqUFzpx4gT27t2LiooKZ4zHJ+zcuROzZs1CbGwsGIbBhg0bOj1m9erVGDhwICQSCfLz8zut4imXy5Gfn4+xY8dix44dbhq56/X23FRUVEAqlWL27NnIy8vDiy++6MbRu44zfmYsvvzyS5upv76st+clIiICjzzyCBISEhAbG4spU6YgJSXFja/APShzukaZYx9ljn2UOT1DmdM1yhz7KHPso8zpGcqcrlHm2EeZYx9ljuMcLoytW7cOiYmJSEtLw9ixY5GamorExER89dVXzhyfV1KpVMjOzsaqVavs7v/iiy+wePFiPP300yguLsa4ceNQWFiI6upq62Oqqqpw4MAB/Pvf/8aCBQsgl8vdNXyX6u25MRgM2LVrF4qKirB3715s2bIFW7ZscedLcAln/MwA5j/6v/32G6ZPn+6OYbtcb89LW1sbvv/+e1RVVaG2thZ79uzBzp073fkS3IIyp2uUOfZR5thHmdMzlDldo8yxjzLHPsqcnqHM6Rpljn2UOfZR5vQC54AffviB4/F4XGZmJrdixQruk08+4V5++WUuMzOT4/P53KZNmxw5rE8CwK1fv95m24gRI7j77rvPZltqair3xBNP2D3G1Vdfze3bt89VQ/QYR87Nnj17uKuuusq6b8WKFdyKFStcPlZ36s3PzMcff8zdeuutrh6iRzhyXr788ktu4cKF1n0rVqzgXn75ZZeP1ZMoc7pGmWMfZY59lDk9Q5nTNcoc+yhz7KPM6RnKnK5R5thHmWMfZc7lcWjG2AsvvIBp06ahpKQEjz76KG699VY89thjOHToEKZMmYJly5b1tl7ns/R6PQ4cOIBp06bZbJ82bRr27NkDwFyJ1el0AICamhqUl5cjOTnZ7WN1t56cm4KCAjQ0NKCtrQ0sy2Lnzp1IS0vzxHDdpifnxaIvTfW9lJ6cl/j4eOzZswdarRYmkwnbt2/H0KFDPTFcj6HM6Rpljn2UOfZR5vQMZU7XKHPso8yxjzKnZyhzukaZYx9ljn2UOd1zqPl+SUkJPv/8c/B4tnU1hmGwcOFC3HLLLU4ZnC9qbm6GyWRCVFSUzfaoqCjU19cDAI4ePYq//vWv4PF4YBgGb775Zr9ohNiTcyMQCPDiiy9i/Pjx4DgO06ZNw8yZMz0xXLfpyXkBgI6ODvzxxx/4+uuv3T1Ej+jJeRk1ahSmT5+O3Nxc8Hg8TJ48GbNnz/bEcD2GMqdrlDn2UebYR5nTM5Q5XaPMsY8yxz7KnJ6hzOkaZY59lDn2UeZ0z6HCGJ/Ph16vt7vPYDB0Kpj1RwzD2HzNcZx125gxY1BaWuqJYXmF7s4NABQWFqKwsNDdw/K4S52XoKAgNDQ0uHtYHnep8/LCCy/ghRdecPewvA5lTtcoc+yjzLGPMqdnKHO6RpljH2WOfZQ5PUOZ0zXKHPsoc+yjzLHPoQpWQUEBVqxYAY1GY7Ndp9Ph1VdfxciRI50yOF8UHh4OPp9vU40GgMbGxk7V2f6Gzo19dF7so/PSM3Seukbnxj46L/bReekZOk9do3NjH50X++i89Aydp67RubGPzot9dF6651Bh7LnnnkNJSQmSk5Px4IMP4sUXX8QDDzyA5ORkFBcX47nnnnP2OH2GSCRCfn5+p9U+tmzZgjFjxnhoVN6Bzo19dF7so/PSM3Seukbnxj46L/bReekZOk9do3NjH50X++i89Aydp67RubGPzot9dF6659CtlGPHjsXPP/+MJ554AkVFReA4DjweDyNHjsTatWv7/IlVKpWorKy0fn369GmUlJQgNDQUCQkJWLJkCebPn4/hw4dj9OjReOedd1BdXY377rvPg6N2Dzo39tF5sY/OS8/QeeoanRv76LzYR+elZ+g8dY3OjX10Xuyj89IzdJ66RufGPjov9tF56YXeLmupUqm4mpoaTqVS9fZQPmPbtm0cgE7/br/9dutjioqKuMTERE4kEnF5eXncjh07PDdgN6JzYx+dF/vovPQMnaeu0bmxj86LfXReeobOU9fo3NhH58U+Oi89Q+epa3Ru7KPzYh+dF8cxHMdxl1tMMxgM0Ov1CAgI6LRPpVJBJBJBKBRe7mEJIYQQQgghhBBCCHEbhwpjd9xxB3Q6HdauXdtp36233go/Pz+sWbPGKQMkhBBCCCGEEEIIIcQVHGq+v23bNsyePdvuvlmzZuGXX37p1aAIIYQQQgghhBBCCHE1hwpjDQ0NiImJsbsvOjq60xKghBBCCCGEEEIIIYR4G4cKY8HBwTarHVyosrISMpmsV4MihBBCCCGEEEIIIcTVHCqMTZo0CcuXL0dra6vN9tbWVrz00ku48sornTI4QgghhBBCCCGEEEJcxaHm+8ePH0dBQQGEQiFuvPFGDBgwADU1NVi3bh0MBgP++OMPDB061BXjJYQQQgghhBBCCCHEKRwqjAHAoUOHsGTJEuzcuRMmkwl8Ph8TJkzAypUrkZWV5exxEkIIIYQQQgghhBDiVA4Xxiw0Gg3a2toQGhoKiUTirHERQgghhBBCCCGEEOJSvS6MEUIIIYQQQgghhBDiixxqvv/rr79i3bp11q8bGhowffp0REdHY8GCBdBqtU4bICGEEEIIIYQQQgghruBQYezZZ59FeXm59evHHnsMu3btwpgxY/DVV1/hlVdecdoACSGEEEIIIYQQQghxBYcKYydOnEBeXh4AwGg0Yv369Xj55ZfxzTff4Pnnn8fatWudOkhCCCGEEEIIIYQQQpzNocKYXC5HcHAwAODAgQNQqVSYPXs2AGDEiBGorq522gAJIYQQQgghhBBCCHEFhwpjkZGRqKioAABs3boViYmJiIuLAwAoFAoIhULnjZAQQgghhBBCCCGEEBcQOPKkq6++Gk899RTKysrw4Ycf4vbbb7fuO3bsGJKSkpw1PkIIIYQQQgghhBBCXILhOI673Cc1Nzfjtttuw549ezBixAh8+eWXCA0NBQDk5+dj1KhRKCoqcvpgCSGEEEIIIYQQQghxFocKY92Ry+WQSCQQiUTOPCwhhBBCCCGEEEIIIU7V41spq6urERMTA6FQ2KPm+gkJCb0aGCGEEEIIIYQQQgghrtTjGWN8Ph979+7FiBEjwOPxwDBMt483mUxOGSAhhBBCCCGEEEIIIa7Q4xlj77//PlJSUqz/fanCGCGEEEIIIYQQQggh3szpPcYIIYQQQgghhBBCCPEFPE8PgBDSO/PmzUNISAiuu+46Tw+FENIPUOYQQtyJMocQ4k6UOf0TFcYI8XEPPvggPv74Y08PgxDST1DmEELciTKHEOJOlDn9U48LYzweD3w+v8f/CCHuMWnSJMhkMk8PgxDST1DmEELciTKHEOJOlDn9U48LY88++6zNv/j4eISEhGDBggV47LHHMH/+fISEhCAuLg7PPvusK8dMiNXbb7+NrKwsBAYGIjAwEKNHj8aPP/5o85ikpCQwDNPp36JFi7o87tKlSzs9Pjo62tUvhxDiQ5YvXw6GYbB48eJO+1avXo2BAwdCIpEgPz8fu3btuuTxHHkOIaT/6Cpzli9fjoKCAshkMkRGRmLu3Lk4fvx4t8ei6xxCyKV0lTmO5gdd5xBv1uNVKZcuXWr979deew3R0dHYunUrpFKpdbtCocCUKVPg7+/v1EES0pW4uDi89NJLGDRoEADgo48+wpw5c1BcXIxhw4YBAPbt2weTyWR9zpEjRzB16lRcf/313R572LBh2Lp1q/VrT82EzM/Ph06n67T9559/RmxsrAdGRAjZt28f3nnnHWRlZXXa98UXX2Dx4sVYvXo1rrjiCvznP/9BYWEhysvLkZCQYPd4jjzHVShzCPE+3WXOjh07sGjRIhQUFMBoNOLpp5/GtGnTUF5ejoCAgC6PSdc5hJCudJc5wOXnB13nEK/HOSA5OZn7+uuv7e776quvuKSkJEcOS3yIyWTiXnjhBW7QoEGcWCzmIiMjudtuu83Tw+I4juNCQkK4NWvWdLn/oYce4lJSUjiWZbt8zD/+8Q8uOzv7sr/36dOnOQDc119/zY0bN46TSCRcXl4ed/r0aW7btm1cQUEB5+fnx02cOJFraWnhOM4553Lbtm3ctddee9njJcRXeFPmKBQKbvDgwdyWLVu4CRMmcA899JDN/hEjRnD33XefzbbU1FTuiSee6PKYjjyH4yhzCHEVX8qcizU2NnIAuB07dnT5GLrOIcS7+FLmOJIfdJ1DvJ1Dzfdra2shENifbCYQCFBfX+9onY74iOXLl+Ozzz7DO++8g+PHj+Obb77BxIkTHT7eiy++CKlU2u2/S023NZlM+Pzzz6FSqTB69Gi7j9Hr9fjkk09w1113gWGYbo9XUVGB2NhYDBw4EDfddBNOnTp1yddRUlICwDxV+MUXX8TevXvR0tKC+fPn4+WXX0ZRURG2b9+O0tJSvPfeewCcfy4J6Yu8KXMWLVqEGTNmYMqUKZ326fV6HDhwANOmTbPZPm3aNOzZs8fu8Rx5jgVlDiGu4SuZY09HRwcAIDQ0tNvH0XUOId7D1zLncvKDrnOIL+jxrZQXSktLw8qVK1FYWAihUGjdrtfr8dprryE1NdVpAyTe6aeffsKMGTMwadIkAEBiYiKuuOIKh49333334YYbbuj2MQMGDLC7vbS0FKNHj4ZWq4VUKsX69euRnp5u97EbNmxAe3s77rjjjm6/18iRI/Hxxx9jyJAhaGhowLJlyzBmzBiUlZUhLCysy+cdOnQIISEh+PzzzxEeHg7A3MDx119/tbmloaCgwFpA7u25vOqqq3Dw4EGoVCrExcVh/fr1KCgo6PHzCfEF3pI5n3/+OQ4ePIh9+/bZfU5zczNMJhOioqJstkdFRXX5oZEjz7GgzCHENXwlcy7GcRyWLFmCsWPHIiMjo8vH0XUOId7FlzLncvODrnOIL3CoMLZs2TLMnTsXycnJuOaaaxAdHY36+np88803qK+vx4YNG5w8TOJtZs+ejccffxzFxcW45pprcMMNN1g/mTx16hTKysowa9YsAOZi1I4dO/D66693ebzQ0NBLfrLZlaFDh6KkpATt7e34+uuvcfvtt2PHjh12i2PvvfceCgsLL3n/eGFhofW/MzMzMXr0aKSkpOCjjz7CkiVLunxeSUkJZs+ebQ1uAKiursbNN99s0+ejuroaM2bMAND9ueyJn376qcePJcRXeUPmnD17Fg899BB+/vlnSCSSbh978YxUjuMuOUvVkedQ5hDiGr6WORb3338/Dh8+jN27d3f7OLrOIcS7+FLmOJofdJ1DvJlDt1LOmDEDmzdvxoABA1BUVISnn34aq1atQlxcHH788UfrDyXpux555BEcPXoUU6ZMwb/+9S8MGjQIp0+fBgD8+OOPOHbsmPWxhw8fRnZ2drfH6810X5FIhEGDBmH48OFYvnw5srOz8eabb3Z63JkzZ7B161bcc889l/16AwICkJmZiYqKim4fd+jQIYwaNcpmW0lJCUaOHGn9WqvV4sSJE8jJyQHQ/bkkhJh5Q+YcOHAAjY2NyM/Ph0AggEAgwI4dO/DWW29BIBDAZDIhPDwcfD6/0yegjY2NnT4ptXDkORaUOYS4hq9kzoUeeOABfPfdd9i2bRvi4uIu6/XSdQ4hnuWLmWNxqfyg6xziCxiO47jeHECtVqOtrQ0hISG0GmU/pdPpEBQUhK+//hpSqRRz585FREQEAgICsGfPHsyfPx9DhgzBtm3bcO7cOfz444+dZnO1traitbW12+8zYMAA+Pn5XXI8kydPRnx8PD788EOb7UuXLsV//vMfnD17tsseed29xpSUFNx777149tln7T5GLpcjODgYe/futYb1mTNnkJSUhNOnTyMpKQmA+Y9OQUEBOjo6IJPJOn0fy7mkAjMh9nkqcxQKBc6cOWPzmDvvvBOpqal4/PHHrbctjRw5Evn5+Vi9erX1cenp6ZgzZw6WL19u93s58hzKHELcw9szh+M4PPDAA1i/fj22b9+OwYMHO/Qa6TqHEO/g7Zljb7yXyg+6ziHezqFbKS/k7+9PBbF+ZsWKFYiKikJBQQH4fD7WrFmDkJAQjBkzBiEhIcjIyMBnn32G+Ph4AOZPNaZPn44XX3wRy5Ytw8aNGzuFt6O3Uj711FMoLCxEfHw8FAoFPv/8c2zfvh2bN2+2eRzLsvjggw9w++232y2KrVq1CuvXr8cvv/wCwPxJw6xZs5CQkIDGxkYsW7YMcrkct99+e5djOXToEHg8ns2yxiUlJQgODrYGt+VxycnJkMlk3Z5LQoiZt2SOTCbrdFEYEBCAsLAwm+1LlizB/PnzMXz4cIwePRrvvPMOqqurcd9991kfc3Hm9OQ5F6PMIcQ1fC1zFi1ahM8++wzffvstZDKZdVZGUFCQ9U0vXecQ4r18LXN6kh90nUN8Ta8LY6T/0Wq1ePHFF1FdXQ2pVIorrrgCv/76K0JCQgAANTU11uBWq9VgWRZ33XUXAPNtj0FBQU4bS0NDA+bPn4+6ujoEBQUhKysLmzdvxtSpU20et3XrVlRXV1vHcbHm5macPHnS+nVNTQ1uvvlmNDc3IyIiAqNGjcLvv/+OQULS6wAAufJJREFUxMTELsdy6NAhpKam2nzyUlxc3Gmq86FDh6xTfS91Lgkh3pU5PXHjjTeipaUFzz//POrq6pCRkYFNmzbZ5MfFmdOT51yMMocQ1/C1zHn77bcBoNOqax988IF1sSG6ziHEe/la5vQkP+g6h/iaXt9KSciFampqcNNNN1mbvv7xxx9YuXIlPv/8cwDAggULcO+992Ls2LGeHCYhpI+gzCGEuBNlDiHEnShzCHEPh5rvE9KV06dP26z4ePjwYWRmZlq/Li0t7Xb5cEIIuRyUOYQQd6LMIYS4E2UOIe5BhTHiVBkZGaioqEBmZiaOHTuG0tJSa3gbjUYolUoEBwd7dpCEkD6DMocQ4k6UOYQQd6LMIcQ96FbKS3j99dexZs0acByHKVOm4M033wTDMJ4eFiGkj6LMIYS4E2UOIcSdKHMIId7I6TPGli1bhn/+85/OPqxHNDU1YdWqVThw4ABKS0tx4MAB/P77754eFiGkj6LMIYS4E2UOIcSdKHMIId7K6atSPvfcc2BZFs8884yzD+0RRqMRWq0WAGAwGBAZGenhERFC+jLKHEKIO1HmEELciTKHEOKNnD5j7JdffsGvv/7q7MM6ZOfOnZg1axZiY2PBMAw2bNjQ6TGrV6/GwIEDIZFIkJ+fj127dln3RURE4JFHHkFCQgJiY2MxZcoUpKSkuPEVEEJ8CWUOIcSdKHMIIe5EmUMI6aucXhgbP348JkyY4OzDOkSlUiE7OxurVq2yu/+LL77A4sWL8fTTT6O4uBjjxo1DYWEhqqurAQBtbW34/vvvUVVVhdraWuzZswc7d+5050sghPgQyhxCiDtR5hBC3IkyhxDSV/Wb5vsMw2D9+vWYO3euddvIkSORl5eHt99+27otLS0Nc+fOxfLly7Fu3Tps374dRUVFAIBXXnkFHMfhscces/s9dDoddDqd9WuWZdHa2oqwsDBqKklIL3AcB4VCgdjYWPB4vrGYLmUOIb6LMocyhxB3osyhzCHEnXwxc1zN4R5jJpMJX375JbZt24aWlhaEhYVh0qRJuP766yEQOL11mdPp9XocOHAATzzxhM32adOmYc+ePQCA+Ph47NmzB1qtFkKhENu3b8e9997b5TGXL1+O5557zqXjJqQ/O3v2LOLi4jw9DIdQ5hDieyhzbFHmEOJalDm2KHMIcS1fzhxnc6iC1dzcjKuvvhoHDx6EQCBAWFgYWlpasGbNGrz66qv46aefEB4e7uyxOlVzczNMJhOioqJstkdFRaG+vh4AMGrUKEyfPh25ubng8XiYPHkyZs+e3eUxn3zySSxZssT6dUdHBxISEnDixAmEhoa65oX4IIPBgG3btmHSpEkQCoWeHo5XoXNzHstyWLdXh/9VGKDXKvD5/2VBJpN5elgOo8zxHPq96hqdm/NMLIfPd2tx4JSRMqcLlDk9Q79XXaNzc57RxOGzXVqUVBlh0CqwljKnE8qcnqHfq67RuTnPYOTw351aHKk2wqhT4LOnfTtznM2hwtjDDz+M48eP49NPP8UNN9wAPp8Pk8mEL774Avfddx8efvhh/Pe//3X2WF3i4mm4HMfZbHvhhRfwwgsv9OhYYrEYYrG40/bQ0FCEhYX1bqB9iMFggL+/P8LCwvp9QF2Mzo2ZwcThva1KFNfwIPb3w41XSPD5/3X+ffVFlDnuR79XXaNzY2YwcvjPz0qU1vEg8QduGUeZYw9lTs/Q71XX6NyY6Qwc/v2TEuUNPPgFALdPlGAtZU4nlDk9Q79XXaNzY6bVc1i9WYETTTz4S4Ebr5Tgs6f7RuY4i0OFsY0bN2LZsmW4+eabrdv4fD5uueUWNDY2YunSpc4an8uEh4eDz+dbP8GwaGxs7PRJx+UqKipCUVERTCZTr45DSH9kNHFYtUmB8rNG8HnAX6ZKkRSs8PSweo0yhxDvZDByePN7BY6fM0LIB/56lRRxMsqc7lDmEOI4nYHDGxsVqKw3QiQA/na1FDEBlDndocwhxHFaPYeV38lxutEEsRC4f7oMERK5p4fldRzqtMZxHIYNG2Z3X0ZGBnyhn79IJEJ+fj62bNlis33Lli0YM2ZMr469aNEilJeXY9++fb06DiH9EZ8HxIcJIBYAD86QIT9F5OkhOQVlDiHeScAHBoTxIRECD82UITuJMudSKHMIcZxIAMSG8uEvZvDwLBkyEihzLoUyhxDHiYRATCgfAWIGf58diNQB/XfmXHccmjE2ZcoUbN26FVOmTOm0b8uWLZg4cWJvx+UUSqUSlZWV1q9Pnz6NkpIShIaGIiEhAUuWLMH8+fMxfPhwjB49Gu+88w6qq6tx3333eXDUhPRvDMPg2tF+GD9MjMggvqeHc1kocwjxPQzD4Max/picJaHMIYS4HMMwuHW8P67OlSCCMocQ4mI8hsGCiQFoHc4iItC3MsedHCqMPfPMM7jmmmtgMplwyy23IDo6GvX19fj000/xzTff4JtvvkFra6v18Z5qjrh//35MmjTJ+rWleePtt9+ODz/8EDfeeCNaWlrw/PPPo66uDhkZGdi0aRMSExM9Ml5C+qsmuQk/7Nfg1vEBEAoYMAzjc29QAcocQnxFQ7sJPxVrcct4fwj4DHiUOYQQF6prNWHrYS1uHvdn5vAYnyuKAZQ5hPiKmhYjdhzR4eZx/uDxGPB5DBXFLsGhwlheXh4A4LXXXsPKlSut2y23UObn59s83lP3g0+cOPGSt3UuXLgQCxcudOr3pfvgCem52lYjXv9OgQ41B5GAwS3jAzw9JIdR5hDi/aqbjXhjowIKDQc/EYPrr/D39JAcRplDiPc702jEG98roNRykEoYzBtFmXO5KHMI6bmT9Qa89YMSah2HoAAeZg738/SQfIJDhbFnn32WVjDoxqJFi7Bo0SLI5XIEBQV5ejiEeK3TDUa8+b0CKh2H2FA+pudTcDuCMoeQnqmsM18savQc4sP5uCpX4ukh+STKHEJ65nitAas2KaA1AIkRfEzJpsxxBGUOIT1TftaAoh8V0BuBlGgBJmV0XtWV2OdQYcwXVp0khHi3ozUGFG1SQGcEBkbx8dAMGQIkDq0HQgghl3SkWo+3NyuhNwKDYgR4YLoU/mLKHEKIa5Sc1uM/PythNAFDBwhwf6EMEhFNLCCEuMaBk3q8u0UJEwukxwuw8GoZxELKnJ5yqDB2oRMnTqClpQXh4eEYPHiwM8ZECOnjik/p8c7PShhZIC1OgIWFMkgouAkhLrKvQof3flHBxAIZCULcd5WULhYJIS7z+3EdPvhVBZYDspOE+Os0KYQCyhxCiGvsPqrDx9tV4DggP0WEe6YEQMCnzLkcDn9Uum7dOiQmJiItLQ1jx45FamoqEhMT8dVXXzlzfD6pqKgI6enpKCgo8PRQCPE6Wj2Hj7erYGSBvGQhHphBRbHeoswhpGsqLYtPdqphYoGCQSIsKqSiWG9R5hDSNYWGxac7zUWx0UNF+NvVVBTrLcocQrrWrmKxdpe5KDYuTYx7p1JRzBEOFcY2bdqEm266CUFBQXjppZfw8ccfY/ny5QgKCsJNN92EH3/80dnj9CmLFi1CeXk59u3b5+mhEOJ1JCIG90+XYmKGGPdOk0JIwd1rlDmEdC1AwsOiQikmZ4rpE1QnocwhpGsyPx7+drUM07IluOPKAPB5lDm9RZlDSNeCA3i47yopCnMlmD/RvAoluXwO3Ur5wgsvYNq0afjhhx/A452vrT366KMoLCzEsmXLUFhY6LRBEkJ8G8dxaFGwCP9zmeCUaCFSooUeHhUhpK+6OHOGxAoxJJYyhxDiGizHoU3JIkxmzpz0eCHS4ylzCCGucXHmZCaKkJko8vCofJtDM8ZKSkqwcOFCm6IYADAMg4ULF+LQoUNOGRwhxPexHIfPd6vx/JdynGkyeno4hJA+jmU5/HeHGv9cJ0dNC2UOIcS1TCyHD39VYdk6OeraTJ4eDiGkjzOaOLy3VYUXv5KjsYMyx1kcKozx+Xzo9Xq7+wwGQ6eCWX9D98ETYmY0cfjgFxV+LdVBo+dQ3UTh7QqUOYSYGU0c3t2iwq5yc+bUNFPmuAJlDiFmBiOHf/+kxN7jeqh1HGpbKHNcgTKHEDOdgcPqzUr8UaGHijLHqRyqYBUUFGDFihXQaDQ223U6HV599VWMHDnSKYPzVXQfPCGA/s+Lxd9P6MFjgLunBGBcutjTw+qTKHMIMV8sFv2oxP6TevB5wL1TpRg1lDLHFShzCDEvJvTWDwqUnDZAwAf+drUUwwfRrUyuQJlDCKDWsXjzewVKzxggEgCLCqXITabMcRaHeow999xzmDx5MpKTk3H99dcjOjoadXV1+Oabb9DS0oJff/3V2eMkhPgQjZ5D0SYFjp8zQsgH/nqVFNlJFNyEENdQ61j86wclKuuNEAnMb1AzEihzCCGuodSyeOt7BU43miAWAvdPlyF1APUUI4S4hlxtLopVN5vgJ2LwwAwpBsdQ5jiTQ4WxsWPH4ueff8YTTzyBoqIicBwHHo+HkSNHYu3atRgzZoyzx0kI8REqLYvXNypwpskEyZ8Xi0PpYpEQ4iIKDYuV3ylQ02KCv5jBA9OlGEQXi4QQF+lQmzPnXKsJUgmDh2bKkBTp0FsqQgi5pFYli5XfydHQzkLmx2DxLBkSwilznM3hMzphwgTs3bsXarUabW1tCAkJgb+/vzPHRgjxQSIhgwAJA6mEweKZMiTSxSIhxIUkQgYBYgaBfgweniVDHF0sEkJcSCJk4C9iEBzA4OFZgYgN5Xt6SISQPsxfZM6cUCkPD8+WITqYMscVen316O/vTwWxixQVFaGoqAgmEzXDI/2PkM9g4dUydKhZRAZRcLsDZQ7pz4QCBvdPl0GhYRFBmeMWlDmkPxMLzbcxafQcwmSUOe5AmUP6M4mIwYMzZdAbOIRS5riMw8tHmkwmrF27Fvfeey+uvfZa3HvvvVi7di2MRloanRpEkv7mbLMR3/2hBsdxAMwXjVQUcx/KHNLfVDUa8f3+8wsASUQMFcXciDKH9Dcn6w348eD5zPEX86go5kaUOaS/OXHOgJ9LzmeOVMKjopiLOTRjrLm5GVdffTUOHjwIgUCAsLAwtLS0YM2aNXj11Vfx008/ITw83NljJYR4oYo6A/71gxIaPYdAfx4mZkg8PSRCSB92rNaAVZsU0BmAECkPV6TSypOEENcpP2tA0Y8K6I1AmIyHEYMpcwghrnO4So9//6SEwQSEB/KRRytPuoVDM8YefvhhHD9+HJ9++ik0Gg3q6uqg0WjwySefoKKiAg8//LCzx0kI8UKlZ/R4Y6MCGj2HQTECjBhMwU0IcZ2S03q8+b25KDZ0gAD5dLFICHGhAyf1eOsHc1FsWLyQVtgmhLjU/yp0WL3ZXBTLShQiI4EWE3IXh2aMbdy4EcuWLcPNN99s3cbn83HLLbegsbERS5cuddb4CCFeal+FDu/9ooKJBTIShLjvKinEQsbTwyKE9FF7j+vw4a8qsByQM1CIe6dKIRRQ5hBCXGNXuQ7/3aECxwH5KSLcMyUAAj5lDiHENbYf0eKznWpwAEYNEeH2SZQ57uRQYYzjOAwbNszuvoyMDGufIUJI37SzTItPdpiDu2CQCHdNpuAmhLjOL4e1+Hy3GgAweqj5YpHPo8whhLjGT8UafLXX3N9nXLoYt433B48yhxDiAhzHYdMBLTb8Yc6cSRli3DTOHzyGMsedHLqVcsqUKdi6davdfVu2bMHEiRN7MyafV1RUhPT0dBQUFHh6KIQ4XX27CZ/8+WnGhGFi+gTVC1DmkL6stsWIL/4sik3OFOOOK6ko5mmUOaQvO9NotBbFrsqVYP4EKop5GmUO6ctONRitRbGZwyW4mYpiHuHQjLFnnnkG11xzDUwmE2655RZER0ejvr4en376Kb755ht88803aG1ttT4+NDTUaQP2BYsWLcKiRYsgl8sRFBTk6eEQYmU0sqg504aklLBO+zRqA1pb1BgQ3/3PbHQwH/Mn+KNJzmLeSD8wFNweR5lD+rIBYQLcPN4fCg2HWcMllDlegDKH9GWJkQJcP8YPJhYozPPz9HAIKHNI35YSLcS8kX4QCRhMyaZFzDzFocJYXl4eAOC1117DypUrrdstt1Dm5+fbPN5kMjk6PkKIkxiNLD59fz+OHmnArXflIzMn1rpPozZgTdFeNDUocc/9o5GQFGLzXJbloNJxkPmZJ5mOS6fQJoRcGsdx6GjXIjik85tLo5GFRq2HLLBznphYDuoLMmcSrXZLCHEho4mD1sBBKjFnzrQcKogRQlzHYOKgN3AI+DNzpudT5niaQ4WxZ599lj6xJcTH8HgMRGI+WJbDp+8fwK13AZk5sdai2Nkz7fAPEEEgsL3D2mji8N5WFWpajHhsXqD1jSohhHSH4zh899URFO+vxb0PjEZs3PlP+Y1GFp+8tx8N9Qr89cExNoUzg5HDO1uUaOpg8ehcmfWikRBCXEFn4PCfn5RoV7N4ZI4M/mLKHEKI62gNHFb/qIBGz+HvswMhEVFdxRs4VBijVScJ8T08HoMb55tnexbvq8Wn7x/AtTcb8fvuKmtR7OI3rzoDh7c3K1F21gA+DzjTZERGAi1VTgi5NIPehOqqNqhVerzzr73WfLEUxcpL6yEQ8tDcpLIWxrR6DkU/KnCs1ggBH6huNiEtjt6kEkJcQ61jsWqTEhV1RogEQG2rCYNjKHMIIa6h0rJ48wcFTjeYIBYA59pMSI5yqCRDnIySn5B+xFIcyy0YAJblsO7Tki6LYioti9c3KlB21gCRAHhguoyKYoSQHhOJBbhn0WjEJwZbi2Nnz7TZFMXuuHcEBg0JBwAo/5+9O4+Pqrz3B/45Z/Y1+x4CCQGyhwRBcUVZFAUFq7WtbW3VWqtd1La0t/3d29rbe1u1Wtsa7GJrq91crrjiggqCIItkIySQACEh+57Zt3Oe3x/DHDKZBEIyk1n4vl8vXy8zJzPzJCTfPOdznvN9HCKeeN2EI50eqBTAd9YZUJitCPNXQQiJVSabiMdfM6Ol2wONksMD6w1YkEE1hxASGiNWEY+96g3FtCoOD91kpFAsglAwRsgFhuc53HRLqd9jl145zy8UG7WJ+NVrZhzv8UCr4vDgegOKc2iySAg5Pxqtwi8c+91ju/xCsYWFqQCAYYuIR7eY0donQK/m8L2bjCjIoppDCDk/HreAro7RCY/ZbC7091oAAINmAY++akL7gACDhsP3NlAoRggJnf5RAY9uMaFzSECclsOmDQYKxSIMBWOEXGDsNjf+vHmv32MfvtuCQ7VdAE5PFreY0DEowKjh8P2bDMinySIhZJo0WgW+eu/Ffo9de0OBFIr1jQp4ZIsJ3cMC4nUcNm0wYl4qTRYJIefH4xbw/J8/RdUTH+PEsUG/YzabC3/63Sf4/W9243CLCY+8YkbviIgkA48fbDQiJ5lqDiEkNDqHPHhkiwn9JhEpRh4/uNmIrCSqOZGGgjFCLiDjG+1/+wdXSrdV/uMvB3GotgsyngNj8E4WbzYimyaLhJAZ8HhEvPzPOr/Htm87Jq3qkMu8TWdT47wnqBmJslkfIyEk+jEAgiDC7RLw5817pXDMF4p1nhqFKDLwYGBgyEjgsWmjEWnxVHMIIaGjkHnPrbISZdi00YgUI9WcSETBWAhUVVWhqKgIS5cuDfdQCJG43YJfKHbPt5Yje068X8+xf/zlILpb+/HgjQb8YKMRqXFUuKMB1RwSqcY32v/inRf59Rzr6hhFop7HQzcasGmjEck0WYwKVHNIJFIoZLjjnmVYWJgihWOH67ulUEynV+Lr374UhQvi8N0bjfj+BiMS9XQqFA2o5pBIdbi+B/949iAEQQw4tvujVrz5ymGkGHl87yYjvr/BgHgd1ZxIRf8yIXD//fejsbERBw4cCPdQCJHI5TwWFqYGNNrneQ6LrylFRsVCJCRpkZHlvZKRQJPFqEE1h0Si8aHYV+5ZhrLKTNx9/3LE52VjhDdI4VhqnAxxWqo50YJqDolU48Oxv/3xADpPjYJPTsGVt16C9EwjACA9QQaDhmpOtKCaQyKR1eLCv5+rRt3BTvzjL/7h2D/fOIWX3+7Azg+P40hjHzISZdCpqeZEMvrXIeQCwXEc1tywCN/98Qq/Rvu1rS78dqsFR1ypuO725YhP0IRxlISQWMJxCGi039jN0K6dB1v2IrhUOnBcmAdJCIkpCoUMn/1ihfSxy5iCodSFePGAiLZ+TxhHRgiJJTq9Erd/dQlkch4Ndd1SOPbXVzuwvV0LS3YBKlcUoKAoNdxDJVMw5eZBPM+DO4/ZqyAI0xoQISR0OI6DwaiWPv7kqBN//dAKkQGLcxUomkehGCEkOORyHrffeRF6ukzIzokHAOxqdOD5j2xgDKjIVeKmDeXIyDKGd6CEkJhis7nw7O/3AQAcCemwp88HwGFRGkMW9TAkhARRQXEa7vjaUvztTwfQUNeNBx+uhj09D+CAuTonbtmYf14ZCgmfKQdj//Vf/+X3j/rss8/CYrFg/fr1SE9PR3d3N958803odDrceeedIRksISR4Pqh34N8f2wAAyxcpccfVOsh4KtyEkOCRy3kpFHu3xo6XP7EDAK4oUuGLV2rBU80hhASRr9F+x6lRiJnzYI/PBgCohrrQd6wN7aWXIC8/KcyjJITEkoLiNHz57qXY/H/dcKTkAADmay3Y9OVs8DzdoBctphyM/fSnP5X+//HHH0d6ejref/996PV66XGz2YxVq1ZBq9UGdZCEkOBhjOGNTx1444D3BHVlmQqfvUwLnq5mEEJCgDGGLXvteLvGAQC4tkKNz1yioSuohJCgcjg8UijmyZ4PizEDALC2QoXBajNaerwN+b/2zeWYl5cY5tESQmKFyBi2NohSKKbuO4mMTAGMZYd5ZOR8TCvC3Lx5MzZt2uQXigGAwWDApk2bsHnz5qAMjhASfPVtbikUu2mZBrdRKEYICaHqE24pFLv5Eg1uWa6lUIwQEnRKpQxZc+LAp2ZIodhtl2lx83Ld6T6HKYiLVyMhkS7gE0KC57nXOnFkSAUwhnR7B/QjXThc3x3QkJ9EtimvGBurs7MTcvnET5XL5ejp6ZnRoAghoVM2V4EVxSqkJ8iwskx97icQQsgMVOYpcHmhCrmpMlxZTDWHEBIaPM/h5s+V4+phG16rZViUpcBlBSoAZ3ardNjdfr1WCSFkJnZ/1IrD7x+CImshFs9T4mufK8XRxjSp59g//nIQt9+5BDIZ3VIZ6ab1L1RYWIgnnngCbrfb73GXy4XHH38cBQUFQRkcISQ43B4Gl4cB8Dbg/8KVWgrFCCEh43QzuIUzNefLK7QUihFCQsbpZvAIDDzPISlJh69eo5NCMR+FQkahGCEkKBwuBpPJiW1bj4IDsK5QxNc+lwuO46SG/L7dKo83D4R7uGQKprVi7Oc//zk2bNiAvLw83HzzzUhPT0dPTw9eeeUV9PT04NVXXw3yMAkh0+VwMTz1thkqOYdvXKeHXMbRbUyEkJCxOUX8bqsFRg2He9boIeOp5hBCQsfqEPGbt8xINshw9yodeKo5hJAQMttFPPmmGVmJMtx1/yU4ergXK69b6Fd3fOHY6KgDCwtTwzhaMlXTCsZuuOEGvPPOO/jxj3+MqqoqiKIIjuOwbNkyPPvss1i1alWwx0kImQaLQ8Rv3jTjZJ8AtQLoGRGQnTStX3tCCDknk807WTw1IECj5NA3KiIjQRbuYRFCYtSIVcSTb5jROSSgb0TEgFlEahzVHEJIaAyZBfz6DTN6RkQMW0TctMyIVWvjJ/zcguK02R0cmZFpnyGvXLkSK1euhM1mw/DwMBISEmg3ytOqqqpQVVUFQRDCPRRyARu2iPj1G2Z0DwvQqzl8Z52BQrEYRTWHRIJBs4AnXjejb1SEQcPhwfUGCsViFNUcEgn6R70nqP0mEfE6Dg+sN1AoFqOo5pBI0DMi4NevmzFkEZGo5/HgegOSDFRzYsWMusCNjo5i165d2LFjB5xOZ7DGFPXuv/9+NDY24sCBA+EeCrlA9Y0KeGSLCd3DAuJ1HDZtMGJeKoVisYpqDgm37mEBj7ziDcWSDDx+sNGIOclUc2IV1RwSbp2DHjyyxYR+k4gUI49NG43ISqSaE6uo5pBwa+/34NEtJgxZRKTF89i00YB0uvgXU6b9F+S///u/8ctf/hJ2ux0cx+HAgQNISEjAypUrsXr1avzwhz8M5jgJIVPUMeDBr98ww2RnSI3j8dCNdDWDEBI6bX0ePPmmGRYHQ0YCjwfWG5Gop92XCCGhcbzHg9++ZYbNyZCVKMMD6w2I11HNIYSERku3G797ywK7iyEnWYbvrDPAqKWaE2um9S+6efNmPPzww7jrrrvw1ltvgTEmHVu3bh3eeuutoA2QkEjEXA5YXv8tmOAJOCaaBmF9549+vxezyS14d2fKTpLhBxuNFIoRQkKGMQaX4N31dm6KDN/fQKEYISS03Kdrzvw0Ob6/gUIxQkhoOd3emrMwU47v3kShWKya1oqxp556Cg899BAeffTRgHu9FyxYgJaWlqAMjpBIxBjD8BNfhrP6HbhP1iH+/j+Ak3l/lUTTIAb/ez08bQ1gDiv0Gx6c9fHlpsnx4I1GZCTw0KqocBNCQsMX/i/IUODB9QZkJcmhUdJOcISQ0CrI8tacuSlyqBRUcwghoVWSo8RDNxowL1UOpZxqTqya1lnziRMncO211054zGAwYGRkZCZjIiSicRwH7TVfBmRyOD5+CSNVXwcTPH6hGB+fBvXSG2ZtTAePu3Cy78zqtfnpcgrFCIkhonUEpn/9DMzjDjjm6WuD5ZVfzeoq1X0tTpwaFKStyfMzFBSKEUJCZs8RJzqHzsxzFmYqKBQjhITMx01O9IycWQC0MFNBoViMm9aKsbi4OPT29k547OTJk0hNTZ3RoAiJdOpl65Dw4HMY/vWX4fj4JQyZByEOdcNzqgl8fBqSfvIW5FkLZ2UsOxsd+PsOG3RqDv/vVrp1kpBYwxjD0CO3wX3kEwidzYh/4FlwcgUAbyg29PA6CP1tAC+blVWq2w858M9dNhg0HP7z1jgk0K2ThMQkJnikFfHncyzY3qu146U9dsTrvDWHbmMihIQKYwxvVzuwZZ8diXoe//lZI/RqqjkXgmn9K69cuRKPPvoorFar9BjHcfB4PHj66acnXU1GSCzxhWMA4Kr70BuKGZNnNRR7t8aO53fYwABU5imRMKbPxvDwMA4fPgxRFAOe193djZaWlrD1QSOETB3HcdBv/C4gV8Kx/3WMPPlVMI/bLxSTpedBc+VtIR0HYwxvfmrHP3fZAABL85WI09HVU0JikfPQDgx8bzk8fW0Bx2wf/ROD/28VRMtwSMfAGMOWfTa8tMcOAFi2QAWDhmoOISQ0GGP4v0/s2LLPW3MuWaSETkU150IxrUs9P/vZz7B06VIUFRVh48aN4DgOTz31FGpqatDe3o4XX3wx2OMkJCIpC5b7fcwnZUOWnhfy92WMYcteO96ucQAA1laosfESjXRbk8fjwaFDh+DxeCAIAkpKSsDz3tCsu7sbTU1NALyrP2mFJyGRT12xBgnf/yeGH/sCHPtfx+D/WwVhpBfiUBdk6XlI+ulWyBIzQ/b+ImN4aY8N79c5AQDrLlLjxqVnag4hJHYwUYTp+f8HT+dRDD18AxJ/8hbkqXMBeEOx0c3fABiD7YO/QX/TAyEZg8gY/rXLhh0N3pqz8WIN1laqqeYQQkJCFBme/8iGj5u8NefWSzVYs1gT5lGR2TStFWP5+fnYvXs3CgsLsXnzZjDG8NxzzyE5ORm7du1CTk5OsMdJSMTx9RQby9NaK/UcC9n7igx//8gmhWI3X6LBzcu1fpNFuVyO4uJi8DyPgYEBNDQ0QBRFv1AsKysLKSkpIRsnISS4fOEYALhP1HhDsZS5IQ/FBJHhb9utUih222Va3LRMSyeohMQojueR+MOXIMvIh9DfjqGHb4Cnr80vFNOuuQu69d8Oyft7BIY/v2/FjgYnOAC3X6nF9UsoiCeEhIZbYPjjNgs+bnKC44Avr9BRKHYBmnZzgKKiIrzzzjtwOp0YHBxEQkICNBr6ASIXhvGN9pN+8hY8nc1Sz7ERwG+3ymDaVufAzkbvZPGLK7S4skg94eclJSWhtLQUhw4dwsDAAHbs2CEdy8rKwsKFC2mSSUiUkWct8vuYj08BbwxtwP1OtQN7jrjAc8AdV+twaYEqpO9HCAk/WWIGkn7yFgYfvgFC9zH0f7NUOqZdcxeMdz4Ojg9N3503P7Vjf4sLMh746kodLl5ANYcQEjqv7bPj4HE3ZDzwtdV6LJmvDPeQSBhM+ay9vb39rMf7+/v9PqZVYyRWMcYw/PgX/UIxedZCyLMW+jXkN6fMhfHz/xX0919RosahdjeuKlZhaf7ZJ4u+cKyurk56LCMjg0IxQqKQr6fYWO6WTzHy5Ff9GvIH28pyNRo73FhVpkZFHk0WCblQ+MKxvnvPBPKqitUhDcUAYM1iNY52erC2Uo2yeVRzCCGhtbZSjZZuN25apkXRnNDMpUjkm3IwNm/evPM6kRYE4dyfREgU4jgOhi/9N0aq7kXi9/7p12jf15Df/PIvobv+G0F7T6ebQSn3vrdKweG7Nxqm/Pvocrn8Pna73WCMUTBGSBQZ32g/6adb4W5rkHqOBTscG1tz1AoO37tp6jWHEBI7nIe2+33sbm+CMHBK6jkWtPdxM6gU3hqjVfHYtJFqDiEkdMbWHJ2axw9vNlLNucBNORj7y1/+Qj8shJymzL8IKY/vA8fLAo6pl62D6qK1Ex6bDpNNxJNvmlE+T4GblmkBYMq/i2N7iqnVajidTqnn2NiG/ISQyMUYw8gTX/YLxWSJmZAlZvo15Le88hgMn/3RjN9vxCri12+YsSxfiRsu8rZIoL//hFx4pJ5iAFQX3QBP5xEI3ccDGvLP1JBZwK/fMOPyQhWuraCaQwgJrX6TgF+/bsbKMjVWlnlb0lDNIVMOxr7yla+EcBiR6ejRo7jtttv8Pv7Xv/6FDRs2hG9Q5Lw5nU4olcoJC57T6YRKNb3eFWcLvoIVig2aBTzxuhl9oyJGrSKuKVXDoJlamDW+0f7ChQsxNDQk9RyjcCzyUM0hE+E4DnFf/y1Gn3kQCd/9u1+jfV9Dfusbv4Nu/bdm/F59o94T1AGTiB2HHbi6VAWtimpErKKaQyYzvtG+8c7HIY70Sj3HghWO9Yx4T1CHLCI+POTEVcVqqJV0ghqrqOaQcOsc8uDJN8wYsTJ8UO/A5YUqaeUYubAFvzN4DFm0aBFqa2sBABaLBfPmzcPq1avDOyhyXiwWC2pqapCZmYm8vDy/cGxoaAj19fVYsGABsrKywjjKiXUPeyeLw1YRSQYeD643TDkU83g8OHbsGAD/RvvjG/IPDAwgNTU1lF8GOQ9Uc8hkFLnlSPr5BxMG/OqKNVAtXj3jq50dg97J4qiNIcXI48EbDRSKxTiqOWQiTBRh//B5v1CM4/mAhvzO2vchX3PXtN+nvd+DJ980w2xnSI/3znMoFIttVHNIOLX2evCbN82wOhkyE2V4cL2BQjEiCVrz/fFirfn+66+/jpUrV0Kn04V7KOQ8jI6Owu12o62tDQCkcMwXiomiiMHBQWRmZkbUEtr2fgFPvWOBxcGQkcDjwfVGJOinfoIql8uxePFi9Pb2Yv78+X5fmy8cs1qtFIpFMKo5ZLyz1aiZ1q/WXgFV79phczJkJcrwwHoD4nUUil1IqOYQH47nkfDDF2H/8Dlo137Dr9G+Lxxz1rwH7co7pv0ex7o9ePo9B+wuhpwUGR5YN/WLfyQ2UM0hs+lopwe/32aH0w3kpsrw7XUG6NVUc8gZU/5pmDdvHnJzc6f8XyTYuXMn1q9fL4Uer776asDnbN68Gbm5uVCr1ViyZAl27do14Wu9+OKLfkt/SXTwrZYCgLa2Npw4ccIvFEtOTkZJSUlEhWKDzjg8+ZYNFgfDvFQZvr/h/EIxH4PBgPz8/Am/tqSkpJgLryMB1RwSjfod8fjNVhtsTob5aXJ8fwOFYtGCag4JFV5jgO6G+yfcfVKWmDGjUKzXkYDfvW2H3cWwMFOO791kpFAsSlDNIdGox56Eqne8oVhhthwP3WSkUIwEiOnm+1arFeXl5fjqV7+Kz3zmMwHHX3jhBTzwwAPYvHkzLrvsMvzhD3/A2rVr0djY6BcamEwm7N69G//+979nc/gkSLKzswEAzc3NaGtrk1aP+UKxSOuxZfOo4HADi7Lk+OZauq0gmlDNIdHIJqjh8gBFc+S47zq6rSCaUM0h0cjm0cAtAGVzFfj6tXoo5VRzogXVHBKNrB41PCJQkavA19booZBRzSGBYrr5/tq1a7F27dpJjz/xxBO46667cPfddwMAnnzySbz77rt4+umn8Ytf/EL6vNdeew3XXnst1Gr1Wd/P6XTC6XRKH5tMJgCA2+2G2+2eyZcSU3zfi9n8nqSlpWFgYACDg4PSY4sWLYIgCBAEYdbGcS5utxtzdH1YWlmC0rkqyDgP6Edndn9WZoJqTmSa7ZrjdruhUCjO+1g4uN1uzNX1YFlFEcpyVeBBNQegmjMZqjlTE455TrRwu93I1Xfh4soCVOSpwDGqOUD0/KxQzYlMVHMm53a7Md/QiUsqF6FyvgoQPXCL4R5V+NHPSqAZNd8fHR3F3r17MTAwgOuvvx4JCQnBGlfIuVwuHDx4ED/84Q/9Hl+zZg327Nnj99iLL76Ie+6555yv+Ytf/AIPP/xwwOPbt2+HVqud2YBj0LZt28L6/u+8805Y33+sU9ZUpKqHoZJ5i1TP0Q/RczTMg4ogNpst3EOYMao54RfumhNJ2q1pSFcPQinzAAB6mz/EtuYwDyqCUM2ZGNWc80M1x4sxoN2WjgzNAJS8t+b0NX+Id6nmSKjmTIxqzvmhmuPlqzmZmn4oeO8CiP6WD/FuS5gHFkFioeYE27SDsf/+7//GL3/5S9jtdnAchwMHDiAhIQErV67E6tWrA4pipBkYGIAgCEhLS/N7PC0tDT09PdLHo6Oj2L9/P/7v//7vnK/5H//xH3jooYekj00mE+bMmYOrr74aSUlJwRt8lHO73di2bRtWr149KysnhoeHcfjwYYiiiKSkJMTFxeHEiRMAgDlz5mDevHlhu01YFEW8U+tG3UEXshN5fHutAjt3vI/Vq1dDLpdH3e3LoTJ2pV+0opoTPrNZczo6OqT6kpubizlz5gAARkZG0NDQINWhoqKisPx+M8bwxqcu1He6MJLM49urFNix/f1Zq8fRgmrOxKjmTM1sz3MiGWMMW/Y7cajeDYtyEb65SoHtH1LNGY9qzsSo5kwN1ZwzRMbw8idOHOpyw6EpwDdWyvHhB1RzxouFmhNs0wrGNm/ejIcffhj33Xcf1q5dixtuuEE6tm7dOrzyyisRH4z5jD8xYYz5PRYXF4fe3t4pvZZKpYJKpQp4XKFQ0C/iBGbj+zI0NITGxkYwxpCSkiL1FFMoFGhubkZHRwdkMpm0W+VsGjWZ8Lf3B3GoJw4AUJGnhE7j/ZU0mUzo6elBaWkpZDLZrI4rEsXS7w/VnPCZje+Lb/OZ1tZWnDx5EjKZDEajEYcPHwZjTOptGI7fa5Ex/GuXDTsaXACAJfNV0Ki946CfGX+x9L2gmhM+F/r3RRQZnv/Iho+bvKvhL8pXQaP2znMu9O/NeLH0vaCaEz4X+vfFIzD8fbsVe5vP1By1iuY5E6HvRaBpdR1/6qmn8NBDD+G3v/0t1qxZ43dswYIFaGmJ/HWKycnJkMlkflcwAKCvry/gSsf5qqqqQlFREZYuXTqj1wkFxhiaR45AEAP7agmigOaRI2CMhWFkoSEIgt/JqK/RfnZ2trRbpcfjmfVxeQQRf3h7SArFbrlEiRuXaaWJQ2NjI4aGhtDe3j7rYyOhcaHWHADot/dN+DhjDAOTHItmY3dnPn78OGpqaqSVYuEKxTwCw5/ft2JHgxMcgNuv1OL6JRpalRrDLuSaM+gYmPBxxtikx0hwuQWGP7xnwcdNTnAccMfVOqxZrAn3sEgIUc0JxBjDkJNW5swGt4fh9+9asLfZBZ4D7lqlwzWlZ+9hR8hY0wrGTpw4gWuvvXbCYwaDASMjIzMZ06xQKpVYsmRJwL3Y27Ztw6WXXjqj177//vvR2NiIAwcOzOh1QuHT/n3Y2/cxPur+AAI7E44JooAd3e9jb9/HODiwP4wjDK6UlBRUVlZOuPtkdnY2KioqsHDhwlk7OXS73Rg1WfGH96xoGTSCA8PFGW2Idx/G6OiodAXNt8Jt7ty5szIuEnoXas1pGm7A26deR+3AQb/HGWM40L8XW0+9juOmyL+Ycr5yc3MRHx/v91i4QjGnm2HzOxbsb3FBxgN3r9ZhRQlNFmPdhVpzGocb8Fb7qzg8VO/3OGMM+/s/wdb219Bmbg3T6C4MDjfDU2+ZUX3CDTkPfH2NHpcXBq76IbHlQq05DUN1eKv9VRwZafR7nDGGfX27sbXtNXRY6EJ3KNldDL9504y6k24oZMB9a/W4ZCHVHHJ+pnUr5dmWwJ48eRKpqakzGlSwWCwWHDt2TPq4tbUVtbW1SExMRE5ODh566CF86UtfwkUXXYTly5fjj3/8I9rb23HvvfeGcdShlaXLRvNoEzqs7fio6wNclbkSYMCO7vfRaT0FGSdDli473MMMqri4uEmPzeaGEW63G7W1tdh+PBEtQwmQ88AdVykhDNlgtTpx8OBBabVecnIyiouLA8I8Etmo5gQSmXfrn/qhGgDA4uQlUih2ZOTw6c+JnJ1hg2V4eFjaPcuno6MjLGH33z+y4lCbd7L4jev0KJ2rnPUxkNCgmhPIJXh3sPNd5CtOLJNCsaOnT1xdoits47sQ/PVDKxo7PFDJgfvWGlA0h27ZiRVUcwI5T9ec/X3eDQYK4oukUKx59AgAwCU6J30+mbk/v2/B0S4P1Argm9cbsCiLag45f9MKxlauXIlHH30UN910k7TNLsdx8Hg8ePrppyddTTbbPv30U1x99dXSx77mjXfccQf++te/4rbbbsPg4CB+9rOfobu7GyUlJdi6deuMT1yqqqpQVVUFQYi8k71MXTauzlyN7V3b0GFtx/bObWBg6LZ1QsbJcE3WGmRos8I9zJjEGIMoiihM6EKfVYvbr9KjIt+AoaFC1NbW+n1uQUEBhWJRiGpOoOLEMjAA1QP7pXDMJbqkUGx52uVYEFcQxhEG3/DwMOrq6qTbJ/V6Pdra2nD8+HEAmNVwjDGGdUtUONnnwZdW6DA36cwe5aIoSmE8YwxOp3PCXi4kclHNCVSeVAnAG8b7wjGLxyKFYsvTrsCCuEVhG9+FYMMyDToHPfjKNXrMT5/2Pl8kAlHNCVSZ7L298/BwvTccYwwjrmEpFLs8/SrkGReEc4hRQbQMw/bB36Bb/21w486BPH0n4az7ELrVd0743I0Xa9A7IuDuVXrMTaWaQ6aHY9NoKHXs2DEsXboURqMRGzduxO9+9zt85StfQU1NDdrb21FdXY2cnJxQjDeqmEwmxMXFYWBgIOJ2TumyduD9znekjzlwWJV93ayEYm63G1u3bsX1119/wTT+8wgMchkHl8uFmpoamC1WqFVKFBYW4vDhw1KfM8YYLBYLVq1aBZ1OF+ZRR47BwUEkJydjdHQURqMx3MOJWJFccxqG6lE97jbt2QrFZrPmjA/FfLdPtra2orXVe/vW/PnzQx6OeQQGGQ+0tLTA6XSisLAInZ0dOHnyJMrKyhAXF4eGhgYolUocPXoUCxYswNDQECoqKqj2gGrOVEVqzWGMoW6wWgrjfWYrFLuQ5zk+osjA84FtKi7E781UUM2ZmkiuOdUDB3B42P8W7tkKxaL994oJHgz+v1VwH6+Gds1dMN75uBSOefpOYuinN0AYOIW4e5+C9povex+nmjMjVHMCTWtJSn5+Pnbv3o3CwkJs3rwZjDE899xzSE5Oxq5duygUiwJpmgzw3JleNzJOhlRNehhHFLv6RgX85N+jqD7hglKpREVFBQx6HVwuF+rq6qRQTKfTSQW7vr4eLhfd6kFiR3FCqd/HWrku5laKAYDT6Zyw0f7Yhvx2uz2km5z0DAv4r3+NYv9RM7q6utDf34/GxsMYGhqCIAioq6tDTU0NBgYG0NXVBQDo7u6Gy+WCxWIJ2bgImS0cx0krx3zilPG0UixEOoc8+M9/jaLxlBsOhwM2m23CE1SLxUJzGxKTOI6TVo75JKtTaaXYFHEyObTXfg3gONje+zNMf/kumCj6hWKyjHyoKryb/p0a8OD//XMURzvd0mtMVHMIOR/TvlerqKgI77zzDsxmMzo6OmAymfDee++hsLAwmOMjIeBrtD+2r4+HefBRl39DfjJzHYMePLrFhL5REa/tt0MQGZRKZcDvSXx8PJYuXYrFixcDAGw2G2pqamgCSWKCr6fYWDaPNaAhfyxIT0/H4sWLJ2y0n5ubi7KyMixatChkG3609Xvw6Ksm9JtEvFvPUFxcCp7nMTAwAJlMhoSEBIiiiNHRUXAc59dnsbCwcMY7hxESCXw9xcYadY0ENOQnM9fa68FjW8wYMInYsteK6uoaVFdXw2az+X2e2WxGdXU16uvp34DEHl9PsbEGHH0BDfnJ5LQrbkfcNzZL4djwL2/B4E+ul0KxpJ9uhSwhHce63XjsVTMGzd5zq1BeaCQXlhk3MVKpVMjMzIRGQ1sw+0TylsK+UMzXaH919lqsyroOMk4mNeSncCw4jvd48NirZozaGLKTZHjoRgNkPAe73R4wMbRarbDb7dLvkVKphNVqDdjympCJRHLNGd9of3na5ahMXgbA2wMoFsOxxMTESXefTE5ODlko1tzlxuOvmWG2M+SkyPDgegNSUpJQWnomHBseHpY+nzGGoaEhAMCiRYuQkZERknGR2BPpNWdso/3laVegLLECgLchP4VjwdPU4cbjr5tgdTLkpslw37UayGQ8XC6XXzhmNptRU1MDj8cTlp15SfSL9JozttH+ZelXoTihDIC3IT+FY1MnhWMAnLXvQxzsgCxjvhSKNbS78Os3zLC7GPIz5Pjm9Xq0t7ejra0t4LUYYzh69Cj6+vpm+8sgUYq6e4dAJG8pvLfvYykU8zXa9zXk94Vje3t3n/uFyFk1nnLjiddNsDkZ5qfL8b2bDIjT8rDb7aiurobL5YJGo0FGRga0Wi3cbjdqamqkSWR5eTny8vIwZ86cMH8lJBpEcs05OLAvoNF+SWKZXzhWP1hztpcgU1B/0oUnT08WF2bK8b2bjDBovH/ik5KSUFxcfNbn00oxcj4iueYc6N8b0Gi/PKnSLxxrHG4I5xBjQs0JF377phlON1CYLcdDNxqRYFRJfQp94VhfX58UihmNRpSWlp77xQkZJ5JrzthQ7PL0qzDfuACVyUv9wrGjI03hHGJUURZd5vexPLsQfFwqDrQ48dRWC1weoCRHgQfWGeB2mHH8+HEcP37cLxxjjKG5uRmdnZ04evTobH8JJEpNORjjeR4ymWzK/5HIVJRQCp1cH7D7pC8c08n1KEooCeMIo9/B4y789i0zXB6geI4CD643QKfm4XA4UF1dDafTCa1Wi8rKShQWFqKyslKaRNbV1QEANBoN5s2bF7KVJYTMlmR1KnjwAY32feEYz8mQpE4J4wij374WJza/Y4FbAMrmKvCddQZolGMb0oro7u4+62uMjIyEeJSEzI5EVRI4cH6N9n09x8oSKyDjZIhXxod3kFFuzxEnnn7XAo8IVOYp8K0bDFArvDXH10vVN69paGiQQrHFixdDLqcd40hs8dWcsY32fT3HihPKIONkiFPGhXmU0cHXU2ws54E38d6f/o4/bbNCEIGl+Urcv1YPlYJDXFyc1L/VF46NDcUAYOHChbP+dZDoNOW/Tv/1X//ld5L+7LPPwmKxYP369UhPT0d3dzfefPNN6HQ63HnnxFupkvBLUCViw7xbIeMDw8tMXfakx2IFYwzorgcyygJCJyZ6gN5GcBllM3qPli43BBFYMl+Ju1fppB1TFAoFdDodZDIZKioqoFKpAJyZRNbU1IDneb9bnQiJdvMMeUhWp0CvMAQcK0kswzxD7oTHyNQ1d3ogiMDFC5T4yjW6cbs0iWhoaMDAwAA4joNWq4XVagUA6PV6yGQyWCwWNDQ0YPHixX49xwiJRvlxC5GmSYdB6b/LFsdxWJy8BPONCwKOkfNzpNMNxoDLCpT40godZOOaXiuVSuTn50sX+wDvyalcLofb7R7/coREtYXxhUjXZsI4LvzyhWML4hYFHCOBxjfaT/rpVjjrPsDI0/fhaJcIlgZcVaTEF67U+TXa9wVjra2t0uoxn8LCQiQnJ8/610Ki05SDsZ/+9KfS/z/++ONIT0/H+++/D71eLz1uNpuxatUqaLXaoA4y2lRVVaGqqgqCEJm9us4WfMVyKAYArGELcOxDIO9KoOxWKRxjogds/7NAdx1Qdgu4+Sum/R6fvVyLOclyLF+k9CvcMpkMpaWlEAQBSqXS7zm+cEwQBGmXOEKmKtJrztmCLwrFZu72K7XITZPj0gIleG7yUCwxMRGDg4MAvBN2i8WCxMRE6XPr6upQXl5O4Rg5p0ivOWcLvigUm7k7rtZhUaYClxYoJ1zZbjabcfjwYb/H6uvrUVlZKe2+Tcj5iPSaM1nwxXEchWJTwAQPhn5xS0Cjfe2K2wEAG3//HeQP78SVOUvA8/cHPH9sOOZTWFiIjIwMCuPJlE2rx9jmzZuxadMmv1AMAAwGAzZt2oTNmzcHZXDRKpLvg7/QcYYMABxwYidY/UtgjPmHYrwc0Kee12syxrDniBMewbsrCs9xuKxQNeG2wTKZLCAU81EqlXSLAZkWqjkXFsYYdh9xQhBP1xyew+WFKr9QDAAcDgdGRkbA8zxKS0ul2lNYWIiysjLwPA+TyQQAFIaR80I158Iinq454umaI+O985zJQrGxPcUuueQSv55jdrt9todPYgDVnNjGyeSIu/NXkOeWI+mnW8HFpWF3kxMiY9CuuB1J9/4GFyf1QrvqjgmfzxiDy+Xye2z8x4Scy7TOwjs7Oyc9gZfL5bSTHolY3LzlAABW809vOCYKgNPsvb2Sl4O75B5waUVTfj2RMfxrpw07DjvR0O7G11brqC8YIUTCmAh0HASyLwq8fdvjAnobwGVVTvn1RJHh+Y9s+LjJiaOdbnz1mslrjlarRUVFBdxuNxITE5GUlITMzEzExXmvXpeWlkImk+Gjjz5CUVERXC4XjEZaTUMIOcMjMPxtuxV7m1040ePBl1boJv1cq9XqF4r5eor52kVYrVbU1tbO3uAJIVFDVboCyb/4CALj8Mw2Kz497sKpAQ8+d4UO2hW3Q3Pl58HxgWt6xvcU02g0sNvt0i2VmZmZs/p1kOg1rWCssLAQTzzxBNauXeu3JNrlcuHxxx9HQUHBWZ5NSHidCcf+AZw8vQPnNEIxj8Dw7IdW7G9xgQOwMFNOoRghxA+r+RfQ9gkw1Op/+7bHBbb3D0D/UaDMNKXbt90CwzPbLKg+4QbHAQszFeesOQbDmVtVOY6TQjHAu1ul7xYDmUxGoRghxI/Lw/DH9yyoO+kGzwELMs9+2qBWq2EwGCAIgl+j/bG9VNVqNfVSJYRMyCVw+P27FjS0uyHjgfyMMznDVEIx3+2Tra2tUs+xSL39lkSeaQVjP//5z7Fhwwbk5eXh5ptvRnp6Onp6evDKK6+gp6cHr776apCHSUiQ5SwFav5x5mNNApBaOOWnO90Mf3jXgkOnC/edK3VYtkAVgoESQqIZl5QH1rbXu0IVAMpuBQT3mVBMrgLi5pzzdRxuhqffNqOxwwM5D3xttR6V8ye+LZsQQmbK7mKo2mrG0S4PFDLg69fqUT7v7DVHJpOhrKwMjLGAO0uUSiUqKyshiiJOnjwZwpETQqKRzSnid29ZcKzHA6Uc+MZ1epTknL3mmEymgFAM8O851tbWFtqBk5gxrWDshhtuwDvvvIMf//jHqKqqgiiK4DgOy5Ytw7PPPotVq1YFe5yEBI3UU2wsaz9Y/Ut+KzomY3OKeGqrBS3d3sJ977V6lM6lE1RCSCBu7ukVqtWnb98W3IBtEOhvBuQqcMvvA5c8/6yvYXWI+O1bZpzoFaCSA/etNaBoDjWwJoQEYowBw23gEudNcEwERjrAJeSc9TXMdhG/edOMtn4BagXwzesNWJQ1tZojk02+iZNCoaBG2ITEIMbYpOdPZzvmY7KJ+PUbZnQMCtCqOHzrer3farHJxMXFoaioCIwxKRTzyc3NlXbj/uSTT6b+xZAL1rQ7fa9cuRIrV66EzWbD8PAwEhISLvjdKH0ifeeUC9n4RvvcJfcA9tEzPceAs4ZjjDFsftsbimmUHL55vR4LM+kElYQX1ZzIdiYc+4f3tkoAkCmnFIoxxqRQTKvi8O0bDJifTpt0kPCimhOZGGNgTW8BR98Bym8Dl3fFmGMi2MHngc4a4OK7waWXTPgaImN48k0z2vsF6NUcHlhnwNxUqjkkvKjmRC422glW9yKw7C5wav+WDKy3Cez4du8x+cR31ggiwxOvm9E5JMCo4fDAegPmJE+95qSnp096bN68eRTGkymb1q6UY3V0dKC9vV1axkho55RIxg4+7xeKcWlF4OYtB1fxBUi7VTa+MenzOY7D+qUaJOp5fO8mQ8hCMY9b8F71neQYIWNRzYkCWUv8P9anAkl553wax3G4aZkWSQYemzZQKEYiA9WcCCZ4d2JjdS+Andjl/X9fKHbqAMBEQPBM+nSe43DTUg2SjTw2bTTOKBQTRREDAwMTHnO73RgaGpr2a5MLC9WcyMQYA6v+OzB4HGzXb8AcpjPHepvA9v4R6G0Ea3l/0teQ8RxuXKZBipHHD242nlcoRkgwTTsYe+mllzB37lwUFhbi8ssvR0FBAebOnYuXX345mOMjJKi4nEsAhSag0b4Ujin14LIDd4jzbVEOAIuyFPj57XHISQks3IyxSa9MiKJ4zitdHo93svq3Px3AO683+YVjHo8HplEHnnzkI+zbTffLExItpEb7Y412gNW/NGkAPrbmFM1R4L+/EIesJJosEkImx3EcuJKNQP41AE6HY8c/OhOKcTy4pXeCy1oc8NyxNadsnhI/+3wcMhImvy3yXERRxKFDh1BfX4+Ojo6A4/X19airq5s0OCOERD6O48AtvdPbq9nSK4VjUigmuoH0UnCLrg147tiaU5mnxMOfj0Nq3PRrDiEzNa1gbOvWrfjc5z6HuLg4/PKXv8Rzzz2HX/ziF4iLi8PnPvc5vP3228EeJyFBwaUVgrv2ZxPuPsnNWw5uzU/AxWX7Pd7W78FP/j2KzsEzV1gVssBbLX07o1RXV8PlcvkdGztBnCwc6+vrk66EtZ0YwvZtx6RwrL29HXs/2Yu//nEP+nos+PDdZrick1/xJYREBr/dJ+UqcFc8CK7ydkgrVCcIx070emtOz/CZWjFRzQmmt7Y0ovFQT8DjbreAf/71IE61jYT0/QkhwREQjtW/dM5Q7Fi3Gz99YRR9o8GrORzHQafTAQCam5ulcMx38dBqtUIul0OtVs/ofQgh4cXpU8Bd/u0z4djbPwLbU3UmFLv4LnC8/4W9o53emjNonr15DiHnMq1g7H/+53+wZs0a1NbW4vvf/z5uv/12bNq0CXV1dVi1ahV+/vOfB3uchAQNp9BM+VhzlxuPv2ZGz4iILfvsZ31dl8uFgYEBWK1W1NTUSOGYLxQbHBzE6OgorFZrwHMZY+js7JQmjGs3ePsObd92DNve/hTHjh2Dy+2CXOlEfIIG93z7UihVtHqEkEjHDvzlTCh2uqcYN3c5uMoxt283vSV9flOHG0+8ZkLPiIhX99vO+fpmsxnd3d0THhscHDzrrUqiKKKvrw8AsG/3STz/zAEpHPN4POjp6cXzzxxA7aed+Nsf98NNt3ETEhU4jgNXfJP/gykLJwzFGtpd+PUbZnQPi3jjwNnnOec7hvnz5yMnx9vov7m5Ga2traivrwfgbcRfUVEBvV4ftPckhISHFI6NlTBvwlCsttWFJ9/01pw3P3XM4igJObtpBWO1tbW47777wPP+T+c4Dvfddx/q6uqCMjhCwqn+pAtPvmGG3cWwMFOOu1adffKmUqlQUVEBlUolhWMOh0MKxXieR1lZGYxGY8BzOY5DWVkZ4uLiAAAiN4D1tyzA3HwF5GozAOBYkwsjA3J8/TuXIilZF/wvmBASdNz8Fd5btMc12pfCMU08uDlLAQDVJ1z47ZtmOD1AYbYcX7nm7DXH4XCgpqYGTU1N6Orq8js2ODgorVI1mUwBz2WM4fDhwzhy5AgAoLg8A4LA8PwzB9BQ14mamhocPnwYo6YhKBQyfO6OSigUdIsDIdGAMdHb92esviNSzzGfAy1OPLXVApcHKMlR4ItXBXduMT4ca21tlS4ODvcbMNDnCniOIIjY8kI9BvotQR0LISTErONui3ZZAJf/Bb5Pjjrx9DsWeARgca4CX7hi9jbuG3vr5vkcIxeOaQVjMpks4FYxH7fbHRCYXWiqqqpQVFSEpUuXhnsoZJr2tTix+R0L3AJQPk+B76wzQKM89xJfrVbrF47t2bPHLxRLTEyc9LkymQwlJd5dogRBgFvsRmGZdweXY00uHGtyUShGJkQ1J3JxqQXgrn14wt0nubnLwa36T3CGNOw+4sTv37XAIwKVeQp86wYD1Iqz1xyVSiXtxnTkyBEpHPOFYqIoIikpacIVGRzHSUE8ACy7PB5lFZngOIbmlkaYzWa4XQwOG/DVb1yM/IXJM/k2kBhDNSdy+TXa53hwy+727zl2OhzbediBP22zQhCBpflK3L9WD9U5as50cByHuXPnBjy+d2c7/rx5L06eOLOqVRBE/OMvB/HJrpP4c9VeeDxi0MdDohPVnMgm9RQDAGMGoDIA1gG/hvwf1Dvwlw+sEBmwfJES916rh0I+e7dP/u2P+3Fw/6mAx02jDvzusZ041kz9Di9000qwli5dikcffRR2u/+Sa6fTiV/96le4+OKLgzK4aEU7p0S3HQ0O/Pn0ZPGShd7CrTyPwq3ValFeXu73WEFBwVlDMR+ZLHBFxkCvB8eavEH0/t1tkzbrJhcuqjmRbbItyn3H3q9z4K8fWsEYcFmBEves0U+p1wbHcViwYAGys719EY8cOYKGhgYpFEtJSUFxcfGkF6tycnKQl+fdGfPUqVNYerkRV6w2Ij5RBpeT4cDHdtx6+zIKxUgAqjmRiTE2YaP98Q35337/CJ7/yAYG4KpiFe5epYM8RP193G43ampqAh7PnKOH0+GRwjFfKNZQ1w2ZnMdNt5ZCLr+wL7STM6jmRK6ARvtX/wDclQ9JPcfEnb/BG5+M4N8fe1ePrSxV4SvX6CDjZ7enWOuxQbz4fI1fOGYadeAPv92DzlOjePWFeggChfEXsmk1KXr44YexcuVK5OXl4dZbb0V6ejq6u7vxyiuvYHBwEB9++GGwx0nIrBBFhk+PucAAXF2qwucu14Lnzq9wi6KI48eP+z3W1taGxMREKJXK8x5TfJIMV62ag4/eP4Xt244BAK67sRDceY6LEBJ5PIK35gDA6nI1br1Uc16/275wDAA6OjqknmHnCsV8srOzpZ4/nZ0dUGkghWLmUZE2+SAkinAcByTmgnVUg1v6VamnGMdxQMlGMADu1n04OOC9UHd9pRobLj6/mnM+fKGYxWKReop1dnbiyJEjWFTKwEQ9Otot+OPv9kCjUcBsckIm53HH15aioDgtJGMihAQPYwzsyNuBjfb1KcDl3wb7+LdwW4ZQ3WMBoMWNSzVYd5E6LOcwF12Sg327T+HF571B/YJFKfjDb/egv9eC+AQNvvqNiyGTURh/IZtWMHb55Zfjvffeww9/+ENUVVWBMQae53HxxRfjX//6Fy699NJgj5OQWcHzHO6/3oB9zU5cVaw678I9ttE+z/NYsGABTp48KfUcq6ioOGs4NnZL89YWF5KSFTAmcFAlmLD+lgV44+UWCscIiSFyGYdv3aDHweMuXFF0/jUH8J70JiUl+dWPxMTEabc1GBkSIApyAC48/8wBfOnupSgqTZ/WaxFCZheXdyWQVgxOl+T/+OlwTJl3Fb7DJ6C21Y0riiZfzTpToiiitrbWLxTT6/XIzc3FkSNHIJNzKFzMwJgBnafMMLudAEChGCFRhOM4YPnXwZq3gSta59donzsdjqlOHcADORloaPfgssLQ1ZxzWXdzMQAe+3a34YXnzqxijU/QUKsaAmCat1ICwFVXXYVPPvkEZrMZp06dgslkwu7du3HllVcGc3yEhJwgMlQfP9MzT6PksKLk/K9mjA/FysrKkJWVFdCQf7L+fO3t7Thx4gQA4GSLC70dMlx6xVLEx8dDEASIXB/W3+JdGXK0qR9uF+0QR0g08ggM1SfO1AGdmseVxdO/gurrKTbW0aNHAxryTzgWT+CKsNQMOb74tQUoq8iUGvL7dqskhES+8aGYR2CobXV5d6vUJcGg4UMaigEAz/PIzMyEUqn0233SV+eys7Oh02uh1fmPQ61RhHRchJDg4pQ68CUb/EIxt+d0zdGngCu8HnE6WVhDMcC7+GHjbWUBF/ooFCM+M14vqNVqkZWVBa129naVICRY3ALDH9+z4Ol3LXi3xtszb7q7lgiCAKfTGdBof2xDfpfLBbfbHfBcxhjMZrP08cWXluLr37kUqalGlJeXS+FY/qJ4fP4rlbjnW8uhVE1rwSchJIxcHobfv2vB0+9Y8EG9d5vymeyUNLbRfkpKClasWOHXc+xs4ZjH45ECNZeTYd9HDsTHZQDw3v69fEWCFI69+uIhuN0UxhMSbZxuhqe2WlD1tgU7D8+85pyPrKwsXHLJJRNuAJKTMxctDTxajvg3vB7fkJ8QEl0cLobfvmVG1dsW7D7iXQk6WV1hjM3qjpAWsxN9vWa/x6jeEJ8pn1lfc801U35RjuPwwQcfTGtAhMwWh5th89tmNHV4IOeBFKMM/f1WHD8xhIrFGVCNC55OdYyir9eC8vKMCRvCKhQKLF68GDabDfHx8X7HfOGYKIrQ6QKvSnAch6KiIiQkJODAgQNYVJgGhcJ71VQmk6G8vBzDw8NITk5GRkbwvgeEkNljdzE8tdWM5i4PFDIg2cijt8+CkyeHUbE4A0qlf81pax/B4KAN5WXpE/a9cDgcEzbaH9tz7MiRI9DpdH47UALeyWhdXZ0UyHNiMm69PRv5C5PR3q7DsWPH0NbWhitW5UOnV2L5lfOgUARuDkIIiVxWh4jfbbXgeI8HSjmQaODR02NG+6kRLC7PhFLp/zvd2jqMkVE7ykonrjnTIZdPfKrx0j/qcLi+V+oplrcgCc/+fj+ONw/gz5v34q77LsG8vHNvWkQIiRwWh4jfvGnGyT4BKgWQZODR1WVCZ5cJi8sz/OYRjDGcaB2GxeJEaUk6+BA34zebnPjz5v0Y6LMiLl6N1HQDWo70Sz3HliybE9L3J5FvysHYjh07YDQaMWcO/dCQ6Gd1iPjNW2a09gpQyYH71hpQkCXH3n09sNvdqK7pQmVFphSOneoYRfPpbXx7ey3IyjJO+LpKpXLSHmLnWlXJcRxSUlImPCaTyZCcTDvDERKtzHbvZLGtX4BaAXzzegPy02XYu68bDodHqjm+cKytfQTHjg0CAPr6LMjICKw5arUa8+fPx8jIiF+j/bEN+TmOg9EY+FyO4zBnzhxYrVYAwMpri6UwPicnBwDQ2dmJtLRUbLwtJ8jfDUJIqI3aRDz5hhkdgwK0Kg7ful6P3FQZPvmkC06XgJraLlQsPhOOtbYO40Srd+VE/4AV6WmGkI6v6VAPZHKZX0+xr967TArH/vW3anz/P6+hnSkJiRLDFhG/fsOM7mEBejWHb99gwJwkHns+GYLbLaCmthsVi73hmC8UO3lyGAAwOGhDSkpob2d89vf70N9rlXqKJSRqseWFeuzb3UbhGAFwHsFYXl4eTpw4gbi4ONx555247bbbJlz5QoCqqipUVVVBEOi2k0g0YvVOFjuHvJPF76wzIDdVBkEQULE4A9XVXbDZzoRjfX0WNLd4T1Dnzo1HZmZoJ4uEnC+qOZFtyCzg12+Y0TMiQq/m8MB6A+ameP/8VizOQHVNF6zWMzWnu8cihWK58xImDMV85syZg+zs7ID+ZOPDsYmkpqbCaDTi3XffDTiWk5ODrKwsyGS0SowEopoT2QZM3prTNyrCqOHw4HoDspNP15yKTFTXdMFicUnhWGenSQrF5uclhjwUA4AlF+egpDzTr9G+UinHV+9dhheer8E1axZSKEYkVHMiW9+ogCdeN2PQLCJex+HB9UZkJnrnD5UV3nmO2eyUwrH2U6NSKLYgPynkoRgADPRZEJ+g9esptvG2MgDAvt1t2L2jFYuXZNHOlBewKf/LHzt2DNu3b0deXh6+9a1vISMjA3fffTf27NkTyvFFpfvvvx+NjY04cOBAuIdCxnF5GB571YTOIQFxWg6bNnhDsdbWVhw8eBAyGUNlZSbUKjlsNjc+3t0mhWI5c+IwPy/xvBpki6IIh8Mx4TGPxzNpI35CzgfVnMjlcDM8+qo3FEvU89i00SiFYgCg1SpPr06VwWp1Y9fHbX6hWN4UbiWarCZxHHfOenW24ItCMTIZqjmRy+YU8cgWE/pGRSQZePzgZqMUigGATqc8vTpVBovFhV0fn/QLxebNS5iVcd50a8mEu08qlXJ86a6lyJoTN8GzyIWKak7ksjhEPLrFhEGziNQ4Hj/YeCYUAwC9XoXKikwoFDzMZid27jrpF4rl5MQHbywWC5qamiCKYsCxa67Lw3UbspCYdOYOHl9D/rU3FuLu+y+hUOwCd17/+ldddRWee+45dHd349FHH8WhQ4dw+eWXo7CwEI899hh6e3tDNU5CgkIp53BNqRopRm/hzkqSw+12o6urS9o10heO+bMgKYk/71CssbERn376KWw2m98xj8eDurq6s+5SSQiJfmoFh6tLVEiL57FpowEZCd7J4sjICFpbW8EYk8KxseLjZVMKxQghZCytiseKYjUyEmT4wUYjUuO8NYcxJq228YVjY83JNs5aKEYIiR16NY/LC1XITpJh00Yjko2BF9V84dhY8+YlBDUUE0URdXV16O7uRkNDQ0A4JlcPYGS0B93d3X6P8zyHq9csgFY3cSsccuGYVixqNBpx7733Yt++faivr8fKlSvxox/9CPfdd1+wx0dIUDB2ZseTlWVq/OS2OKScniwqlUpUVlZCqVRK4VhPr8nv+UqlATrd5LczTUQQBFitVrhcLlRXV0vhmC8UGx0dhdPphNPpnOFXRwiJNGNrzrUVGvznrXFIMnhrjtPpRF1dHVpbW3HixAkwxtA/4B+ej4zY0dc3OKtjJoREr7E15/olavz4FiMS9Lx0rKWlBdXV1dLO2H19Vr/nd3UPw+EI3DWbEEImMrbm3LRMgx/ebESc9ky0MDo6Ku2MzRhD77ia09trCupu1zzPo6CgADzPY2BgQArHhoe9q9NEUURSUhLS09OD9p4ktsxovWBTUxP+9re/4eWXXwZjDIsWLQrWuAgJmqYONx55xQyr48yVA5XCf+WXVquVwjGLlceJEyOnj1ihUHBwuRiqa7rgdHqm/L4KhQIVFRXQ6XRSOGY2m6VQTC6XY/HixTAYqGcZIbGkod2FR181w+acuOaoVCrk5eUBANra2lBTc0K6fRKwAvAAUOLECStcrqnXHELIham21YVfvWaGw+09UeU4zq/mOJ1O9Pb2wmw2o7a2FseOD0i3T6pUbgACBEGG6ppOuFzUw4kQcnYHj7vwxOtmOCepOXa7HbW1tThy5Ag6Ozv9Gu0nxMsBCLDbBRw82BHUcCwpKQmlpaVSOLZr1y40NDQAABITE6VjhEzkvH8yLBYL/vSnP2H58uUoLi7Gq6++im9/+9tob2/H//7v/4ZijIRMW/UJF377phnHez3YenDiXl8+Wq0WGRkLAfhuXxrFooWJWHrRHKnn2PmGY0ql0i8cO3DggF8oNtFucYSQ6HWgxYmntlpwrNuDd2smrzlz5szBggULwGDE8Ijv0VFwGEBqiujtOXa65lA4RgiZzCdHnXj6HQuauzx4v27imqNWq1FRUQGFQgGTmUdb2ygAQKd1weXsAs/1QS7nYLd7d6ukcIwQMpldjU784T0LjnR6sL1h8pqTkZEBBuDI0R4pFEtPV2F09ASAXnAcg9XmQU1td0jCMcB7945vZVtRURGFYuSspvzTsXPnTtxxxx1IT0/HAw88gIULF2L79u1oaWnBj370I2Rmju/JREh47T7ixO/ftcAjApV5Cmy4RHPWzxcEER2do6c/GgUwgs7OzoCG/MPD9vMah1KpRFlZmd9jCxcupFCMkBjz0WEH/rTNCkEEluYrsX7p2WtOZmYWlEpfED8CDiNIT09HSUmBX0P+kZGzh/qEkAvTB/UO/OUDK0QGLF+kxNpKdcDn+PqK6fV6lJUtBuDb/W0YNls3eJ5HWVkhLlqSLTXkN5lCV3PG3n51PscIIeH3bo0dz+2wgjHgiiIV1pQH1hzgzM7YWZnZ8NUcndaJvt4WMMaQnuZdeKBQ8LBYnDCZgttW5nx6QhPiIz/3p3itWLECRqMRt99+Oz7/+c9LJ/XV1dUTfn5lZWVwRkjINLxf58ALu709ey4rUOJLK3SQ8ZMXScYYjhxpgsfTDw465OWloKPDJvUcq6ioQGVlJkZGHUhPP79bHz0eDxobG/0eO3bsGIxGI7Ra7STPIoREk7er7Xhlrzc0v6pYhS9coQV/lpoDADIZj7xcLY4cbQcHCwBvkA6c2a3SZHYiNVUf2sETQqIKYwxvfurA6we8NacweQjXFuog4/1rxejoKA4dOoSioiIkJiYiLs6AxeXpqK1rlmpOYWEhkpKSAACVFZmwWF1ITtYhFEwmE5qbmyc81t/fj+7ubhQXF9OOuIREGMYYtuyz4+1qb2h+bYUan7lEc9YAiuM4LFq0AIy1oKt7ADabt8dYWloaioqKwHEcKisyYbd7kJQUvPOhoaEh1NfXS2PwBe5NTU0oKyujVWNkUlMOxgDvH7RnnnkGzzzzzKSfwxgDx3HSFSpCZhNjDK8fsOPNT72Fe025GrdcevbCzRhDY2Mjent7wXMciovnIjU1FampqaiurvYLx5KTJr4y4tvtSS73/5Ua22hfLpejuLgYx44dg9VqRXV1NSorKykcIySKMcbwf3vt0m2T11eqseHis9ccn97eXjQ3N4HDmVUS7e3t4DgOeXl50GqV0GpplyRCyBkiY3hxtw0f1HtXWFyRb0eWrB1HjwA8B2RkZADwhmK1tbUQBAGnTp1CYmIiRFFEZ+eZIB7w1pzExEQoFArodEroQrQzm2+uZbV6T45dLhcUCgUAbyjW0NAAxhg6Ojowd+7ckIyBEHL+RJHhn7ts+Oiwt+bcfIkGayvPviLeh+M4JCXFo7u7Q3osPj5emiPp9Sro9aqgjdUXivka7ZeWlqK3txf79+/H4OAgGhoaUFJSIoVjoihSUEYkUw7Gnn322VCOg5CgsDkZ9hxxAQA2XKzB9ZXqc56gejweWCwWcByH4uJipKamAjjTkL+6uhoOhwMnT55EX19fQJjFGENzczNGRkZQUVEhrfgYH4r5eooZDAbU1NRQOEZIDDDbGfY1eyeLtyzX4NqKqU0We3t70djYCMYYMjIyUFBQgI6ODrS0tKCtrQ0AkJeXR7cDEEL8mGwM+1u885zPXa7FNaUJaG62oLOzE01NTQC88xdfKBYfH4+SkhKIooiGhgYMDAyA53nk5eWhra1Nasi/ePFiKag6G1EUIYpiwIVAwDvv4Xl+whNNjuNQWlqKgwcPAgAOHTqEyspKjI6OSqFYWloa5syZM5NvDyEkyIatIg4ed4ED8MWrtLiyeOJFAhPp6+vD4cOH/R47evQoOI4LehsmURTR1NTkF4r19/fj+PHjACA15O/p6UFmZiba2trQ19c35dpHYt+Ug7E77rgjlOMgJCh0ah4P3mhAS5cHVxRN7QqEb/dIs9ks3U7g4wvHnE4nmpubpd0lfWGWLxTr7OwE4L1Cm5KSAsA7CeR5PqDRvq8hf01NDQRBoBNfQqKYUcvjwfVGnOzz4NKCqdUcp9OJpqYmv1CM4zjphNAXjiUmJiIhISGUwyeERJl4HY8H1xvQNSTg4oXemrNw4UIA8AvHAO/KjPLycnAc5xeKlZaWIikpCYmJiaipqZlyOOY78bTZbAGf67sYKJfLJ935TafToby8HDt27IDVasXHH38sHUtLS0NhYSGt3iAkwiQZZPjOOgP6TQKW5k99dZcvFPOF3oWFhTh27Bg6Ojpw5MgRAJhSOGa32+F2uyfszWwymaBQKKDRaE73SyzDqVOnUFBQAAA4efIknE7vxcv8/Hw4HA5kZGSgra1NCsz6+vqQlZU15a+LxC7660OinsvD0Nzllj5Oj5dNORTzUSqVAaGYj1arRUJCgt/ukr5bLMeGYoWFhVIoBgAymQxlZWWorKwMKOa+cKyiogIazdRWmBBCIoPTzdDSfabmZCbKphyKAYBKpUJxcTEyMzOlUMzHt1tlbm4uhWKEEACAw8VwbEzNmZMsl0IxwHshbuHChdDr/XuMlZeXQyaTwePxwGq1+oVigLchv2+3SofDIZ1ATsbpdGJoaEgK0txu75jGrpAfHR2FzWab9DUmWiGfmJhIoRghEcTmFHG858yO2PNS5ecVitntdr9QzLcj5IIFC5CdnQ0AOHLkCEwm01lfx+FwoKamBrW1tQGfazKZUFtbi5qaGjgc3nYWBoNBei+e57F48WLpPOvkyZPIzs5Ge3u7FIrl5uZSKEYk9BcoBKqqqlBUVISlS5eGeygRY2DAOumOI93dZtjt7gmPnYvdxfCbN8144nUzGtpdMxniOfnCLF84tm/fPr9QzNfXYyyZTBYwUR37ehSKkWCgmjN7rA4Rv37DW3OOdE6vbgFASkpKQCjmM2fOHOTm5s5kmISEFNWc2WNxiHj8dRN+/YbZL5Afz2QywW733zW7r68PgHe+UVlZifLy8oCLgL5wrKKiYtL5io9Go5GCNF845nA4AtpGnOt1xnM6nfB4POf+RHLBopoze0w2Eb96zYxfv27Cid7p/V5qNBrk5+f7NdoHzuxWmZ2djXnz5sFgOPuGZnK5HCqVCh6Pxy8c84ViHo8HKpVqwlu7Ae+FyPLycgDevoaffPKJXyhGcy0yFgVjIXD//fejsbERBw4cCPdQIsLwsB31h3pQU9sFk9k/HOvoGEVjUx+qa7rgdp/fhg1mu4hfvWZCc5cHChmgkIX+lkRfODbWvHnzJgzFCJktVHNmx+jpyeLxHg+Ucg4K2jiNXKCo5syOYYuIR7eYcbJPgFLOQT7JTrdjG+3Hx8cjPT0dgHcXtu7ubgDeE8TJVqHq9foph1ljV5mZzWbs2bMnoJfq2QwMDPi9lkKhgNVqRW1tLVyu0F7gJNGLas7sGDQLePRVE04NCFAqOMhnMM+ZM2eOXyjm4wvHcnNzz9lORi6Xo7y8HHFxcVI41tnZKYVicXFxKC8vnzQYA87s9j1WRkYGhWIkAAVjJOQMBhWMRjU8HhE1NV0wW7wTn64uE442eydIqSk6yOVT/3EcMgt4dIsJ7f0C9GoO39tgxKKs0DdOZIyhtbXV77Gurq6z3jZACIl+AyZvzekYFGDUcPj+TQbMT6dmrYSQ0OgbFfDIFhO6hwXE6zh8f4MRuWmBJ3/jQ7Hy8nIUFhZKtweNDceCRa/Xo6yszO+x4uLic4Zi/f39Ug+01NRUXHTRRaisrIRSqYTFYqFwjJAw6h4W8MgrZvSOiEjU89i00Yic5Cm3I5/QZMEXx3FT7rE8Phw7evTolEOxyQwNDQWssCWEgjEScnI5j8XlGYiL84Zj9fXeCVrLsUEAQM6cOOTnJ025QPaMCHhkixk9Ywr33JSZFe6pGN9oPz8/36/nGIVjhMSmriHvCWrfqIgkA48f3GxE9gwni1Pl6+EzHmOMbj0iJEadGvDgkVdMGDSLSI3j8YONRmQmTrx0w2Qy+YViMplM6jnmC8dGRkaCOj6Px4Njx475PXbixIlJ6xVw5sIiYwyAd8MAnueh0+mkHb0tFot0+ychZPa09Xnw6BYThq0i0uO985z0+MhZFi+Xy5GXl+f3WG5u7pRCsVOnTkn/n5WVBa1WC6fTierqagrHiB8KxsisGB+O+ZxvKDZ4eqXYkEVEWjyPTRsNyEgIfeEeH4oVFhYiJycnoCH/ROHYZM1sGWPnbHRLCAmv/lEBj71qwoiVISNBhh9sNCI1bnYmi62trdi/f39AXWGMoampCdXV1QEnor29vdKOl+OdPHkyYMUrISSy9AwL+NVrZpjsDNlJMmzaaESycfKaM2fOHBQXF0uhmI8vHCssLJR2aAuGsY325XI5CgoK/HqOTRaOcRyHxYsXS7vvjm207wvH8vLyqBE2IbOsc9CDX71mgsXBMDfFW3MS9ZEVEZhMJhw6dMjvsYaGhnM2729ra5PmPXPnzsWiRYtQUVFB4RiZUGT91JOYJpfzSEn2340oLc0w5VAMABL0PEpyFMhJlmHTBiOSDLNzgsoYk05OxzbaH9uQ3+PxBARdp06dwt69ezE8PBzwei0tLThw4ACsVuusfA2EkPOXZORRmK1AbqoMmzYakDBLk0VBENDb2wun04mamhqp/vhCsZ6eHlitVoyOjkrPcTqd0m1T48OxkydP4sSJE2htbQ2oR4SQyJESx6MgS4756XJ8f4MBcdpz15y0tDS/UMyH4zhkZGSc1zzrbMaHYosXL0ZmZmZAQ/7JwjGlUjlpXx+dTod58+YFbayEkKlJi5dhYaYCCzPl+O5NRhg0kRUPjG20HxcXh8suu8yv59hk4Zgoin49DefOnQvA229xbDhmNptn5esgkW927gUhBN5G+8eOD/k9VlPbhYqKTBgNU9sCmOc43HG1Di4PoFHO3uSJ53mUlZVhZGQkYEcnXzhms9kQHx8vPc4Yw+DgIARBQH19PcrKypCQkCCFYh0dHQC8BV+n083a10IImTqe43DnSh08IqBWzF7NkclkqKyslFai1tTUoKKiAidPnkRPTw84jkNxcTGSk5Ol56hUKqSnp6Orqws9PT0AvEF+W1sbTpw4AcB7O4JWq53wPQkh4SfjOdy9Wg9RBFSzWHOmQhAEuN3ugEb7vob8NTU1cLlc8Hg8UCioByMh0UAu4/D1a72bbyjlkVVzbDbbhI32y8vLpZC+trYWS5YsCTiX4nke5eXl6OnpwcGDB/2O+cKx0dFRpKamzuaXRCJYZEXCJGZ1dIxKjfazs7wTqbEN+cfvVjnWgRYn/rTNAlH0rn6Q8dyshmI+MpksIBTzUSqVfqEY4L1SW1paisTERCkcGx4e9gvFCgoKaEdLQiLMniNO/OUDC8TTK67kMm5WQzEfpVKJyspK6arm3r17/UKx8ZM5URT9rnz29PRg+/btUigGeFd8DA35X6AghITXrkYnnttulWqOQsZFXCgGnDmZnGj3SV84VllZCY1GE6YREkKmYnuDA//4yCqtLFfKuYgLxQBArVYjMTExoNH+2Ib8iYmJk9YcuVyOtLS0CY+pVCoKxYgfCsZIyA0O2qRQLGdOHPLyEgEApSVpUs+xmpouuN1CwHM/OuzAn7ZZsb/Fhd1Hoq8fl0wm8wvHampq/EKxzMzMoL6f2WyedEnw0NAQHA5HUN+PkFjzQb0Dz35oxSdHXdjXHP7d0XwrUsfKzc2dcDLH8zwWL14Mg8Ew6estWLCAwnhCIsi7NXY8t8OKXU1OVB+fvHl9pFCpVJPuPqnX6ykUIySCMcbw5qd2/HOnDTsOO1F3MrJrDs/zKCoqmnD3Sd/K1aKiIr+ehYRMF/0UkZBLSNAgNVUX0Gh/bEP++XmJUCj8+2O8XW3H3z+ygQFYUazCZYVTu90y0vjCsbHS09ODHopZLBbU1NSgpqYmIBwbHBxEfX09qqurqeE/IRNgjOH1A3b8+2NvL6+VZSpcvFAZ5lF5x3X8+HG/xzo7OyfdBVehUGDx4sVQqQLr5YIFC6TG14SQ8GKM4ZW9Nrz8ibfx83UVaiyZH523H0602cdUjhFCZg9jDC/tseO1/d6as+4iNcrnRX7N4Xl+0t0nZTIZhWIkaOgniYQcz3MoLkqbcPdJuZxHZUUmsrPjpMcYY3j5Exte2est3NcvUeMLV2rBR2lD1olObPv7+4PeAFutVkOr1cLj8fiFY4ODgzh06BBEUYTBYKC+H4SMIzKGFz624Y0D3ppz0zINbrss/DVnbKN93w5zvtsqxzbkH6+zs3PCANxsNtNJKiERQBQZ/rHThrervau4b75Eg88s14a98bzVasXJkycnrBPDw8Po6uqa8HFfD6Dxenp60NDQAFEUA44RQmaPIDL8bbsV2+q8Nee2y7S4aVn4a850URhPQoGCMTIreJ6btPjy/JnHRZHh+R02vFvjLdy3XqrBxouju3CP7Sm2cOHCgJ5jwTK2Ga4vHDt58qQUiqWkpKC4uJiurBAyhiAy/PVDKz445A2SPne5Fusu0oS95owPxYqLi5Gdne3Xc2yicMy3++REenp6AnarnCm73T7pLdpms3nCk2VCLmQegeGZ96346LATHIAvrdBibWX4bz/0zRtOnDiB48eP+9WJ4eFh1NXV4ciRI367vImiiMbGxgnDsZ6eHjQ2NqK/v3/CQI0QMjvcAsMf37Ng9xEXOA74yjU6rCpXh3tYALwLBSYLzzs6OtDS0hIwZxkaGpo0jO/q6sLhw4cpjCfTQmfIJKJ0DwvY2+wExwF3XK3DmsXhnyxO1/hQrKCgANnZ2RM25A+W8eHYiRMnKBQj5Cw6BwUcaHGB54C7VuqwsiwyJouiKMLhcAQ02h/bkN/j8cDtPtMfxOl04uTJk36vk5ub69dzrKenB6Ojo0EZo91uR3V1NWpqagLCsdHRUVRXV086eSXkQtU+IKD6hAsyHvjaGh2uLIqMmiOXyzFv3jwAQHt7uxSO+UIxURSRmJiIhIQE6Tm+HbvlcjlMJpP0++4LxQAgIyMDWVlZ4fiSCCEAWns9qG11Q84D37hWj8sKIqM1jdvtRmNjI/r6+gLCrI6ODjQ3N+PUqVMYHByUHhcEQQrj6+rq/OYXXV1dOHLkCPr6+qSduQk5H3SWfA6tra24+uqrUVRUhNLSUlit1nAPKaZlJcnxjev0+PoaPS6P0p5iYwmCd0OBsY32xzbkZ4wF/aqGXC4P6COUk5NDoViUoJoTHB6PKO1kO57bLUhXIHNS5LhnjR7fuE6PSxZFTs2RyWQoLy9HeXl5QKN9XzhWUVGBuLg4v8fHfu6CBQuQm5vr15BfJpNN2qvjfHGcdyWw3W73C8d826cLggCe58O++o6cHdWc2ZWXJsddq3T45vV6LM2PnJoDANnZ2Vi4cCEAbzh28OBBv1CstLQUMpl/P1iDwYCKigopHNu5c6dfKFZQUEA1gPihmjO7FmYq8NWVOnx7nQEVeeHvneqjUChQXFwMjuPQ398vhWO+UAwA5s6di6SkJOk5MplMCuNHR0elcMwXigFAVlYWbTJEpiU4s+MY9pWvfAU///nPccUVV2BoaGjChsZkZqwOESYbQ0aid7JVOjdyivZMcByHgoICpKen+11hBc6EYxaLxe/ENhgGBwfR1NTk91hdXR0qKirOulsdiQxUc2bO7RZQU9sNrVaBokL/UMlud2PPgS4Y4vVYWpoIjuMiaqI4lkwmQ2Ji4oTHlEollEr/cTPGpKunYxvt+xry19bWwmKxwOFwQK/Xz3h8arUalZWVqK6ulsKx+fPno6mpCYIgID4+HuXl5QEn0iSyUM0JPZNNhMPNkBrn/V2ItEBsrOzsbABAc3MzTCYTAEwaivn4wrEDBw5Ij6WkpFAoRiZENSf0Rqwi3AJDitH7O3vJwsj8HicnJ6O0tBSHDh1Cf38/duzYIR2bO3cu8vLyAmqI0WiU5jSjo6PYuXOndCwrKwsLFy6kukOmhZaQnMXhw4ehUChwxRVXAPBODIJ1pZ14jdpEPPaqGb96zYS+USHcwwk6juMCQjEfmUwWklBsbE+xK664wq/n2PjdKklkoZoTHGazExaLE729FjQ29UkrxxwON3bt68bWZi3+sY+hbyS2bvHjeR4lJSUoLS0NWDXqC8fKy8uRnJwctPf0hWNqtRp2ux0NDQ0UikURqjmhN2gW8MgWE5543YwhS3T0vdHpdH4fa7XaSVedd3V1oampKWDVj8PhwPHjx9Ha2hqycZLoQzUn9PpHBTy6xYRfv27GiDXya44vHBtrzpw5E4ZiPr5wbKz09HQKxciMxHQwtnPnTqxfvx6ZmZngOA6vvvpqwOds3rwZubm5UKvVWLJkCXbt2iUda2lpgV6vx4033ojKykr87//+7yyOPvYNmEQ88ooJnUMCOA5weWgXkZkwmUwBjfZ9J8Njw7HJGmWTmaOaExkSE7UoLUkHxwG9vRYcbe4HAOzc34e3mjUwuWRQKmQQY/BPIM/zSElJmfCYQqGYdAXaTKjVauTn5/s9tmjRIgrFZgHVnMjWMyLgkVfM6Bv1npy6o2Ce4+vdM1ZHR0dAQ37A22fw6NGj6O7ulm6fNBgMkMvlMJvNaG9vR2tra9D6GpLwo5oT2bqGvEF8v+l0zREiv+YACDg3cTgc59woyGKx+H1ss9mkFjaETEfsnRWMYbVaUV5ejqeeemrC4y+88AIeeOAB/PjHP0ZNTQ2uuOIKrF27Fu3t7QC8TQF37dqFqqoqfPLJJ9i2bRu2bds2m19CzDK7tXj8DRv6TSKSjTw2bTQiO4muGM2EXq9HUlJSQKP9sQ35MzIyaMl6CFHNiRwpKTopHOvrs8Lk1uGdY3rYPDKkGHn88DNGZCRQcBMMo6OjAbdv19fXUwg/C6jmRK4Rlx5PvGHHsFVERoJ3npMWH9k1Z3yj/auuusqv59j4cEyj0fg11tdoNFiyZIlfOK9SqQJWoJHoRTUncg27DHjiTRtGbQxZiTJs2miUbqWMZGN7iun1+oCeYxMZ21PMaDRKPQ7HN+Qn5HzEdBKxdu1arF27dtLjTzzxBO666y7cfffdAIAnn3wS7777Lp5++mn84he/QHZ2NpYuXSrdknL99dejtrYWq1evnvD1nE4nnE6n9LGvN4Pb7fbbOexCd6zLiT39ZXAzhowEHt9aq0G8VoTbHfnLfUPN93My3Z8X3wRWEISAqyYlJSXgeT4q/2BEy+8P1ZzIEh+vRG5uHPYeGsEn/aVwMx5ZCRy+db0GRjXVHGDmNce3UlUQBMTFxWHBggU4dOgQbDYbDh48iPLy8qgM46Pl94dqTmRqbHdg70ApPIwhJ5nHN9dqoFcJcLsjdzWDx+NBfX09BEFAQkICCgoKIIoi0tLSIAgCjh07hra2Nmi1Win4EkURAwMDUlhms9mwfft26TV5nofD4UB3dzfS09MBzLzmjIyMQKFQTBi29ff3Iy4uLqD/YjSIlt8fqjmRqaHNW3MEBuSm8rj/Og20ysiuOYA34Dp27BgA7+2T8+bNw9DQkLRbpSiKKCgo8LuVu6enRwrSMjIykJ+fD4vFgkOHDmFkZAQ1NTUoKSmRbtGdac2JVfT9CBTTwdjZuFwuHDx4ED/84Q/9Hl+zZg327NkDAFi6dCl6e3sxPDyMuLg47Ny5E1//+tcnfc1f/OIXePjhhwMe3759O7RabXC/gCg17NKfLtwKxCtMKFUdxp6Poi+oCTW6eubPZrOFewgzRjUnPIacRuwdLIHIZEhUjqJEfRgf74jsiWI4BKPmWCwWdHZ2+n38wQcfzPh1w4FqzsSo5pzbgDMO+wdKIEKOJOUIChWN2PlhdNUci8WCU6dOTXhsbIP9qaqurg54jOY5/qjmTIxqzrn1O+JxYLAYImRIUQ1jkawROz6Ivgt/TU1NAavPLRYLTp48OelzWlpa0NLSEvCcrq6ugM+lmuMvFmpOsF2wwdjAwAAEQUBaWprf42lpaejp6QHgvQXtf//3f3HllVeCMYY1a9Zg3bp1k77mf/zHf+Chhx6SPjaZTJgzZw6uvvpqv61mL2QOF0PHW1ZYzUPYdEs69No1YR2PzWaDw+GYsO/OyMgI5HJ5UHZvmyq3241t27Zh9erVUCgUs/a+kW5wcDDcQ5gxqjmzy+Fwo7auBwqbgDgLg5wN4cocN+T8QqSm6rBoYQp4nhq0zqTmeDweHDp0SGr6P7anmNPpRG1tLeLi4rBo0aKoa4ZLNWdiVHPOzepgaHvDCtExgO/fkgmtZs65nxRBGGOT/r5Odowxhra2Nul2OcD7czZRI+yZ1By3241Dhw7BYrFAoVCgrKwMOp0Ovb29OHr0KABvA+4FCxZQzQkDqjnhYbaLaH3dBpm7D9+7JRsadU64hzRlFosFg4ODyMnJCfidHRwchNvtllab+jgcDvT29k74HLPZDLPZjMzMTOkxOreaWCzUnGC7YIMxn/G/UOP/6J9ryfBYKpVqwltGFAoF/SKeplAA37oe+OD9XdBrc8L6fbHb7Th06BA8Hg9KS0v9/sAODw/j8OHD4HkeS5YsmfX+GPQz4y+WvhdUc0LPbnej/lA/XC6GeIMK371Jjz279qK85Co0HRlAf78DPD+MosJUCsdOm87PjEKhQGVlJTiOk0IxQRAgk8mgUCiwbNkyKBQKcBwHxhhEUYyahvyx9PtDNWd2xSuAB9cz7PigCVrNvJj/vjDG0NrailOnToHjOBiNRphMJvT19UEmk6GgoGDCkGomNae2thZmsxmHDh1CRkYG2tvbwXEcMjMzozKIB6jmTIZqzrklKoDv3gjs/PAINOq8qPq+JCQkICEhYcJj4wMxH4VCAYPBMOGxxMTESTcZop8Zf/S9CBTTzffPJjk5GTKZTLqC4dPX1xdwpeN8VVVVoaioCEuXLp3R68SKD+od2HrQLn2sVXGQceHfJUWlUiEuLg6iKOLQoUNScj62+azRaIRarQ7zSEksoJoze96rdaC+Ww6NRoHKykwkGhXgOYbk5DO7VTocHohi+OtQtJPL5VLY1draigMHDkj9YJRKpRSKNTU1oa6ujnaMmkVUc2YHYwxvfWrH+3V2qdeWXs2DHzPPifQ+P9PlC8V8tzrl5+fjoosuQnFxMQCgu7sbR44cOefucufDt9u2wWCA2+2WVqlFcygWK6jmzA7GGF7dZ8OuxjMb3Bg0POhHn5CZuWCDMaVSiSVLlgTcb7xt2zZceumlM3rt+++/H42NjdPqwxBLGGN4/YAd//7Yhi377DjWHVlN/nieR3FxMVJSUqRw7NixY347MpWWlkbNCgcS2ajmhB5jDK98YsObNW5U92qQPCcNapX/wuiUFB0Wl2dgcXkG5PIL9k9g0LndbnR1dcFms6GmpkYKx3yhWE9PD0ZHRzE6OhrmkV44qOaEHmMML+2x49X9dryw24Zdn/YHhEB2uxv79negtXU4TKMMHYfDIfUiy8/PR06O9xautLQ0KRzr6emB2WwO6vsqFApkZGT4PZaVlUWhWJhRzQk9kTH8a5cNbx104PmPbOgejs3QnZBwiOlbKS0Wi7TTBeC9ml1bW4vExETk5OTgoYcewpe+9CVcdNFFWL58Of74xz+ivb0d9957bxhHHRtExvDixzZ8cMh7cnTTMg3mp0fej5svHKura8TQsF268jg2FBsZdcBhdyM9feJlu4T4UM0JH1Fk+MdOG3Y2emvOzZdosDB74t0QExOpYW+wKRQKVFRUoKamRgrHKioqcPz4cfT09IDjOBQVFU16iwOZHqo54SOIDM/vsGL3ERcAoCLVDrfZiaYjQP78eADeXod19f1wOj3o6TUjJycOMlnsBPIajQbl5eUwm83SLoM+vhVCvtsrg2nsrnQ+tbW1qKiomNW+sBciqjnh4xEYnv3Qiv0tLnAAvnCFFhkJdPGekGCJvKQiiD799FNcffXV0se+5o133HEH/vrXv+K2227D4OAgfvazn6G7uxslJSXYunUr5s6dG64hxwRBZPjbdis+OeqdLH7+Ci2uKY3c2xEFgcFs0QLQgIEHh1FkZWVJoVhtbRcEgUGhkCEpiU6oyeSo5oSHR2D4ywdWHDjmnSx+cYUWVxZFbs2JVVqt1i8c2717NwBIodhMb6UhgajmhIdbYHhmmwXVJ9zgOeCOq3WYn6BEw+FedHebIQje3bZranvgdjNotQpUVmTGVCjmEx8fj/j4+AmPheJ3vqenB42NjQC8t0/Onz9f6jnmC+QpHAsdqjnh4fIw/P5dCw61uSHjga+u1OHiBRNf/COETE9MB2MrVqw4Z1+D++67D/fdd19Q37eqqgpVVVUXZC8Vt4fhD+9ZUHfSO1n86kodLlkY2YXbYjHB4xkGEA8gHgzA4cOHkZdXiBOtVggCQ0KCBvHxdKJNzo5qzuxzur2TxYZ272TxrlU6LM2P7JoTy3zh2N69e6XH8vPzKRQLEao5s8/hZtj8thlNHR7IeeCeNXpU5CkBeOtOw+Fe9PZaAAAulwc6nRqVFZlQqWJ6yj0rhoaG/EIxX0+xxYsX+4VjF198MZRKZZhHG5uo5sw+m1NE1dsWNHd5oJAB916rR9k8+vkmJNhi79JVBLiQ74NvaHej7qQbChlw31p9xIdivkb7YKPQapynH42HICaj5ZhJCsXKy9Jj8koviQ0Xcs2pO+lCQ7sbSjnwzev1FIqFGWNMasTt09nZKfUcI7HhQq451cddaOrwQKUAvr3OcDoU80pL02N+nv/twhSKBU98fDySk5MDGu2Pbcifk5NDoVgMupBrzqfHXGju8kCj5PDAegOFYoSECP2lJkFVkafErZdqMDdFjkVZkb0NrM1mG9dofxFOnTLh+IkhAJrTn+XA/LxUCsUIiVDLFqgwaBaxIEOO/IzIrjmxbmyjfY7jkJubi87OTr+eYyoVBZckul1aoMKQRUTxHAVy0/yn0Xa7Gx2dJr/Hjp8YQmFBCjWGDwKe51FSUgKO4wK+nwqFAkuWLAHP03yNxJYrilQYtopYnKvE3BQ6dSckVOivB5mxYYsIi0OUPl6zWBPxoRjgbRqblZXl12g/PkHj9zl6vQJGI/WqICSSDJoF2Jxnas7aSk3UhGKnTp1CS0tLwK0ojDE0Nzejo6MjTCObmfGhWFFREebNmyeFYeN3qyQkmvSbBNhdZ35n112kmTAUO1jdBafTA43mTD3q7jaj6UjgbpVkenienzRkpFCMxIq+UQFOt7dmcByHm5ZpKRQjJMToL0gIVFVVoaioCEuXLg33UEKud0TAI1tM+O2bZjhc0TXp4zgO+fn5KCsr82u0P5bFIsPJk7G3xTqJLRdSzekeFvDIK2b87i2LNGmMFhaLBS0tLTh16hSOHTsmnSgzxtDS0oKOjg40NzfDarWGeaTnTxAEWCyWgEb7vp5jKpUKTqcTDocjzCMlwXAh1ZyOQQ8eecWEqq1muD0T15yxoZhWq8Di8nQAQGFBKgAKxwiZqQup5rT3e/DLV0zY/I4ZboFqBiGzhYKxELhQ7oM/NeDBo1tMGDSLsDqZ3wqOaMFxHHie99t9MiFBgxVX5Up9Qk60DqO1dSjMIyVkchdKzWnr89acYasIq1P0W8ERDfR6PRYtWgQAfuGYLxQDgIKCAuh0unAOc1rkcjkqKipQWloa0GjfF44tXrwYcXFxYRohCaYLpeYc7/HgsVfNGLUxWBxs0prjdAnweARp90ml0ruyIzVVh5Ji7++D3e6GKEZXzSIkUlwoNae5y41fvWaG2e6tOdF2AZCQaEZrMsm0HOt247dvWWB3McxJluGBdQYYtdGZs7rdAurqugMa7c+blwDA2x/kROsw9HoVUlKi74SVkFhwtNONp7aa4XAD81Jl+PYNBhg00VdzsrKyAABHjx7FqVOncOrUKelYQUEBMjMzwzW0GVMoFEhOTp7wmFarneXREDIzjafcqHrbDJcHmJ8mx7du0EOnnrjmxMepUbE4E2q1HCqVHG63WzqWlqaHXMEjPk5N/UoJIZM61ObC0+9Y4BaAhZlyfPN6AzRK6k1IyGyhYIyct4Z2b+F2eYD8DDm+db0eWlX0TvYUChkKFqWgq9uEslL/3Sd94ZjN5kZyMp3YERIOdSdd+P27FngEYFGWHN9ca4A6iieLY8Mxn2gPxQiJJQePu/CnbRYIIlA0R477rjNApTh7zYmLU096LCmR5g+EkMnta3Hi2Q+sEESgbK4CX79WD6U8euc5hEQjCsZCoKqqClVVVRAEIdxDCbraVu8JqiACJTkK3Hut/pyTxWiQlqZHaqpuwoau8+YlgDFGO0qRiBXLNefgcRf++J4FIgMW5ypwz2o9FFE+WWSMBfQRs1qtVGdI1IjlmrO32Ym/fGAFY8CS+UrctUoHhYx+LwkJp1iuObubnPjbdisYgIsXKPGVa3SQU80hZNZF7zKfCBbL98FnJsqgU3FYmq/E/WtjIxTzOdsJKZ2skkgW6zVHq+KwfJES914bG6HY2J5iRqMRAAIa8hMSyWK55sxJkkGj5HBFoQr3rKZQjJBIENM1J1kGtZLD1SUq3LmKQrFI4/F4IIoT99H2eDw0b4shtGKMnJfUOBl+dIsRCToePE+FmxASWhkJMvy/W41I0PPgozygnqjRfmZmJjo7O6WeYwCQn59PYTwhYZKVJMd/3mpEkoGn30NCSMjlpMjxn581IplqTsTxeDyoq6uDWq1GYWEheP7MmiKHw4GamhqkpqYiLy+P/u1iAK0YI2fFGMOWfTYcanNJjyUZZBSKEUJCQmQML++xofHUmebVSQZZ1IdigPd2ya6uLgD+PcWysrKk3So7Ozths9nCNkZCLjQiY3hhtxVHO8/UnGSjjE5yCCEhIYoM/9xlxfGeMzUnhWpORDKZTDCZTOjt7UVTU5O0cswXitntdvT29sLj8YR5pCQYKBgjkxJFhr9/ZMPWgw78/l0LRqwTLyMlhJBgEESGv2234t1aBza/Y4bJFls1R6/Xo7S0dMJG+1lZWSgoKEBZWRl0Otr9lpDZ4BEY/vy+Fe/XObH5HQusjtiqOYSQyOIWGP64zYLth5x4aqsFdhfdhne+GGOT3tooimJQb21MTExESUkJOI6TwjG73S6FYmq1GhUVFVAoFEF7TxI+FIyFQFVVFYqKirB06dJwD2XaPALDM+9bsbPRCQ7AbZdrEa+jHxdCIlEs1By3h+EP71qw54gLPAd84QodjNrYqzlJSUmT7j6ZmZmJxMTEWR4RIecvFmqOy8Ow+R0L9re4IOOB26/UQqeOvZpDSCyIhZrjdDM8tdWMg8fdkPPAF6/SQRPFO2yHA2MMx48fx6FDhwI2YhBFEYcPH8bRo0eDGo6lpKT4hWOffPKJXyim0WiC9l4kvGgGEALR3iDS6WaoetuCA8e8k8V71uhxZdHk25ATQsIr2muOw8Xwu61m1LR6J4v3XqvHpQWqcA+LEDKJaK85NqeI37xpxqE2NxQy4P61eixbQDWHkEgV7TXH6hDx69fNaDzlgUoOfOsGA5bMV4Z7WFHHbrejo6MDg4ODaGhokMIxXyjW39+P7u5uWCyWoL5vSkoKFixY4PcYhWKxh4Ix4sfmFPHkG2Y0tLuhlAPfvF6Pi/KpcBNCQsPiEPHE6yY0dXigUgDfXmdARR7VHEJIaJjtIh5/3YzmLg80Sg4PrDegdC7VHEJIaIxYRTz2qhnHez3Qqjg8eKMRRXPo1rvp0Gq1KC8vB8/zUjjm8XikUIzjOJSWlsJgMAT1fR0Oh7RBks+JEycmvaWTRCcKxoifDw85cazndOFeb0BJDk0WCSGhs63OgdY+AToVh+/eaERhNk0WCSGh806NA+39AgwaDt+7yYCFmVRzCCGhs7Xajs4hAXFaDt/fYMD8dHm4hxTVEhIS/MKxnTt3+oViycnJQX2/sY321Wo1FixY4NdzjMKx2EG/mVFMYAJqBw6iJLEcKpn/LQBOwYmGoTosTl4CGSeb8mteX6nGiFXEimIVspPP/uPhFFx49diHuHXhGvCcf8Y67DBhZ+dB3DT/6ql/QYSQC876izQw2xlWlamRmTj1WkUIIdOx8WINbE6GayvUSI+nmkMICa1bl2vhcjPcsESDlDiqOcGQkJCA0tJS1NXVSY8VFxeHPBTz3T6pVqvR0NCA3t5eAEBhYSF4ntYbRTv6F4xie3t34/BwPd7veBtOwSk97hSceL/jbRwersfe3t3nfJ0BkwBB9DYp5HkOX7xKd85QjDGG7330Kzxy4M/4xf5nILIzafmww4R73/8ZHv5kM/599O1pfnXkbFwuF+rr6+FwOAKO2Ww2HDp0iLYOJhGr3yRAPF1z5DIOX16ho1CMEBIy/aMCRHam5txxtY5CMUJIyPSNClIDeIWcw1eu0VMoFkSiKKKrq8vvse7u7oCG/DPlcrngcrkCGu2Pbchvt9tp1ViMoGAsihUllEAlU2PQOSCFY75QbNA5AJVMjaKEkrO+xsk+D/7nZRP+tt0qTRqnguM4XDvvMnDg8H8t26RwzBeKtYy0IUkdh4vTy2b6ZZIJHDlyBAMDA6iurvYLx2w2G6qrq9Hf34/m5uYwjpCQiR3v8eDnL5nwj522oO4aRAghE2nucuO/XzLhhY+p5hBCQq+pw42fvTiKlz+xU80JgbGN9jmOQ05Ojl/PsWCGY0ajERUVFRM22k9JSUF5eTnKy8shl9NNeLGA/hVDoKqqClVVVUFPrcdLUCViTfb1eK9jKwadA9ja/hoAwOw2QSVTY0329UhQJU76/KOdbvxuqxlON9A9LMDpBjTn0VJsXd5VAICf7KnC/7Vsw4jThDZTN46NtCNJHYc/rn4YuXFZM/oaycQWLlwIi8UCh8OB6upqVFZWQhRFVFdXw+VyQafTIT8/P9zDJLNktmrOTDWecqPqbTNcHqBzSIDLA6iovQ8hUSdaak79SRd+/64FbgHoGBTgEQAFzXwJiTrRUnNqTrjwx/cs8IjAqQEPBBGQ00KxoBkfivl6iiUlJaGurk4Kx0pKSiCTBecbbzQaJz2WmDj5eTaJPrRiLARmc0thXzjGgYPZbYLZbQIH7pyhWG2rC0++6Q3FFmXJ8d0bjdAoufN+/3V5V+HhS+8HAHzQvg/HRtqRSKFYyKnValRWVkKtVsPhcGDPnj3Yu3evFIpVVFRAqaSNEy4U0bCN+cHjLvz2LW8oVjxHgQfXG6BSnH/NIYSEXzTUnH0tTmx+xxuKlc1V4DvrDFDIqeYQEo2ioebsOeLE0+96Q7HKPAW+dYMBchnVnGByOp0YGRkJaLQ/tiH/6OjohK1mCDkXum4WA7RyHTiOB2Peqygcx0Mr1036+Z8cdeKvH1ohMmBxrgL3rNbPaLJ4WWaF38e5xizMNWZM+/XI1PjCsT179kiPyeVyCsVIxPm4yYnndljBGLBkvhJ3r9LRZJEQEjI7Ghz4504bGICLFyjxlWuo5hBCQuf9Ogde2G0DAFxWoMSXVugg46nmBJtGo0FlZSUcDgeSkpL8jvnCMblcDp1u8vNgQiZDK8ainK+nmMjOLC0WmRDQkN9nR4MDf/nAG4otX6TEvdfOLBTz9RQb62BfY0BDfhIa45s9MsaoASSJKO/XOfC37d5Q7IoiFe5ZTSeohJDQebva7u1hCODqEhXupCCeEBJCb35ql0Kx1eVq3HE1hWKhpNPpAkIxn4SEBBgMhlkeEYkVFIxFsfGN9tfPvRnr594c0JB/rGQjDxkPrCxV4SvXzKxwj2+0/3/rn8TPLv1mQEN+Ehq+RvuAd6WYTCaDIAgBDfkJCRaRiWgaPgyBBfb48IgeHBlpDGg0mxLHg+eAayvU+NJVWvA0WSSEhFBanAwcB6y7SI3PX6EFz1HNIYSETkocDw7AhmUa3HqpBhzVHEKiEt1KGcX29e2WQrGxPcXGNuTf17cbV2ZcIz2nJEeJ//ysEZkJshkVbsYYHtzxiBSK+XqK+fqK+Rryp2mTcHfpZ2b2hZIAvlBsbE8xX/P9sQ351Wp1uIdKYsi+vj1oGT2CblsnrspcCRnnbWzqET34sPM99Ni7YHVbsCRlmfSc8nlK/NdtRmQl0p8bQkjoVc5X4idUcwghs+TiBSpkJ8mo5hAS5WjFWBS7KOVipKjTAhrt+xryp6jTUJG0DC/stqJn5MwKj6xE+YyvZnAch/sXfx7Z+rSARvu+hvz58TnYmL9yRu9DJnb8+PGARvvjG/K3traGe5gkxszVz4OMk6HD2o6Puj6AwAS/UEzOKZCpnYt/77Kif9S/5hBCSCi4BYZ/7rJi0Ew1hxASem4Pwz8+smLYcuauGKo5hEQ/+i2OYlq5DtfNWTdhyJWgSsTKjBvwzPtW1LS6UNfqxsOfj4MiiH02lqaX4P9ufBIKPvDHaF3eVbh23mUTHiMzV1hYCLlcjvnz5/s12veFY62trVi4cGEYR0hiUaYuG1dnrsb2rm3osLbjw853ITABffZeyDkFrky/Di/t0OJQmxOHT7nxk9viqLcPISRknG6Gze+Y0XjKg+ZOD/7rs0a6XZsQEjJ2F0PVVjOOdnnQ2ufBj24x0u3ahMQIWjEWAlVVVSgqKsLSpUtD/l6TrfxyuBieetuCmlY35DLgs5dpgxqK+Zwt+KJQLHTkcjkKCwsn3H1SrVajsLAQMpksDCMj4TCbNccXjgFAt60LffZe8ByPy1Ovwz/f1+BQmxtKubfmUChGSGyazZozGatDxK9f94ZiqtM1h0IxQmJTJNQcs13E46+ZcLTLA7UCuPVS6mFISCyhYCwE7r//fjQ2NuLAgQNheX+LQ8QTr5vQ1OGBSgF8Z50Bi3MDAxRCSGyY7ZqTqkn3+5i59fjruyq0dHugUXL4zjoDSudSzSEkVoV7njNiFfHYq2Yc7/VAq+Lw0E1GFM1RhGUshJDQC3fNGbKIeHSLCW39AvRqDt+7yYhFWVRzCIkltKQnxoxYRfz6DTO6hryF+9s3GJCbRv/MhJDg8PUU83E4NGiovhh2mwiDmsMD6w3ISaGaQwgJDqvbCp1CJ33cbxLw69fN6DeJMGqBh9YbkJVENYcQEhq9IwKeeN2MIYuIBB2PB280ICOB7sogJNbQirEY8+JuG7qGBMTrOHx/g5FCMUJI0IxvtH/dnPUwt62G3WaASm3DlZfVIyuZbisghATHSfMJbDn5Ak6YjkmP/XOnDf0mEXE6D4oq3odM0x/GERJCYt3zH1kxZBGRGsfjBzdTKEZIrKJgLMbcfqUWi3MV+MFGIzITqXATQoJnd89HUii2Kvs6pGrScM+qZBTM8aBi6S6YuBbs79sT7mESQmJEj60bIhOxu+cjKRz7yjU6zM+yoaDyPSg0JvQ7+sI8SkJILLtrpV46t0oy0LkVIbGKlhPFgGGLiAS9N+PUqXncv9YQ5hERQmJRWdJiDDoHUGpYgVRNGgDAoOHx3fWp6LJegX19e1CcUBbmURJCYsXFqZeCQURDbxt293wEALB5rMgs9PYZKk+qRGlieTiHSAiJQWPPrRL0dG5FyIWAVoxFucPtbvy/f47gg3pHuIdCCIlxCaokzOc24MlXFNjZ6F9zMnXZuGneLTAq48I0OkJIrOE4DirLMhzccx16uubg454dqB44E4qVJ1WGeYSEkFhzoMWJH/1jBPtbnOEeCiFkFlEwFsUOHnfhd1vNcHmAhnY3RMbCPSRCSAzb1+LE0+9Y4fIAh9rcYONqDs/RnxRCSPDsPuLE79+zQhB5DA2mw1dyjIo4CsUIIUG387ADf9pmhUfwnlsRQi4cdCtllNrV6MTzH1nBGLBkvhJ3r9KB56jpNSEkNHY0OPDPnTYwAJcsVOKOq3XgqOYQQkLk/ToHXthtAwAU5VqQmHsAvpJjdptwwnQMecb8MI6QEBJL3q6245W9dgDAimIVPn+lNswjilwejwdy+cQxwtmOERLJ6PJ+FHq3xo7ndnhDsSuKVLhntQ5yGZ2gEkKCjzGGtz614x+nQ7GrS1X46kqqOYSQ0GCM4bX9NikUq1hkRmLee+B4hvKkSiyIWwQG5teQnxBCposxhpc/sUmh2PWVanzhSi0tOJiExWLB3r170d3dHXBsaGgIe/bswdDQUBhGRsjMUDAWZbbsteHlT7yF+9oKNb50lRY8P/3C3dxjxr1/r8GwzRVwbPexQXz3xXo4PcK0X58QEr0YY3h5jx2v7vfWnHUXqfH5y2c2WWzsMuG+f9TAZA+8ReGjo/34/kuH4PKI0359Qkj0YozhXx/b8Oan3h6Gy0tHoMveBo4701PsktTLzysca+w24bsv1sPuCpzL7GwewE9fb4IgUisKQi5EImP4+0c2vFvjrTm3LNdg4yVaWhF/Fr29vXC5XGhqavILx4aGhlBfXw+Px4Ourq4wjpCQ6aFgLASqqqpQVFSEpUuXBv21NSpvob75Eg1uWT6zwi0yhh+/2oj9rcP4xt9r/cIxbyh2CNuPDuAfe0/NeNyEkNAJVc3hOE6qObddpsVNy2ZWczyiiB9tOYy9J4Zx3z9q/cKxj4724/svN+CDI/148dOOGY+dEBI6Ia05Cg4cgC9cqcXSYrNfKOb7nLHhGDB5qOUWRGx6uQHbjw7gW/+q8wvHdjYP4HsvHcLrdd34v+rOoH4dhJDgClnNAaBWcOA44MsrdLi2QjPj12SModc08aZoHlFEvzm6m/rn5eUhKysLAKRwzBeKiaKI5ORkFBUVhXmUhJw/CsZC4P7770djYyMOHDgQ9Ne+rkKDH33GiLWVMy/cPMfhkc+UIEmnRHOvRQrHfKGYSxBx9aIUfGl5ThBGTggJlVDWnBuWqPGjzxixqlw949eS8zweu6UU8VoFGrvNUjjmC8U8IsPqolR8bll2EEZOCAmVUNacDRdr8B+fMeLqEjVKE8tx3Zx1AY32feHY2jnrkWdcMOlrKWQ8fnFzMfQqGarbR6RwzBeKeUSG1YWpuLkyM+hfByEkeEJVcziOwy2XavAfNxtxRZFqxq/HGMPvPjyOz/5hPxq7TX7HPKKIH29pxFf/ehBdI/YZv1e4cByHhQsX+oVjtbW1UihWUlICnqeIgUQf+qmNcE43w0t7bLC7zlwRzU0LXkPDvBQd/vClCikcW/n4x/jWv+qkUOyXnymGQkY/JoRcKBxuhpd22+Bwe2sOx3FBrTkL0vT4wxcrpHBsxa924cEXD0mh2P9sLIKcJlSEXDDsLm/NcU5Sc1I16RM+j+M4pGjSzvn6pVlxqLp9sRSOXfbIR3jghXopFPufm6nmEHIhsTlFvLTHBrcn+PMclyCipn0UZocH3/h7rRSO+UKxbY196DM50TpgC8r7hYsvHNNo/BdqUChGohn95EYwm1PEb940471aB/70niVk7+MLx8aqyImjUIyQC4zVIeLXr5vwXp0Df3k/dDXHF46NdUleIoVihFxgzHYRj7/mrTnP7bCG7H184dhYl+cnUShGyAXGZBPx2Kvec6u/7wx+zVHJZXjqC+Uoz46TwrFDnaNSKCbnOTx2Swkuy08K+nvPtuHhYTid/reF9vb2hmk0hMwczQYilMkm4vHXzGjp9kCj5LB2ycxvYzqb7lH/e+FHbR5YnJ6QvichJHKMWL2TxRO9ArQqDtcF4Xbtsxl/G8Gw1QWbkzb6IORCMWQR8egWE9r6BejVHNYsDu08Z9jqv+GHxemRVowQQmLfgEnAI1tM6BgUYNRwWF0WmpqjU8n9wrE7/nLQLxS7alFKSN53No3tKZaUlISMjAwACGjIT0g0oWAsAg2aBTz6qgntAwIMGg7f22DAggxFyN7P11MMAOYlaRGnkePEgDWgIT8hJDb1jwp4dIsJnUMC4rQcNm0wIC+It0+O5+spBgB5yToY1HIc7bUENOQnhMSm3hEBj7xiQs+IiEQ9j00bjZibErqa4+spBgAZcWqoFTxqT40GNOQnhMSmriFvKNY3KiLJwOMHNxuRnRxYc1yCC5/274VbDJyLWN1WVPcfgMjOvXO2TiXHbz5X5vfYnZfPjblQLDk5GaWlpSgoKAhoyE9ItKFgLML0DAt4dIsZvWMmizkTFO5gGd9o/4WvL8Of71gS0JCfEBKbOgc9eGSLCf0mESlGHj/YaERWUuhDMV9PsX9/fSme+XJlQEN+Qkhsah/w1pwhi4i0eB6bNhqQkSAL2fuNb7T/2jcvwR++VBHQkJ8QEptaez147FUTRqwMGQky/GCjEalxE9ecnd0fonG4Ads73/MLx6xuK97reAsNw3WoGfj0nO/pEUX8z9ajfo/9a39HQEP+aGSxWAIa7Y9vyG82m8M8SkLOHwVjEYQxhj+8Z8GQRUR6vPdqRnp86CaLImOo2n4ioNH++Ib8b9b1hGwMhJDwEUWG379rwaiNIStRhk0bjUiZZLIYDB5RxFPbTwQ02h/fkP/tBupRQUgsEkSG379jgdnOkJMsw6YNRiQZQldz3IKIx7e1BDTaH9+Qf2sDzXMIiUVuwTvPsTgY5qXKsGmjAQn6yU9/y5MqoOAV6LF3S+GYLxQzu03QKwxYFF941vcc22hfznP4+YYiv55j0R6O5eTkoLS0NKDRvi8cKykpwYIFk+8WTEikomAsgnAch7tX6VA0R45NG41IPEvhDgae4/C7z5fji5fMCWi07wvH7rlyHr54yZyQjoMQEh48z+Frq/UonqPA9zcYEK8Lbc2R8zyqvrAYX1qeE9Bo3xeO3bciF5+9KCuk4yCEhIfsdM0pzVHguzcZYNSGtuYoZN6a8/ll2QGN9n3h2D1XzsPNFZkhHQchJDwUMg5fW61D2VwFvnujEXr12WtOiiYNq7Kuk8KxN9u2YGv7a1Iotib7eugVhkmfPz4Ue+yWElxfmh7QkD/aw7GUlJQJd5/kOA6pqangOC4MoyJkZigYiwAWx5l71bOS5HhwvREGzez80yTplXho9YIJd5/MS9Hh3qvyqLgREmPG1pycFDkeWG+A7hyTxWBJNarw4Kr8CXeCW5Cmx91X5FLNISTGjK05uWlyfHudAVrV7NSc7AQNvn/twglrTmlWHM1zCIlBY2tOfoYC37rBALVyar/nvnAMAMxuE+yCDWqZ+pyhmIQhoNH+2Ib8jHk/hxASWSgYC7O9zU788PkRHO2knjqEkNDbfcSJ/3h+BMe6qeYQQkLvo8MO/Ojvo2jtpZ2uCSGh90G9Az/+xyja+6dfc7Ryvd/HCl4Jlezcu1jKeR7/c3MR/vyVyoBG+75w7Jk7KlGUaZz22AghoUHBWBhtb3DgL+9b4XQDB45Rg3tCSGi9X+fAXz+0wuEGDh6nmkMICa23q+34+0c22F0M1Seo5hBCQocxhjcO2PHvj22wORlqW6dXc3w9xcYyu00BDfkn4+tjOBGdSo6FafoJjxFCwouCsTBgjOHNT+34504bGICrS1X4wpXacA+LEBKjGGN4bb8NL+y2AQDWLFbjs5dRzSGEhAZjDC9/YsMre+0AgOsr1bj5Ek2YR0UIiVUiY3hhtw2vH/DWnJuWabB+6fnXnPGN9m/OvQ1r56wPaMhPCIk9FIzNMsYYXtpjx2v7vYV73UVqfP5yLXjqb0EICQGRMfzrYxve/NQBANhwsQa3LNdQTx1CSEiIIsPzO2x4t8Zbc25ZrsHGS7RUcwghISGIDH/90IoP6p0AgM9drsW6i6Y3z9ndsyOg0f74hvy1A58G+0sghEQAebgHEOnkcjlKSkoAABdddBGeeeaZab+WIDI8v8OK3Ue8S3tvu0yLVeXnvl+dEHLhCGbN8QjeyeK+Fhc4AF+4UosVJVRzCCFnBLvmPPO+FQePu8BxwJeu0uGKIlWwhkoIiQHBrDluD8Mft1lQ2+oGzwFfvUaHSxZNv+ZcknY5PundhcvSr/JrtO8Lx2oHD6I8qXLar08IiVwUjJ1DfHw8amtrg/JaHACXB+A44I6rdbisgCaLhBB/Qa05HODyMMh44Ksrdbh4AdUcQoi/YNYcAHC5vTXna6v1WDJfGbTXJYTEhqDWHM5bc+Qy4N5r9SifN7OaY1TGYU32DROuNvOGY2tp9SshMYqCsVnE8xzuXKnDihIVFmYqwj0cQkiMk/EcvrZaj7Z+D/IzqOYQQkJLLuPw9Wv1ODVANYcQEnoKGYdvrDWga0hAXlpwTmvPFnxRKEZI7IrpHmM7d+7E+vXrkfn/27vzoCjO/A3gz3B7AHIbFBQ1a0IUVDy41MIrQsSD4B3UECthNWtcNFlNVjFZj4R1FS903WykXC2PqlXLrPlpjCIaQRcRXSMmxg0sYgQREBAFHXx/fxgmjtM99HDNwDyfqqmy3+7pft/v9DzIS0+PpydUKhUOHTqks01ycjJ8fHxgZ2eHgIAAnDlzRmt9RUUFAgICEBoairS0tAb14/jlGjwRAsDT/zRyUoyobTKVzPnmPzUQv2SOtZWKv6AStVGmkjknn8kcW2tmDlFbZSqZk/rdI03m2FmrmmxSjIjMV5ueGKuqqoK/vz82b94suX7fvn1YuHAhPvroI2RnZ2Po0KEIDw9Hfn6+Zpu8vDxkZWVh27ZtmDVrFioqKgzux/9lP8KhX76ZiYjaLlPJnK8uPsKXmcwcorbOVDLnXxcf4egvN9snorbLVDLnyws1+OaXm+0TETWFNj29Hh4ejvDwcNn169atw1tvvYW5c+cCAJKSknDs2DFs3boVa9asAQB4enoCAPr06QNfX19cv34dAwcOlNxfTU0Namp+Deny8nIAgC0q8Ru39igp4S+qAPD48WM8ePAAJSUlsLbmX5WfxdpIKy0tBQDNXwdNlalkTjuLSrzo2oGZ8wu+r+SxNtKYOYZlTgfL++jh3AElJQ+aZFytHd9X8lgbacwcwzKno9V9dHesRElJVZOMq7Xj+0oeayOttWROixJmAoA4ePCgZrmmpkZYWlqKAwcOaG23YMECMWzYMCGEEKWlpaK6uloIIcTNmzeFt7e3KCkpkT1GQkKCAMAHH3w00+O///1v04dDMwGYOXzw0dofzBxtzBw++GjeBzNHGzOHDz6a99GaMqe5tekrxvS5e/cuamtr4eHhodXu4eGBwsJCAMC1a9fwzjvvwMLCAiqVChs2bICzs7PsPpcuXYr4+HjN8r1799CtWzfk5+fD0dGxyfo+aNAgZGZmNulz9K2XW/d8u9R2z7bV/buiogJeXl64efMmHBwcDBpHfQytjZLtDa2Nkja55eaqTWuvS3l5Oby9vfW+/0wdM0f5emZO8763nv03M4eZw8xpeOaY+s9ypc9ROn597cwcZo45ZU5znD9S7cwc+XZmDjOnqZntxFid579dRAihaQsODsaVK1cU78vW1ha2trY67Y6Ojk36RrS0tDR4f/U9R996uXXPt0tt92zb8+sdHBya/JdUQ2ujZHtDa6Okrb7lpq5NW6mLhUXrvy0iM6f+9cyc5n1vSW3PzJFeZuZoY+a0rp/lSp+jdPz62pk5zJw65pA5zXH+SLUzc+TbmTnMnKZmtpVwdXWFpaWl5i8Yde7cuaPzlw5TM3/+/CZ/jr71cuueb5fa7tm2hvTbUIYeQ8n2htZGSZuS2jUl1sX4mDnK1zNzmve9xbooX27NmDnK1zc0c0z9Z7nS5ygdv752Zg4zx5wypznOH6l2Y58/zBx5pnDOmHvmNDWVEOZxxzWVSoWDBw9i4sSJmrYhQ4YgICAAycnJmjZfX19MmDBBc4PIxqioqICjoyPKy8ub/CqF1ox1kcfaSGuNdWHmmA7WRR5rI6011oWZYzpYF3msjbTWWBdmjulgXeSxNtJYF11t+qOU9+/fx40bNzTLubm5uHTpEpydneHt7Y34+HjExMRg4MCBCAoKwvbt25Gfn4+4uLgmOb6trS0SEhIkLwE2Z6yLPNZGWmupCzPHNLEu8lgbaa2lLswc08S6yGNtpLWWujBzTBPrIo+1kca66GrTV4ydOnUKYWFhOu2zZ89GSkoKACA5ORmJiYm4ffs2+vTpg/Xr12PYsGEt3FMiaguYOUTUkpg5RNSSmDlE1Fa16YkxIiIiIiIiIiIiOWZ7830iIiIiIiIiIjJvnBgjIiIiIiIiIiKzxIkxIiIiIiIiIiIyS5wYMxIrKyv069cP/fr1w9y5c43dHZOSm5uLsLAw+Pr6om/fvqiqqjJ2l4zuhx9+0Jwv/fr1Q7t27XDo0CFjd8skrF+/Hq+88gp8fX2xYMEC8LaJ0pg58pg5upg58pg5yjBz5DFzdDFz5DFzlGHmyGPm6GLmyDPXzOHN943E1dUVd+/eNXY3TNLw4cOxcuVKDB06FKWlpXBwcICVlZWxu2Uy7t+/j+7du+N///sfOnToYOzuGFVxcTECAwNx9epVWFtbY9iwYVi7di2CgoKM3TWTw8yRx8zRj5nzK2aOcswcecwc/Zg5v2LmKMfMkcfM0Y+Z8ytzzhy+I8ik1L0Jhw4dCgBwdnY2co9Mz+HDhzFy5EizD+46arUa1dXVAIDHjx/D3d3dyD2i1oSZUz9mjjZmDjUGM6d+zBxtzBxqDGZO/Zg52sw1c/hRygY4ffo0IiMj4enpCZVKJXnZZXJyMnx8fGBnZ4eAgACcOXNGa31FRQUCAgIQGhqKtLS0Fup582tsbX788Ud07NgR48ePx4ABA7B69eoW7H3zaYpzps7+/fsxderUZu5xy2hsXdzc3LB48WJ4e3vD09MTo0aNQs+ePVtwBC2DmSOPmSONmSONmaMMM0ceM0caM0caM0cZZo48Zo40Zo40Zk7DcWKsAaqqquDv74/NmzdLrt+3bx8WLlyIjz76CNnZ2Rg6dCjCw8ORn5+v2SYvLw9ZWVnYtm0bZs2ahYqKipbqfrNqbG0eP36MM2fOYMuWLcjIyMDx48dx/PjxlhxCs2iKcwZ4+kP/7NmziIiIaIluN7vG1qWsrAz/+te/kJeXh1u3biE9PR2nT59uySG0CGaOPGaONGaONGaOMswcecwcacwcacwcZZg58pg50pg50pg5jSCoUQCIgwcParUNHjxYxMXFabW99NJLYsmSJZL7GDt2rMjMzGyuLhpNQ2qTnp4uXn31Vc26xMREkZiY2Ox9bUmNOWd27twpZs6c2dxdNIqG1GX//v1i3rx5mnWJiYnis88+a/a+GhMzRx4zRxozRxozRxlmjjxmjjRmjjRmjjLMHHnMHGnMHGnMHMPwirEm9ujRI2RlZWHMmDFa7WPGjEF6ejqApzOxNTU1AICCggLk5OSgR48eLd7XlqakNoMGDUJRURHKysrw5MkTnD59Gi+//LIxuttilNSlTlu61Lc+Suri5eWF9PR0VFdXo7a2FqdOnULv3r2N0V2jYebIY+ZIY+ZIY+Yow8yRx8yRxsyRxsxRhpkjj5kjjZkjjZmjH2++38Tu3r2L2tpaeHh4aLV7eHigsLAQAHDt2jW88847sLCwgEqlwoYNG8ziRohKamNlZYXVq1dj2LBhEEJgzJgxGDdunDG622KU1AUAysvL8e9//xv//Oc/W7qLRqGkLoGBgYiIiED//v1hYWGBkSNHYvz48cbortEwc+Qxc6Qxc6Qxc5Rh5shj5khj5khj5ijDzJHHzJHGzJHGzNGPE2PNRKVSaS0LITRtwcHBuHLlijG6ZRL01QYAwsPDER4e3tLdMrr66uLo6IiioqKW7pbR1VeXVatWYdWqVS3dLZPDzJHHzJHGzJHGzFGGmSOPmSONmSONmaMMM0ceM0caM0caM0caP0rZxFxdXWFpaak1Gw0Ad+7c0ZmdNTesjTTWRRrrogzrJI+1kca6SGNdlGGd5LE20lgXaayLMqyTPNZGGusijXXRjxNjTczGxgYBAQE63/Zx/PhxBAcHG6lXpoG1kca6SGNdlGGd5LE20lgXaayLMqyTPNZGGusijXVRhnWSx9pIY12ksS768aOUDXD//n3cuHFDs5ybm4tLly7B2dkZ3t7eiI+PR0xMDAYOHIigoCBs374d+fn5iIuLM2KvWwZrI411kca6KMM6yWNtpLEu0lgXZVgneayNNNZFGuuiDOskj7WRxrpIY10aoWW/BLNtSE1NFQB0HrNnz9Zss2XLFtGtWzdhY2MjBgwYINLS0ozX4RbE2khjXaSxLsqwTvJYG2msizTWRRnWSR5rI411kca6KMM6yWNtpLEu0liXhlMJIYTh02lEREREREREREStG+8xRkREREREREREZokTY0REREREREREZJY4MUZERERERERERGaJE2NERERERERERGSWODFGRERERERERERmiRNjRERERERERERkljgxRkREREREREREZokTY0REREREREREZJY4MUZERERERERERGaJE2NERERERERERGSWODFGRERERERERERmiRNjRERERERERERkljgxRkREREREREREZokTY0REREREREREZJY4MUZERERERERERGaJE2NERERERERERGSWODFGRERERERERERmiRNjREREJuzcuXOYPHkyXnjhBdjY2KBz586Ijo5GRkaGzrYrVqyASqXC3bt3jdBT46kbd1snNc6UlBSoVCrk5eUZp1OtQHp6OlasWIF79+41+b7N5dwjIiJqyzgxRkREZKI2bdqEkJAQFBQUIDExEd988w3Wrl2LW7duITQ0FJs3bzZ2F8nIXnvtNWRkZOCFF14wdldMVnp6Oj7++ONmmRgjIiKi1s/K2B0gIiIiXWfPnsXChQsRERGBgwcPwsrq1x/Z06ZNw6RJk/Dee++hf//+CAkJMWJPdT148ADt27c3djfMgpubG9zc3IzdDSIiIqJWi1eMERERmaA1a9ZApVJh69atWpNiAGBlZYXk5GSoVCp8+umnOs+9efMmoqKi4ODgAEdHR7zxxhsoLi7WrC8uLsbbb78NLy8v2Nraws3NDSEhIfjmm2+09vPjjz9ixowZcHd3h62tLV5++WVs2bJFa5u6j5JdvHgR0dHRcHJyQs+ePXHo0CGoVCqcOHFCp39bt26FSqXCf/7zH4OOBQBHjhxBv379YGtrCx8fH6xdu1ZZQZ/pa3Z2tt761Pn2228xcuRI2Nvbo3379ggODsaRI0catU+llI7z+Y9SKn1tv//+e0yfPh0eHh6wtbWFt7c3Zs2ahZqamgaN/+rVq5g+fTocHR3h4eGB2NhYlJeXN3hbpedDfWNZsWIF3n//fQCAj48PVCoVVCoVTp06ZfBxGnPuyYmMjMTAgQPxt7/9Df7+/mjXrh28vLyQkJCAJ0+eNHr/REREVD9eMUZERGRiamtrkZqaioEDB6Jr166S23h5eSEgIAAnT55EbW0tLC0tNesmTZqEKVOmIC4uDlevXsWyZcuQk5OD8+fPw9raGjExMbh48SJWrVqF3/zmN7h37x4uXryIkpISzT5ycnIQHBwMb29v/OUvf0Hnzp1x7NgxLFiwAHfv3kVCQoJWf6KiojBt2jTExcWhqqoKr732Gtzd3bFjxw6MHDlSa9uUlBQMGDAAfn5+Bh3rxIkTmDBhAoKCgrB3717U1tYiMTERRUVFBtW3vvoAQFpaGkaPHg0/Pz/8/e9/h62tLZKTkxEZGYk9e/Zg6tSpBu9TqcaMU8lre/nyZYSGhsLV1RWffPIJXnzxRdy+fRuHDx/Go0ePYGtra/D4X3/9dUydOhVvvfUWrly5gqVLlwIAvvjiC50+1retIedefWOZO3cuSktLsWnTJhw4cEDzkVNfX1+DjtNU597zsrKyUFFRgfXr1+PDDz+Eh4cHvvjiC3zyySfw8vLC3LlzG7V/IiIiUkAQERGRSSksLBQAxLRp0/RuN3XqVAFAFBUVCSGESEhIEADE73//e63tdu/eLQCIXbt2CSGE6Nixo1i4cKHefb/66quia9euory8XKv93XffFXZ2dqK0tFTrmMuXL9fZR3x8vGjXrp24d++epi0nJ0cAEJs2bTL4WEOGDBGenp7i4cOHmm0qKiqEs7OzUPJfGqX1EUKIwMBA4e7uLiorKzVtarVa9OnTR3Tt2lU8efLE4H0qZcg4d+zYIQCI3NxcIYSy13bEiBGiU6dO4s6dO7LbGDr+xMRErefPmzdP2NnZabYzZFul54PSsfz5z3/WqlEdQ47T2HNPSkFBgQAgevToofUeefTokejcubMYN26c7HPHjh0rdu/e3aDjCiHEkydPhL29vd66ERERmQt+lJKIiKiVEkIAgM634s2cOVNrecqUKbCyskJqaioAYPDgwUhJScHKlStx7tw5PH78WGv76upqnDhxApMmTUL79u2hVqs1j4iICFRXV+PcuXNaz3n99dd1+hcbG4uHDx9i3759mrYdO3bA1tYWM2bMMOhYVVVVyMzMRFRUFOzs7DT7s7e3R2RkpEF1q68+VVVVOH/+PKKjo9GxY0fNdpaWloiJiUFBQQF++OEHg/apVGPHWd9r++DBA6SlpWHKlCmy9yZryPjHjx+vtezn54fq6mrcuXNHZ//6tjXk3FMyFjmGHKcpz71nZWZmAnj6EVNHR0dNu7W1NXr16qX322UvXLiA/v37N/jYN27cgIuLC+9PR0REBN5jjIiIyOS4urqiffv2yM3N1btdXl4e2rdvD2dnZ632zp07ay1bWVnBxcVF83G6ffv2Yfbs2fj8888RFBQEZ2dnzJo1C4WFhQCAkpISqNVqbNq0CdbW1lqPiIgIAND5pV3qWxFfeeUVDBo0CDt27ADw9COiu3btwoQJEzR9VnqssrIyPHnyRGdsUuOtT331KSsrgxBCckyenp6afhuyT6UaO876XtuysjLU1tbKfkS3bhtDx+/i4qK1bGtrCwB4+PChzj70bWvIuadkLHIMPU5TnXvPunDhAqytrTF58mSddT///DO8vLwAAGq1Gn/84x/h6emJXr16Ye/evXjw4AF69+6td/9qtRrLly+Hp6cnXFxc8N5772km07Ozs+Hv74/Y2Fg4ODhg8ODBmrz5/vvvMWrUKDg7O8PJyQm/+93vGjxGIiKi1oD3GCMiIjIxlpaWCAsLw9GjR1FQUCD5i39BQQGysrIQHh6udX8xACgsLESXLl00y2q1GiUlJZoJCVdXVyQlJSEpKQn5+fk4fPgwlixZgjt37uDo0aNwcnLSXB00f/58yT76+PhoLT9/1VqdN998E/PmzcO1a9fw008/4fbt23jzzTc165Uey87ODiqVSjPB8/x4DVFffZycnGBhYYHbt2/rPPfnn38G8LSGhuxTKScnp0aNs77X1tnZGZaWligoKNDbB0PH31QMOfeUjKUpjtPY10TOhQsX4OrqqnUVGgCcP38eP/30E5YtWwYA+MMf/oCrV68iOzsbarUaISEh8Pf3h4WF/r9vL1q0CLm5ufjuu+9gYWGBsLAw7NmzBzNmzEB2djYyMjKwd+9ebNu2DbGxsVi2bBl27dqFmTNnYtGiRTh+/DgqKytx/fr1Bo+RiIioVTDuJzmJiIhIyrfffissLCxEZGSkUKvVWuvUarUYN26csLCwEGfPntW013e/q3/84x+yx5s4caJwc3PTLI8aNUr4+/uLmpoavf2sO2ZxcbHk+rKyMmFnZyc++OADER0dLbp06SJqa2u1tlF6rOa+x9iz9QkKChKdO3cWDx480LTV1taKvn37GnSPMX01b4pxPn+PMSnPv7YjRowQTk5Osq+ZEIaP//l9SfVL6bZKzwelY9m4caMAIHJycrTaDTlOc9xjzMXFRVhZWYmysjJNm1qtFsOHDxfdu3cXNTU14tatW8Le3l5zH0EhhJgxY4aYN2+e3n3fvHlTODo6at0n7cMPPxTx8fFCiKf3V0tKStKsO3bsmOjXr58QQohOnTqJnTt36uQOERFRW8UrxoiIiExQSEgIkpKSsHDhQoSGhuLdd9+Ft7c38vPzsWXLFpw/fx5JSUkIDg7Wee6BAwdgZWWF0aNHa74h0d/fH1OmTEF5eTnCwsIwY8YMvPTSS7C3t0dmZiaOHj2KqKgozT42bNiA0NBQDB06FL/97W/RvXt3VFZW4saNG/jyyy9x8uRJRePo1KkTJk2ahJSUFNy7dw+LFy/WudJF6bH+9Kc/YezYsRg9ejQWLVqE2tpafPbZZ+jQoQNKS0sV11ZffeqsWbMGo0ePRlhYGBYvXgwbGxskJyfju+++w549e3SukKtvn2lpaRg5ciSWL1+O5cuX6+1fQ8ep9LVdt24dQkNDMWTIECxZsgS9evVCUVERDh8+jL/+9a+wt7c3ePxNyZBzT8lY+vbtq9nv7NmzYW1tjd69ext0HENeE5VKheHDh+PUqVOyY8zNzUVJSQm8vb0xefJkLFq0CNXV1di4cSOysrJw6tQp2NjY4MSJExg8eDDc3d01zy0uLkZYWJjeGp4+fRqBgYFwcnLStJWUlKBHjx4Ann6Ucvv27Vr7rLu6cc+ePVi1ahXef/99xMTEYPXq1QZ/syoREVGrYuyZOSIiIpKXkZEhoqOjhYeHh7CyshLu7u4iKipKpKen62xbd0VOVlaWiIyMFB07dhT29vZi+vTpmitOqqurRVxcnPDz8xMODg6iXbt2onfv3iIhIUFUVVVp7S83N1fExsaKLl26CGtra+Hm5iaCg4PFypUrdY6p74qdr7/+WgAQAMT169clt1FyLCGEOHz4sPDz8xM2NjbC29tbfPrpp5o+1EdJfZ515swZMWLECNGhQwfRrl07ERgYKL788ssG7TM1NVUAEAkJCfX205BxPnu1lSGvbU5Ojpg8ebJwcXHRHGPOnDmiurq6QeNvyivGhFB+Pigdy9KlS4Wnp6ewsLAQAERqaqrBx1HymlRWVir6Rtn9+/cLACI9PV3ExMQIBwcHYW9vLyZMmKB1Zdu6devElClTNMtFRUXCzs5OZGVl6d3/xo0bxdSpUzXLjx49Et26dRNpaWni1q1bAoDW1YDR0dFi7dq1WvvIy8sT3t7e4siRI3qPRURE1NqphPjlLpxEREREbdiKFSvw8ccfo7i4uMnukdUc+6TW66uvvsK4ceNw+fJlzZVqUj744AMkJyejvLxc5x6Bz+9vzpw5yMzMRIcOHfDGG2/g5MmTqKys1HxpwZw5cwAAKSkpmuedO3cOUVFRmufFx8ejsLAQX331FY4cOYKJEyfi888/x8yZM7Fz506sXr0a2dnZOH78OPr37w8fHx9cunQJY8eORUZGhs49BYmIiNoSfislEREREVETSE1NxbRp0/ROigFPb7w/YMAAvZNiADB27FhERESgb9++GDZsGF588UX4+vpqJsWAp1/EERISovW8wMBAzJ8/H/3790fPnj1hbW2N/fv3A3j6Mcq3334b+/btg6urK3bv3o2vv/4a9vb2SEtLQ1BQEDp27IhZs2Zh+/btnBQjIqI2j1eMERERkVngFWNkCoQQcHJyQmxsLNatW9eofanVavj5+eHy5cu8DxgREVEDcWKMiIiIiIiIiIjMEj9KSUREREREREREZokTY0REREREREREZJY4MUZERERERERERGaJE2NERERERERERGSWODFGRERERERERERmiRNjRERERERERERkljgxRkREREREREREZokTY0REREREREREZJY4MUZERERERERERGaJE2NERERERERERGSWODFGRERERERERERmiRNjRERERERERERklv4fa3qc4yp7+0UAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# scatter plot modelled vs. observed by threshold\n", - "\n", - "n = len(thresholds)\n", - "ncols = min([n, 4])\n", - "nrows = (n // ncols) + (n % ncols)\n", - "f, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=(3 + 2.5 * ncols, 2 + 2 * nrows), squeeze=False)\n", - "\n", - "for row in range(nrows):\n", - " for col in range(ncols):\n", - "\n", - " i = col + (row * ncols)\n", - " ax = axes[row, col]\n", - " \n", - " if i < n:\n", - " threshold = thresholds[i]\n", - " df = data.loc[threshold, :, :]\n", - "\n", - " # build a list of RGBA values the same length as the data\n", - " colours = [country_cmap[value] for value in df.index.get_level_values(\"country_iso_a3\").values]\n", - "\n", - " ax.scatter(df.observed, df.modelled, marker=\"x\", c=colours)\n", - " x = np.linspace(0, 10 * max(df.observed), 100)\n", - " ax.plot(x, x, ls=\"--\", c=\"cornflowerblue\")\n", - " ax.grid()\n", - " ax.set_title(f\"$s_{{th}} = {threshold} \\ m s^{{-1}}$\", size=10)\n", - " ax.set_xscale(\"log\")\n", - " ax.set_yscale(\"log\")\n", - " ax.set_xlim(1E5, 1E8)\n", - " ax.set_ylim(1E5, 1E8)\n", - "\n", - " # disable any axes we don't need\n", - " else:\n", - " ax.set_axis_off()\n", - "\n", - "handles = [\n", - " Line2D([0], [0], marker='o', color='w', markerfacecolor=v, label=k, markersize=8)\n", - " for k, v in country_cmap.items() if isinstance(k, str)\n", - "]\n", - "f.legend(handles=handles, ncol=1, bbox_to_anchor=(0.95, 0.92), fontsize=9)\n", - " \n", - "f.supxlabel(\"Observed pop. disconnected, $p_{d,obs}$\")\n", - "f.supylabel(\"Modelled pop. disconnected, $p_{d,mod}$\")\n", - "f.suptitle(\"Population disconnected, $p_{d}(s_{th})$\")\n", - "\n", - "plt.subplots_adjust(bottom=0.11, top=0.88, left=0.08, right=0.9, hspace=0.35, wspace=0.35)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "f1197bd7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAIsCAYAAADRd/LpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3iT5frHP9npSNO9C5RRoLKUjbKXIMg4CkeQJYIoHEF+igf3BEUFPIoDZKkg4mCI7FFA2RtlCFKgpS0dtGnatM3o+/sjNjSkBVpS2sLzua5e+j77Tcibb+7nfu5bJkmShEAgEAgEAkEVRl7ZCxAIBAKBQCC4EUKwCAQCgUAgqPIIwSIQCAQCgaDKIwSLQCAQCASCKo8QLAKBQCAQCKo8QrAIBAKBQCCo8gjBIhAIBAKBoMojBItAIBAIBIIqjxAsAoFAIBAIqjxCsAgEAoFAIKjyCMEiEAgEAoGgyiMEi6DKs2jRImQymeNPqVQSGRnJqFGjuHTpUmUvD7i6xvPnz5e5765du3jjjTfIyspy25gVxRtvvIFMJnMqq4rrrGqU9h67g5Lek8rirbfeIjY2lsLCwgqdZ/78+URERJCbm1uh8wiqFkKwCKoNCxcuZPfu3WzatIkxY8bw3Xff0b59+2r/0Nq1axdvvvmmy5fZQw89xO7duwkLC6uchd0k1WWdlUlp7/GdRFJSEjNmzOCtt95CLq/Yr5YRI0bg5eXFjBkzKnQeQdVCWdkLEAhulkaNGtGiRQsAOnfujM1m4+2332blypUMHTq0klfnfoKCgggKCqrsZdyQ6rJOQcXy8ccf4+vry8CBAyt8LqVSyVNPPcXbb7/Niy++iKenZ4XPKah8hIVFUG1p06YNABcuXHCU/fbbb3Tt2hWdToenpyft2rXj119/depXZEI/fPgwAwcOxMfHB71ez+OPP05aWpqj3ciRI6lVq5bLvDdrgj979iyjRo2iXr16eHp6EhERQd++fTl+/LjTWC+88AIA0dHRjm2vuLi4UrdaynKPf/75J4899hh6vZ6QkBCeeOIJDAbDDdcO8Ouvv9KsWTM0Gg3R0dF8+OGHJba7dp1paWmMHTuWqKgoNBoNQUFB3H///WzevNmp36lTp3jssccICQlBo9FQo0YNhg8fTkFBQYXda1nanjlzhiFDhhAcHIxGo6Fhw4bMmTOnxNfgevdyvfe4rPPc7HtSFvr27UuLFi2YN28eTZs2xcPDg6ioKF5//fWb3toxm83Mnz+fIUOGlGhdOXXqFMOGDaNWrVpoNBpCQkLo0aMHp0+fLve6hw4dSnZ2NsuWLSv3GILqhbCwCKotZ8+eBXD8ut++fTvdu3enSZMmzJ8/H41Gw2effUbfvn357rvvGDx4sFP/AQMGMGjQIMaNG8eff/7Jq6++yokTJ9i7dy8qleqW15eUlERAQADvvfceQUFBXLlyhcWLF9O6dWsOHz5M/fr1efLJJ7ly5QqffPIJP//8s2NbJTY2tkSfkLLe47/+9S8GDx7M6NGjOX78OFOnTgVgwYIF1137li1b6NevH23btmXZsmXYbDZmzJjB5cuXb3jfw4YN49ChQ7z77rvExMSQlZXFoUOHyMjIcLQ5evQoDzzwAIGBgbz11lvUq1eP5ORkVq9ejdlsRqPRVOi93qjtiRMnaNeuHTVq1OCjjz4iNDSUDRs28Oyzz5Kens7rr79+0/dyvfe4LPPcyntyPQ4ePEh2djazZs3ipZdeIiQkhAULFvDWW28RFRXFk08+ecMx9u7dS0ZGBp07d3apO3PmDC1btqRz587MnDmTwMBAkpKSWLduHV5eXuVed2hoKA0aNODXX3/liSeeKPc4gmqEJBBUcRYuXCgB0p49eySLxSIZjUZpzZo1UlBQkKTT6aSUlBRJkiSpTZs2UnBwsGQ0Gh19rVar1KhRIykyMlIqLCyUJEmSXn/9dQmQnnvuOad5lixZIgHSt99+K0mSJI0YMUKqWbOmy3qK+pe0xvj4+FLvw2q1SmazWapXr57T3B988EGJfUsas6z3OGPGDKcxn3nmGUmr1TralUbr1q2l8PBwKS8vz1GWnZ0t+fv73/Devb29pUmTJl13/C5duki+vr5SampqqW0q4l5vtm3Pnj2lyMhIyWAwOLWbMGGCpNVqpStXrpTpXkp7j8syT1nek5slMTFRAqTatWtLWVlZjnKz2SyFhoZKffr0KbXvgw8+KC1ZskSSJEl6//33JcDxWSzO66+/Lnl6eko2m63EcQoLCyWdTiclJye7lKWlpV13/UOHDpVCQkKu20Zw5yC2hATVhjZt2qBSqdDpdPTp04fQ0FDWrVtHSEgIubm57N27l0ceeQRvb29HH4VCwbBhw0hMTHQxP1/r9zJo0CCUSiXbtm1zy3qtVivTpk0jNjYWtVqNUqlErVZz5swZTp48WebxynOPDz/8sNN1kyZNyM/PJzU19brz7N+/n4EDB6LVah3lOp2Ovn373nCdrVq1YtGiRbzzzjvs2bMHi8XiVG8ymdi+fTuDBg0q1felou/1em3z8/PZsmULAwYMwNPTE6vV6vjr3bs3+fn57Nmz56bvpTTKMs+tvielsX//fsC+VabX6x3lKpWKunXrkp6eXmrfAwcOcO+99wJ2a6JMJiMwMNClXWBgICaTiVGjRvH7779js9mc6s+fP49GoyE0NNRRdubMGYKCgkocrzjBwcGkpqZitVpvfLOCao8QLIJqw9dff83+/fs5fPgwSUlJHDt2jPvvvx+AzMxMJEkq8aRKeHg4gNOWBOD0gAS7I19AQIBLu/IyefJkXn31Vfr3788vv/zC3r172b9/P02bNiUvL6/M45XnHgMCApyuNRoNwHXnz8zMpLCw0OX1AdfXrCS+//57RowYwVdffUXbtm3x9/dn+PDhpKSkOMa32WxERkZedw0Vea/Xa5uRkYHVauWTTz5BpVI5/fXu3RvA8UV+M/dSGmWd51bek9I4cOAAKpWKRx991KUuKSmJqKgowC6+X3nlFcLDw6lbty7Lli3DZDJRv359wP66qVQqFAqFyzjjxo3jvffeY9++fTzwwAOEhYUxceJEsrOzOXHiBA0bNiQzMxNvb2+aN28OwKFDh2jWrBlPPfUUvr6+xMbGOraAi6PVapEkifz8/HK/BoLqg/BhEVQbGjZs6DgldC1+fn7I5XKSk5Nd6pKSkgBcfq2lpKQQERHhuLZarWRkZDi+zLRarZMDaBHX+9VZnG+//Zbhw4czbdo0l/6+vr43NUZxynOP5cHPzw+ZTOYQGMUpqexaAgMDmT17NrNnz+bixYusXr2a//73v6SmprJ+/Xr8/f1RKBQkJiZedw23415Lm7vIkjN+/PgS20RHRwPc1L24Y55bfU9K48CBAwQGBjpZbcDuk3Lu3DleffVVAF588UX+/PNPDh8+jNVq5f7776dp06YOB9vAwEDMZjO5ubkufilKpZIXX3yRF198kcTERObOncvbb7+NVqvl/fff56233uL8+fN89tlnjj6HDx/mwIEDfP/993z++ecMHz6cefPm8f777zuNfeXKFTQajZMVTnDnIiwsgjsCLy8vWrduzc8//+z0i7qwsJBvv/2WyMhIYmJinPosWbLE6Xr58uVYrVY6deoEQK1atUhNTXVyajSbzWzYsOGm1iSTyRy/3Iv49ddfXYLd3YzVo7z3WB68vLxo1aoVP//8s9MvV6PRyC+//FKmsWrUqMGECRPo3r07hw4dAsDDw4OOHTvyww8/lCr+bte9loSnpyedO3fm8OHDNGnShBYtWrj8FYnam7kXKPk9Lss87nxPinPgwAHS0tKc4sPYbDZefPFFatWqxZAhQ0hKSmLevHl8/fXXhISEEBERwf333+/YDgJo0KABAH///fd154uMjOTll1/Gw8PDsY1z7NgxmjZt6tTu8OHDvPnmm7Rp0wa5XE6dOnWQJMllvHPnzhEbG1ve2xdUM4RgEdwxTJ8+3XFS4ccff2T16tX07t2bP/74gw8//NDlKPLPP//MlClT2LRpE7Nnz+app56iadOmDBo0CIDBgwejUCj497//zdq1a/n555/p0aOHyx58afTp04dFixYxe/Zstm7dygcffMCoUaNctg8aN24M2ONY7N69mwMHDmA0Gt1yj+Xl7bffJiUlhe7du7Ny5Up++uknunbtesNTHQaDgfvuu48PP/yQNWvWsH37dj788EPWr19P9+7dHe1mzpyJxWKhdevWzJs3j23btrFs2TKGDBniuPfbda8l8fHHH3Px4kXat2/PokWLiIuL45dffmHWrFl06dLFqe3N3Etp73FZ5inLeyKTyRzCuzTi4+PJyMggPDycRx99lPXr17Ny5Uq6d+/OwYMH+fHHH1Gr1WzZsoVWrVoRHBzs6JuWluYkWIrmKvK5KWLChAkMGzaMr7/+mri4OH744Qd69OiBWq3mqaeeAuynrEoSLEXbYgB//vmnQxQVUVhYyL59+0o8mSS4Q6lUl1+B4CYoOoWyf//+G7bduXOn1KVLF8nLy0vy8PCQ2rRpI/3yyy9ObYpOihw8eFDq27ev5O3tLel0Oumxxx6TLl++7NR27dq1UrNmzSQPDw+pdu3a0qeffnrTp4QyMzOl0aNHS8HBwZKnp6f0wAMPSDt37pQ6duwodezY0an/1KlTpfDwcEkul0uAtG3btlJPHpXlHq89ZXEzp5mKWL16tdSkSRNJrVZLNWrUkN57770b3nt+fr40btw4qUmTJpKPj4/k4eEh1a9fX3r99del3Nxcp34nTpyQHn30USkgIMAxx8iRI6X8/PwKu9eytI2Pj5eeeOIJKSIiQlKpVFJQUJDUrl076Z133nF5rW7mXkp6j8s6z828J0ajUQKkf//73y79i7N8+XIJkHbt2iUNGzZM8vHxkXQ6ndSvXz/pxIkTjnYzZ86UBg0a5Li+fPmypNVqpYMHDzqN1759e6l3795OZZ988onUvn17KTg4WNJoNFJ0dLT0xBNPSH///bckSZJUUFAgqdVqKScnx9Hn4sWLUmhoqNM49erVc/n8b9myxfE5FtwdCMEiuOso7UtLILgT+PXXXyWZTCYdO3bsuu1eeOEFycvLS7JarTccLygoSDp//ryUlpYm9ezZU1KpVE5iTJIk6ccff5QUCoWUmJh402tNT0+XVCqV0/HtVatWST169HBc5+bmSiqVSjKZTE59H3/8caldu3Y3PZeg+iO2hAQCgeAOYtu2bfz73/92bEOVxoEDB7jvvvtKPNlTnAcffJDevXvTuHFjOnToQL169YiNjXXxzxo4cCAtW7Zk+vTpN73WgIAAhgwZQo0aNWjVqhWAw6eniD///JM6derg4eHhKPv777/5/vvvXZxwBXc2MkkqwZOpmjNr1iy++uorJEmiW7dufPzxx1Umm6mg8nnjjTd48803SUtLq7CTJgJBVUaSJPz8/HjiiSeYOXOm28b9448/HKfCKjIB4rZt2zhz5gxjx46tsDkEVY87TrCkpaXRpk0b/vzzT1QqFR06dODDDz+kbdu2lb00gUAgEAgE5eSOjMNitVodR/8sFouTd7tAIBAIBILqR5XzYdmxYwd9+/YlPDwcmUzGypUrXdp89tlnREdHo9Vqad68OTt37nTUBQUF8fzzz1OjRg3Cw8Pp1q0bderUuY13IBAIBAKBwN1UOcGSm5tL06ZN+fTTT0us//7775k0aRIvv/wyhw8fpn379vTq1YuLFy8C9hDWa9as4fz581y6dIldu3axY8eO23kLAoFAIBAI3EyV9mGRyWSsWLGC/v37O8pat27Nfffdx+eff+4oa9iwIf3792f69On88MMPxMXFMWfOHAA++OADJEliypQpJc5RUFDgFH69sLCQK1euEBAQIBx1BQKBQCAoA5IkYTQaCQ8Pd7vjdbXyYTGbzRw8eJD//ve/TuU9evRg165dAERFRbFr1y7y8/NRqVTExcVd15N8+vTpvPnmmxW6boFAIBAI7iYSEhLKlRT0elQrwZKeno7NZiMkJMSpPCQkxJEArE2bNvTu3Zt7770XuVxO165dXVLJF2fq1KlMnjzZcW0wGKhRowZ//fUX/v7+FXMjgtuGxWJh27ZtdO7cGZVKVdnLEdwi4v28sxDv553BmSQrX23Jw2KDmr65vP1kI3Q6ndvnqVaCpYhrt2okSXIqe/fdd3n33XdvaiyNRuMSAAnsWVivTUEvqH5YLBY8PT0JCAgQD8Q7APF+3lmI97P681eShW92G5GpVdxXQ8Xglt68jev3tDuoVoIlMDAQhULhkk49NTXVxeoiEAgEAoGgYgn1VRCgUxDoI+fpB73JzjJX2FxV7pTQ9VCr1TRv3pxNmzY5lW/atIl27dpV0qoEAoFAILg78fGU80J/HU8/6I1KUbEHVaqchSUnJ4ezZ886ruPj4zly5Aj+/v7UqFGDyZMnM2zYMFq0aEHbtm2ZO3cuFy9eZNy4cbc075w5c5gzZw42m+1Wb0EgEAgEgjuWPy9ayDIVcn8DuzuFzuP22D6qnGA5cOAAnTt3dlwXOcSOGDGCRYsWMXjwYDIyMnjrrbdITk6mUaNGrF27lpo1a97SvOPHj2f8+PFkZ2ej1+uv27awsBCzueLMXgJQqVQ3TMomEAgEgtvLHxfNzFmXg80Gfl5yYqNun+9RlRMsnTp14kahYZ555hmeeeaZ27QiZ8xmM/Hx8RQWFlbK/HcTvr6+hIaGing4AoFAUAU4fsHMZ+tysBZCs2gVMeG3V0JUOcFSlZEkieTkZBQKBVFRURWajfRuRpIkTCYTqampAISFhVXyigQCgeDuprhYuTdaxdge3igr2GflWoRgKQNWqxWTyUR4eDienp6VvZw7Gg8PD8B+Aiw4OFhsDwkEAkElcfS8mS/W28XKfbVVjOl++8UKVLNTQpVNkUOuWq2u5JXcHRSJQovFUskrEQgEgruT5Cs2Pv9HrDSvU3liBYSFxUFZTgkJn4rbg3idBQKBoHIJ9ZPTramW9OxCnuzmVWliBYRgcVCWU0ICgUAgENzJFEWQl8lk/KuNB5IEcnnl/ogUW0KVSFxcHDKZjKysrFsaZ+TIkU4ZrasLixYtwtfXt7KXIRAIBIJiHDpn5pO1OZit9hO7Mpms0sUKCMHiFr744gt0Oh1Wq9VRlpOTg0qlon379k5td+7ciUwm46+//qJdu3YkJycLi45AIBAIqgSH/jYzd2MOxy9Y2HY8v7KX44QQLG6gc+fO5OTkcODAAUfZzp07CQ0NZf/+/ZhMJkd5XFwc4eHhxMTEoFarRZwRgUAgEFQJDv5t5suNOdgKoXU9Nd2bait7SU4IweIG6tevT3h4OHFxcY6yuLg4+vXrR506ddi1a5dTeVEk32u3hIq2SDZs2EDDhg3x9vbmwQcfJDk52dHfZrMxefJkfH19CQgIYMqUKTcMtHfhwgX69u2Ln58fXl5e3HPPPaxdu9ZpDb/++itNmzZFq9XSunVrjh8/7jTGrl276NChAx4eHkRFRfHss8+Sm5vrqDebzUyZMoWIiAi8vLxo3bq10+tRdH81atTA09OTAQMGkJGRcdOvsUAgEAgqjoP/WFYKJWgTo+aJrl5VYhuoOEKwuIlOnTqxbds2x/W2bdvo1KkTHTt2dJSbzWZ2797tlHrgWkwmEx9++CHffPMNO3bs4OLFizz//POO+o8++ogFCxYwf/58fvvtN65cucKKFSuuu7bx48dTUFDAjh07OH78OO+//z7e3t5ObV544QU+/PBD9u/fT3BwMA8//LDjOPHx48fp2bMnAwcO5NixY3z//ff89ttvTJgwwdF/1KhR/P777yxbtoxjx47x6KOP8uCDD3LmzBkA9u7dyxNPPMEzzzzDkSNH6Ny5M++8885NvroCgUAgqCj2ny1wiJW29dWM6lL1xAoAkkCSJEn69NNPpYYNG0oxMTESIKWnp7u0ycvLk06cOCHl5eW51M2dO1fy8vKSLBaLlJ2dLSmVSuny5cvSsmXLpHbt2kmSJEnbt2+XAOnvv/+WJEmStm3bJgFSZmamJEmStHDhQgmQzp496xh3zpw5UkhIiOM6LCxMeu+99xzXFotFioyMlPr161fqvTVu3Fh64403SqwrWsOyZcscZRkZGZKHh4f0/fffS5IkScOGDZPGjh3r1G/nzp2SXC6X8vLypLNnz0oymUy6dOmSU5uuXbtKU6dOlSRJkh577DHpwQcfdKofPHiwpNfrS1339V7vm8VsNksrV66UzGZzuccQVB3E+3lnId7PysdUUChNmn9FenJOhjR/s1Gy2Qpvabz09HQJkAwGg5tWeBVxrPkfbvVYc+fOncnNzWX//v1kZmYSExNDcHAwHTt2ZNiwYeTm5hIXF0eNGjWoXbt2qeN4enpSp04dx3VYWJgjRL3BYCA5OZm2bds66pVKJS1atLjuttCzzz7L008/zcaNG+nWrRv/+te/aNKkiVOb4mP6+/tTv359Tp48CcDBgwc5e/YsS5YscbSRJInCwkLi4+P5448/kCSJmJgYpzELCgoICAgA4OTJkwwYMMBlzvXr15e6boFAIBBULB5qGc8+pGPPXwUMvt+zalpW/kEIFjdRt25dIiMj2bZtG5mZmXTs2BGA0NBQoqOj+f3339m2bRtdunS57jgqlXPmS5lMdkMflRvx5JNP0rNnT3799Vc2btzI9OnT+eijj/jPf/5z3X5FzsCFhYU89dRTPPvssy5tatSowbFjx1AoFBw8eNAlhH7R1tOt3oNAIBAI3IepoBBPjd0rJDpESXRI1ZcDwofFjXTu3Jm4uDji4uLo1KmTo7xjx45s2LCBPXv2XNd/5Ubo9XrCwsLYs2ePo8xqtXLw4MEb9o2KimLcuHH8/PPP/N///R/z5s1zqi8+ZmZmJn/99RcNGjQA4L777uPPP/+kbt26Ln9qtZp7770Xm81GamqqS31oaCgAsbGxTnNcO6dAIBAIbg97Thfw0rcGzqdab9y4ClH1JVU1onPnzowfPx6LxeKwsIBdsDz99NPk5+ffkmABmDhxIu+99x716tWjYcOGzJw584aB5yZNmkSvXr2IiYkhMzOTrVu30rBhQ6c2b731FgEBAYSEhPDyyy8TGBjoCEb34osv0qZNG8aPH8+YMWPw8vLi5MmTbNq0iU8++YSYmBiGDh3K8OHD+eijj7j33ntJT09n69atNG7cmN69e/Pss8/Srl07ZsyYQf/+/dm4caPYDhIIBILbzO7TBSzcmoskwb4zZmoFVx8ZICwsbqRz587k5eVRt25dQkJCHOUdO3bEaDRSp04doqKibmmO//u//2P48OGMHDmStm3botPpXHxDrsVmszF+/HgaNmzIgw8+SP369fnss8+c2rz33ntMnDiR5s2bk5yczOrVqx1JHps0acL27ds5c+YM7du359577+XVV18lLCzM0X/hwoUMHz6c//u//6N+/fo8/PDD7N2713G/bdq04auvvuKTTz6hWbNmbNy4kVdeeeWWXguBQCAQ3Dy7ThWwcItdrHSI1fBIO4/KXlKZkEnCucCJIqfb9PR0h8NoEfn5+cTHxxMdHY1WW7UC6pSXorgwmZmZVS5Mvjteb4vFwtq1a+ndu7eLf5Cg+iHezzsL8X7ePnadKmDR1lwkoOM9GoZ08EReAUFLMzIyCAwMxGAw4OPj49axq48tSCAQCAQCQZn5/WQBi7fZxUqnf8RKdYywLraE/mHOnDnExsbSsmXLyl6KQCAQCG4zBkM+lxKzS6y7lJiNwVC18urcLJIksf+sGQno3Kj6ihUQgsXB+PHjOXHiBPv376/spdxWOnXqhCRJVW47SCAQCG4XBkM+Ax9eTq8eS0lMcBYtiQnZ9OqxlIEPL6+WokUmk/FML2+GdvDksfbVV6yAECwCgUAguMvJMZpJSzNxPj6L3j2vipbEhGx691zK+fgs0tJM5BjNlbzSmyf+stUR/0qtlNGpkbZaixUQguW2U6tWLWbPnn3b55XJZKxcufKWxujUqROTJk26bpvKuj+BQCAoLxGRPqzdMIRa0b4O0bJ3d6JDrNSK9mXthiFERLrXibSiiPsjn2k/ZbNib94dFbRTCJYKoijzskAgEAiqPpFRzqKle5dvncRKZFT1EStLdpgAsNjuHLECQrBUC4qyJgsEAoGg4oiM8mHe/D5OZfPm96k2YmVbMbHSo6mWQe2qt8/KtQjBUgHExcUxatQoDAYDMpkMmUzGG2+84ag3mUw88cQT6HQ6atSowdy5cx1158+fRyaTsXz5cjp16oRWq+Xbb78F7MHZGjZsiFarpUGDBk7B38xmMxMmTCAsLAytVkutWrWYPn2607rS09MZMGAAnp6e1KtXj9WrVzvVb9++nVatWqHRaAgLC+O///0vVmvpoZtTU1Pp27cvHh4eREdHOyVHFAgEgupGYkI2Y0avcSobM3qNiyNuVWTr8XyW/iNWejbT8kg7jztKrIAQLBVCu3btmD17Nj4+PiQnJ5OcnMzzzz/vqP/oo49o0aIFhw8f5plnnuHpp5/m1KlTTmO8+OKLPPvss5w8eZKePXsyb948Xn75Zd59911OnjzJtGnTePXVV1m8eDEA//vf/1i9ejXLly/n9OnTfPvtt9SqVctpzDfffJNBgwZx7NgxevfuzdChQ7ly5QoAly5donfv3rRs2ZKjR4/y+eefM3/+fN55551S73PkyJGcP3+erVu38uOPP/LZZ585MksLBAJBdaK4g22taF82bX3cyaelKouWLcfy+W7nP2LlXi3/anvniRUAJIETBoNBAqT09HSXury8POnEiRNSXl7eDcdZuHChpNfrXcpr1qwpPf74447rwsJCKTg4WPr8888lSZKk+Ph4CZBmz57t1C8qKkpaunSpU9nbb78ttW3bVpIkSfrPf/4jdenSRSosLCxxPYD0yiuvOK5zcnIkmUwmrVu3TpIkSXrppZek+vXrO/WfM2eO5O3tLdlsNkmSJKljx47SxIkTJUmSpNOnT0uAtGfPHkf7kydPSoA0a9as6700N01ZXu/SMJvN0sqVKyWz2eyWNQkqF/F+3llUlfczMcEgNW74uaTTTpcaN/xcSrhokCRJkhIuOpcnJhgqdZ2lsePPfOnJORnST7tyS/0OuF2kp6dLgGQwuP+1EpFu/2HOnDnMmTMHm81W4XM1adLE8f8ymYzQ0FAXy0SLFi0c/5+WlkZCQgKjR49mzJgxjnKr1Yperwfs1o7u3btTv359HnzwQfr06UOPHj1KndfLywudTueY9+TJk7Rt29ZJld9///3k5OSQmJhIjRo1nMY6efIkSqXSaZ0NGjQQjsYCgaDa4a1TExTkCeDkYFvkiNu751KCgjzx1qkrc5ml0j5WQ2SAglrBijvTsvIPQrD8w/jx4xk/frwjl1BFcm3ODJlMRmFhoVOZl5eX4/+L6ubNm0fr1q2d2ikUCgDuu+8+4uPjWbduHZs3b2bQoEF069aNH3/88abmlSTJ5R+69M9xuJI+ANerEwgEguqEXq/l59WDyDGaXY4uR0b5sG7jELx1avT6qpND7vdTBTSuocLH0+7ZER1y53+d3/l3WEmo1Wq3WWtCQkKIiIjg3LlzDB06tNR2Pj4+DB48mMGDB/PII4/w4IMPcuXKFfz9/W84R2xsLD/99JOTcNm1axc6nY6IiAiX9g0bNsRqtXLgwAFatWoFwOnTp8nKyirfTQoEAkElotdrSxUkVS3+yobDefy4O49wfwUv/csHjeru+OEoBEsFUatWLXJyctiyZQtNmzbF09MTT0/Pco/3xhtv8Oyzz+Lj40OvXr0oKCjgwIEDZGZmMnnyZGbNmkVYWBjNmjVDLpfzww8/EBoaetNbNM888wyzZ8/mP//5DxMmTOD06dO8/vrrTJ48Gbnc1Te7aOtpzJgxzJ07F6VSyaRJk/DwqF7pygUCgQAg12Amz2ghMNLLpS49MRcPnQovfeVvCRWJFYDmtVV3jVgBcUqowmjXrh3jxo1j8ODBBAUFMWPGjFsa78knn+Srr75i0aJFNG7cmI4dO7Jo0SKio6MB8Pb25v3336dFixa0bNmS8+fPs3bt2hLFRklERESwdu1a9u3bR9OmTRk3bhyjR4/mlVdeKbXPwoULiYqKomPHjgwcOJCxY8cSHBzs1GbkyJF06tSp3PctEAgEFU2uwczrvTcztfMG0hJynerSEnKZ2nkDr/feTK6hckPzry8mVvq29ODhVuX/EVwdkUnSHRS31w0U+bCkp6cTEBDgVJefn098fDzR0dFotVVnL7Mq06lTJzp16uQUh+ZmccfrbbFYWLt2Lb1793bx4RFUP8T7eWdRVd7P9ES7KEk5l0NobW+mbe1JUJQXaQm5vNTlavn0bT1LtMDcDtYezGPFXrtY6dfKgz4tqqY1OyMjg8DAQAwGAz4+7t1KExYWQYVhNBr5+++/nWLQCAQCQVUjMNKLaVt7Elrbm5RzObzUZQMnd6U6iZVpWytPrGw7nl8txEpFIwSLoMLQ6XQkJCTg7e1d2UsRCASC6xIU5SxaprRf72JxMRjyuZRYcgC5S4nZGAz5FbK2xjVVBOjk9G9994oVEIJFIBAIBALALlomL37AqWzy4gccYmXgw8vp1cM16m1iQja9eixl4MPLK0S0BPooeG2QDw81v3vFCgjBIhAIBAIBYHewnTniN6eymSN+Iy0hlxyjmbQ0k0uo/uIh/dPSTOQY3eOYu+ZAHof+vjqWp0Z8XYtXQCAQCAR3Pdc62M7Y+aCTT4taUvDTD49SJ9LPIVr27k50iJU6kX789MOjtxyzRZIkVu0zsWpfHnM35ZBqqPjo69UFIVj+Yc6cOcTGxtKyZcvKXopAIBAIbiPpibkuDrYN2wU7+bT8t9N65ozYTTNrgEO0dO/yrUOsNLMG8OXYvbd09FmSJFbvz2PNAfu20oDWHgTrFe66zWqPECz/MH78eE6cOMH+/fsreynVigEDBuDn58cjjzxS2UsRCASCcuGhU6EP1jo52IKzI663n5qcjHwMF000yvdDI9m/PjWSnEb5fhgumshOySPPaCnXGuyWlati5dF2HvS89+72WbkWEelWcEs8++yzPPHEEyxevLiylyIQCATlwkuv5s213UqMdBsU5cX0bT2RS7Bs4G8kJtk4lZRPUwI5pcykgdWP3KR8Gig1RPp7460rezwZSZJYuTePtYfsYmXQ/Z50bypifV2LsLBUQzp16oRMJkMmk3HkyJFKXUvnzp3R6XQl1o0cOdKxzpUrV97ehQkEAkEZ8NKrS42zEhjphUImIy8jDw9s1EWFD0rutQbhg5K6qPDARl5GHgVGa5nnPhJvcYiVwUKslIoQLNWUMWPGkJycTKNGjSp7KaXy8ccfk5ycXNnLEAgEghuSbzBjSDSVWGdINJGabEApT6JmqAEfpUQMaryQEYMaH6VEzVB7fVZOyWNcj6bRKtrHavj3A550E2KlVMSWUDXF09OT0NDQCp+nefPmFBQUuJRv3LiR8PDw6/bV6/Xo9fqKWppAIBC4hXyDmW967yA3LZ9RW7qgj7qao8eQYGJh16146uV4K2R4IFErLJvzyT7Ut6lRKWzUCstGo5QwK2Ro5TeXjFCSJAolUMhlyGUyhnX0RCa7exIZlgdhYXEjhYWFTJs2jXr16qHVagkJCWHYsGG3Ze7z588jk8n4+eef6dChAx4eHjRv3pzz588TFxdHq1at8PT0pHPnzly5cuWm13zw4EH++OMPl78biRWBQCCoLhQYreSm5ZN5LpeFXbdiSLBbSYrESua5XEyGQpq93pECRSEaZSHRodl4aCxEh2ajURZSoCjk/o+7ExITcIPZ7GLlx115zNuUg9VmT+cnxMqNEYLFjUyfPp2lS5cyd+5cTp8+zc8//3zbMhUX+bJ89tlnTJs2jd27d5ORkcGwYcN4//33mTNnDnFxcRw/fpz58+dXiTULBAJBVUAf6cmoLV3wq+3lEC0Xd6U7xIpfbS/6fnUvKXN/Jiw0FRuFqFWF1AnLRq0qxEYhYaGpnHtvGal/ZVx3LkmS+GFXHhuP5nPwbwunLpXvVNHdiNgSciMbNmzgoYceonPnzgDUrFmT+++//7bMffToUfz8/Fi2bBmBgYGA3SF269atnDhxAi8vuzNZy5YtSUlJcduae/bsyaFDh8jNzSUyMpIVK1aIWDYCgaDaoY+yi5YikTK/wxYA/Gp7MWpLFyRLLj4aM96qPNQRqaRdDsRmVaJQWgkNScdbl0eOBdTKwlLnkCSJ5b+b2HzMvs0+tIMnjWqob8v93QkIC4sbefjhh/nwww/p0aMHX3zxhdPWy7lz5/jll18c1ytXruS5555z29xHjhzh4YcfdogVgIsXL/LYY485xEpRWXR09E2t+WbYsGEDaWlpmEwmEhMThVgRCATVFn2UJwMXtXEqG7iojd2nRZLjH5xFQLhdnIRHpKLRFhAekYq3Lo+A8HT8g7NAKvlrVZIkvi8mVh7v6EmnRsLBtiwIweJGnn/+eU6ePEm3bt345JNPqFu3LvHx8QCsW7eOU6dOOdoeO3aMpk2bum3uo0eP0qaN8wftyJEjtG7d2nGdn5/PX3/9RbNmzW5qzQKBQHA3YUgw8fPIPU5lP4/cgyHBhFplQaO1oNJYCYhIR+NRQERkKhqPAgIi0lFprGi0FtQq1y0eSZJY9puJLf+IlWGdPOl4jxArZUUIFjcTExPDlClTOHToECaTiRMnTrB9+3ZeeeUV5s2bx7333kteXh7Hjh3jr7/+om3bttSsWZMTJ06Ue87s7GzOnz/Pvffe6yi7cOECV65ccSr7888/sdlsLkKppDULBALB3URxB1u/2l6M3tHVyafFmK7gXPx95Jk0qNRWAiPSUGkL7P9VW8kzaTgXfx+ovF3GTskqZOcJu1gZ3smTDrFCrJQH4cPiJmbMmEFISAgtW7ZEoVDw1Vdf4efnR7t27fDz86NRo0YsXbqUqKgowG5h6d27N9OmTeOdd97hl19+ITY2tlxzHz16FLlcTpMmTRxlR44cwdfXl1q1ajm1q127tiPQ2/XWLBAIBHcLhkRnsVJ0tLm4T8uywbtp2NCX+ITm1K+7H6XaQlBUGgA2m4r4hOYofP1RebtGug3zU/Cfh3RcMRZyf0PN7b69OwZhYXET+fn5TJs2jebNm/PAAw9w5swZtm7dip+fHwCJiYkOsWIymSgsLOSJJ54AQK1W4+vrC8CiRYvKfLzt6NGjNGjQAA+Pq3knDh8+7GJJOXr0qNN20I3WLBAIBHcDGp0SrwAVAdEapzgsRaIlIFqDZ6CGFu/cT1BINleSfJ36X0nyJSgkmzYftEelswuSQkkiM+eqA27DSJUQK7eIsLC4iddee43XXnutxLrExEQiIiIc13/88QctWrRwuh47dixgj6fSsWPHMs09YcIEJkyY4FT2xhtvuLT7+OOPb3rNAoFAcLegkEtEhxrJV+WhUtic6lQKG7XDjHj4m0ievRBZXip+ETlObfwjDGRetnH+3a+oN308ykAflmw3cSTezPP9fAjzFxmX3YGwsPzDnDlziI2NrZBTLvHx8U6B1o4dO0bjxo0d18ePH3eE2N+wYQMzZsy44ZifffYZ3t7eHD9+3O3rdRfjxo3D29t1P1cgEAiqEpYcC+asfPKSjMQNXYUpyQiA6Z/rvCQjttxcImMPUOeBE6jUJhSBwQQ89yqKwGBUahN1HjhBZMMDoLCyZLuJHScKMOZJJGSUPbeQoGSEYPmH8ePHc+LECfbv3+/2sRs1asSZM2do3Lgxp06d4vjx4w7BYrVaycnJcWwJ7d69m1atWl13vCVLlnDixAmOHDlC/fr13b5ed/HWW29x5MgRzpw5Q/fu3St7OQKB4C7AYMjnUmJ2iXWXErMxGPJdyj3DvOm0pB9eUT7kJmQTN3QV6YeSiRu6ityEbLyifGj3QUu7UFFb0dW+gv/osahrx+A/eiy62ldQqK0oVCaW7i5gx4kCZDJ4oqsXreqJbSB3IbaEbgN+fn4cPnzYcV18a0apVHLmzJkyjVd8e6kqExwcTHBwcGUvQyAQ3CUYDPkMfHg5aWkm1m4YQmSUj6MuMSGb3j2XEhTkyc+rB6HXO5/U8QzX0WlJP4dI2TZoBQBeUT50WtIPrZ+CzK334SE7hEJhxhb3FvKuU7HFTUehMGOxaVjCfzlwQYtMBqO7etE6RogVdyIsLAKBQCC4I8gxmklLM3E+PovePZeSmGC3tBSJlfPxWaSlmcgxmkvs7xmuo9VHXZ3KWn3UFc9wHXIPT/yefhX1gE/AJxyyk7Cs+A9kJ1Goi+CH6AUcUDaxi5VuQqxUBEKwCAQCgeCOICLSh7UbhlAr2tchWvbuTnSIlVrRvqzdMISISJ8S+5uSjOz7vy1OZfv+b4vDp0WmsqEI8kHVdapTG6nTVJLz1Mhl8GQ3L1qLbaAKQQgWgUAgEFQ5yuOLAhAZZRctNWrqOR+fRfcu3zqJlcgonxL7FznYFvmsdF4+wMmnxZSYjHTiSaTjQ7DEvenUV/HbG0yMGsn42E9oGV2y9UZw6wjBIhAIBIIqRZEvSq8eV7d1ikhMyKZXj6UMfHh5qaJF56PG09M5gNu8+X2IjPIpsb8pOcdJrHRa0o/A+8KcHHF3j19BYd5lMCehDD1BoW8Qp9rOBb9AlKEn8Cg8SyOv7WDLrZgXRSAEi0AgENytlNeKUdHcqi/Kmb8yOHvGOZHrmNFr2L/vUon9Vd4qNAEeDrHiGW6PBl7kiOsV5YPa2wvb34FIBQoktcQSxWN8ujuAOO+2yDQ2pAIFljMBYBExVyoKcUpIIBAI7kJu5URNRVPki1IkLnr3XMq8+X0YM3rNDX1REhOyeWLEL1ithSiVcsd/z8dn0bPrEqzWQpf+Kp2GDgv7YMmx4BnmHDvKM1xHp6X9UarNELePgmQFSxRD2JfRHjlWAhR/gToc64UAZOpgUHm4rEngHoSFRSAQCO5CbtWKUdEU+aIUOdCW5ItyLZcSs50cbDdsGUqtaF+sVnuI/CLxsmDxwy79VTqNi1gpwjPMG3WAP/Le77HEd45DrIyt9Qr3+cYhi/kQdd/PUPV5H5lGBMusKIRgEQgEgruQWz1RczuIjPJh3vw+TmVFvigl4a1TExTk6Vh7y1YRLv3rxfhTL8a/zGuxFUos2Clj33k5cpmVp2q9wr2+OwCQzrwIKqsQKxWMECwCgUBwl1IeK8btJDEhmzGj1ziVjRm9xsURtwi9XsvPqwexbuMQh4Pttf1zcy0Ys8tmNZIkia825bL/rBmFzMpTtV6mWUg8skZLQRMFBQlIfwxHKkgu2w0KyoQQLAKBQHAXU1Yrxu2i+NZUrWhfNm193MkadD3REhHpU2r/ixcM1+1fEjKZjJr+JpQyC0/Vmkqz4PPIGn2NzOc+ZI2+vka0pLjrJRBcgxAsdzHTp0+nZcuW6HQ6goOD6d+/P6dPn3ZqI5PJSvz74IMPSh130aJFJfbJz6+cEwcCgaB0ymrFuB1c64uydsMQWreNdNnCut4Jp1vpXxI97/XgjeZv0TT4ol2saMIAkGnCrooWlT8ovNzyGghcEYLlLmb79u2MHz+ePXv2sGnTJqxWKz169CA392ocgeTkZKe/BQsWIJPJ+Ne//nXdsX18fFz6arW396SBQCC4PuW1YlQ01/qiFFl7im9hBQV54q1TV0h/AKtNYuVeE6YCu8OuTKkj+L73kDX6xiFWirCLlm+QxX6FTKlzx0sgKAFxrLkKYDDkk2M0l+jcdikxG2+dukKOFa5fv97peuHChQQHB3Pw4EE6dOgAQGhoqFObVatW0blzZ2rXrn3dsWUymUtfgUBQdSjJClH0hV78OPG6jbff8bbIF6Wk52JklA/rNg657nPxVvtbbRJfbszhSLyFM8lWnu+ns1uKlTooRZDINOJ5V9EIC0slc6sRHd27FgMA/v4le9BfvnyZX3/9ldGjR99wrJycHGrWrElkZCR9+vRxylYtEAgqH2+dmiA/T+pE+pVohagT6UeQ3/WtEBVJkS9KSURE+tzwR1x5+xcXK0oF9LpPi0wmK9viBRWCECyVTFWJhSBJEpMnT+aBBx6gUaNGJbZZvHgxOp2OgQMHXnesBg0asGjRIlavXs13332HVqvl/vvv58yZMxWxdIFAUA6UyGliDaCZNQANztFZNShoZg2giTUA5V30NWGxSXyx4apYGd/Lm0Y1KkewCVy5e/4lVlGqSiyECRMmcOzYMb777rtS2yxYsIChQ4fe0BelTZs2PP744zRt2pT27duzfPlyYmJi+OSTT9y9bIFAUE7yjBZy0/MxXDTxUpcNpCXYfdfSEnJ5qcsGDBdN5Kbnk2e0VPJKbw8Wm8QX63M4et6CSgETeumEWKliCMFSBajsWAj/+c9/WL16Ndu2bSMyMrLENjt37uT06dM8+eSTZR5fLpfTsmVLYWERCKoQ3joVzfy9aajSkHEuh5e6bODkrlRe6rKBjHM5NFRpaObvjbdOdePB7gCWbM/l2IV/xEpvHffUuDvuuzohBMs/zJkzh9jYWFq2bFkp81dGLARJkpgwYQI///wzW7duJTo6utS28+fPp3nz5jRt2rRc8xw5coSwsLAbNxYIBLeFAqMVs8GC0opDtExpv94hVpRWMBssFBitlb3U20KPZh4E6OT85yEdsVFCrFRFhGD5h/Hjx3PixAn2799fKfNXRiyE8ePH8+2337J06VJ0Oh0pKSmkpKSQl5fn1C47O5sffvihVOvK8OHDmTp1quP6zTffZMOGDZw7d44jR44wevRojhw5wrhx4yrsXu4EqmrmXMGdiT7Sk8dXPUBAtF2cxKDGCxkxqFFaISBaw+OrHkAf6VnZS70thPsreGeInoaRQqxUVYRgqQJUViyEzz//HIPBQKdOnQgLC3P8ff/9907tli1bhiRJPPbYYyWOc/HiRZKTr4akzsrKYuzYsTRs2JAePXpw6dIlduzYQatWrSrkPu4EqtJpMcHdgcVYwNFXt1AzyIBMY0Mjk1FfpkYjkyHT2KgZZODoq1uwGAsqe6kVgsUq8dk6IycTr/roKBXiNFBVRgiWSqYiIjLeLJIklfg3cuRIp3Zjx47FZDKh1+tLHCcuLo5FixY5rmfNmsWFCxcoKCggNTWVDRs20LZtW7ev/06iqpwWE9w9WHIsmFJzMafmUjPQgEphA0ClsFEz0IA5NRdTai6WnDvP6dZslfh0nZHD8Rbmbswh3yJV9pIEN4EQLJWMOyIyCqo/VeW0mODuwWSTsSHJA6NFhrdKIjo0Gw+NhejQbLxVEkaLvT4l03xHbVUWWCQ+XWvkRIIVtRLG9fRGqxKWleqAiHRbydxqREbBncO1UUa7d/kWoMpkzhXcWXjoVHj4enDxpJ56gdmoVYXUCbMLE7NFzsV0H9QxWsaMWUNapsnl32CR9S8oyJOfVw+qFs+oAovEnHVGTiZaUSlgYh8dMeHOPisVGV1ccGsIC0sV4FYjOgruHKpq5lzBnYfVaCU8C6QCBQZ1kFOdQR2EVKAgLFPCmJp3R2xVFllWTiZaKbRYObJ8K5425wMGwl+saiMEi0BQRcg1mDm+73KJp8WO77tMrqHqfykIqg8anRLvEC2B0RpqhJmc6mqEmQiM1uAb4cmylY/cEVuVm4/lc+qSFbUCTq7azh+7zlZ7EXa3IQSLQFAFyDWYmdp1Ay90WEfyuWyn02LJ57J5ocM6pnbdIESLwG1o9WoeWXAf0WFG8pKMeEX50Hn5ALyifMhLMhIdZuSRBfdR+56ASg1s6S56NtPSroGa5x7WsXxxzztChN1tCMEiEFQB4v/K5K8/MlBZ5DQnmG8X9qd120i+Xdif5gSjssj5648M4v/KrOylCu4QTMk57Bn3C+bLmXhF+dBpST8C7wuj05J+eEX5YL6cyZ5xv5D+VyZamaLErUqtTFEmEX27Yw2ZrRKFkv0EkFIhY1QXb+qGqSo9urigfAjBIhBUAaJi9FibybGoClFZ5Hzy+C5O7krlk8d3obLYy63N5ETFlHy0XCAoK3KZDX+PBCJqpXP/J53xDNcB4Bmu4/5POhNRKx1/bQKzR2znhfbrGDf8V6f+44b/ygvt1/F67803JVquF2so6ZLR7b4j+RaJj9cY+Xa7ySFaiiP8xaofQrAIBFUAvV7LTxsG8cGOBwmt7U3KP2HSU87lEFrbmw92PMhPG6rHSQxB9UCuAM8gNUqZhYsfLcWclgWAOS2Lix8tRSmzoPFXkZVuIv2iiYBzKupE+rFp6+PUifQj4JyK9IsmMpJMN5UgsbRYQwCPDPiB8/FZJCfnlOg7UlbrS77ZLlb+SrJy4KyZ9OxClzaVEV1ccGsIwSIQVBH0ei2NW4UyefEDTuWTFz9A41ahQqwI3Io6SE+9d4ahDffGnHyF01PmkXPiAqenzMOcfAVtuDf+z/2L3zGShxUPlDSzBuAjqWlmDcADJXlYOaLMoADbDecrKdbQgX1JAFy4YECjUSADiowhuQYz6Ym5JZ7cSU/MLdWqUyRWziZb8VDLeK6vjmC9wqlNZUUXF9waQrAIBFWItIRcZo74zals5ojfSEvIraQVCe5UCvNM5CyfS2Bk+lXRMvkLh1gJjExHs/UbIiKVZNS2EFjDk/SLJqa0X0/6RROBNTzJqG3BP9zjpgNbXus70q+vPQ1IRISO4GAvEv4REmf+zOD13pt5of06+nb5zunkTlpCLlM7byhxKyrPLDF7jZGzKVfFSnSIc7ixyowuLrg1hGC5i/n8889p0qQJPj4++Pj40LZtW9atW+eolySJN954g/DwcDw8POjUqRN//vnnDcf96aefiI2NRaPREBsby4oVKyryNu4Y0hJyeanLBsc20IydV7eHXuqyQYgWgVuR8vMpzMmmMDOdgLDLyJX2rMxypZWAsMsUZqYjy8vhm8W9WLPtMaYs6eDUf8qSDqzZ9liZg8aV5Dvy2Re92bDlqpVjUP8fuXwxx2krau2GIaglheMzYkjNd9qKyjNLfPyLkb9TrHhqZEx+2FWsgIguXp0RgqUKUGT6LInrmT5vlcjISN577z0OHDjAgQMH6NKlC/369XOIkhkzZjBz5kw+/fRT9u/fT2hoKN27d8doNJY65u7duxk8eDDDhg3j6NGjDBs2jEGDBrF3794KuYc7hfREZ7EybWtPGrYLZtrWnk6ipbR/JwJBWVH4+eM/biKKAB+k7EwCI9JQaQsIjEhDys5EEeCD/7iJeOgDMSeZS7T8mZPMaMr4NVKS78izE9YDOATD34mZrE8777QVZUzId/mMBEZ6OcY4n2rlfNo/YqWvjlrBJQdyL4ouvm6j62mgouji1SVy792GECyVTK7BzOu9NzO1s+sv6OuZPt1B37596d27NzExMcTExPDuu+/i7e3Nnj17kCSJ2bNn8/LLLzNw4EAaNWrE4sWLMZlMLF26tNQxZ8+eTffu3Zk6dSoNGjRg6tSpdO3aldmzZ7t9/XcSHjoV+mCt40EcFGV/EAdFeTlEiz5Yi4dOdYORBIKbQyrIwbbtXTx94imUJJRqG0FRaSjVNgolCU+feCyb3+GbXuv4qsMWMq6x/GWcy+GrDltY0G0b+Tf5fLrWd2TVL4MBuw9L757250qR9aVAVshRVTq+4VrHVlRxsVL0GSmiYaSKsT28mfywjpqliJUiSooubsvNx5xmKDG6uDnNgC1XRL6tbIRgqWTyjBYMqfkuZv/i2wPXmj4rApvNxrJly8jNzaVt27bEx8eTkpJCjx49HG00Gg0dO3Zk165dpY6ze/dupz4APXv2vG4fAXjp1by5thvTt7k+iIOivJi+rSdvru2Gl16YqQXuwZxyGXNSIiptHvo6GU5bQvo6Gai0eVhTEslNSEZphYYqDVO/7UDDdsH2/6o0KK1w6XgWKX/d2N/jUmI2D3VbStI/gRHXbhhCi1bhANSsqSfpXDYPdvqWJ0asdvQpkBVySpnlNM7kxQ84PiOmgkIyjFcdfu+rraZmUNlT5Nly8znz8gJOT5nrOC3leJ3Ssjg9ZS5nXl4gREslIwRLJRMY6eVi9j+5K/W6pk93cvz4cby9vdFoNIwbN44VK1YQGxtLSkoKACEhIU7tQ0JCHHUlkZKSUuY+AjteenWp73NgpJcQKwK3ogyMICWpM5Z8D1SafHQ101B6FKCrmYZKk48l34OkxM6khoZiVYLSCquH7eHirnRWD9uD0gpWJZgbeREUc+PYJXIJIi570uKfwIjFt2PmffYQLaRgAi+qSbpodJzcqRPph/6iswApckLPzS9k5mojH6w0OomW8mAzFWAx5DpOSxU/4l10aspiyMVmKrileQS3hhAsVYDiZv9r42+UZPp0J/Xr1+fIkSPs2bOHp59+mhEjRnDixAlHvUzmnHZdkiSXsmspTx8B5BvMGBJNJdYZEk03bXYXCG4GhZeWms8NwZQdjc2sQKG24VMrDYXahs2swJQdTfTzQ3l5c2+e3NEVv9peZJ7LZX6HLWSey8WvthdP7ujKG1t63JSYVskUhAV4OQIjFt8CnzNqDyqrHGWhnFpRdutL7Ug/p+PTKTXyCazhaf9h12sLH/xk4EKajQKLRJ7ZNTDc9bjWb1AdpKf+jDGow/wxJ1/h1PNznY54q8P87fVBInBjZSIESxUhKMqrxPgbFSlWANRqNXXr1qVFixZMnz6dpk2b8vHHHxMaGgrgYhlJTU11saAUJzQ0tMx9BHax8k3vHSzsshVDgrNoMSSYWNhlK9/03iFEi8Bt2DKvkPXVR9gyssnLreNUl5dbB1tGNllffYTCmEFIlJaBi9o4tRm4qA0hUVrU8psTC4GRXrwX53zy7fTeNAAyEk0UaiGjtoVftj6GVmY/DVT8+LRPDS2vrulCaENfLH0acckg4aWG/+unIzLg5reBSvMbVAf5EjhpKAaLBsvlTMcR76tixfem5xBUDEKwVBGqSvwNSZIoKCggOjqa0NBQNm3a5Kgzm81s376ddu3aldq/bdu2Tn0ANm7ceN0+AigwWslNyyfzXC4Lu14VLYYEEwu7biXzXC65afkUGK2VvFLBnYJMq0Xu7YMy2BfvKINTnXeUAWWwLzIPb3Y/t52tg1ew6prn06oRv7F18Ap2jFqDxXhzWyXXWpNfe3AzACG1vPlkXx/WbHuMyCgfJyf0GTt6OY5Ph9TxJfy/7VHV8EWWb2FCd48yiRW4vt/ga4/s4cfDoU7to18YJMRKFUEIlipAZcXfeOmll9i5cyfnz5/n+PHjvPzyy8TFxTF06FBkMhmTJk1i2rRprFixgj/++IORI0fi6enJkCFDHGMMHz6cqVOnOq4nTpzIxo0bef/99zl16hTvv/8+mzdvZtKkSRVyD3cK+khPRm3p4jC7L+y6lYu70h1ixa+2F6O2dEEf6VnZSxXcIcg9PPEbPhKfmmmQcxl8wlEN+AR8wiHnMj410/Ds829yL1vISzLib04hMFrD6B1dCYzW4G9OIS/JSF6qCUvOzR8KKMmaPP6LNtS+x99xcudaJ/SISB+UGjUzVxtJyrZbVqb8y4e6NT3KfN/X8xs0XcrkkXudLcTxHyx3ccQVVA5CsFQylRl/4/LlywwbNoz69evTtWtX9u7dy/r16+nevTsAU6ZMYdKkSTzzzDO0aNGCS5cusXHjRnQ6nWOMixcvkpyc7Lhu164dy5YtY+HChTRp0oRFixbx/fff07p1a7ev/05DH+UsWor7Coza0gV9lBArAvch5aRh3fCSQ6yo+81CHtYIdb9ZDtEi3/cWqUYwW+SoVYVEhxnx1FqIDjOiVhVitsiJT9Zhsd38V0lJ1uQ54/a4/DC71gndVgjWQtB5yHhhYPnEShEl+Q2aLmUyum0CelWBfRto5jiHT0txR1xB5SGTpBLSWN7FZGdno9frSU9PJyAgwKkuPz+f+Ph4oqOj0WrdE1SoaD/VkJrv4mBbZHnRB2vvyiOt7ni9LRYLa9eupXfv3qhU1SOGycVd6czvsMVxPXpHV2q0C6zEFVUdquP7WRyDIZ8co9klBgjYj/1669S3LWCZVJCDZc2LSHlZqPvNQqYLvlpnTMW86jkktZ5ln/XGeMlKdJiRvKSrQSM9wnX8neSN0s+T0Zs7o73m+VTS/VxrTZ64sA1/Z+xn8VADAWE3PmSQbSokt0AizE9RapuycHJXKlPar8dHY2Fkiwv4e1qcfFaKnxKyl48Vjrc3ICMjg8DAQAwGAz4+7s18LSwslYyIvyEojiHBxM8j9ziV/Txyj4sjrqD6YTDkM/Dh5fTq4Zpcr6QEfxWNTOONqs/7qPvPdhIrADJdMOr+s9H0m8G/V/Vg+LYetJndzalN43c6sD7QyPzseNKznddcWsLCa63J9VsHAXYflpKsyca8Qg7+fdXR3MdT7jaxUtzSU2CTk2tWYrBoCJw01OGzog7ydZweUum9UHhq3DK3oHwIwVIFEPE3BODsYOtX24vRxY6SFnfEFVRPcoxm0lNMJJ3LdsoIXBT9NelcNukp9gR/twuZxhuZd1DJdd5ByDTeaPVqVHIb+/5vi1P90Ve2YzTkcvZiVon3UzxhIZQezRngtTVdXaI5Z5sK+WiVkS835LDnL/fGP7nW0vP2tofYlNmA+bujeO2RPS6nh+rPGEu9d59A4SXC9VcmQrAIBFUAQ6LJxcG2RrtAF0fc0uK0CKo+vjotXTxC6SYPJPkf0bJ3dyK9ey4l+Vw23eSBdPEIxVdX+peiwZBfahbhS4nZFWKdMSUZiRu6ityEbLyifOi8fABeUT4UJOUwJciLJrX0jgzHRfdTPBNyaY60xQmM8HSyJmebCvlotZFLV2z4eMqoVY7otaVRmt/gG5sfwjPCr0RLjzpIL8RKFeCWBcvFixfdsQ6B4K5Go1PiFaAiIFrj5GBb5IgbEK3BK0CFRue+B7fg9pL+VxZNrqTSJ8hMV3kQyeey6d7lW5LPZdNVHkSfIDNNrqSS/ldWif0rY0vJlJzjJFY6LelH4H1hdFrSz0m0NP5HtHTv8q2TWLk2ueDNWJOzTYV8uMpI0hUbvl4ynu/vQ6ibtoFA5O2qztzy02/48OFcuHCBqKgomjRp4vhr3LgxXl4VG/SsJE6fPs3gwYOdrr/77jv69+9/29ciENwsCrlEdKiRfFUeKoVzmHGVwkbtMCPaACuKmwzSJah6aBUyPDQ21HILfYLAlhzAblkWbSVf+oQU4Kk1Yy5UoVWUHBU6x2gmLc3ksGYUCYLiWzBF7dzluKvyVqEJsJ/G6bSkH57h9hOCnuE6Oi3pR9zQVWgCPPjw9fb07PO9o9+8+X1cxMrNYDAV8tGqbJIzC+1ipZ8PIb7uEytw1dKTZ7S4iKciv0EPnUpsxVdBbtnCEhcXR3x8PAMGDCAhIYGzZ8/yyiuvoNfrqV+/vjvWWCaKQs0fOXKE3377DS8vL8cxXYGgqmLJsWDOyifvH/O76Z/TGEXm+LwkI+as/DLFuxBULQLr67ink4WwiDQ8Pcz0C7PwsCKAfmEWPD3MhEWkcU8nC4H1dSX2j4j0Ye2GIdSK9r2pLRh3oNJp6LCwD52W9neIlSI8w3W0+vIhAia05qn/bHCqGzN6Dcf3XS5Tlvk8s8SHK6+KlRf6u1+sFCH8BqsnbvNh+frrr1m1ahUzZsxg8+bNrF27lrZt27pr+HKxevVqunbtWimWHoGgLHiGeTvM7LkJ2cQNXUX6oWQXc7xnmHdlL1VQTmymAmz5eajVVsLC7aKlc7jJLlbC01Crrdjy81wS7BX3TYmMchYtN9qCcQcqnabEf3e5BjNvDfmN/z64meR/MjBv2vo4taJ9ST6XzQsd1jG164abFi1aFTSLVuPnJeeF/j4E6ytGrAiqL24TLFqtltOnTzuue/TowR9//FHmcXbs2EHfvn0JDw9HJpOxcuVKlzafffaZIzZH8+bN2blzZ4ljLV++3Gl7SCCoyhSZ2YtEy7ZBK5zFSnjJv7wF1YO0AhmTjniRlCdHrbYSHpGKRltAeEQqarWVpDw5Ew54kFZwdUuoJN+UyCgf5s3v4zR2ebdgboX4vzL5648MVBY5zf/JwNy6bSTfLuxPc4JRWeT89UcG8X9lOvpcL8Fn9qU8ejdU8OogIVYEJeM2wfLVV1/x6KOPMnHiRObPn8/kyZPLNU5ubi5Nmzbl008/LbH++++/Z9KkSbz88sscPnyY9u3b06tXLxfn3+zsbH7//Xd69+5drnUIBJWBZ7iOVh91dSpr9VFXIVbuALx1apRePqw+VhOzWYlKZSMiMhWVyobZrGTFoSjiL1nIzrZbWEo7HpyYkM2Y0Wucxh4zeo2LI25FExWjx9pMjkVV6MjAfHJXKp88vguVxV5ubSYnKsYeaK2kBJ9ZuYUcy6xLxkUTCzptZVH3OFRmq6N9kbhJT8x1stSI7OV3J247cnDPPfewb98+VqxYwZ9//klUVBTr1q0r8zi9evWiV69epdbPnDmT0aNH8+STTwIwe/ZsNmzYwOeff8706dMd7VatWkXPnj1vGCG1oKCAgoKrJtjsbPuH3mKxYLE4+wtYLBYkSaKwsJDCwsIy35ugbBQWFiJJEhaLBYWifL+4it7Da9/LqkpeSg57p24BzdVf2XunbqH9Vw/hESq2g6rb+1mcvKwCGmVqaBGcR6ohgPDwdEddaloAXcJl5Kf4MWrQCmZ92ZNnJ6wnJSWb+g38+HHFowSHeHDh/BUeGfCDo/x/nz7IsxPWc+GCgQEPf8ePKx4lPOL2iFtPTwXf/zqQxDNZfPHkPi6fz+HlHusBiGzozbivWhFZzxdPTwUWi4XcrHxM2XkYkk0s6r2Fvj904KsDhaSZwvjof5fwvpzLlQxIPHmF0Ho6lj2yi9z0fHrPbcnMMbvwCdLw0o+dsBptfNt3O16BWv79Yzs0PsLfpCpRkZ9Nt4Xmt1qtLFu2jLS0NGJjY+nRowcyWcne7je9OJmMFStWOE74mM1mPD09+eGHHxgwYICj3cSJEzly5Ajbt293lPXt25exY8fSt2/f687xxhtv8Oabb7qUL126FE9P59wtSqWS0NBQoqKiUKur/4dk/vz5LFiwgISEBAAaNGjACy+8QPfu3bFYLLzzzjts2rSJCxcu4OPjQ8eOHXn99dcJCwsrdcylS5cyfvx4l/Lk5OQyh9c3m80kJCSQkpKC1SqyFAsEdwp5NjW705pgsnngocinbeAxPJXuDQ4nqBxMJhNDhgypkND8brOwPPbYYwQEBNCgQQN+/PFHXnzxRZYvX05MTIy7piA9PR2bzUZISIhTeUhICCkpVzNsGgwG9u3bx08//XTDMadOneq0fZWdnU1UVBSdO3cuMZdQQkIC3t7ebsslBJBvsGA2WvApIRNvdqIJtU6FVu/+mAB169bl/fffp27duoDdcXro0KEcPHiQyMhI/vzzT1577TWaNm1KZmYmkydPZtiwYezbt6/UMbVaLT4+Ppw8edKpPDg4uJQepZOfn4+HhwcdOnS4pVxCmzZtonv37lU690ze5Vx2jl6DKdGIZ6TOYVHJS8lh55O/Xi2f3wePkLvXiby6vJ8lkZOUy+YB3xMenIRaZUMd6kfNZwdw4X8rMKdkYrYoSEgO55WEbLKx/45c9ctgWrQKByA7u4DH//0z6el5LpaUpEtGHhnwA4GBHny7bCA+PrcvhHz6JRNv9dnC5fM5jrKQWt68tqYrgRGuz7SLZ03MXJmDWe+BIjOPtg2OkzbdTK9PWjNzzC4un88hpJY3o96+l1+e2IfSClYl/Gtha7a/epys8yZ8a3ny+C8d8YkofwJEQcWQkZFRYWO7TbCcPn2aY8eOOa4PHTrE2LFjiYuLc9cUDq613EiS5FSm1+u5fPnyTY2l0WjQaFw/3CqVyuWBaLPZkMlkyOVy5HL3uP/kG8ws6bOT3LR8l4y8hgQTi7rF4RWkZdjaDi7JxW6Vfv36OV1PmzaNL774gn379tG4cWM2b97sVP/JJ5/QqlUrEhMTqVGjRoljyuVyZDIZ4eHht7y+orFKei/KijvGqFD0Hmh1HsiCodPCqw62qig/Oi/8J96FzgMPvUfVvo/bRJV/P0vAy1NG/XuysKSZUQf6U3/aaNRBvnhOG83pKfOQJ1/BNzCRwvMe5Jvtz5enxqxznP4JCFCx7MdBJSZPrFnLn5W/PHZbkyeCPcT9a923OKLGTl78ADNH/EbiyRxe677FJQT/5ZQ85u2z2cVKuomgeQfx/BT6zm5tFzk/dOa1h7eReDKHtx/ZiQpoqNKgzIMVj+wFwK+2FyPXiuzlVZWK/Fy6zenW29ubv//+23F93333ceXKFXcND0BgYCAKhcLJmgKQmprqYnWpLhQYreSm5bvkiymeVyY3LZ8CY8VuidhsNpYtW0Zubm6px9ENBgMymQxfX9/rjpWTk0PNmjWJjIykT58+HD58uAJWfGdxo3gXnZb2p8PCPqh0IvladUXhqUHt74E23NuRDRjsuWp8Jj1GpgRXCmwERV49HlwUb6XIoVav15YaZyUi0ue2ipXSQtwXRYu9NsS9OTufjxalkpEL6qw8Aj45iDLLfvLp13F72Dp4BSde3crEz1s75rAAD358n9O8Axe1EWLlLsVtguXLL7+kf//+TJkyhYULFzJlypRSf4WXF7VaTfPmzdm0aZNT+aZNm2jXrp1b57pd6CM9XfLFXNyV7pJXRl/CdpE7OH78ON7e3mg0GsaNG8eKFSuIjY11aZefn89///tfhgwZct19yQYNGrBo0SJWr17Nd999h1ar5f777+fMmTMVsv47idLiXYA9TosQK9UbmbyQgMgMAiPTUSivRjO+lJjNEyN/wjfsMmG1M/lp1b9o3TbSJUhcaTmEKovrhbifurITgTU8nULcW3OtNN5zFJ+UK9y3dDOhvhLD13UEwM9ymbwkIzlJOXwxbpdjDhWwfuIhp3lF9vK7F7cJlsaNG3PgwAGaN2/OhQsXqFOnDsuXLy/zODk5OY5ItQDx8fEcOXLEcWx58uTJfPXVVyxYsICTJ0/y3HPPcfHiRcaNG3dL658zZw6xsbG0bNnylsYpD0X5YopEy/wOW5zFSgX+miiKDLxnzx6efvppRowYwYkTJ5zaWCwW/v3vf1NYWMhnn3123fHatGnD448/TtOmTWnfvr3Dj+mTTz6psHsQCKoDUn4+kimHwsx0Mv43DVumfa/f05bDRy3/JEJnoX5NLWEB9i/44kHigoI88dapyTWYnZLyFefao78VTWnJDA2GfMY8s4YjygyemtsaDx/7/VhsctKPWbl38WZ88nOpGZKNh9ZuOVYrCzFb5Bw+qiIpPo/Q2t68/mMn+3ZQkQ/Lj+1E9vK7HLedEnIXcXFxdO7c2aV8xIgRLFq0CLAHjpsxYwbJyck0atSIWbNm0aFDB7fMn52djV6vJz09vUSn2/j4eEfQOndzcVc68ztcTeE+ekdXarQLdPs816Nbt27UqVOHL7/8ErCLlUGDBnHu3Dm2bt3q8prcDGPGjCExMbHMx9zd8XpbLBbWrl1L7969q53Pg8CV6v5+2jIz7GIlPRVFYDC+w54i65svsaWnIvkGEjL5FRR+zp+xS4nZ9hguyHm992YMqfkuviFpCfbtGX2w1pHxuLK4lGgPdnc+PouYJuE8+J8+jO7ug5RuYFbr9WgtNmKicvAF0MhQTwuHWVkc3q/CmC/DWEvN1O86surxPWSey8WqhJOWAgJqe/PSkg6Ocr/aXozaWnHWZ0H5yMjIIDAwsEJOCbk1cFy7du3o3bs3U6ZM4ZtvvnFYScpCp06dkCTJ5a9IrAA888wznD9/noKCAg4ePOg2sVKZGBJM/Dxyj1NZZZg+JUlyxKUpEitnzpxh8+bN5RIrkiRx5MiR6x6FFgjuFhR+AQQ8+xKKwGBs6alkzHrbIV5KEitw1Tclz2jBkJrv8A1JS7BbWorESsq5HAyp+eQZKzdGTUSkDz/98CgNYyOI6duRy9kwb10m/R/9gVVSAn/UyKHle87BEZu92ZHCezQU1JbzbtyDhNX3wStIi19tL0Zv70rAPxmUg+v7OKzRXkFakb38LsNt7/a7777LypUr0Wg0HD9+nD/++INVq1bx448/umuKO5biDrZ+tb0YuKgNP4/c4zB9VtS20EsvvUSvXr2IiorCaDSybNky4uLiWL9+PVarlUceeYRDhw6xZs0abDabw9nZ39/fEYdm+PDhREREOIL2vfnmm7Rp04Z69eqRnZ3N//73P44cOcKcOXPcvn6BoDqi8AvAd9hTZMx621HmO+ypEsVKcQIjvZi2tadDnLzUZYPjVE5xx9fSkvpVBPkGMwVGq5OVI9dg5vNnD9Pkka6g15KdmsWqz9egyM3l45YFBMnzOPnqFqcvnxPTtvGvepeR673x91eg8FIzbG0Hx9hOGZT1akZt7YJGp3T7yUlB1cZtgqVJkybExMTg4eFBgwYNePTRR9019B2NIdHk6mD7j09LUfnCrlsrxPR5+fJlhg0bRnJyMnq9niZNmrB+/Xq6d+/O+fPnWb16NQDNmjVz6rdt2zY6deoEwMWLF52OeGdlZTF27FhSUlLQ6/Xce++97Nixg1atWrl17YKb58yO86SdyqDd2OYudbvmHiSoQQD1OtS6/Qu7S7FlZpD1zZdOZVnffGm3vNxAtARFOYuWKe3tkWWvdXy9HRSF2r82JMO5s7nkdm0Iei3yy7ns/2wt+TkmItQygmQSPmozHuFJZJijaT6rJ3svHUQvj8eaYUEll2EzFaDw0qLVqx2C5FoRJraB7k7cJlheffVV+vbty8SJE2ndunW5AoXdjWh0SryC7P4ZxT/0xUVLRZk+58+fX2pdrVq1uBn3pmvj7MyaNYtZs2bd6tIEbuLMjvNkzvgUH30uv1sl7n+mhaPu988OoP99PpmrvTjDBCFabgPX82FJnfkOwSVsC6Un5l61LmAXLZMXP+AQKwCTFz9wW8UKuIZkGLWlCwU+GhYeLKTQ1wPPjGz8Pt1P4yxvDioLuCfPj8sXTXjUSrHnUQpKRauxOwmrlIVYTArSEoOpa1Ug7CaCknCbD0vR1sCaNWvo378/derUoVu3bu4avsKprFNCWr3d9Dlqq+u2jz7Kk1Fbu1RI0DjB3YHhxJ/cO2ETDUbvQL9rPr9/dgD4R6zsmk+D0Tu4d8ImDCf+rOSV3vnYMq84iZWAZ19CXTsGj5EvkFXgDVnppM58B1vm1fhVaQm5TO28gdd7b3acAEpLyGXmiN+cxp454jeHT8vtoqSQDN+vzcJoleGZbqDNzxup551BE4WKB6zB3CNTI5PkXE4OwGpTYsvK5sxLCwBQBerJKqyDKsAHlXf1c6YW3B7c9rNdr9ezePFip7Lz58+7a/gKZ/z48YwfP95xSuh2Utz0eS3C9Cm4FZr18oe/bci1Nho8sYNTC+DH3RdpIG2iwRM7kGttFCKztxNUKDKtFrm3/dRE8e2fAoWOr3bfz4h7d5CfZUORUUiwn7MzLUCe0YIp2+IUrK24D8tLXTbc9m2ha7evpSe24j2gHp1TNhHgZ+ByXjANwox4pXsTFZiDSm0lMDSDVJuM8GL5TGtN/hc1NX7YCmUlxhsyJJqEz4rAfRaWdu3a8c033ziV1apVy13DCwSCcqCs2RZqf0FhvtIhWlqFfX9VrOQrofYX9naCCkXu4Yn/My8Q8OzLTts+gZFe/HftABYf6siHPzbl5V47OLkr1SWKLFCmyLK3C1mAlgEL29j/31JI8KrjeMiNaNU2wsLT8PAwUycsGw8PM2HhaWjVNkJUzpG7z8/+mVVP/M63D//mcjLSkGBiYZetfNN7B/m3Mc6MoOrhNsFy8uRJXn75ZerVq8eQIUOYPn06a9ascdfwAoGgnChrPeAkWiL7H3UWK7UeqOwl3jXIPTxR+Llas4KivPjvuv7oI/0czrTFhUlQlNd1I8sWiZbikWVvBslqRCpIKbmuIAXJarxu/+RMG29+l8UXXyVR5PGWX6Dm5PnGZBeoUauthEekotEWEB6RilptxSaBQgbqMH/qTXsCAEtqFnU1B8m7lHlbUpTkG8wYEksOGWFINAlhVEVxm2BZu3YtFy9e5ODBg0yYMIGAgACX5HkCgaBy2LtWS8LaJk5lCWubsHft7cs9I7g+Rc60xSnuTFtaZNmivtO39SxT0DjJakQ68STSH8OQCpKd6wqS7eUnnixVtCRn2vjgZwPZBZAVrkdfX8foHV3xqeGJMamAEydCMZuVdgfbyFRUKhvICtFoC8ixKgl6biheDaIAUIf64eWRQ8d2Zxyi5dzmJBZ32VhiihJTcg4WY8FN3ee1FJ1uWtjFNVqusOZUbdwmWIrw8fGhXbt2jB07ltmzZ7t7eIFAUEaKHGyjeh91Ko/qfdTJEVdQudyMM62XXl1qnJXASK+yRbi15YLlChQkIP0x3CFa7GJlOBQk2OttrltMyVfsYsVYAMpLRur8cpIn13eiRrtA+n3eiIf67KXXQ4cwGK7mxpLJCwmISCcoKo2AkAwk29Wvn9rP9yOo5hUi66fhW0uLId7IzpFrCDCnEBitcTpBaUoyEjdkJTtGrSmXaKkqCWcFZcftgkUgEFQdds09aD8NVMxnxap61smnRb9rPrvmHqzspd7VFHewDa3tzYydDzr5pVTECSCZJhRZo69BE3VVtGQfuipWNFHIGn2NTBPq1C/pio0PVmVjLADPKybq/HKSMb92cAgK/yAJH10+Hl75xLY4hVxp/+JXqCyotWZkMvDzzUFtvGrVMS6fi0JuRhPgwUMf34tcLqFUFKJWFVIzyIBKYU8WaUoyEjd0FbkJ2RRk5GHJKXtU38pOOCsoPxUmWJKTkx0h3qsDlZn8UCCoKCIjElwcbNUtn3FxxI2MSKjspd61pCfmVpozrUwTdo1oGXKNWHFOqXHpipUPV2VjzJOIClTw2tggxqzt4BSSQVcvgqTs+7BJoFJbCap5hbpTehMQaUAmA5nCikJpw7rlG8znzwJQmJGGIjAY9aDJ/PzMKaw2BfEpPpgtcgpSc9n675WkH0p2iBWvKB86LelXanbzG1GZCWcF5afCBMuwYcNo0KABzz//fEVN4VbGjx/PiRMn2L9/f2UvRSBwGxFtmyJZVS4OtsUdcSWrioi2TSt5pXcvFeFMWxZkmjBk9d53Lqv3votYAUhIs5GTJ1EjUMH/PawjIFjjYokoNGbQqMVG9DXTkORyFHIzphV2C4okl+MVeQXvqAykrMtkzpkBgDwgCNUjz7F4wBGHcBi+rQdX1KGYLXLykoxsG7TCWayE627pvvVRngxc1MapbOCiNkKsVGFuOQ7LxYsXqVGjhkt5kcPtqVOnbnUKgUBQThT+0dBiBZIxxeXosrLWA1hl85DrQu3tBJVCkTNtntHi4p9S5ExbPNKtu5EKkpHOvOhcduZFKMHC0qa+BrVSRv0IJV7akn/vKpQ2lBoLKnUB/k1yMfyhotCqRK60om9kQVZgxmL2AHkhRUeLlF2HOomVIivH8K09WNJlHUHSZcf4rT7qestiBUpPOCssLFWXW7awDB8+nOjoaDp06MCECROYO3cue/bsITfXbr5s0KDBLS9SUDF8/vnnNGnSBB8fH3x8fGjbti3r1q1z1I8cORKZTOb016ZNm+uMaOenn34iNjYWjUZDbGwsK1asqMjbENwAhX90qXFWlDXbCrFSBVAAKmQl1qmQoSix5tZxcrDVRCFrtNTZp6UgmUsZVrJNhY4+99VRlypWAJTBUWgHf4ik0yMryEBXMw2lRwG6mmnICjKQvHzIy62BZL36e9my8VsCwm0uWzIqhY0aYc4nefb93xZMSdc/bn0jrk04O3pHVyeflmtPDwmqBrcsWOLi4oiPj2fAgAEkJCRw9uxZXnnlFfR6PfXr13fHGu94LMYCTMk5JdbdyvG9GxEZGcl7773HgQMHOHDgAF26dKFfv378+efVMO0PPvggycnJjr+1a9ded8zdu3czePBghg0bxtGjRxk2bBiDBg1i7969FXIPAkF1p7KO2UoFKa4Otj73Ofm0XNz7Kh+sNPDRaqOTaLnuuFYjspSXUYRdwIaEQm3Dp1YaCrXNfh0Wj67xfpShfviNn2Lvk5VOjw7bGbGymfNpoKGryEsy4hGu4/4FffGK8iE3IZu4oavKLVpKSjhbo12giyNuaXFaBJWH23xYvv76a1atWsWMGTPYvHkza9eupW1bET3zRliMBewYtYa4IStdPoC3enzvRvTt25fevXsTExNDTEwM7777Lt7e3uzZc9VMqtFoCA0Ndfz5+18/hPvs2bPp3r07U6dOpUGDBkydOpWuXbuKI+4CQSlU2jFbhReo/F0cbIsccS9a2zPr1GvkFsjQKEF5k2aewiuXKMyIR+GZh6p+FqjsJ3xQ2VDVu4LC24xca0X/76Goa9UF7D4shZlpWH6YhS3zCqbkHCcH2y7L+hPeIYpOS/o5i5ZSfuhdj6KEs9dac4o74lZUwlnBreE2waLVajl9+rTjukePHvzxxx/uGv6OxZJjoSAjz+VXgzuO75UFm83GsmXLyM3NdRKacXFxBAcHExMTw5gxY0hNTb3uOLt376ZHjx5OZT179mTXrl0Vsm6BoLpTWcdsZUodstivkDX6xsVX5WJ2ELP+eo9cqzfRIQom9dXhqbm5rwuZrgbGk92wmTxQeOSjrJuBzNOMsm4GCi8zthw1xj+7ogxv7OjjP+7/UAQGI/f2QabVovJWoQnwcHGw9QzXOUSLJsCjXIkSRcLZ6ovbJORXX33Fo48+SufOnWnSpInTtkJ1YM6cOcyZMwebzXZb5/UM86bTkn4OcRI3dBWtPurKvv/b4pbjezfi+PHjtG3blvz8fLy9vVmxYgWxsbEA9OrVi0cffZSaNWsSHx/Pq6++SpcuXTh48CAajWuCMoCUlBRCQkKcykJCQkhJKTn8t0AgcE0iOL/DFoAKP2YrU+pA6ezAeiHVysxfjJjMMmqHKJjY5+bFCtjTD+j/PR7rprPIw04j09hQxmQAIBUoKEytje/jE5F7eGKz2H+IKXz9CXj2ZXuCSA9P5ECHhX2w5Fhcnn2e4To6Le2PyltVYqLEm0EknK2euM3Ccs8997Bv3z7atGlDfHw8UVFRTg6cVZ3KPNZc/FdDbkK224/vXY/69etz5MgR9uzZw9NPP82IESM4ceIEAIMHD+ahhx6iUaNG9O3bl3Xr1vHXX3/x66+/XndMmczZeVCSJJcygUBwFYuxAJWysMRjtiplYYX5sV3LhbR/xEqBRJ0QJZP6+pRJrABIOWlYN7wEWZnY0us61dnS60K2AeuGl5By0pzqFH7+yD2uigWVTlPqDzXPMO9yixVB9eWWLSyXLl0CICIiAq1Wy2OPPXbLi7ob8QzX0eqjrmwbdPVEjbuO710PtVpN3br2h0qLFi3Yv38/H3/8MV9++aVL27CwMGrWrMmZM2dKHS80NNTFmpKamupidREIBHYsxgJ2jFxJQXoufyc5+4itGvEbdcKvoAn0osOi/hX+Je2tleGhlhHmZ7eseKjL8UND5YHMwxdJYUYZnQHFfIWV0UYs1kBkal9Qebht3YK7g3JbWH7//Xeio6OpUaMGNWrUICQkhBdffJHs7Gx3ru+uwZRkZN//bXEqc8fxvbIiSVKpEYozMjJISEggLMw1oFQRbdu2ZdOmTU5lGzdupF27dm5dp0Bwp5CfasQz+zT+ynMEFyYSGK1h9I6uBEZrCC5MxF95Ds/s0+SnVvyzIECn4IX+OiaVV6wAMo03yh7PoaqXAeYk5+PS5iRU9TJQ9ngOmaZitrkFdy7lFixPPfUU99xzD/v37+fYsWN88MEHbNmyhebNm5Oenu7ONd7xFHew9YryofPyAW45vncjXnrpJXbu3Mn58+c5fvw4L7/8MnFxcQwdOpScnByef/55du/ezfnz54mLi6Nv374EBgYyYMAAxxjDhw9n6tSpjuuJEyeyceNG3n//fU6dOsX777/P5s2bmTRpUoXcg0BQ3THnWiksLESlslGzVgp1wq/gqbVQJ/wKNWuloFLZKCwsxJxbMcn4zl22cujcVTNIgE6BtpxiBezHpfnr6WJi5Zrj0uYk+OtpezuBoAyUW7D8/fffzJo1i/vuu4977rmH4cOHs3//fpo1a8azzz7rzjXe0Vx7fK/Tkn4E3hfmluN7N+Ly5csMGzaM+vXr07VrV/bu3cv69evp3r07CoWC48eP069fP2JiYhgxYgQxMTHs3r0bne7qNtXFixdJTr6axKxdu3YsW7aMhQsX0qRJExYtWsT3339P69at3b5+geBOwKumP2cKWpBv0aBS2fBXnmPX8GX4K8+hUtnIt2g4U9ACr5rXDylQHv5OsTL7FyNzN+ZwMtFNJxFvcFwaTZS9XlFy1mmBoDTK7cPSsGFDUlJSqFevnqNMJpPx1ltv0apVK7cs7m6g6PgeUOLxvbihq8p9fO9GzJ8/v9Q6Dw8PNmzYcMMx4uLiXMoeeeQRHnnkkVtZmkBw16DVq/n3rz3IudCcS+8tgivZRETawwco/X2o/9+RNK8Z4PZjtn+nWJj9i5F8C8SEK4kOcc+hUZlSB7FfgS3XJdOzTBMGjb4BhZe9naViwzUI7izK/S905MiRjB07lg0bNjjlEjIYDOj1ercs7m5ApdNU6PE9gUBQ9VGrrWjVFlJTAvBXX/UDTE0JoI7aglptBdwnWM4mW/h4jV2s1A9X8p+HdGhU7jvJV9JxaUfdNSJGILhZyi1YinwSYmJiGDhwIM2aNcNms/Htt9/ywQcfuGt9dwUqnaZUQVJR8VcEAkHVoDDPRPrs9zCdT8ZXFQDFcgr5qs6RPuttPGuFETjpv07HfsvL2WQLs9cYKbBA/Qgl/+ldfrFiMRaU+GML7Nvd4seWwJ2UW7CkpKRw+PBhjh49ypEjR1i0aBFnzpxBJpPx3nvv8euvv9KkSROaNGnCgw8+6M41VwiVFThOIBDc3ZguZmA6n4xGnU9orRQMeXWo9d/hnH/va/Qef6NU2zCdT8Z0MQPv+rcmWFKybA6x0iBCyYRbFCs7Rq2hICPPJV5U0UECTYAHHRb2EaJF4BbKLViCg4Pp2bMnPXv2dJTl5+dz/Phxjhw5wtGjR1m9ejXTpk0jKyvLHWutUMaPH8/48ePJzs4WW1oCgeC2IdNoyEgKITg8EaXaRlDIFdTaAoJqXaEw04bVrCAjKYSgUqJLl4VgvZxWdTWkG22M73Vr20DXphUpEi3FTz0WtasMwZJrMJNntBAY6ercm56Yi4dOhZcIv1+tcGt2J61WS8uWLWnZsqU7hxUIBII7Fm2QD561wjAYNASFXKEwM52MWW/bK/UBXDnvj2etALRBPk79LiVm461To9drb3ouuUzG4508sdlApbw1nxV3pxVx5/ZSrsHM6703Y0jNZ9rWngRFXRUtaQm5vNRlA/pgLW+u7SZESzXCbaH5BQKBQFB2FF5aYt4bTcxHz+I38mmnujcP1ubZo/54TXgUhddVYZKYkE2vHksZ+PByDIb8645/+pKFBVtysNokwC5ablWsFOGutCKWHLNbs9bnGS0YUvNJOZfDS102kJaQC1wVKynncjCk5pNnFKeUqhNCsAgEAkElI1dakZsvk/WNc0qMMeHHKcxNZvDgZST+s8WSmJBN755LOR+fRVqaiRyjuaQhATh1ycL/fjWy+7SZTUevL2zKS1FakeKUNa2INde9WesDI72YtrUnobW9HaLl5K5Uh1gJre3NtK09S9wuElRdhGARCASCSkQqyMG8aiLmX55GykpCERhMwHOvoggMJtInh3X/t4tP+27k0b6L2Ls70SFWakX7snbDECIifUoc92SihU9+NWK2QqMaKro1ufmto7LgjrQiHiFeLsEy0w8luwTVLMupyaAoZ9Eypf16J7FSfJtIUD0QgkUgEAgqEVvqWRS++9HUT0FXPxX/0WNR147Bf/RYdPVT8YhNpckDF/ExJ/JQ5yWknzM6xEpk1FWxYkg0kW+wW1tOJlr4dK1drDSuoeKZB73dtg1UHHemFamIrPVBUV5MXvyAU9nkxQ8IsVJNEYJFIBAIKhG5jx5JqUKmsaGpn4Jt5ysUJv+BbecraOqnINPYkBRKDHkqBthCedQaxv+mdXcWKwkmFnbZyje9d3DklMlhWWlcU8XTvSpIrJQjrYhUkIOUk1bieFJOGh4BslveXipOWkIuM0f85lQ2c8RvDp8WQfWiQgSLXC6nS5cuHDx4sCKGF7iJzz//nCZNmuDj44OPjw9t27Zl3bp1jnqZTFbi3/UCAy5atKjEPvn5FbN/LhBUd+T6aBTNf0BShiLT2FCGnsC64SmUoSeQaWxYZcE88tajXEz2xVNS4IuKXx7by6m9l4F/xErXrWSeyyU7y8zCnflYbNCkpoqnH/RGpXC/WIGraUWutYAUt5QUTysiFeRgWfMi5pWTkIypTmNJOWmYV06i4OfnOfii/RkkkxeiUFhL3F4ypxmw5V7/mVLcwTa0tjczdj7o5NMiREv1o0IEy4IFC+jYsaNIgniT2HLzMacZSqy7mQ9meYmMjOS9997jwIEDHDhwgC5dutCvXz/+/PNPAJKTk53+FixYgEwm41//+td1x/Xx8XHpq9VWzP65QHAnINfXRt70O1CG2EVLTAYyjQ2bLIiHnu9L3H4ZgbV1DPixLTkqG94WBfM6beHgygsOseJX24sn13diXC8dLeuqGecmsVLa80ml09Dmw/a0/+pBFwtIUVoRp6BxljykvCzITsK86jkn0WL5dSpkJ5GXkIQ57QreUV7U72gjolY6+clXnLaXzGlZnJ4ylzMvLyj12ZiemOviYNuwXbCLI256ohAt1YkKESwjR47k9ddf5/fff6+I4e8obLn5nHl5AaenzMWcluVUdzMfzFuhb9++9O7dm5iYGGJiYnj33Xfx9vZmz549AISGhjr9rVq1is6dO1O7du3rjiuTyVz6CgSCG2BWYL3g61R0+ZCahHM5Dp+VTv3rMCauq0O0rH5kD5nnctHX82bUli7oozxpGKlibA/3iZXrPZ/OvbmYS58sL/H55Bnm7RQ3ReYdhLrfLPAJd4iWwssn7ZXGFPJydOz+vh0Kv1DafdINmTUPtSqPiJrpWFLT2D70Zwx/JHF6yjysaalYDdnYTCUfc/bQqdAHa10cbIs74uqDtXjo3J9UVlBxlClw3OTJk2+67cyZM8u8mLsRm6kAiyEXc/IVTk+ZR/0ZY1AH+f4jVuZhTr7iaFc8DoPb12Gz8cMPP5Cbm0vbtm1d6i9fvsyvv/7K4sWLbzhWTk4ONWvWxGaz0axZM95++23uvffeili2QHBHIBlTMa8ZjzL0rFN5WGwK61/Yg7rPZ4T/47PSoHUIQ767n9WP2H9Y5DcMIPfZe8n10uDuGN3ufj7JdMGo+83CvOo5yE7C+ssLEP4MkmcQ5zbVIiDQRIOPOqOr40dI/VwKPK+QdsGfiEgLhfJsLrz/DbbMdIJqXkETpUVZShZ7L72aN9d2KzHSbVCUF9O39RSRbqshZbKwHD582Onvq6++4ssvvyQuLo64uDjmzp3L/PnzOXLkSAUtt+KYM2cOsbGxtz1KrzpIb38IhPk7Hgo5Jy44HgbqMP9/HhIVky7g+PHjeHt7o9FoGDduHCtWrCA2Ntal3eLFi9HpdAwcOPC64zVo0IBFixaxevVqvvvuO7RaLffffz9nzpypkPULBNUdKSftH7Fi91lBHY6s0VL7fzU2ou5NJODgfx3OqoYEEzunHAcgPzaQK2OaYbDIWLsr53rTlAt1kJ56bz2ONty7xOeTNtybem89Xqbnk0wXjKrrVOey5uNR67xQq/K4+NFSCpIuIxWYUMjNBEamo9IWoJSZHGJFITcjFZiQruMb56VXlxpnJTDSS4iVakiZBMu2bdscf3379qVTp04kJiZy6NAhDh06REJCAp07d+ahhx6qqPVWGOPHj+fEiRPs37//ts+tDvJ1Fi2Tv7hGrPhW2Nz169fnyJEj7Nmzh6effpoRI0Zw4sQJl3YLFixg6NChN/RFadOmDY8//jhNmzalffv2LF++nJiYGD755JOKugWBoFojSdkoI85eFSuNlyDzuQ9Z4yUO0aKMOIskZTs52Cq7RmJ4uhko5WiPXMb4/G8YEkxuXVthnomc5XMJjEy/Klr+eT5pw70JjEwnZ/lcCvNufl7JmIply3TnwsOfERqbSVDNK1jTUjn7zo9oew3HVqhGqbISFJVGYGQqgRGpKORme6yaZ19C4efv1vsVVG3K7cPy0UcfMX36dPz8/Bxlfn5+vPPOO3z00UduWdzdhDrIl+gXBjmVRb8wqELFCoBaraZu3bq0aNGC6dOn07RpUz7++GOnNjt37uT06dM8+eSTZR5fLpfTsmVLYWERCEpB5hGMTF/3qljRhNnLNWFXRYu+LsZMbyexcql/Q2ySjCZhcmrvOEfW2RwWdt2KIdF9okXKz6cwJ5vCzHQCwi4jV1oBe2TegLDLFGamU5iTfV1Lh9N4xlTHdhA+4Sj7/nPiMCcVT8+jqNQmh2j5+61vMaR5IEkgk4FKY0WpLsRWqEb3ryHIPUUG6LuNcguW7OxsLl++7FKempqK0XjzwYIEdsxpWcR/sNypLP6D5S6ObhWNJEkUFDg7ss2fP5/mzZvTtGnTco135MgRwsLC3LVEgeCOQqbUIbtnAbLGSx1ixVGnCbOX37MAjd4PryAtim5FYgWa11Hz9MN6ntjUGb/aXngFadHo3JfTVuHnT8CzLyH3C0TKziQwIg2VtoDAiDSk7EzkfoE3bemQctKcxIq63yzkIQ3tlbpQFAozutpXUKpNBEVdJrr9caI7/olCZXUaJzvdA1vcS5hXTkQqcP82mKDqUm7BMmDAAEaNGsWPP/5IYmIiiYmJ/Pjjj4wePfqGfg4CZ4o7sKnD/Kk/c5yTT0tFiZaXXnqJnTt3cv78eY4fP87LL79MXFwcQ4cOdbTJzs7mhx9+KNW6Mnz4cKZOvbof/eabb7JhwwbOnTvHkSNHGD16NEeOHGHcuHEVcg8CwZ2ATKlDpin5NJ1ME4pMqUOrV/P4r+1RjYrFJkHLumrGdPdCqZChj/Jk1NYuDFvbAa2bfTNsVgXpiYFYzQqUahtBUWko1TasZnu5zaq4uYFUHsg8fB1iRaYLvlr10HTwCUfuH4XNqkXlnY/3vUloYlPR1Ut2suzU6vgnHvckIvc9gDnpnFvvVVC1KbcU/+KLL3j++ed5/PHHsVjsCamUSiWjR4++bmAxgTPmNEMJDrZ2n5aicrt3/li3O95evnyZYcOGkZycjF6vp0mTJqxfv57u3bs72ixbtgxJknjsscdKHOPixYvI5Vd1b1ZWFmPHjiUlJQW9Xs+9997Ljh07aNWqlVvXLhDcjXj4apjYX8WWYwX0bq5FIb96dFkf6en2+a4+n3KQR9TCV/23oy7HWov8pJybfj7JNN6o+rwPljxk3kHOdd5BSO3f5O+3l2NLTyckxoQEyDU2NA3TABnSPROQnfwMTf1UZBobhRYPlL4VcxhBUDUpt2Dx9PTks88+44MPPuDvv/9GkiTq1q2Ll5fI0VAWFJ4aVHr7a1bcwba4aFHpvVBUwH7t/Pnzb9hm7NixjB07ttT6uLg4p+tZs2Yxa9asW12aQCAoRqrBRrDebsnw1Mjp29Ljtsxb9HySy8z4R6RTmHm1zj/CQKEUiMLn5p9PMo03aFwTGJrTszn3xgqsaZkE1TRQmKfmypYG+Hc9hcLbjKZhKrb4mSjqZ9kD6uWoyT7YEv+W5QvZL6ie3PJmp5eXF02aNHHHWu5KFF5a6r37BDZTgcsvFLtoGYvCU1OhMVgEAkHV5eDfZuZtymFgGw96NCu/UDEY8skxmkvM7nwpMRtvnRq93vk5o/DSUvuF/mR++QGFmekoAoPxHfYUWd98iS09lcBI8Htq1C0/nxSeGtQ+Svw87UeWFf6BoNZwZasc/64nUHiZUcZkACDJgzAcaoxMHYJMRNC+q7ilSLc7d+7k8ccfp23btly6dAmAb775ht9+++0GPQXFUXhpSzWnqoP0QqwIBHcpB86ambsxB1shJKTbkCSpXOMYDPkMfHg5vXosJTEh26kuMSGbXj2WMvDh5RgMzqd9bJlXyPrqI4dYCXj2JdS1Y+yOtoHBFGamk/XVR9gyr5T7HgEwm/D1Tbh6ZHnSKwROfg3fEf+HNcHPqaktwR/fxyfh/8wLyD3cvw0mqLqUW7D89NNP9OzZEw8PDw4fPuw4WWI0Gpk2bZrbFigQCAR3I/vPFjBvUw6FErStr2ZUFy9ksvKF288xmklLM3E+PovePa+KlsSEbHr3XMr5+CzS0kzkGM1O/WRaLXJvn2JxTwIAUPgFOESL3Nvnli0dMq0WhY/eaR6ZNQeOzEAdne7UVhF4FtvOl+31gruKcguWd955hy+++IJ58+ahUl0Nj9yuXTsOHTrklsUJBILqjcGQz6XE7BLrLiVmu/yiF9jZd6aArzblUihBuwZqRnb2Qi4vf26giEgf1m4YQq1oX4do2bs70SFWinIVXbtdJPfwxP+ZFwh49mWHWCnCLlpedoulQ671cJrn2ui/kjIU6i28Gkgv9ATmNeMd0X+Lk2swl5rUMD0xl1yDucQ6QdWn3ILl9OnTdOjQwaXcx8eHrKysW1mTQCC4AyjvNsTdzt4zBXy12S5W7m+gZkSnq2LFYizAlFyyZcGUnIPFWHIyQAA/Hy1LFg1wiJbuXb51iJUliwbg51OylUTu4VlqnBWFn7/btmWKz3Nt9F950++QB7UtMfpvcXINZl7vvZmpnTeQluAsWtIScpnaeQOv994sREs1pdyCJSwsjLNnz7qU//bbbzfM5isQCO58yrsNcbdjyC1EkuCBhhqGd3YWKztGrSFuyEpMSc7BOU1JRuKGrGTHqDUlipaiL/L/Df2dD6d1c6r7cFo3/jf09yr1RX6z0X9lHsFO/fKMFgyp+aScy+GlLldFS1pCLi912UDKuRwMqfnkGS23/Z4Et065BctTTz3FxIkT2bt3LzKZjKSkJJYsWcLzzz/PM8884841CgSCakh5tyHudno082BiH2+GdfJEXsxnxZJjoSAjj9yEbOKGrnKIFlOSkbihq8hNyKYgIw9LjuuXcfEv8pn//g2NZH/0ayQ5M//9W5X7Ir/Z6L8ypfOx5sBIL6Zt7UlobW+HaDm5K9UhVkJrezNta89SkyIKqjblFixTpkyhf//+dO7cmZycHDp06MCTTz7JU089xYQJE9y5xttCZWVrFgjuZCKjnEVL8W2ItRuGEBklxArA0fNmTAWFjutGNdROYgXAM8ybTkv64RXlQ25CNrue+JJD0750iBWvKB86LemHZ5g3x+d+zd8bf3f0DYz04j/ftsOiKkRlkdOcYBZ83JfmBKOyyLGoCvnPt+2q1Bf5zUT/LYmgKGfRMqX9eiexEhRVde5RUDbKLVguXrzI22+/TXp6Ovv27WPPnj2kpaXx1ltvcfHiRXeu8bZQmdmaBYI7mcgoH+bN7+NUNm9+HyFW/mHXqQLmrM1h9hojBZbrH1u2eKlo8FFX/Oqa6DjpG5q0+R/e2uN4RfnQ4KOuWLxUHPt8EQ3rvk+NwmccouVSYjaPj1rJQVIdomXx0wcdYuUgqTw+amWpDtLVjaAoLyYvfsCpbPLiB4RYqeaUW7BER0eTnp6Op6cnLVq0oFWrVnh7e3PlyhWio6PduUaBQFCNSUzIZszoNU5lY0avcXHEvRv5/VQBi7bmIgE1A5WorhPKs8iJuf/jq/BsqUWmtiLX2mj3whr82mfS//FVfDn8XWLrf4Bca0OmtmI6bw+l761TExTkSVhtH6Yu6+g07tRlHQmr7UNQkCfeOvfmIaos0hJymTnCOR7YzBG/uTjiCqoX5RYspQUwysnJQSuiD1Y7pk+fjkwmY9KkSY4ySZJ44403CA8Px8PDg06dOvHnn3/ecKyffvqJ2NhYNBoNsbGxrFixogJXLqjKFHewrRXty6atjzv5tNzNouW3kwUs/kesdGqkYUgHT5dtoOIUOTEbLho4/p2cXR/0oTBfgVxro2WnL3i/9V4mT/wZudZGYb6CE6dfoPHY4QDo9Vp+Xj2IJYv68+0Lh53G/faFwyxZ1J+fVw9yiXRbHSnuYBta25sZOx908mkRoqX6UmbBMnnyZCZPnoxMJuO1115zXE+ePJmJEycyePBgmjVrVgFLvXMpzDOVGinSlnmFwjxThc6/f/9+5s6d65JiYcaMGcycOZNPP/2U/fv3ExoaSvfu3TEajaWMBLt372bw4MEMGzaMo0ePMmzYMAYNGsTevXsr9B4EVY9LidkuDrat20a6OOLeaBviTozlsvNEAV9vs4uVzo01DGnvecOgcBGRPqz4ph8vherwB06eqcnOdU86REvPMbudxEqTp0c69Tdn2/jf0F0lfpH/b+guzNm2Crvf20V6Yq6Lg23DdsEujrilxWkRVG3KLFgOHz7M4cOHkSSJ48ePO64PHz7MqVOnaNq0KYsWLaqApd6ZFOaZuPLZB2T8711smRlOdbbMDDL+9y5XPvugwkRLTk4OQ4cOZd68efj5XQ2BLUkSs2fP5uWXX2bgwIE0atSIxYsXYzKZWLp0aanjzZ49m+7duzN16lQaNGjA1KlT6dq1K7Nnz66Q9QuqLkXbENc62BZ3xL3RNsSdGMtl16kCvo6zi5UujTU89sCNxQrY46z89fxGghRWrgDTUoz0+7SATd84Z0I/ta2bi1ipKl/kktWIVJBScl1BCpK19B9DN4OHToU+WOviYFvcEVcfrMVDp7rBSIKqSJmTH27btg2AUaNG8fHHH+PjIxznbgUpP5/CnGxs6alk/G+aIyy1XaxMw5ae6mhHBeTNGD9+PA899BDdunXjnXfecZTHx8eTkpJCjx49HGUajYaOHTuya9cunnrqqRLH2717N88995xTWc+ePYVguQsp2oYoKeFeZJQP6zYOKTHhXnFyjGbSU0wkXbBba35ZOwiApEtG+vZeTtK5bGQ2e7vqsp1RK1iJzkNGq3pqBt9/c2IFQC6z4e+RALXMhIwcQOYTGxjXLI3uw/Y5tWvQeTPHPl/kJFqKvsiBEr/IX+qyoVxf5Lbc/BITtwKY0wxOiVslqxHpxJNguQKNvnY6riyZLyOdGgUqf4j9qtQTQDfCS6/mzbXdyDNaXE48BUV5MX1bTzx0Krz0d4avzt1GuX1YFi5cKMSKG1D4+TtychSJFvO5vxxi5WpujZIjTd4Ky5Yt49ChQ0yfPt2lLiXF/isoJCTEqTwkJMRRVxIpKSll7iO4c9HrtaXGWYmI9LmhyPDVaemoi6AFwSSfy+aRAT8A8MiAH0g+l00Lgumoi8BXVz3ECkC4v4LXBunLJFYA5ArwClKgVuWR/dXP/F/Ly0x7d71jG+jS6iaO7aHY+h9w7PNFjr5FX+TTt7ke6y36In9zbbcyfZHbcvM58/ICTk+Zizkty6nOnJbF6SlzOfPyAmy5+UUd7GKlIAHpj+FIBcmO9tKJsVCQYK+33ZqVx0uvLvV4dmCklxAr1ZhyC5bp06ezYMECl/IFCxbw/vvv39Ki7jaKJxKzpaeSMevta8RKwI0HKSMJCQlMnDiRb7/99rpO0tc+UCVJuuFDtjx9BIKSyDNayDNYHLFDUs7btwxSzhsdMUTyDJYqE/CsNLb/mc/JxKtr9PWSl/kzofRW4V8vk4BaKdSumczLb2x0iJW/l7RFytGQsr2Fk2g5PvdrR393f5HbTAVYDLmYk69weso8h2ixi5V5mJOvYDHkYjPZI+/KNKHIGn0NmqirosV41D5YwSXQRCFr9HWpsVcEgnILli+//JIGDRq4lN9zzz188cUXt7SouxGFXwC+w5y3WXyHPVUhYgXg4MGDpKam0rx5c5RKJUqlku3bt/O///0PpVLpsJJcaxlJTU11saAUJzQ0tMx9BILSKB65VGWR08hi/zw0sgSgssirReTSbcfz+Xa7iU/XGknJKr9ja8qZC3h4HCGwYQJefkYks9IhVjw8CuzlPskcO/QEhfkKJLMSz1p13HgnzqiD9IS9MhxFkK9DtOScuOAQK4ogX8JeGe60XSTThDmLlhOj7RWaiH/ESlgpswkEtyBYUlJSCAtz/ccVFBREcnJyCT0E18OWmUHWN186lWV986WLI6676Nq1K8ePH+fIkSOOvxYtWjB06FCOHDlC7dq1CQ0NZdOmTY4+ZrOZ7du3065du1LHbdu2rVMfgI0bN163j0BwPYKirkZp9UABgAcKR3TWqhwMbOvxfJbutDvMd26kJURf7kcuXgEytPekoolNw7/OZdI31ef8d63w9sgnMDYBTWwa2ntSqfPYQ5w8+yIX5Z9Rp8f97roVFwyGfAY/sYFJR7yuipbJXzjEyqQjXgx+YoOLQ7RME4asnrMVXlbnLSFWBDek3J+eqKgofv/9d5fy33//nfDw8Fta1N1GcQdbRWAwAc+96uTTUhGiRafT0ahRI6c/Ly8vAgICaNSokSMmy7Rp01ixYgV//PEHI0eOxNPTkyFDhjjGGT58OFOnTnVcT5w4kY0bN/L+++9z6tQp3n//fTZv3uwU30UgKAuJCfYorX9Izp+DP6QMHh+1ssrGctlyLJ/v/hErD96r5V9tPW5pa9Qn0BeVvx8yjQ1NwzT0dVLR++XiF5uIpmEaMo0Nlb8fPoG+NB47vELFClyNC3PobA5vHdc41b11XMOhszklJreUCpKRzrzoXPb3a04+LQJBSZRbsDz55JNMmjSJhQsXcuHCBS5cuMCCBQt47rnnGDNmjDvXeEdjy7zi4mCrrh3j4ohbWpyWimTKlClMmjSJZ555hhYtWnDp0iU2btyITnfVg//ixYtOFrV27dqxbNkyFi5cSJMmTVi0aBHff/89rVu3vu3rF1R/LiVm83C3pWT/nUsjmfP2aCNZANl/5/JwtxvHcrndbD6az7Lf7GKl171aBra5NbECdh+QwsgvMBu9r4qW2EsOsWI2elMY+cVt8wEpSm55X11vRurTnOpG6tO4r663S3JLqSAZ6Y/hdgdbzf+3d9/hUVVbG8DfM71PKiSBEHqJAZQmID0i0pHrZ6OJQUFQ6XCVaxeQbgMRRBDEroBXUXoVQSBwBenNJCQhPdP7/v6YZJJhUieTzCRZv+fJozlncmYNJ8m8OWftvaPBxW5w7jDf9mjEJeRulR7WXGjevHnIycnB1KlTYbE4E7REIsH8+fPd/uImZeMkEvAUzh/o4g22hY242R8sAk+hAlcDswcfPHjQvTaOwxtvvIE33nijwl8DAI8++igeffRR3xZH6iUh49A3XQ2RXY2rzIqGLRUAgIZNFbhzUYfHuShY0p2PCxR/3bLgm9+dYWVIJwlG3V/1sAI4hwlfXvATOFN3tJl4GHyFBYLWzqtOdp0I1zZ1B5P8hDZLnytxmLEp3wKz1gZ1Y8/pEfJTDBArBZBUsvG2gcSB9+7Vw57pwG0jD4svSfFyWyMaSZ3bG0iKFnRk5nT3sBK3GRwvDMBtQNwIMN9w7o/bQo23pEReX2HhOA5LlixBZmYmjh8/jv/973/IycnBa6+95sv66jyeVIaQqXMR+tICjwZbZ2hZgJCpc8GrhjlYCAl0hnQzZGYeJOChnVCMWeudvVCz1vdEO6EYEvAgM/NgSDf7udIisdFCdG4hxNDOVQ8r+nyLazI3vkwMkUqAkAZa2JLcA4ktSY2QBlqIVALwZWKP45jyLdgy5DA2DtiP/GT3SSjzkw3YOGA/tgw5DFO+xeNrS2PJzMfleethz8wDC1Zh5v/k+FsjwMz/ycGCVbAXjhbKzHd+AV/unGfFNRqoqGeFi13nbMQVhjgfV82sWjMMaboS9xnSdLBqA+f7iRTx+gpLIYVCga5du/qilnqLJ5WVOilcdcy/QkhtEd5aBUucHDivh8AG7HzuJJq+4/yvwAbYBIAlTo7w1v6fE6pw+L6Az+G5gQpwXAlD/M06wGoEpwj3/HpdJiCUghM7ryLp8y14fche5GeYsGj/IIQozAgOuQ5F+D8QtXC/RSxqkYMgCx+CTCVgMQBy9yuyZq0NhgwDtEk6bIzfj4n7BkAdLXOGlfj90P6jAcccMGttFb7KwpeJIVTLYbc5MOOsHJlmZwDINPMw57wC793Lg1AtdwUoTqAEYj8F7HqPKyicqCG4uC0AX+71pHEVZdWacXjizzBnG9Fv60jIooqez5CqxcExOyAOlaLPxmEQKj3DH/Ef71vWARw5cgRjx45Fz549cfv2bQDAli1bcPTo0XK+khBCyidXi/DGvocw6XA8gpvLkXfLeXUg75YBwc3lmHQ4Hm/se8jvk4H9dsaILYcMcBQsCsvjcSWGFevP82HZPgNMm+G+T5sBy/YZsP483xlq4JyDJj/D5Jo2P+d2JpQRl109KxlpKix5ezLsvEhXT4sy4jJg97xyIFPz0a6dGS2jddD9o8HG+P1IOpaFjfH7oftHg5bROrRrZ4ZMza/wa+bLJZA9/yimn5Uj8ZrObXHLxGs6TD8rh+z5R10z3QLO0FL67R4FYCp5iQWmy3T9u1SVVWeFOdsIfbIGB8fsgCHVObdPYVjRJ2tgzjbCqgvsuX3qI68Dyw8//IBBgwZBKpUiMTERZrPzEppWq8WiRYt8ViAhpH6Tq0Vo1i0Mozd1d9s+elN3NOsW5vew8muiET/8YcSRC2ac+6eMNzmrEcyYB2hSYdkx0xVamDYDlh0zAU2qc7/VCMB9Dpr0Gzq8P+UgBG0yXGFl5dIpmLTuOQju+xIQRTlHCbXNBCf2rMGqs8KmNUMAG1oUhJYNffZB948GLaJ1EMAGm9ZcqTfp2ykaDHvkR5wpCCt3L2555poOwx75sUIN0cyir1SYqwpZpAL9to6EPFrlCi1ZiWmusCKPVjmvvEQqqvxcxLe8DizvvPMO1q5di/Xr10MoLFp/omfPnkhMTPRJcYQQAjj7LH58+rjbth+fPu7Rj1HTdp424sfjzoAxvKsUHZuWHp44RThEI1cBqihXaHGknXeFFaiiIBq5yu12UfFF+67/xeH2tVDkpqmx8u3nMPf7xxEeLQcnjkSy7UPkpquReiMUeTmePSDF36QFsKFZhAZSsRXNIjQQwObVm7QvFrd0qWSYqypZlNIttBx4bJt7WImq3ttSxDteB5bLly+jT58+HttVKhXy8vKqUhMhhLhkXczD5wN2I/eGHkFNnb1eQU1lyL2hx+cDdiPrYp5f6vrllBHbTjjfQEd2k2JEV2m5X8MpG7iFFuu2F93DirKBx9eER8sx6/NeMOsl2DhrPDa+kADBRSW0qc7nvnEiC+v6ncfGaQnYNGc8NBkltyaK1UJ0fLUnbBBAJHSgRaQGIqEDNgjQ8dWeEKsrt/Bh4eKWv+4uCiuFChe3/PGnxyq0KCUnD4Nw2NtAcFjJYS7Yub+k3h9vyaKU6LYi3m1btxXxFFYCmNeBJTIyEteuXfPYfvToUTRv3rxKRfnD6tWrERsbSw3EhASQrEt52DX8e4Ra0hHWTIyx/+0LABj7374IayZGqCUdu4Z/j6xLeTVa18+njNj+pzMwjOomxbAu5YeVQpyyAYTx7lM/CONfLjGsAEBmsh4rJxyFFcA5PQ9ZGSoI7cCGPvtw5JOr2NB3HwQ2IDdXjbE7h6Jp1zCPY9j1Jlyc+yluLtyC9Gz3YJKeLcTNhVtwce6nRQsVFsPMOmdDcAlUfC2iwkt+G6nI4pau57DpgKSXIWyV7QotrjAXHObcnvQymE1boeNVhCFViz9n73Pb9ufsfa6eFhJ4vA4skydPxvTp03HixAlwHIfU1FRs3boVc+bMwdSpU31ZY42YNm0aLly4gJMnT/q7FEJIAT6Pgc9nEAkdaBaphZDvXItHyLejWaQWIqEDfD4Dn8dqrKb0XDt+PlUQVu6XYmglwgrgvM1h3ee+Qrp132KP3g3AGVZeGbAL6Td0iGiuwMIjDyM7ig8zYxDYgb3TEl2jpRIOxaP5/Z5hBQDyruch73I2pEITune6Ab7ABgDgC2zo3ukGpEIT8i5nI+96nnutlWwU9pqjYCVnSyqELTIAYcGaS0K783NLqk9Wci5UvMFWHq1C/28fcetpodASmLwOLPPmzcOoUaPQv39/6HQ69OnTB5MmTcLkyZPxwgsv+LJGQkg9Fdw6GIN++hekUUoYU7U4MukXAMCRSb/AmKqFNEqJQT/9C8Gtg2uspohgPp4bqMC/ekgxtHPlw0rxnhXhIx+69bQUDwVZKe5hZdH+QWjXswEWHRuCnDD3X90Pv9+p1LACAPKYEFw3dIDFKoBIaEOjmCz0WNYdjWKyIBLaYLEKcN3QAfKYu6ZRsBrBTNmAMbnk3hJjMuz6zBJ7S7JS9NBXcF4X57DmzYAoCrDdgaBlNjiZBYKW2YDtjrOp2EcrORvSdB4NtmGdIj0acUubp4X4T5WGNS9cuBBZWVn4888/cfz4cWRmZuLtt9/2VW2EEILgNiEY8PUoyKNVMKQUDEFN0UIercKAr0chuE3NzFVkMBfN2tqphQgP31fJsKLL9Giw5UXGeTTiFt5+kSqFUDeQuMJK4SKP2lQjwvPcryj9Nj0RN05klfrcDoMFYSId0m6Hw8aEEHBW3PnkOwg4K2xMiLTb4QgT6eAw3BUwJBIIY60QtM5zhRZXb4kxGVzzXKTzspCd7b4KdWayHi/334XXh+ytcGiBhQ/r1VAwMx+c2A5B62xwYjuY2bkdlooPuS6LUCGEOFTq0WBbvBFXHCqFUFG5nh5S/aoUWPbt2+caLbR27Vq89NJLeOaZZ/DMM8/4qj5SQxYvXuxa8BAArFYr5s+fj/bt20MulyMqKgrjx49HampqmcfZtGkTOI7z+DCVMr8CIRXhzwZJxhh2/GnAW99qkK21l/8FpRFKwUmDPBpsizfictIgQOgMQnK1CG/ufBCLDxSFlRsnspw9K3bAxgd6L+8ImwAQ2IANffeVGlqECiEk4TJIIkPQYsGTbvtaLHgSksgQSMJlnm/Sdj3g0IATWlyhxbrtRcCYDEGrPAikVojEBiz5v1+Rmey8XVP8NlZ+hglGbflDpZk+yxmCcrNgz2rpXkJWSyA3yy3MVYVQKUafjcPQ78tRHt8/sigl+n05iiaNC1Bez3T75ptv4q233kKXLl0QGRnpk7Uy6qvKzH5ZHU6ePIl169ahQ4cOrm0GgwGJiYl49dVX0bFjR+Tm5mLGjBkYMWIETp06VebxVCoVLl++7LZNUgNrIZG6ya43QXczG3/OPuC2/c/Z+/DAh/2haBbqNjmZLznDihG/nHYG7r+TrOhzj3d/6XNiBYTDlpT4s84pG0A06j2Pn3W5WuSaZ+bWySxXg23xnpXmPcJc2zf03Ydnj8R7NN4Wvkkb/slG0oqtbvvSNv6MBz4cA1lMqMebNCeOAOI2g50fDw7JELTMhv2fIPBj8sCJ7LDzG+H95WNw6TQfrwzYhVmf98LKCUfdbmOFNa7AVPsFYY7xLRA0ywaKXZQRNNPCagsDJwpyhbmqEirFpQYSmn8lcHkdWNauXYtNmzZh3Lhxvqyn3ilsamPGPI9hjYX3iTlpEITDllRLaNHpdBgzZgzWr1+Pd955x7VdrVZjz549bo/98MMP0a1bNyQlJaFJkyalHpPjOERE0OJlpOrsehMuz/sU2msZMKWFQRYTAhsAWWMlTP/k4NLsT6Bs2QBtlk7yeWhhjGH7n0bsLAgrjz0gQ597qvYcnFgBlPJzXN6QXVWEFJyEB5vJ4dZg2/z+MCQciseGvvvASXhQRZT8ps5MRiSt2ApLWg5EkSFoNvcx3Fz2LSxpOUhasRVtlj4LlPAmzokjwZquBDs/Bpy4aMFFZhWB3+Y9zP2+ueuKyrzevwGAx22scv9dRHLwH5oJXH7O2WArjgbXagnY1fmAORnCVgDaLK7WP9xI4PP6lpDFYkHPnj19WUv9VMMTJt1t2rRpGDp0KB588MFyH5ufnw+O4xAUFFTm43Q6HWJiYtC4cWMMGzYMZ86c8VG1pL7R3cqB9loGBJwVjWKy0H2Zc+6n7sv6oFFMFgScFdprGdDdyinnSJXDGMO2E0Vh5fEHZBjY0b9XCUOi5XjpjwcxYXsPjwbb5veHYcL2HnjpjwcRUkJIKFyosDCstFn6LBSxMWiz9FmIIkNgSctxX6iwGKbNgPXXd2G/6X77xH5TCeuv7yIsSI9Zn/dy2zfr814VDisAwCx3gCvPF4WVuM3gVJ2cjbjiaOf2K8+DmdMrfExS93gdWCZNmoQvv/zSl7XUS97MfukrX3/9NRITE7F48eJyH2symfDvf/8bTz31FFSq0heaa9u2LTZt2oSffvoJX331FSQSCR544AFcvXrVl6WTekLWJBR6eTtXo2jKh98BAFI+LGoY1cvbQdYktJwjVRxjDD8eN+LXRGdYeaKXDA/6OawAzkX7zr26H9eWHPYYdmtI1eLaksM49+r+ElcaLlyosDCsiMKDAACi8CBXaCm+UGEhV6OwMRn8Zu7PyW+mBYzJMP0wHZ9N+81t38oJR109LRXCK3klZ04cWRRaamglZxK4vL4lZDKZsG7dOuzduxcdOnRwm54fAFauXFnl4uqLwqa7wpBi3faic0cZs19WVXJyMqZPn47du3eX219itVrxxBNPwOFwYM2aNWU+tnv37ujevWjNlwceeACdOnXChx9+iA8++MAntZP6Q6gUo/fno129F6b0XACAJT0XksgQtJxdcu9FVZitwF8FawI90UuG+A7+DyuA56J9hSNcis8pUvi4u/89+HIJWi18BnaDGaJwtds+Z2h5DnyZ2PO2mlAKTi4BPzoPnNDidquGQzL4rfKQfDQMSVcsiGge4tbD8p8+v+HVn+PR+J6gcl8bJ1CAK20lZ3EkUEMrOZPA5vUVlr/++gv33nsveDwezp8/jzNnzrg+zp4968MS64fKzn5ZVadPn0ZGRgY6d+4MgUAAgUCAQ4cO4YMPPoBAIIDd7hwNYbVa8dhjj+HmzZvYs2dPmVdXSsLj8dC1a1e6wkK8JlSKoY6LQrO5j7ltbzb3Majjonw+mkMi4jB7hBIJ8fKACStA1Rft48slHmGlkChcXUoPkA6C6FtFYaXYrRobrxF4IguC2qaiaVte0Twx+wchqokcwUlWrO62G7cv5FXo9ZW1kjMnjqCwQry/wnLgwIHyH0QqrLTZL6vrCkt8fDzOnTvntm3ixIlo27Yt5s+fDz6f7worV69exYEDBxAaWvnL7owxnD17Fu3bt/dV6aQesmTm4eayb9223Vz2rdvtjapgjOFmhh3NGzp/JapkPHRvE3jDWgvnCikMKQce2wYAFVq0z2E0gJlM4Ad7zltjz80BJ5GAJ5W57+DLAVEYwPE8btXkKT4G79IE6HPkaGxSQATnSFEROLTmRNBwNjgA8EEjSIlvVGkeFuIblZn90leUSiXi4uLcPuRyOUJDQxEXFwebzYZHH30Up06dwtatW2G325Geno709HRYLEVjDsePH4+XXy66MvTmm29i165duHHjBs6ePYuEhAScPXsWU6ZM8flrIPWDJTOvqGE0wjmjrSgiuFijaF6Vjs8Yw7e/G/DuDxocvejZ/+FPpnwL8lPcV6T2Zk4ah9GAnDXLkP3BQthzs9322XOzkf3BQuSsWQaH0f25OIESXOyn4OK2uMJKoQZxrWGO/BD7PnkSWZcZNsbvR9KxLGyM3w9NkgFRrW14bvf9iIgt+aoOIZXl9RUWwDlx3L59+5CRkQGHw+G277PPPqtSYfVFSbNf3t3TYtkxE6JR71VL421pUlJS8NNPPwEA7r33Xrd9Bw4cQL9+/QAASUlJ4PGKcm9eXh6ee+45pKenQ61W47777sPhw4fRrVu3miqd1CF3j25p/tYE3Przd7R8awJuvLLRFVraLH2u1NsdZWGM4ZvfDdj3lzOoOBw1tyZReUz5FmwZchj6TBMm7hsAdbTz6ochVYvjM/a6PfbP2fvKvMLCTCY4dBrYszKQ/cEihL70CvjBoQVhZRHsWRmux+GuqyycQAmUcDvGnJkL0+bPMaCzCXst/ZF8UY8NfZyLCUa3s+PBHgdh2Xwc5tZvQRxec0snkLrL6yssb775Jh566CHs27cPWVlZyM3NdfsgFVTJ2S+r08GDB/Hee+8BAJo2bQrGWIkfhWGl8Gs2bdrk+nzVqlX4559/YDabkZGRgV27dqFHjx7VXjupmzxGt4Q5Q4koTF3m6JaKYIzh66NFYWV8v6rPs+JLZq0N+kwTcm/osTF+P/KTDTCkarH/ie0wpmphsfKQyTWENEpZ7qJ9/OAQZ0gJa+AKLZYbV1xhhR/WoCDEVHyZA9PtbAihh1hswoM9DiBI5Vx7J0ilw4M9DkAsNkEIPUy3s8s5EiEVQxPH+Zk3s18SUl/cPbrFai2a5r3M0S3lYIzhq6MGHDhnBgdgXD85escGVs+KurEME/cNwMb4/ci9ocfnA3ajaXg+zBl6WKw85IgiMH7/QxDy7a6eloNjdjinnC+h8ZYfHIrQl15xhZTsVc5134rCSuV61KSNwpFibAIVbkIsNmHkqD9w4EBH9O//P4jFZtgsPGiNTRDRqOauDJO6jSaOCwCcWFHq7R5OEU5hhdRr3o1uKR1jDF8dKQor4/sHXlgppI52hpbg5nLk3jIiN8nsFlbU0bJKLdrHDw5F0LjJbtuCxk2udFgBAIFCiNBWVjDwYLPwIJWbMWTYn5DKnWGFgYfQVlYIaBFB4iM0cRwhpN6RCDlwACYMkKNXu8AMK4XU0TKM3tQdDsbDrTtK3EhXYeTnvVw9LUDFF+2z52Yjb8snbtvytnzi0YhbEfk3c6G9lQ2hyAbcvZYcx0EoskF7Kxv5N6lFgPgGTRxHCKlXOI7DI92l6NxChJgGVRp3UCPykw348enjAAAH48FhB358+rhbIy5Q/qJ9xRts+WENEDRusjOs3NWIW1HSRuE4fn0werT8BXKp+9IhAqEdeqMUx68Pxv/RLSHiIzRxHCGkznMwhn1/mWCxOUcBcRxXa8JKYQ9LcHM5Eg7HO28PFWvErQh7bo5Hg62oeWuPRlx7bsXXZJKoRRi6PA4CnqPE/QKeA0OXx0FSsNp0ILHrTSWumwQ4R6bZ9aYarohUBE0cRwip0xyM4YuDBhy5aMb5JCteGqoAd/ctjACUn+IeVgqvqBRvxN0Yvx8T9w+AurGszGNxEgl4Cucs1cWvpBRvxOUpVODKWaajON3lZGjWv+tssLXyIBAWBReblQex2AzN+nchUr4GRZtoL/4Fqoddb8LVBZ/Bmq/3mHiwcM4foVqOVguf8fkK4KRqAv9PDEII8ZKDMWw+oMfvlyzgOOD+1qJaEVYAQKwUQB7ufMMsfvuneGiRh0sgVpb/a5wnlSFk6twSZ7p1hpYFJc90WyYH4GCwWXjg+Hzn5wU4Hh82CwAHc9seCOwGM6z5+mJz+DhDS/EJCgsfR4ElsFQpsOTl5WHDhg24ePEiOI5Du3btkJCQALWaZjYkhPiXw8Hw+UE9jhWElYQH5bi/VWA32BYnUYswbmcfmLU2jyso6mgZJu4fALFSUOFbLhzPAU5oL3EfT2gHSrm1Uxpp44Ywy5pDyS6BY1a3vhhkZYAJOBi45pA2blip41Y3UbhzDp/CcHJ53no0m/sYbi771jVBoTPE0PtYoPG6h+XUqVNo0aIFVq1ahZycHGRlZWHVqlVo0aIFEhMTfVkjIYRUisPBsOlAUViZVMvCSiGJWlTq7R51Y1mFwwoz62D9eT4s22d4LPXBtBmwbJ8B68/zwcy6CtfGdJlo3Ox3BDVPhaBBkFtfjKBBEIKap6Jxs9/BdJkVPmZNcc7h45x40JKWg8uz1t4VVoL8XSIpgdeBZebMmRgxYgRu3bqFH3/8Edu2bcPNmzcxbNgwzJgxw4clEkJqK32+BVkp+hL3ZaXooc+3lLivqr7+3YA/LlvA44BnH5SjWy0MKz5lNYKZsgFjstv6ZK51zIzJzv1WYzkHKsLxGXgiG/hyC1QxmeAJnFdveAI7VDGZ4Mst4Ils4PiBs9xBcaLwoBJXAKewEriqdIVl/vz5EAiK7ioJBALMmzcPp06d8klxpOYsXrwYHMe5hc2nn34aHMe5fXTv3r3cY/3www+IjY2FWCxGbGwstm3bVo2Vk0Clz7fg9SF78XL/XchMdg8tmcl6vNx/F14fsrdaQkuP1mIoJByeHahA1/oeVgBAIoEw1gpB6zxXaHGknXeFFUHrPAhjrUAlmm55QcEQdZc5j2lOdT+mORWC1nkQdZeBFxR46wg5jAYYr98scQVw4/WbHotAksDgdWBRqVRISkry2J6cnAylsvRVQ4knZtOCmdNL3mdOB7OVvD6Ir5w8eRLr1q1Dhw4dPPY9/PDDSEtLc33s3LmzzGP98ccfePzxxzFu3Dj873//w7hx4/DYY4/hxIkT1VU+CVBGrRX5GSak39DhlQFFoSUzWY9XBuxC+g0d8jNMMGqt5Ryp8po1FGDR2CB0aRl4Q2r9wq4HHBpwQosrtFi3vegKK5zQAjg0zsdV4pgc05V5TI7pKnfMGuAwGpD9/mJkr3wHtswM522glVMgigyBLTMD2SvfQfb7iym0BCCvA8vjjz+OhIQEfPPNN0hOTkZKSgq+/vprTJo0CU8++aQva6zTmE0LdmES2PlxYOY0933mNOf2C5OqLbTodDqMGTMG69evR3Cw519CYrEYERERro+QkLIXR3vvvfcwcOBAvPzyy2jbti1efvllxMfHuxZVJPVHWGM5Fu0fhIjmCldouXgswxVWIporsGj/IIQ1llf5uewOhi0H9bh5x+baJhXVjtFANYETR4CL2wyIo50Bo2U2OFnBf4UW5/a4zeDEEX49Zk0wp2bAnJwKPs+C8JgctFzwKBSxMWi54FGEx+SAz7PAnJwKc2pG+QcjNcrrwLJ8+XKMHj0a48ePR9OmTRETE4Onn34ajz76KJYsWeLLGus2ux6w5gDmZLDz412hxRlWxgPmZOf+avorZdq0aRg6dCgefPDBEvcfPHgQDRo0QOvWrfHss88iI6PsH+I//vgDDz30kNu2QYMG4dixYz6rmdQe4dHuoWVe79/cwkp4tG/Cyoa9ehy+YMYHv2hhsgRmz4S/ceJIoOlKMKsInNgOQetscGI7mFUENF3p3B8Ax6xuoogI6AVxsDtE4PMs0G79CJYbV6Dd+hH4PAvsDhH0gjiIIgIraJEqBBaRSIT3338fubm5OHv2LM6cOYOcnBysWrUKYrF/7xnfvHkT/fv3R2xsLNq3bw+9PrAuSRZX/K8UV2jRJBaFlWr8K+Xrr79GYmIiFi9eXOL+wYMHY+vWrdi/fz9WrFiBkydPYsCAATCbzaUeMz09HQ0bug9jbNiwIdLTS77lReq+8Gg5Zn3ey23brM97VTisOIyGUmdgtWTn4NNd+Th5zQI+DxjfTw4JXVkpEdNmwPrru7DfdL9lb7+phPXXdz1GD/nrmNWNL5eg5aLnETrz1aJZfle9XTQL8MxX0XLR8zQHSwDyOrAsXrwYn332GWQyGdq3b48OHTpAJpPhs88+8/sVlqeffhpvvfUWLly4gEOHDvk9QJWHE0feFVqeuius+P6vlOTkZEyfPh1ffPEFJKU02j3++OMYOnQo4uLiMHz4cPz666+4cuUKfvnll7Jfz10TczHGas1kXcT3MpP1WDnhqNu2lROOejTilsRhNCBnzTJkf7DQY4E+S3Y2Pv78Ak7ddIDPA6YMUuC+5nWrZ8WqNcOQVvJQY0OaDlZt6X88FMd0ma4GW34z99vL/GbaotFDlRiCXB3HrCl8uQTSlk1LXLla2rIphZUA5XVg+eSTT9C2bVuP7ffccw/Wrl1bpaKq4u+//4ZQKETv3r0BACEhIW4jmQIVJ44E18o96HGtllTbJdXTp08jIyMDnTt3hkAggEAgwKFDh/DBBx9AIBDAbvecYCoyMhIxMTG4evVqqceNiIjwuJqSkZHhcdWF1A/FG2wjmiuw9MjDbj0t5YUWZjLBodMUrXWT57zSYsnJwcebL+G8JBZ8ZsfkXsC9zepeWDk88WccfGo7DKnugcCQqsXBp7bj8MSfKxZahFJwcklRg604Glzcl0X9J63zwMklgFBa8QKFUnAyYdnHlAkrd8wa5MuVq0nN8DqwpKenIzLS8800PDwcaWlpJXxFxRw+fBjDhw9HVFQUOI7D9u3bPR6zZs0aNGvWDBKJBJ07d8aRI0dc+65evQqFQoERI0agU6dOWLRokde11CRmTgO7Ot9929X5Ho24vhIfH49z587h7Nmzro8uXbpgzJgxOHv2LPh8vsfXZGdnIzk5ucTzXqhHjx7Ys2eP27bdu3ejZ8+ePn8NJLBlpeg9Gmzb9Wzg0Yhb2jwtAMAPDnFboC9n7QoAwM+bf8d5cTvwmQ2T+/JwX1zZzeC1kVVnhTnbCH2yBgfH7HCFFkOqFgfH7IA+WQNzthFWXUVGWekgiL7l3gyr6uTeNBt9C0AlJo6z3AE/7KzzmKIo92OKosAJLeCHnQWz3PHq9Venu1eudrs99MEiCi0ByuvAEh0djd9//91j+++//46oqCivC9Lr9ejYsSM++uijEvd/8803mDFjBhYsWIAzZ86gd+/eGDx4sGuItdVqxZEjR7B69Wr88ccf2LNnj8cbaKBxa7At9lfK3Y24vqRUKhEXF+f2IZfLERoairi4OOh0OsyZMwd//PEHbt26hYMHD2L48OEICwvDI4884jrO+PHj8fLLL7s+nz59Onbv3o0lS5bg0qVLWLJkCfbu3UuTCdZDUqUQ6gYSjwbb4o246gYSSJXCMo9TuEAfP6wBHNnO2wvdUn9FG/NVTOnLx31xodX+WvxBFqlAv60jIY9WuUJLVmKaK6zIo1Xot3UkZJGK8g/GlwOiMI/bzG63o0VhzsdVlIMHZuODmfmwXg0FLAV/5FicnzMzH8zGBxxev81Ui+pYuZrUDK/vlUyaNAkzZsyA1WrFgAEDAAD79u3DvHnzMHv2bK8LGjx4MAYPHlzq/pUrVyIhIQGTJk0C4BxGu2vXLnz88cdYvHgxGjdujK5duyI62rk66JAhQ3D27FkMHDiwxOOZzWa3JlKNRgPAGXysVve/XKxWKxhjcDgccDh8tKCXOR24MMEVVhC7CUwcCcRuAi48XRRaYj8HamB4YOHr4zgOf/31FzZv3oy8vDxERkaiX79++OqrryCXy12vPykpCRzHuT7v3r07vvzyS7z22mt49dVX0aJFC3z11Vfo2rVrpf/NHA4HGGOwWq0lXvGpiMJzePe5JNVPJOPw6k99YdTZEBQhcjsHQREivL03HlKFACIZV/75UaggeWISDOtWAgB4PGDKUBXEzVR1+twKwyXotXkojkz6BfoULQ6M2w4AkLVQodenQyEMl1Tw9UvAWq0FHHpwvDCg+NfwwsDabgR4cnBM4r6vLLLGcHT4GrY9rwN52bDtmAtBv9mwHVwBaDWwoSMEA98EkzWGvZRj+uPn0yEQwKEMAuPxoZoyGw6FCg6rFVCooJo6DzlrV8AhV8ImEDi3k0qpznPJMca8GgPIGMO///1vfPDBB7BYnDNVSiQSzJ8/H6+99ppviuM4bNu2DaNGjQIAWCwWyGQyfPfdd25/5U+fPh1nz57FoUOHYLPZ0LVrV+zfvx9qtRojR47E5MmTMWzYsBKf44033sCbb77psf3LL7+ETOa+hodAIEBERASio6MhEvnofrldB1nSDPBsudA3XQMmLOr14Kx3IL81FQ5BMAxN3gP4FfhLqg6xWCxITk5Geno6bDZb+V9A6iwH43A6py0UAiPaqm6BergJCUwGgwFPPfUU8vPzoVKpfHpsr6+wcByHJUuW4NVXX8XFixchlUrRqlWrah2Rk5WVBbvdXuawWYFAgEWLFqFPnz5gjOGhhx4qNawAwMsvv4xZs2a5PtdoNIiOjkb//v0RGup+qdlkMiE5ORkKhaLUkTWVpwKUGwC7HkqPKygqQLEFPL4cKkH9mz3YZDJBKpWiT58+Xv97W61W7NmzBwMHDoRQWPatBxKYzDk5WPvVLdwRhSGL2RAtu4M+lw+Ay0wHLzQcIVNmgx9U93pYChnTdTgy6RcYUooab2WNlej96VBIIwLjjxjHnYuw/Xeu63PB8GXgNWxX7tfRz2fdk51dff0/VR4+o1Ao0LVrV1/UUmHlDZst77ZScWKxuMSQJRQKPX6A7HY7OI4Dj8cDj+fD+7IiNYBSljKXet8PVNvxeDxwHFfiuagsXxyD1DxTVg4++fImLotbQ8CseK4Ph6QbRoQ/NwOaNUthz0iDZs1ShL60APzguhdaDKlaHB3/CwwFPSvdVsTjz9n7oL+uwdHxvzh7WKL8+8cM02bAcnAJBKzYmlAHl0AwchU4ZYMKHaOmfz6ZWQdYjeAU4Z77dJnOEVDiwAiDtU11nkev33WNRiMMhqK1Fv755x9XP0l1CQsLA5/Pp2GzhNQDVjvDumM8XCoIK1P7CxDX1rl8BD+oaPQQT6EC57MrnoHDkKbzaLAN6xTp0Yhb2jwtNcG12rMmFVBFQfjIh4AqCtCkuq0KHUiYWQfrz/Nh2T7Doz6mzYBl+wxYf57vDDUkoHgdWEaOHInNmzcDAPLy8tCtWzesWLECo0aNwscff+yzAosTiUTo3Lmzx6ifPXv20LBZQuoQq43h4191OJfigJAPvDBAiPax7rdonaOHFiBk6lzwpLJSjlR7CRVCiEOlRaOBCq6kyKKUrtAiDpVCqPDPlUPXxHEFYUU0chV4kXEQjVzlHloCbeI4qxHMmOcRqoqHL2bMA6xGv5ZJPHkdWBITE12Ts33//feIiIjAP//8g82bN+ODDz7wuiCdTueaFwRwTrN/9uxZ17DlWbNm4dNPP8Vnn32GixcvYubMmUhKSsKUKVO8fk4AWL16NWJjY2v89hYhdZkp34L8lJJXvc1PMcCUbylx3+VUK84nWSESAC8OVeKediXf7uEHh9TJsAIAQqUYD3z0IB74aIDHbR9ZlBIPfDQAD3z0IIRKP83kLZSCkwa5wkrh7R9O2cAVWjhpUMBNHMcpwj1ClSPtvEf4Kul2EfEvr3tYDAYDlErnD9Hu3bsxevRo8Hg8dO/eHf/884/XBZ06dQr9+/d3fV7YEDthwgRs2rQJjz/+OLKzs/HWW28hLS0NcXFx2LlzJ2JiYrx+TsC5COC0adOg0WigVpfST1LAy4FVpJJ8NnSc+IUp34ItQw5Dn2nCxH0DoI4uChb5yQZsjN8PebgE43b2gUTtPuourokIEwbIEaLgoV3j+tl7ZNebcOvdrbDm69Fm6bMQhQe59lky85C0fCuEajlaLXzGL1PJc2IFhMOWlNgLwikbQDTqvYDtBSkMVYUhxbrtReeOu8IXCSxeB5aWLVti+/bteOSRR7Br1y7MnDkTgLOfpCpDmfr161duIJg6dSqmTp3q9XN4SygUguM4ZGZmIjw8nNbHqSaMMVgsFmRmZoLH4/luCDmpUWatDfpME3Jv6LExfr8rtBSGldwbetfjJGoRLDYGs5VBKXVe+H2gbWCvAVbd7AYzrPl6WNJycHneeldosWTm4fK89bCk5bge56+1bzixAiglkAT6FQpO2QDC+JeLwgoAYfzLFFYCmNeB5bXXXsNTTz2FmTNnYsCAAejRowcA59WW++67z2cFBhI+n4/GjRsjJSUFt27d8nc5dZ5MJkOTJk18OyKL1Bh1Yxkm7hvgCicb4/dj9Kbu+PHp48i9oUdwc7kzxDSWwWJjWL1Ti1w9w5yRSqhkdM5F4Wq0WfqsK5xcnrcezeY+hpvLvoUlLQeiyJCCEFP2FWFSMqbNgHWf+0r11j3vQPTIBx6hxZ6bA04iqbO3H2sLrwPLo48+il69eiEtLQ333nuva3t8fDxGjx7ti9oCkkKhQKtWrer07JqBgM/nQyAQ0FWsWk4d7R5aNvTZBwBFYSVaBrOVYfWvWlxMsUEsADI1DgosBUThQe6hZZZzYdmisBLk3wJrqbtHN/F7zYT151fB092BZdtLbqGlcN0hnkJVZxu8a4tKBZZZs2bh7bffhlwud5tsbcuWLR6PXblyZdWrC1B8Pt/rqeIJqW/U0TKM3tTdFVYAYPSm7p5hRQhMH6ZEiwj3X0v1fc4MUXgQms19zBVWAKDZ3McorHippNFNDpsAutyWkCsvgl8YWkZ/CIeV51p3CHCuHg4KLH5TqcBy5swZ15WFM2fOlPq42vhX8erVq7F69WrY7XZ/l0JInZKfbMCPTx932/bj08fx1K7+2PyXHZdvO8PKjGFKtIx0b7AtnDODGfOcIzskwUX7Cv5K5qRBEA5bUmdDiyUzDzeXfeu27eayb+kKi7cKRjcxwNVgywcQ8sIbyPnoDciVF8FydcDtVOR/vdltkcS6ODlhbeL1WkJ1VeEooaysLI+p+UntY7VasXPnTgwZMoRmuvWD4g22wc3lrh6W7BQjNNO7wBCthqTgysrdYQUo+Gt4+wzXX8Pc0GX49fBJDO7TFeyXuUV/JY96L+CbPL1RvMFWFBmCJi+MxD/vb4M1I8/jtpAlMx98mdhvDbje8NfPZ2lX7ey52cj56A3Ys3LAClaZLgor9H5QEdnZ2QgLC6uWtYToRjEhpFrkp7iHlYn7BqBJzzBM3DcAqrZqmKVC8Mw2TLpfVGJYATznzLD+8jIAOP9bx+fMsGTmu4WVlm+MR9qWveAACBuoXY24lsz8gmCzDlcXfAa73uTv0v2qInP/cGJFid8z/OBQqMe86AorABA0bjKFlQBR6R6WiqrLPSyEkPKJlQLIQ4XgMTEmFJuHRR0tw3M7emH9yEPgRynR5pluZR7Hbc4MbTqghPO/dXzODL5MDKFaDgBos/RZAJxzmHNGHkQNgiBsoIZQLYfdYMK1NzYHxDBnf6vK3D+A8wpL3pZP3LblbfmErrAEiEr3sBR3+vRp2O12tGnTBgBw5coV8Pl8dO7c2XcVEkJqJT6PoVmEFiahEUK+HSYLw80MG9o1FkLIt6OtIgsSoR58Xvl3pQvnzLBtn+3aVtfnzODLJWi18BnYDWbX0OXiI4ZEDYIQNW6gK6zQMOfKz/1TXOFooMKelaBxk5G35RPYszKQ/cEiCi0BoFK3hA4cOOD6GD58OPr164eUlBQkJiYiMTERycnJ6N+/P4YOHVpd9RJCfCQ/34TbKZoS991O0SA/v2q3Fqw6Kyx5JhhTtdgz4Wes/DEP7/+sxfFT+Tg4ZgeMqVpY8kyw6sqfIqDEOTP2LQ7IxfV8iS+XuAWQwmHOosgQWDLycHXBZ3eFlSD/FRsACuf+CW4ud4WWpGNZHrcm1Y3dR/rYc3PcwkroS69A1Ly1a4HNwtBiz83x0ysjQBV6WFasWIHFixcjOLioaz84OBjvvPMOVqxY4ZPiCCHVIz/fhNEjvsXgh75ESrJ7aElJ1mDwQ19i9IhvqxRaZJEK9Ns6EqJmITjarRNu5jAIOYbriw67rUAsiyx7dI/bnBnKCOdGZURArwhcnQqHORdHw5yLFM79UxhaNvTZ5x5Woj2HJXMSCXgKlUeDrXOBzbq9Knht4nVg0Wg0uHPnjsf2jIwMaLXaKhXlD7T4IalPdFoLMjMNuHUzD0MGFYWWlGQNhgz6Erdu5iEz0wCdtuTFCSuKC1PgfMIg5DUKh8BkQcfNuyH6K9ljBeLS3D1nhnCo8yqLcOjiwF4RuBqVNszZkpnnn4ICUOHcP8UVzv1TEp5UhpCpcxH60gKP2z51fVXw2sTrwPLII49g4sSJ+P7775GSkoKUlBR8//33SEhIqJUz3U6bNg0XLlzAyZMn/V0KIdWuUWMVdu56Ck2bBblCy4k/UlxhpWmzIOzc9RQaNfZ+WKLB7MB7/9XgVg6DlM/Q5fsDUN/JBQB0WxFfblgB4LkicMHIjuKjhwJxReDqcvcw5zYrpzhvD7lGDOX5u8SAUNrcP/nJJY8eApyhpbR5VuryquC1ideBZe3atRg6dCjGjh2LmJgYxMTEYMyYMRg8eDDWrFnjyxoJIdWgcbR7aBk44Au3sNI42vuwYrIyvPezFjfu2CETAt1/+x2qjFzX/j9n74MhtfwrsYUrAotGvefRYFu4InBdnjSuuLuHObdZ+iwUsTFFPS3FhjnXZ8UbbNVNZEg4HO/W05KfbHANbya1i9eBRSaTYc2aNcjOzsaZM2eQmJiInJwcrFmzBnK53Jc1EkKqSeNoFdZvGOa2bf2GYVUKKwAgEgCNQwWQCYH7dx6F8FwK5NEq9P/2EcijVdAna3BwzI4Kh5bS5lnhFOF1Oqw4jAZXo2fhMOfCsMIXOOAwGtwacYVqOfiy+rvKdfG5f/hiHgDm2dPSdx829NmLLUMOU2ipZao8cZxcLkeHDh3QsWNHCiqE1DIpyRo8m/Cz27ZnE372aMStLB7HYXRrB3ptP+AKK/22jkRYp0j02zrSPbSk6ar0XHWVw2hAzpplyP5gIey52a5hzm2WPge+wI7sDxYiZ82yYqHlObRa+Ey9nYMFKJj7J1wCdRMZFA3FyE8yYmP8fgBwNtw2kUF3x4T8JCP0mSaYtTY/V0wqg2a6JaSeKt5g27RZEPbsH+vW01LZ0KI3ObDthAE2u3NeFbFShBApPBpsZVFKV2gRh0ohVNCSCSVhJhMcOk2xIbXO0MIX2FxDcB06jXNBPgCicHW9DisAIFGLMG5nHyQcjkfCoQc9bgUBDHazo9ThzSSwUWAhpB66naLxaLC9v0djj0bc0uZpuZve5MDK/2qx87QJXx1xNjYKlWL02TgM/b4c5dFgK4tSot+Xo9Bn4zAIlfX3FkZZ+MEhHvOAWG5c8ZgvhBbkcydRi6BuLCtxeHN+krHM4c0ksFFgIaQeUihFCA+XeTTYFm/EDQ+XQaH0nL78bnqTAyt/0iIp0w6llMOA9kUBRKgUlzrPiixSQWGlHMXnAbFnZSB71dt3hRWaebUslR3eTAIbBZYCNA8LqU/Uagk2fTESGz8f4dFg2zhahY2fj8CmL0ZCrS77FoPO5MCKn7RIynKGldkjlGgUWqkVP0g5+MGhCBo32W0bLchXMd4MbyaBiwJLAZqHhdQn+fkmPD12ByZO+KnEmW4nTvgJT4/dUeZMt1qjAyt2aJFcGFZGUlipDqUtyGfPzfZTRbVD8eHNwc3lJQ5vJrWLzwPLgw8+iObNm/v6sIQQH6rqTLeMMazeqUNKth0qKYc5I1VoFEJhxdfuXpAvdOard61tQ6GlJMWHNxf2rDTpGeaxzlB+CoWW2sTngeWRRx7BhAkTfH1YQogPVXWmW47jMPJ+KcJUPMwZqUJUCL+GX0HdRwvyea9wePPdDbbFG3Hl4RKIlRSyaxOfn61p06b5+pCEkGpQ2GBbGFIGDvgCACo80227xkK8/aQaAj5XE+XWO4UL8gEocUG+7A8W0YJ8JbBqzXAYrBi3sw/MWpvb0GVDmg6yICEm7h8AsVIAibr8pnISOHwSWBhzzrvAcfSLi5DapHCm28KwApQ+063G4MCne3V4opfcdUWFwkr1KVyQj5lMHkOXCxfk4yQSWuOmGKvWjMMTf4Y524h+W0dC3bhoOL0hVYuDY3ZAHCotGE5PYaW2qdItoQ0bNiAuLg4SiQQSiQRxcXH49NNPfVUbIaSaVXSmW43BgeU7tLiYYsOGfTrXHymketGCfJVj1VlhzjZ6LP1QGFb0yRqYs42wanLBzOklHoOZ08Fs5S8ZQWqe14Hl1VdfxfTp0zF8+HB89913+O677zB8+HDMnDkT//nPf3xZIyGkGlR0ptvCsJKWa0eQnMNzAxV0NZUEJFmkwmPph6zENFdYkUer0G9LPCTZ08HOjwMzp7l9PTOnObdfmEShJQB5fUvo448/xvr16/Hkk0+6to0YMQIdOnTAiy++iHfeeccnBRJCfK+kmW7v7mkZMuhLfPvTk/jyJENargPBch7mjFKigZoabEngKlz6oTCkHHhsG4CiJSKkoXqwOzmAORns/HggbjM4cWRBWBkPmJOdB7LrAYGyjGciNc3rKyx2ux1dunTx2N65c2fYbLVvQSmaOI7UJxWZ6TYiOhhbjjsorJBaRxalRLcV8W7buq2IhyxKCU4cAS5uMyCOdoUWpkksCiviaHBxm8GJI/xUPSmN14Fl7Nix+Pjjjz22r1u3DmPGjKlSUf5AE8eR+kStluDHnx7Dr7s9RwM1jlbh191PYfSMh5GhYQhRUFghtYshVYs/Z+9z2/bn7H2unhZOHHlXaHnqrrAS6Y+ySTmqNEpow4YN2L17N7p3d67VcPz4cSQnJ2P8+PGYNWuW63ErV66sWpWEEJ9TqyWlTr3fqLEK48MdwEED/tVdinAKK6SWKN5gK49WoduKePw5e5+rp6Vw5XBOHAm0WuIMKwW4VksorAQwrwPL+fPn0alTJwDA9evXAQDh4eEIDw/H+fPnXY+j5jxCag+zlUEsdP7MysQ8TBlU8sKFhABwNqba9SXePmHmdIAvB1eDfSCGNJ17g21BOCne03JwzA70+3IUpCFasKvz3Wu+Ot/V00ICj9eB5cCBA76sgxDiZzk6B1bs0KBPrBiD7pP6uxwS4JhNC3ZhEmDN8XiTdzWwCkOA2E9rLLQIFUKIQ53fu4VhBXBvxBWHSiEUZYOdn1R0G6jVEmdYuasRlwSWKt0SysvLw4YNG3Dx4kVwHIfY2Fg888wzUKvVvqqPEFIDcrR2LN+hRabGgYN/m9H3HgkkIro6Sspg1zvDSgCNthEqxeizcRisOitkke5XB2VRSvT7chSE4hzwbyZ49qzEbXbV7Xw9W6jxNsB43XR76tQptGjRAqtWrUJOTg6ysrKwcuVKtGjRAomJib6skRBSjbKLhRXn2kBKCiukXIE62kaoFHuElUKySAUEqmDnlZ+7GmzdGnGFIQBfXpNlkwrw+grLzJkzMWLECKxfvx4CgfMwNpsNkyZNwowZM3D48GGfFUkIqR6FYSVL40C4iofZI5UIVVKDLakYzysTBQ2sATzahhMogdhPS+y9cb6eLTXee0MqpkpXWObPn+8KKwAgEAgwb948nDp1yifFEUKqz91hZQ6FFeIFThwJrtUS920BPtqGEyhLvfLDiSMorAQorwOLSqVCUlKSx/bk5GQolXSyCQl0fydbkaVxoIGahzmjVAihsEK8wMxpJY62uXvae0KqyuvA8vjjjyMhIQHffPMNkpOTkZKSgq+//hqTJk1ym66fEBKY+sRKML6fDHNGqhCiqNI6qKSecmuwFUeDi/vSvaeFQgvxIa97WJYvXw6O4zB+/HjXVPxCoRDPP/883n33XZ8VWFNWr16N1atXw263+7sUUk/Z9SbYDWaIwj1H2Vky88GXicGXlzzRW0VlaeyQiTnIxM6A0ju2ascrT028JuIfzJxeQoMtjbYh1cfrP6tEIhHef/995Obm4uzZszhz5gxycnKwatUqiMViX9ZYI2hqfuJPdr0JVxd8hsvz1sGSmee2z5KZh8vz1uHqgs9g15u8fo6MfDuWbdfivZ+1MJgdVay4fDXxmogf8eUBOdrGrjfBkplf4j5LZj59v9ViVb4OLJPJEBcXh/bt20Mmk/miJkLqHbvBDGu+Hpa0HFyet971Bu98Y18PS1oOrPl62A1mr46fkW/H8u1a5OgcMJoZrDVwIbG6XxPxL06gBBf7Kbi4LR4Nts7QssW5vwYbWCkk121VCiwbNmxAXFwcJBIJJBIJ4uLi8Omnn/qqNkLqDVG4Gm2WPgtRZIjrDV534R/XG7soMsS5v4RbK+VxXlnRIFfvQESQs8FWLav+npXqfE0kMATaaBsKyXWb17+1Xn31VUyfPh3Dhw/Hd999h++++w7Dhw/HzJkz8Z///MeXNRJSL4jCg9zf4GetveuNPajSx7yT5wwreXqGyOCaCyuFquM1EVIaCsl1m9e/uT7++GOsX78eixcvxogRIzBixAgsXrwY69atw9q1a31ZIyH1hig8CM3mPua2rdncx7x6Y0/Ps2P5jsKwwseckTUbVgr58jURUh4KyXWX17+97HY7unTp4rG9c+fOrlFDhJDKsWTm4eayb9223Vz2rcf9+IpgDHA4gKgQPuaMVELlh7AC+PY1EVIRFJLrJq9/g40dOxYff/yxx/Z169ZhzJgxVSqKkPqo+H12UWQI2qyc4nZpu7Jv8JHBfMwZpcLsEf4NK758TYRUBIXkusknTbeTJk3CpEmTEBcXh/Xr14PH42HWrFmuD0JI2SyZ+R732RWxMR7340sbrlkoLceOiylW1+eRwXw/hhXfvCZCKoNCct3l9W+y8+fPo1OnTggPD8f169dx/fp1hIeHo1OnTjh//jzOnDmDM2fO4OzZsz4sl5C6iS8TQ6iWe9xnL34/XqiWgy8rfY6j1Bxnz8qHv2hxNc1a6uNqii9eEyGVQSG5bvN6ptsDBw74sg5C6jW+XIJWC58pcVZY5xv8c2XOClsYVrRGhsahfEQG+39doKq+JkIqqzAkAygxJF+et55Cci3mdWAhhPgWXy4p9c27rGGYt7NtWPGTFlojQ3QYH7NGKKGQBMbaQN6+JkK8QSG5bqPAQkiAcBgNYCYT+MEhHvvsuTngJBLwpO6zSRcPK00Kwoo8QMIKIf5AIbnuot9shAQAh9GAnDXLkP3BQthzs9322XOzkf3BQuSsWQaH0eDanplvx/IdBWElnMIKIaRuo99uhAQAZjLBodPAnpWB7A8WuUKLM6wsgj0rAw6dBsxUtAZKsIKHNo0EiAnnY9ZwCiuEkLqNfsMVWL16NWJjY9G1a1d/l0LqIX5wCEJfegX8sAau0GK5ccUVVvhhDZz7i90uEvA5THpQQVdWCCH1QqV6WCozp8rKlSsrXYw/TZs2DdOmTYNGo4FaTfc5Sc3jB4ci9KVXXCEle9Xbzu2usBKKpCwbjl+24NGeUvA4DgK+84MQQuq6SgWWM2fOuH1++vRp2O12tGnTBgBw5coV8Pl8dO7c2XcVElKP8INDETRusiusAEDQuMngB4fin0wbVv6khcHMoJJxePg+qR8rJYSQmlWpwFJ87pWVK1dCqVTi888/R3BwMAAgNzcXEydORO/evX1bJSH1hD03G3lbPnHblrflE+jHvoL3DvJgMDM0b8hHn1iaR4IQUr94feN7xYoVWLx4sSusAEBwcDDeeecdrFixwifFEVKfFG+w5Yc1QOjMV8EPa4BknQgrfzXBYGZo0VCAGcNVkImpZ4UQUr94/VtPo9Hgzp07HtszMjKg1WqrVBQh9Y09N8ejwVbUvDW0Y17BppgXYOJJ0cSajBd62yAV+aZnRZ9vQVaKvsR9WSl66PMtPnkeQgjxBa8DyyOPPIKJEyfi+++/R0pKClJSUvD9998jISEBo0eP9mWNhNR5nEQCnkLl1mBrsjKsPsKDiSdFjDUZz9h+gUzpmxk69fkWvD5kL17uvwuZye6hJTNZj5f778LrQ/ZSaCGEBAyvZ7pdu3Yt5syZg7Fjx8JqdS60JhAIkJCQgGXLlvmsQELqA55UhpCpc91mupUIOYztK8eBcyZM6RENqXKGx0y33jJqrchNNyLjlh6vDNiFRfsHITxajsxk5+fpN3RwOBiMWivkapFPnpMQQqrC68Aik8mwZs0aLFu2DNevXwdjDC1btoRcLvdlfYTUGxzPAU5oh4Mx8DjnbZ9OzUW4r5kQ0GcBPIfPnkuqFEIZLEZ2igHpN3R4ZcAuzPq8F1ZOOIr0GzrwBRyUwWJIlUKfPSchhFRFldcSksvl6NChgy9qIaTeYmYdrD/Px3VtEL4Vz8ILw4IQqixYcVmXCcuOmeCkQRAOWwJOrKjy8xm1VujzLbDbGPgCDuk3dJjX+zcAAF/AwW5j0Odb6AoLISRgVGmowZEjRzB27Fj06NEDt2/fBgBs2bIFR48e9UlxhNQbViOua4OxxvA8UnI57Pg9FwDAtBmw7JgJaFLBjHmA1eiTpwtrLMei/YMQ0VwBu4257bPbGCKaK7Bo/yCENaYrpoSQwOB1YPnhhx8waNAgSKVSnDlzBmazGQCg1WqxaNEinxVISH1wXRuE1ZaZMEGG1jiHRzPnwpF23hVWoIqCaOQqcIpwnz1neLQcc77oDb7AfdQRX8Bhzhe9ER5NYYUQEji8DizvvPMO1q5di/Xr10MoLLrP3bNnTyQmJvqkOELqg6tpVrz3Xy3MNg5tIxyYotwIsfYWrNtedA8rygY+fd7MZD2Wjz1S4hWW5WOPeIweIoQQf/I6sFy+fBl9+vTx2K5SqZCXl1eVmgipN66kWvH+f7Uw24B2jQV4YXgo5A/OcXuMMP5ln4eVrJSi0UAlXWEpbMQtbZ4WQgipaV4HlsjISFy7ds1j+9GjR9G8efMqFUVIfcAYww9/GGC2AbGNBXhhiBIiUyas+xa7Pc66bzGYNsOnzy1VCiFTC10NthHNFVh65GFXTwtfwEGmFtIoIUJIwPA6sEyePBnTp0/HiRMnwHEcUlNTsXXrVsyZMwdTp071ZY2E1Ekcx2HaYCX6x4kxbYgSQmOmW8+K8JEPAVUUoEmFZcdMn4YWo9YKXa7FrcG2Xc8Gbo24ulznKCFCCAkEXgeWefPmYdSoUejfvz90Oh369OmDSZMmYfLkyXjhhRd8WSMhdYrGUDSfikrGw1N95BCasjwabHmRcRCNXOUeWnSZPqlBqhQiOELqCiuFDbbh0UWjh4IjpHSFhRASMKo0D8vChQuxYMECXLhwAQ6HA7GxsVAoqj5HBCF11cUUK1bv1OLxXnL0Lr7islAKThoEBrg12HLKBhCNXOWahwVCqU/qkKtFeHPngzBqrR5Dl8Oj5Vh8YBCkSiHNwUIICRhVnjhOJpOhS5cuvqiFkDrtYooVH+3UwmIDzty0oFc7EbiCGW05sQLCYUsAq9Fj6DKnbADRqPecocYHk8YVkqtFpQYSmn+FEBJoKhVYZs2aVeHHrly5stLFEFJXXUh2hhWrHWgfI8TzDytcYaUQJ1YApQQSX86/QvyH2bSAXQ9OHOG5z5wO8OXgBEo/VEZI4KtUYDlz5kyFHnf3L+LaYPXq1Vi9ejXsdru/SyF1zN9JVqz+1RlWOsQIMeVhBYT82vczQqqG2bRgFyYB1hwgbjM4cWTRPnMa2PnxgDAEiP2UQgshJahUYDlw4EB11eF306ZNw7Rp06DRaKBWq/1dDqkjzidZsPpXHWx2oGNTISYPCpywknvmMkxJqYgc2d9jX9qOA5A0iULwfW38UFkdZdc7w4o52RlOCkKLK6yYk4seR4GFEA9VWkuIEFK26+k2V1iZEmBhRbBnOlQ3FiFt2363fWnb9kN1YxEEe6Yj98xlP1VY93DiCHBxmwFxtCu0ME1iUVgRR4OL21zi7SJCCPWwEFKtRnSVoqGajy4tRRAESFgBAFNSKlRCOwRiG1S3FiNtGxD5yABnWLm1GAKxDbaCx4GusvgMJ44E4ja7Qgo7/5RzhyusRJZ9AELqMephIcTHrqVZ0SRcAJGAA8dx6N5GXP4X1bDIkf2Rvt0A5e3lrtBy493zaCj+rzOsMEDbbEaJt4tI1XDiSKDVkqKwAoBrtYTCCiHloB4WQnzof7csWPubDq2iCqbaFwRmeGc2LRo03wxbiBW2c0IIxDY0Em8DANgZIGxvRYOgzWC2PtQA6mPMnAZ2db77tqvzPRpxCSHuqtTDcuTIEYwdOxY9e/bE7du3AQBbtmzB0aNHfVIcIbXJ/25Z8PFvOtgcgEzMAy8ws4pTQQOoQJAFfls9ICwYHSe0g99WD4Egy9kgaqfFD33JrcFWHA0u7kv3nhZzmr9LJCRgeR1YfvjhBwwaNAhSqRSJiYkwm80AAK1Wi0WLFvmsQEJqg7M3nWHF7gC6tBBh0oPygOpZuVthA6jNFgahVANBy2xwMgsELbMhlGpgs4VRA6iPMXO6Z4OtqpNnI6453d+lEhKQvA4s77zzDtauXYv169dDKCxab6Rnz55ITEz0SXGE1AZnb1qwdpczrHRtKcKkgYEdVgql77wI2zkhmJkPTmyHoHU2OLEdzMyH7ZwQ6Tsv+rvEuoUvd86zcleDLSeOLAotwhDn4wghHryemv/y5cvo06ePx3aVSoW8vLyq1ERIrVE8rHRrJcIz8XLwA/pekFPajgNQ3VoMvhiwXAuF+J6ilaAt10LB5+AcPbSDo8ZbH+EESiD20xJnunWOHtpCM90SUgavr7BERkbi2rVrHtuPHj2K5s2bV6koQmoLtYwHkYCrVWEFACRNouCw8mFnAL+Nw20fv40DdgY4rHxImkT5qcK6iRMoS73NxokjKKwQUgavA8vkyZMxffp0nDhxAhzHITU1FVu3bsWcOXMwdepUX9ZISMBq1lCAVx5VIaEWhRUACL6vDezx/4Ggg9XZYFusAVQgyIKggxX2+P/QTLeEkIDh9S2hefPmIT8/H/3794fJZEKfPn0gFosxZ84cvPDCC76skZCAcvq6BcEKHpo3dP74RATxfXLcmlwYj5nTocKbAD/LvaeiYFIzgTkZKrwJZt5CjbeEkIDgdWABgIULF2LBggW4cOECHA4HYmNjoVCUvNosIXXByatmfLpXD7GQw4JHVWjow7BSowvjFTaAAh4NoK6ZWKkBlBASQKoUWABAJpOhS5cuvqiFEABAfr4JOq0FjRqrPPbdTtFAoRRBrZbUeF1/XjVjw149HAy4r7kQ4SofLsVVwwvjUQMoIaS2obWESEDJzzdh9IhvkZlpwM5dT6FxdFFoSUnWYMigLxEeLsOPPz1Wo6HlxBUzNuzTgzHggbYijO8vB8+HS1Bw4oi71pgZ75y+/er8alsYjxMoSw0/dBuIEBJoqrSW0OnTp2G329GmjbMx78qVK+Dz+ejcubPvKiT1ik5rQWamAbdu5mHIoC9doaUwrNy6med6XE0FluNXzPisIKz0aifGuH4yn4aVQrQwHiGElK5S17QPHDjg+hg+fDj69euHlJQUJCYmIjExEcnJyejfvz+GDh1aXfWSOq5RYxV27noKTZsFuULLiT9SXGGlabMg7Nz1VIm3i6rDhWSrK6z0rsawUogTR4JrtcR9Gy2MRwgh3g9rXrFiBRYvXozg4GDXtuDgYLzzzjtYsWKFT4oj9VPjaPfQMnDAF25hpfhtourWMlKAdo0E6BMrxthqDitA6Qvj0RozhJD6zuvAotFocOfOHY/tGRkZ0Gq1VSqKkMbRKqzfMMxt2/oNw2o0rACASMDhhaFKjOlbQ2GFFsYjhJASeR1YHnnkEUycOBHff/89UlJSkJKSgu+//x4JCQkYPXq0L2sk9VBKsgbPJvzstu3ZhJ+Rkqyp9uf+/ZIZP/xhAGMMACDkczUQVmhhPEIIKYvXgWXt2rUYOnQoxo4di5iYGMTExGDMmDEYPHgw1qxZ48saST1TvMG2abMg7Nk/1q2npTpDy9GLZny+X4/fzpjwv1vWanseD7QwHiGElMnreVhkMhnWrFmDZcuW4fr162CMoWXLlpDL6Rcq8d7tFI1Hg21hT0vh9iGDvsSvu33feHvkghmbD+oBAP3jxOjYVFjOV/gOzYtCCCFlq/LEcXK5HB06dPBFLYRAoRQhPFwGAG4NtsVDS3i4DAqlyKfPe/iCCVsOGgAAA9qL8UQvGbhqvg10N5oXhRBCSlelwJKXl4cNGzbg4sWL4DgO7dq1Q0JCAtRqta/qI/WMWi3Bjz89VuJMt42jVfh191M+n+n28N8mbDnkDCvx7cV43A9hhRBCSNm87mE5deoUWrRogVWrViEnJwdZWVlYtWoVWrRogcTERF/WSOoZtVpS6u2eRo1VPg0rd/Ls+OJwQVjpQGGFEEIClddXWGbOnIkRI0Zg/fr1EAich7HZbJg0aRJmzJiBw4cP+6xIQqpLwyA+xveTIy3Hjkd7SimsEEJIgPI6sJw6dcotrACAQCDAvHnzaDFEEvCsdgYh3xlOerUT+7kaQoivWbVmWHVWyCIVHvsMaToIFUIIlfSzX5t4fUtIpVIhKSnJY3tycjKUShrJQALX/nMmvPOdBhqDw9+lEEKqgVVrxuGJP+PgU9thSHWfyNSQqsXBp7bj8MSfYdWa/VQh8YbXgeXxxx9HQkICvvnmGyQnJyMlJQVff/01Jk2ahCeffNKXNVaaQCDAvffei3vvvReTJk3yay0ksOz7y4SvjhiQmmPHiasWf5dDCKkGVp0V5mwj9MkaHByzwxVaDKlaHByzA/pkDczZRlh1NTjXEqkyr28JLV++HBzHYfz48bDZbGCMQSQS4fnnn8e7777ryxorLSgoCGfPnvVrDSTw7P2fCd/87mywHXyfBA92oMvBhNRFskgF+m0d6QonB8fsQLcV8fhz9j7okzWQR6vQb+vIEm8XkcDldWARiUR4//33sXjxYreJ42QymS/rI8Qn9p2z4Ifjzsu/gztJ8Mj91GBLSF0mi1K6hZYDj20DgKKwEkWtC7VNpQPLM888U6HHffbZZ5UuBgAOHz6MZcuW4fTp00hLS8O2bdswatQot8cUzrCblpaGe+65B++99x569+7t2q/RaNC5c2dIpVIsXLgQffv29aoWUjfc0DbChYKwMqSzBKO6UVghpD6QRSnRbUW8K6wAQLcV8RRWaqlK97Bs2rQJBw4cQF5eHnJzc0v98JZer0fHjh3x0Ucflbj/m2++wYwZM7BgwQKcOXMGvXv3xuDBg90agG/duoXTp09j7dq1GD9+PDSa6l8wjwQmk5Xhlt65Ls+wLhRWCKlPDKla/Dl7n9u2P2fv82jEJbVDpa+wTJkyBV9//TVu3LiBZ555BmPHjkVISIjPCho8eDAGDx5c6v6VK1ciISHB1Uz73nvvYdeuXfj444+xePFiAEBUVBQAIC4uDrGxsbhy5UqpQ63NZjPM5qJO8cJwY7VaYbVSQ1Ztx4cN3cPOQd2kJx7sKIDNZvN3SaQKCn8m6WezbqjO82lM1+HIpF9gyNBC1kKFzgv74fSCg9CnaHFg4g70/nQopBHUw+Jr1fmzyTHGWGW/yGw248cff8Rnn32GY8eOYejQoUhISMBDDz3k079eOY5zuyVksVggk8nw3Xff4ZFHHnE9bvr06Th79iwOHTqE3NxcyGQyiMVipKSk4IEHHsCZM2dKDVVvvPEG3nzzTY/tX375JfXj1GI6qxQKodHfZRBCSL1iMBjw1FNPIT8/HyqVbxeo9arpViwW48knn8STTz6Jf/75B5s2bcLUqVNhtVpx4cIFKBTVk1qzsrJgt9vRsGFDt+0NGzZEeno6AODixYuYPHkyeDweOI7D+++/X+YVoJdffhmzZs1yfa7RaBAdHY3+/fsjNDS0Wl4HqV67zppx+JQFCfESxDUG9uzZg4EDB0IorLnVlwOdWWPB148egz7LhLH/7QtVI6lrn+a2EV8MPwR5mARPfN8TYpVvF5qsCqvVSuezDqmu82nVWXBs6m8w5xg9rqQUXnkRh0jRc83DECoC5/u7LsjOzq62Y1d5tWaO48BxHBhjcDhqZiKuu6/iMMZc23r27Ilz585V+FhisRhisefwVqFQSL8Qa6FfThux46RzfpUsLQeh0PktTufTncFohe62Gbk3DNjy0GFM3DcA6mgZ8pOdn+feMIA152A3chCGBt6/G53PusXX51MYLETfdcNKnOlWGB2M/ptG0Uy31aQ6fy69mjjObDbjq6++wsCBA9GmTRucO3cOH330EZKSkqrt6goAhIWFgc/nu66mFMrIyPC46kLqn19OGbH9hPM20Kj7pRjSWVrOV9Rf6sYyTNw3AMHN5ci9ocfG+P1IOpaFjfH7kXtDj+DmcmeIaUy3RUntJFSKS51nRRapoLBSC1U6sEydOhWRkZFYsmQJhg0bhpSUFHz33XcYMmQIeDyvJ86tEJFIhM6dO2PPnj1u2/fs2YOePXtW63OTwPbzKSO2/+kMK4/cL8VQCivlUke7h5YNffa5h5VoCiuEkMBR6VtCa9euRZMmTdCsWTMcOnQIhw4dKvFxP/74o1cF6XQ6XLt2zfX5zZs3cfbsWYSEhKBJkyaYNWsWxo0bhy5duqBHjx5Yt24dkpKSMGXKFK+er9Dq1auxevVq2O32Kh2H1LyfThrx35POsDK6uxSDO1FYqSh1tAyjN3XHhj5FQz9Hb+pOYYUQEnAqHVjGjx9frfNYnDp1Cv3793d9XtgQO2HCBGzatAmPP/44srOz8dZbbyEtLQ1xcXHYuXMnYmJiqvS806ZNw7Rp06DRaKBWq6t0LFJzGGPI1zt7p/7VQ4qH76OwUhn5yQb8+PRxt20/Pn2crrAQQgJOpQPLpk2bqqGMIv369UN5I62nTp2KqVOnVmsdpHbgOA5j+srQqbkI9zShJszKyE82uPWsjN7UHT8+fdzV00KhhRASSKq36YSQasAYw4mrZtjszmDL4zgKK5WUn2LwaLBt0jPMoxE3P8Xg71IJIQQABRZSyzDGsP2EEZ/u0ePTvbpyr8aRkomVAsjDJR4NtsUbceXhEoiVVZ75gBBCfIJ+G5FagzGGbceN+PWMCQDQMkJI6wJ5SaIWYdzOPjBrbR5Dl9XRMkzcPwBipQASNU2qRQgJDBRYCtAoocDGGMMPx43YVRBWnuglQ3wHiZ+rqt0kalGpgYTmXyGEBBq6JVRg2rRpuHDhAk6ePOnvUshdGGP44Y+isPJkbworhBBS39AVFhLwtp8wYtdZZ1h5qrcM/dtTWCGEkPqGrrCQgNe2sRAiATCmD4UVQgipr+gKCwl47RoLsXBMEILklK/rI2bTAnY9OHGE5z5zOsCXgxMo/VAZIaQm0TsACTiMMez404DbOTbXNgor9ROzacEuTAI7Pw7MnOa+z5zm3H5hkjPUEELqNHoXIAGFMYavjhrw8ykTVv2khdFC86zUa3Y9YM0BzMlg58eDWe4AAJjlDtj58YA52bnfrvdzoYSQ6kaBpcDq1asRGxuLrl27+ruUeosxhq+OGHDgnBkcgJHdZJCKaJ6V+owTR4CL2wyIo52h5cJzAOD8rzkZEEeDi9tc4u0iQkjdQoGlAA1r9i8HY/jysAEHzjvDyvj+cvSOFfu7LBIAOHFksdBy27nRfLtYWIn0b4GEkBpBgYX4XWFYOfi3M6xM6C9Hr3YUVkgRThwJrtUS922tllBYIaQeocBC/G7v/0w4VBBWnh4gxwMUVshdmDkN7Op8921X53s04hJC6i4KLMTvesdK0CJCgKcHyNGzLYUV4s45GqigwVbcyLlR3KioEZdCCyH1AgUW4hfFV1mWijjMG6WksEI8MHN6sbASDS52HQA4/1vYiHt+vHM+FkJInUaBhdQ4B2PYfNCAXWeMrm08Ho0GIiXgywFhSFGDraghAIATNSxqxBWGOB9HCKnTaKbbArRac81wMIbNB/T4/ZIFHAd0aCpCZDDf32WRAMUJlEDsp0Uz3VqtRfvEkUDcFprplpB6gq6wFKBhzdXP4WD4vFhYmfSgnMIKKRcnUJY6zwonjqCwQkg9QVdYSI1wOBg2HdDjj8sW8ArCStdW1LNCCCGkYiiwkGrncDBs3K/H8SvOsPLsQAW6tBT5uyxCCCG1CAUWUu3+Tra6wspzDynQuQWFFUIIIZVDgYVUu/YxIvxfTylClXwKK4QQQrxCgYVUC7uDwWKDa/HCh+6V+rkiQgghtRmNEiI+Z3cwbNirx6qfNDCYHf4uhxBCSB1AgYX4lN3B8OkePU5esyApy45/MmleG0IIIVVHgaXA6tWrERsbi65du/q7lFrLZmdYv0ePU9ct4POA5x9WoF1job/LIoQQUgdQYClAE8dVjTOs6HD6ugWCgrDSsSk12BJCCPENarolVVYYVhJvWF1hpQOFFUIIIT5EgYVUWZ7egWtpNgh4wNTBCrSPobBCCCHEtyiwkCoLU/ExZ6QK2To74ppQWCGEEOJ71MNCvGK1M9zKsLk+jwzhU1ghhBBSbSiwkEqz2hnW/qbD0m0aXEyx+rscQggh9QAFFlIpVjvDx7/p8Nc/zqDCmJ8LIoQQUi9QDwupMKvNGVbOJVkhEgAvDFHSPCuEEEJqBF1hIRVitTGsobBCCAlwDqMB9tycEvfZc3PgMBpquCLiKxRYSLkKw8r5grDy4lAKK4SQwOMwGpCzZhmyP1gIe2622z57bjayP1iInDXLKLTUUhRYSLl4PEAi5CASAC8NVaJtIworhJDAw0wmOHQa2LMykP3BIldocYaVRbBnZcCh04CZTH6ulHiDAksBWkuodHweh0kD5Xh5tAptKKwQQgIUPzgEoS+9An5YA1dosdy44gor/LAGzv3BIf4ulXiBAksBWkvIndnKsPd/JjgKhgHxeRwah1GPNiEksPGDQ91Dy6q37worof4ukXiJAgvxYLYyfLRTi29+N+Db3+leLyGkduEHhyJo3GS3bUHjJlNYqeUosBA3ZivDhzu1uHTbBrEQ6NKCZq8lhNQu9txs5G35xG1b3pZPPBpxSe1CgYW4mK0MH/6ixeXbNkiEwIxhSrSMpJ4VQkjtUbzBlh/WAKEzX3XraaHQUntRYCEAAJOV4YNftLicWhBWhlNYIYTULvbcHI8GW1Hz1h6NuKXN00ICGwUWAsYY1vyqxZVUG6QiDjOGq9AigsIKIaR24SQS8BQqjwbb4o24PIUKnETi50qJN2jYBwHHcegXJ0Fylh4vDlWieUP6tiCE1D48qQwhU+eCmUweQ5edoWWBM9RIZX6qkFQFvTMRAECn5iLENhZCIuL8XQohhHiNJ5UBpQQSmn+ldqNbQvWU0cKwbrcOWRq7axuFFUIIIYGKAks9ZLQwvP9fLU5es+Dj33RgBZPDEUIIIYGKbgnVMwazA+//rMWNO3bIxBzG95eD4+jKCiGEkMBGgaUeMZgdeO9nLW7esUMu5jBrhBJNwulbgBBCSOCjd6t6wmB24L3/anEzoyCsjFSiCa0NRAghpJagHpYCdX215q+PGnAzww6FhMNsCiuEEEJqGQosBer6as2P9pChTZQAs0YoEU1hhRBCSC1D71x1mN3BwOc5G2pVMh5mj1RSgy0hhJBaia6w1FF6kwOLf9DgyAWTaxuFFUIIIbUVBZY6SGdyYMVPWvyTacf2E0YYLTTPCiGEkNqNbgnVMVqjAyt/0iIl2w6llMPskSpIaQZbQgghtRwFljqkeFhRFYSVqBC+v8sihBBCqowCSx2hNTqwYocWt3PsUMucYSUymMIKIYSQuoF6WOqIk9csFFYIIYTUWXSFpY7oHyeG2cpwXzMRIiisEEIIqWMosNRiWqMDIgEHsZADx3EY3Enq75IIIYSQakG3hGqpfIMDy7ZrsPpXLSw2GrZMCCGkbqPAUgvlGxxYvl2DtFwH0nLt0Bgc/i6J1EJWrRmGNF2J+wxpOli15hquiBBCSkeBpZbJ0zvDSnqeA8FyHuaOUiFMRT0rpHKsWjMOT/wZB5/aDkOq1m2fIVWLg09tx+GJP1NoIYQEDAostUie3oHlO5xhJUTBw5xRSjRQU1ghlWfVWWHONkKfrMHBMTtcocWQqsXBMTugT9bAnG2EVWf1c6WEEOJEgaWWKAwrdwrDykgKK8R7skgF+m0dCXm0yhVashLTXGFFHq1Cv60jIYtU+LtUQggBQIGl1tAYHNAaGUKVzisr4RRWSBXJopRuoeXAY9vcw0qU0t8lEkKICwWWWqJJuACzhisxZ6QS4dSzQnxEFqVEtxXxbtu6rYinsEIICTgUWAJYjtaOWxk21+cxDQTUYEt8ypCqxZ+z97lt+3P2Po9GXEII8TcKLAEqW2vH8h1arPxJ6xZaCPGV4g228mgV+n/7iFtPC4UWQkggocBSYPXq1YiNjUXXrl39XYorrGRqHFBIOKiknL9LInWMIU3n0WAb1inSoxG3tHlaCCGkplFgKTBt2jRcuHABJ0+e9GsdhWElS+NAuMo5GihESbeBiG8JFUKIQ6UeDbbFG3HFoVIIFUI/V0oIIU60llAAydI4w0q21oEGah5mj1QhREGZkvieUClGn43DYNVZPYYuy6KU6PflKAgVQgiVYj9VSAgh7iiwBIgcncMtrMwZqUIwhRVSjYRKcamBhOZfIYQEGgosAUIp4dAwiAcBH5g9gsIKIYQQUhwFlgAhFHCYNlgJo4VBLaOwQgghhBRH74x+lJFvx87TRjDGAAAiAUdhhRBCCCkBXWHxk4x8O5Zt1yBPzyAUcBjYUeLvkgKGPt8Co9aKsMZyj31ZKXpIlULI1SI/VEYIIcRf6M95P7iTVxRWIoP5uL8VvfkW0udb8PqQvXi5/y5kJuvd9mUm6/Fy/114fche6PMtfqqQEEKIP1BgqWHpeXYs31EUVuaMVEJFt4FcjFor8jNMSL+hwysDikJLZrIerwzYhfQbOuRnmGDUWv1cKSGEkJpE75Q1KD3XjuUFV1aiQiislCSssRyL9g9CRHOFK7RcPJbhCisRzRVYtH9QibeLCCGE1F30bllDzFaGFT9pkG9gaERhpUzh0e6hZV7v39zCSng0hRVCCKlv6B2zhoiFHEZ1kyE6jI/ZI5VQSumfvizh0XLM+ryX27ZZn/eisEIIIfUUvWvWoAfaifHKv1QUViogM1mPlROOum1bOeGoRyMuIYSQ+oHeOatRao6zwVZjcLi2Cfi08nJ5ijfYRjRXYOmRh916Wii0EEJI/UOBpZrczrZh+Q4NLt+24ZvfDf4up9bIStF7NNi269nAoxE3K4VCCyGE1CcUWKrB7WwbVvykhdbI0CSMjyd7y/xdUq0hVQqhbiDxaLAt3oirbiCBVCn0c6WEEEJqEs1062Mp2Tas2KGFzsTQJJyPWcOVkEsoF1aUXC3CmzsfLHGm2/BoORYfGEQz3RJCSD1EgcWHkrNsWPmTM6zEhPMxk8KKV+RqUamBhOZfIYSQ+okCi48wxrDloB46E0PTBs6wIhNTWCGEEEJ8gd5RfYTjOEwepECXFiIKK4QQQoiP0RWWKjJZGSRC51DlUCUfkwcp/FwRIYQQUvfQZYAq+CfThle+yMPp67RyMCGEEFKdKLB46Z8MZ4Ot1siw/5wJDsb8XRIhhBBSZ9EtIS/cyrBh1X+1MJgZWkQI8MIQJXgczWBLCCGEVBe6wlJJN+84r6wYzAwtIwSYMUwJqYjCCiElcRgNsOfmlLjPnpsDh5FmgSaEVAwFlkq4ccd5ZcVoYWgZKcD0YUpIKKwQUiKH0YCcNcuQ/cFC2HOz3fbZc7OR/cFC5KxZRqGFEFIhFFgq4fQ1C4wWhlYUVggpFzOZ4NBpYM/KQPYHi1yhxRlWFsGelQGHTgNmMvm5UkJIbUCBpRL+1VOKxx6Q4aVhStdQZkJIyfjBIQh96RXwwxq4QovlxhVXWOGHNXDuDw7xd6mEkFqgzgYWg8GAmJgYzJkzp0rHuZ1jg83uHAHE4zgM7CihsEJIBfGDQ91Dy6q37worof4ukRBSS9TZwLJw4ULcf//9VTrGtTQrFv+gwfo9OldoIYRUDj84FEHjJrttCxo3mcIKIaRS6mRguXr1Ki5duoQhQ4Z4fYwbd2x472ctzFbAYGawO3xYICH1iD03G3lbPnHblrflE49GXEIIKUvABZbDhw9j+PDhiIqKAsdx2L59u8dj1qxZg2bNmkEikaBz5844cuSI2/45c+Zg8eLFVapj/R4jzFagXWPnPCtiug1ESKUVb7DlhzVA6MxX3XpaKLQQQioq4AKLXq9Hx44d8dFHH5W4/5tvvsGMGTOwYMECnDlzBr1798bgwYORlJQEANixYwdat26N1q1bV6kOsw2IpbBCiNfsuTkeDbai5q09GnFLm6eFAMysA9NllrxPlwlm1tVwRYT4T8DNdDt48GAMHjy41P0rV65EQkICJk2aBAB47733sGvXLnz88cdYvHgxjh8/jq+//hrfffcddDodrFYrVCoVXnvttRKPZzabYTabXZ/n5+cDAJqo9XjifgW0+fTLtDazWq0wGAzIzs6GUCj0dzn1isNkRL5QAocqBMHjnkeeA0B2wRWVcc9Ds+FD8IQScAYDeI6K9YjVp/PJLHpY9y4CTPkQPvQGOEVY0T5dFqy73wAkaggffAWcSO6/QqugPp3P+iInx/meyapjuRoWwACwbdu2uT43m82Mz+ezH3/80e1xL730EuvTp4/H12/cuJHNnj27zOd4/fXXGQD6oA/6oA/6oA/68NHH9evXfZIDigu4KyxlycrKgt1uR8OGDd22N2zYEOnp6V4d8+WXX8asWbNcn+fl5SEmJgZJSUlQq9VVqtcXunbtipMnTwbE8SrztRV5bHmPKWt/afvu3q7RaBAdHY3k5GSoVKoK1V6d6HzS+ayuY/r6fJb3ODqf1XvMyn5ddf6MVmZ7fn4+mjRpgpAQ38+vVKsCSyHuroUGGWMe2wDg6aefLvdYYrEYYrHYY7tarQ6IHyA+n+/TOqpyvMp8bUUeW95jytpf2r7StqtUKjqfVfhaOp8l8/X5rMoxfX0+y3scnc/qPWZlv646f0Yrux0AeDzft8gGXNNtWcLCwsDn8z2upmRkZHhcdakrpk2bFjDHq8zXVuSx5T2mrP2l7fP1v5ev0fms3L76dj6rckxfn8/yHkfns3qPWdmvq86f0UA5nxxj1dEZ4xscx2Hbtm0YNWqUa9v999+Pzp07Y82aNa5tsbGxGDlyZJWHMgPOS5RqtRr5+fkBkfhJ1dD5rFvofNYtdD7rnuo8pwF3S0in0+HatWuuz2/evImzZ88iJCQETZo0waxZszBu3Dh06dIFPXr0wLp165CUlIQpU6b45PnFYjFef/31Em8TkdqHzmfdQuezbqHzWfdU5zkNuCssBw8eRP/+/T22T5gwAZs2bQLgnDhu6dKlSEtLQ1xcHFatWoU+ffrUcKWEEEIIqSkBF1gIIYQQQu5Wq5puCSGEEFI/UWAhhBBCSMCjwEIIIYSQgEeBhRBCCCEBjwJLJRkMBsTExGDOnDn+LoVUkUAgwL333ot7773XtZgmqb1u3ryJ/v37IzY2Fu3bt4der/d3SaQKLl++7Pr5vPfeeyGVSrF9+3Z/l0WqYNWqVbjnnnsQGxuLl156qdILJNIooUpasGABrl69iiZNmmD58uX+LodUQVhYGLKysvxdBvGRvn374p133kHv3r2Rk5MDlUoFgSDgppoiXtDpdGjatCn++ecfyOW1c2Xq+i4zMxPdu3fH33//DaFQiD59+mD58uXo0aNHhY9BV1gq4erVq7h06RKGDBni71IIIcUU/hLs3bs3ACAkJITCSh3y008/IT4+nsJKLWez2WAymWC1WmG1WtGgQYNKfX29CSyHDx/G8OHDERUVBY7jSry0uGbNGjRr1gwSiQSdO3fGkSNH3PbPmTPHJ9P/k6rzxfnUaDTo3LkzevXqhUOHDtVQ5aQkVT2fV69ehUKhwIgRI9CpUycsWrSoBqsnJfHFz2ihb7/9Fo8//ng1V0zKUtXzGR4ejjlz5qBJkyaIiorCgw8+iBYtWlSqhnoTWPR6PTp27IiPPvqoxP3ffPMNZsyYgQULFuDMmTPo3bs3Bg8ejKSkJADAjh070Lp1a7Ru3bomyyalqOr5BIBbt27h9OnTWLt2LcaPHw+NRlNT5ZO7VPV8Wq1WHDlyBKtXr8Yff/yBPXv2YM+ePTX5EshdfPEzCjj/sPj999/pyrafVfV85ubm4ueff8atW7dw+/ZtHDt2DIcPH65cEaweAsC2bdvmtq1bt25sypQpbtvatm3L/v3vfzPGGPv3v//NGjduzGJiYlhoaChTqVTszTffrKmSSRm8OZ93e/jhh9nJkyerq0RSCd6cz2PHjrFBgwa59i1dupQtXbq02mslFVOVn9HNmzezMWPGVHeJpBK8OZ/ffvstmzp1qmvf0qVL2ZIlSyr1vPXmCktZLBYLTp8+jYceesht+0MPPYRjx44BABYvXozk5GTcunULy5cvx7PPPovXXnvNH+WSclTkfObm5sJsNgMAUlJScOHCBTRv3rzGayXlq8j57Nq1K+7cuYPc3Fw4HA4cPnwY7dq180e5pAIqck4L0e2gwFeR8xkdHY1jx47BZDLBbrfj4MGDaNOmTaWeh7rSAGRlZcFut6Nhw4Zu2xs2bIj09HQ/VUW8VZHzefHiRUyePBk8Hg8cx+H9999HSEiIP8ol5ajI+RQIBFi0aBH69OkDxhgeeughDBs2zB/lkgqo6O/c/Px8/Pnnn/jhhx9qukRSCRU5n927d8eQIUNw3333gcfjIT4+HiNGjKjU81BgKYbjOLfPGWMe2wDg6aefrqGKSFWUdT579uyJc+fO+aMs4qXyfj4HDx6MwYMH13RZpArKO6dqtRp37typ6bKIl8o7nwsXLsTChQu9Pj7dEoJzPg4+n+9xNSUjI8MjMZLAR+ezbqHzWffQOa1baup8UmABIBKJ0LlzZ49RBXv27EHPnj39VBXxFp3PuoXOZ91D57RuqanzWW9uCel0Oly7ds31+c2bN3H27FmEhISgSZMmmDVrFsaNG4cuXbqgR48eWLduHZKSkjBlyhQ/Vk1KQ+ezbqHzWffQOa1bAuJ8VnY4U2114MABBsDjY8KECa7HrF69msXExDCRSMQ6derEDh065L+CSZnofNYtdD7rHjqndUsgnE9aS4gQQgghAY96WAghhBAS8CiwEEIIISTgUWAhhBBCSMCjwEIIIYSQgEeBhRBCCCEBjwILIYQQQgIeBRZCCCGEBDwKLIQQQggJeBRYCCGEEBLwKLAQQgghJOBRYCH1Ur9+/TBjxgx/l+FTtf013V1/bX89/kb/fqSuocBC6pzk5GQkJCQgKioKIpEIMTExmD59OrKzs/1dGqmEH3/8EW+//ba/y6hRFDIIKR0FFlKn3LhxA126dMGVK1fw1Vdf4dq1a1i7di327duHHj16ICcnx2+1WSwWvz13bRQSEgKlUunvMgghAYICC6lTpk2bBpFIhN27d6Nv375o0qQJBg8ejL179+L27dtYsGCB67E2mw0vvPACgoKCEBoaiv/85z8ovnj5999/j/bt20MqlSI0NBQPPvgg9Ho9AIAxhqVLl6J58+aQSqXo2LEjvv/+e7da+vXrhxdeeAGzZs1CWFgYBg4ciE8++QSNGjWCw+Fwe+yIESMwYcKECh9br9dj/PjxUCgUiIyMxIoVK8r9tymsp6zXbDab8dJLL6FBgwaQSCTo1asXTp48WaljVERF6i9+taGscwEADocDS5YsQcuWLSEWi9GkSRMsXLiwQq+p8LleeuklzJs3DyEhIYiIiMAbb7xRqcdU5LyVVefTTz+NQ4cO4f333wfHceA4Drdu3aq274e73blzBxzH4f3338d9990HiUSCe+65B0ePHq30sQipFoyQOiI7O5txHMcWLVpU4v5nn32WBQcHM4fDwfr27csUCgWbPn06u3TpEvviiy+YTCZj69atY4wxlpqaygQCAVu5ciW7efMm++uvv9jq1auZVqtljDH2yiuvsLZt27LffvuNXb9+nW3cuJGJxWJ28OBB1/MVPsfcuXPZpUuX2MWLF1l2djYTiURs7969rsfl5OQwkUjEdu3aVeFjP//886xx48Zs9+7d7K+//mLDhg1zvZ7SlPeaGWPspZdeYlFRUWznzp3s77//ZhMmTGDBwcEsOzu7wseoiIrU37dvXzZ9+vRyzwVjjM2bN48FBwezTZs2sWvXrrEjR46w9evXV+g1FT6XSqVib7zxBrty5Qr7/PPPGcdxbPfu3RV+TEXOW1l15uXlsR49erBnn32WpaWlsbS0NGaz2art++Fuv/76KwPAWrduzQ4cOMAuXbrEhgwZwpo0acLsdnuFj0NIdaHAQuqM48ePMwBs27ZtJe5fuXIlA8Du3LnD+vbty9q1a8ccDodr//z581m7du0YY4ydPn2aAWC3bt3yOI5Op2MSiYQdO3bMbXtCQgJ78sknXZ/37duX3XvvvR5fP2LECPbMM8+4Pv/kk09YREQEs9lsFTq2VqtlIpGIff3116792dnZTCqVlhtYynrNOp2OCYVCtnXrVtd+i8XCoqKi2NKlSyt0jIqoaP2FgaWsc8EYYxqNhonFYtcbf3EVeU2Fz9WrVy+3r+3atSubP39+hR5TkfNWVp13v+bi9VfX98Pd3n33XSYUCtmNGzdc206dOsUAsKSkpBK/pk+fPuzmzZsVfg7GGPvvf//LXnjhhUp9DSGMMUa3hEi9wQpuW3AcBwDo3r276/8BoEePHrh69Srsdjs6duyI+Ph4tG/fHv/3f/+H9evXIzc3FwBw4cIFmEwmDBw4EAqFwvWxefNmXL9+3e05u3Tp4lHHmDFj8MMPP8BsNgMAtm7diieeeAJ8Pr9Cx75+/TosFgt69OjhOmZISAjatGlT7r9BWa/5+vXrsFqteOCBB1z7hUIhunXrhosXL1boGBVR2frLOhcAcPHiRZjNZsTHx5f4XBV5TQDQoUMHt88jIyORkZFRocdU5LyVVWdpqvv7obizZ89i9OjRaNasmWubWCwu82tu3bqFpk2bVup5/vrrL9x3332V+hpCAEDg7wII8ZWWLVuC4zhcuHABo0aN8th/6dIlBAcHIywsrNxj8fl87NmzB8eOHcPu3bvx4YcfYsGCBThx4oSr/+SXX35Bo0aN3L7u7l/wcrnc49jDhw+Hw+HAL7/8gq5du+LIkSNYuXIlAFTo2KyS/SIVdXegK7797m2+eJ6KKutcNGvWDFKptNznqshrEgqFbp9zHOfRa1TaYypy3sqqszQ1+f1w9uxZVx9VocTERISFhbme+++//0ZCQgKMRiMmTJiA6OjoUo937tw5PPfcc9BqtWjTpg2++uoriEQi/PXXX8jNzUXnzp1hMpmwbds2tG7dGp988gk++eQTWCwWdOjQAV9++aVPXhepO+gKC6kzQkNDMXDgQKxZswZGo9FtX3p6OrZu3YrHH3/c9UZ1/Phxt8ccP34crVq1Ap/PB+B8M3rggQfw5ptv4syZMxCJRNi2bRtiY2MhFouRlJSEli1bun2U9Qu8kFQqxejRo7F161Z89dVXaN26NTp37gwAFTp2y5YtIRQK3erPzc3FlStXyn3usl5zy5YtIRKJ3JosrVYrTp06hXbt2lXoGBXhTf2lnQsAaNWqFaRSKfbt21fic1XkNVVVRc5bWXUWEolEbleqqvv7oZDRaPS4SuZwOPD+++9jwoQJ4PF4MBqNeOKJJ/DZZ5/hf//7Hw4ePOhxxamQyWTCk08+ic8//xznz59HWFgYvv76awDOKyxNmjTB6dOn8eKLL2LlypXIzc3FunXrcPLkSZw/fx5r1qypcO2k/qArLKRO+eijj9CzZ08MGjQI77zzDpo1a4a///4bc+fORaNGjVwjMgDnfC2zZs3C5MmTkZiYiA8//NA1uuLEiRPYt28fHnroITRo0AAnTpxAZmYm2rVrB6VSiTlz5mDmzJlwOBzo1asXNBoNjh07BoVC4fFXaknGjBmD4cOH4++//8bYsWNd2ytybIVCgYSEBMydOxehoaFo2LAhFixYAB6v/L8/ynrNcrkczz//PObOnYuQkBA0adIES5cuhcFgQEJCQoWOUXgOtm3bVuobc2XrL+tcAIBEIsH8+fMxb948iEQiPPDAA8jMzHRdDajIa6qqipy38uoEgKZNm+LEiRO4desWFAoFQkJCqvX7odC5c+fAcRy++OILDBgwAEFBQXjttdeQl5eH//znPwCAbdu2oV+/foiNjQUAtGnTBi1atCjxeNu3b8fDDz+MIBoVpQAAA1hJREFU1q1bAwDatm2LzMxMmM1mWCwWTJs2DYDzFtvevXshEAiQnZ2N+fPnY+LEibjnnnu8Phek7qLAQuqUVq1a4dSpU3jjjTfw+OOPIzs7GxERERg1ahRef/11hISEuB47fvx4GI1GdOvWDXw+Hy+++CKee+45AIBKpcLhw4fx3nvvQaPRICYmBitWrMDgwYMBAG+//TYaNGiAxYsX48aNGwgKCkKnTp3wyiuvVKjOAQMGICQkBJcvX8ZTTz3ltq8ix162bBl0Oh1GjBgBpVKJ2bNnIz8/v9znLes1A8C7774Lh8OBcePGQavVokuXLti1axeCg4MrfIysrCyPXp67Vab+8s4FALz66qsQCAR47bXXkJqaisjISEyZMqXCr8kXKnLeyqoTAObMmYMJEyYgNjYWRqMRN2/e9Mn3w6ZNmzBx4sRSbx+dPXsWbdu2xb///W88+uijyMvLw7Bhw/DHH38gKCgIgPN2UPErKomJiXjkkUdKPN7FixfdrmD9/fff+Ne//oW///4bsbGxrjB15swZdOjQAUqlEufOncP27dvx6KOPYtmyZRg2bFgl/vVJveC3dl9CSI26ewSKv45Bat7rr7/O+vbtW+r+qVOnuo1wK8mKFSvYjBkzGGOM7dq1i/F4PKbRaBhjjA0YMIClpKS4Hvvxxx+zOXPmMMacI+7at2/PbDYb27hxI4uNjWUWi4XduXOHdenShWVmZrIrV664vvbZZ59l33//vbcvldRhdIWFEELquF27duH9998vdf/Zs2cxfPjwMo8xduxYDB48GJ06dUJcXByaNWsGpVIJxhiuXbvmdvVy3LhxeOyxx9C+fXsEBwfj22+/BZ/Px7lz5/Cvf/0LXbt2hcPhwKpVqxAWFoZZs2bhxIkTkMlk6N27d6lXbkj9RoGFEELquD/++KPUfYwxnDt3zm0W6JI0aNAAp0+f9th+6dIl/Otf/3IbBSWXy/HLL794PLaw1+mtt95y27558+Yyn5sQAOAYq6YxkoQQQgghPkLDmgkhhBAS8CiwEEIIISTgUWAhhBBCSMCjwEIIIYSQgEeBhRBCCCEBjwILIYQQQgIeBRZCCCGEBDwKLIQQQggJeBRYCCGEEBLwKLAQQgghJOBRYCGEEEJIwPt/ibzAkJK37/QAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# scatter plot modelled vs. observed by threshold (same plot)\n", - "\n", - "f, ax = plt.subplots(figsize=(6, 6))\n", - " \n", - "for threshold in thresholds:\n", - " df = data.loc[threshold, :, :]\n", - " ax.scatter(df.observed, df.modelled, marker=\"x\", label=threshold, color=wind_cmap[threshold])\n", - " \n", - "x = np.linspace(0, 10 * max(data.observed), 100)\n", - "ax.plot(x, x, ls=\"--\", c=\"cornflowerblue\")\n", - "ax.grid()\n", - "ax.set_title(\"Population disconnected, $p_{d}(s_{th})$\")\n", - "ax.set_xlabel(\"Observed pop. disconnected, $p_{d,obs}$\")\n", - "ax.set_ylabel(\"Modelled pop. disconnected, $p_{d,mod}$\")\n", - "ax.set_xscale(\"log\")\n", - "ax.set_yscale(\"log\")\n", - "ax.set_xlim(1E4, 1E8)\n", - "ax.set_ylim(1E4, 1E8)\n", - "ax.legend(title=\"Wind speed\\n threshold,\\n$s_{th}$, $[m s^{{-1}}]$\")" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "5442f06a", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAIrCAYAAAC9Cq7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADqCElEQVR4nOzdd3hUVfrA8e+dkt4LCSWEGkJJo4N0xc6iWAEBUXd1xVVX3XX1Z6HooqjY21pABDuK2FBEEJEikAChJkBoSUjvyWQyM/f3x5iBIYUkTDJJ5v08D8/D3HvnnnfuTCZvzj3vOYqqqipCCCGEEKJV0zg7ACGEEEIIcX6StAkhhBBCtAGStAkhhBBCtAGStAkhhBBCtAGStAkhhBBCtAGStAkhhBBCtAGStAkhhBBCtAGStAkhhBBCtAGStAkhhBBCtAGStAkhhBBCtAGStAkhhBBCtAGStIlWaenSpSiKYvun0+no0qULs2fPJj093dnhAWdiPHbsWKOfu3nzZubOnUthYaHDztlc5s6di6IodttaY5ytTV3vsSPU9p44y/z58+nXrx8Wi6VZ23nvvffo3LkzZWVlzdqOIzT056Ol3kf5eW0/JGkTrdqSJUvYsmULa9eu5a9//Ssff/wxo0ePbhNf3PXZvHkz8+bNq/EL/aqrrmLLli107NjROYE1UFuJ05nqeo/bk4yMDBYtWsT8+fPRaJr318msWbPw9vZm0aJFzdqOI8jPh2guOmcHIER9BgwYwODBgwEYP348ZrOZBQsWsGrVKqZPn+7k6BwvNDSU0NBQZ4dxXm0lTtG8Xn75ZQICApgyZUqzt6XT6bjzzjtZsGABDz/8MF5eXg45b3l5ucPOVU1+PkRzkZ420aYMHz4cgOPHj9u2bdq0iYsvvhhfX1+8vLwYOXIk3333nd3zqm9DJCUlMWXKFPz8/PD39+eWW24hJyfHdtytt95Kt27darTb0NsYhw8fZvbs2fTu3RsvLy86d+7MpEmTSE5OtjvXv/71LwC6d+9uuwW8YcOGOm9jNOY17tu3j6lTp+Lv709YWBi33XYbRUVF540d4LvvviM+Ph53d3e6d+/O888/X+tx58aZk5PD3/72NyIiInB3dyc0NJSLLrqIn3/+2e55Bw8eZOrUqYSFheHu7k7Xrl2ZOXMmlZWVzfZaG3Nsamoq06ZNo0OHDri7u9O3b19ef/31Wq9Bfa+lvve4se009D1pjEmTJjF48GDeeecd4uLi8PT0JCIigieffLLBtzmNRiPvvfce06ZNq7WX7eDBg8yYMYNu3brh7u5OWFgYl156KYcOHWpy3NOnT6e4uJhPPvmkSc+v/iwkJiZy/fXXExgYSM+ePW37G/K+NOSzXtvPcUPfx4Z+BzXku6YuDf15Fa2P9LSJNuXw4cMAtr9if/31VyZOnEhsbCzvvfce7u7uvPHGG0yaNImPP/6Ym266ye751157LTfeeCN33XUX+/bt4/HHH2f//v1s27YNvV5/wfFlZGQQHBzMM888Q2hoKPn5+XzwwQcMGzaMpKQk+vTpwx133EF+fj6vvvoqX375pe0WSr9+/Wodc9LY13jddddx0003cfvtt5OcnMwjjzwCwPvvv19v7OvWrWPy5MmMGDGCTz75BLPZzKJFi8jKyjrv654xYwaJiYk8/fTTREVFUVhYSGJiInl5ebZjdu/ezahRowgJCWH+/Pn07t2bzMxMVq9ejdFoxN3dvVlf6/mO3b9/PyNHjqRr16688MILhIeH8+OPP3LvvfeSm5vLk08+2eDXUt973Jh2LuQ9qc/OnTspLi7mxRdf5NFHHyUsLIz333+f+fPnExERwR133HHec2zbto28vDzGjx9fY19qaipDhgxh/PjxLF68mJCQEDIyMvjhhx/w9vZuctzh4eFER0fz3XffcdtttzX5PFOmTOHmm2/mrrvusg21aOj70pDP+rma431syHdNXZryGkQroQrRCi1ZskQF1K1bt6pVVVVqSUmJ+u2336qhoaGqr6+vevr0aVVVVXX48OFqhw4d1JKSEttzTSaTOmDAALVLly6qxWJRVVVVn3zySRVQ//nPf9q1s2LFChVQly9frqqqqs6aNUuNjIysEU/182uLMS0trc7XYTKZVKPRqPbu3duu7eeee67W59Z2zsa+xkWLFtmd8+6771Y9PDxsx9Vl2LBhaqdOndSKigrbtuLiYjUoKOi8r93Hx0e9//776z3/hAkT1ICAADU7O7vOY5rjtTb02Msuu0zt0qWLWlRUZHfcPffco3p4eKj5+fmNei11vceNaacx70lDnTp1SgXUHj16qIWFhbbtRqNRDQ8PV6+++uo6n3v55ZerK1asUFVVVZ999lkVsP0snu3JJ59Uvby8VLPZXOt5LBaL6uvrq2ZmZtbYlpOTU2/806dPV8PCwuo9pi7Vn4Unnniixr6Gvi8N+ayf+/PRmPexMd9BZ6vru6a2eBryGkTrJLdHRas2fPhw9Ho9vr6+XH311YSHh/PDDz8QFhZGWVkZ27Zt4/rrr8fHx8f2HK1Wy4wZMzh16lSNWzHnjoO78cYb0el0rF+/3iHxmkwm/vvf/9KvXz/c3NzQ6XS4ubmRmprKgQMHGn2+przGv/zlL3aPY2NjMRgMZGdn19vO9u3bmTJlCh4eHrbtvr6+TJo06bxxDh06lKVLl/LUU0+xdetWqqqq7PaXl5fz66+/cuONN9Y51qe5X2t9xxoMBtatW8e1116Ll5cXJpPJ9u/KK6/EYDCwdevWBr+WujSmnQt9T+qyfft2wHq7zd/f37Zdr9fTq1cvcnNz63zujh07SEhIAKw9PYqiEBISUuO4kJAQysvLmT17Nr///jtms9lu/7Fjx3B3dyc8PNy2LTU1ldDQ0FrPd7YOHTqQnZ2NyWQ6/4utw3XXXWf3uDHvy/k+6+dqrvfxQr5rGvsaROshSZto1ZYtW8b27dtJSkoiIyODPXv2cNFFFwFQUFCAqqq1Vmh16tQJoEZ3/9m/JMA6uDk4ONhhtwUeeOABHn/8ca655hq++eYbtm3bxvbt24mLi6OioqLR52vKawwODrZ77O7uDlBv+wUFBVgslhrXB2pes9p8+umnzJo1i3fffZcRI0YQFBTEzJkzOX36tO38ZrOZLl261BtDc77W+o7Ny8vDZDLx6quvotfr7f5deeWVALZkpiGvpS6NbedC3pO67NixA71ezw033FBjX0ZGBhEREYA1KXjsscfo1KkTvXr14pNPPqG8vNx2262iogK9Xo9Wq61xnrvuuotnnnmGP/74g1GjRtGxY0fuu+8+iouL2b9/P3379qWgoAAfHx8GDRoEQGJiIvHx8dx5550EBATQr18/23CIs3l4eKCqKgaDocnX4NzPWGPel/N91s/VXO/jhXzXNPY1iNZDxrSJVq1v37626tFzBQYGotFoyMzMrLEvIyMDoMZf7adPn6Zz5862xyaTiby8PNsvdA8PD7tB8dXq63042/Lly5k5cyb//e9/azw/ICCgQec4W1NeY1MEBgaiKEqtX9oN+SIPCQnhpZde4qWXXuLEiROsXr2a//znP2RnZ7NmzRqCgoLQarWcOnWq3hha4rXW1XZ1j96cOXNqPaZ79+4ADXotjmjnQt+TuuzYsYOQkBC7Xh+wjlE7evQojz/+OAAPP/ww+/btIykpCZPJxEUXXURcXJyt6CAkJASj0UhZWVmNcWo6nY6HH36Yhx9+mFOnTvG///2PBQsW4OHhwbPPPsv8+fM5duwYb7zxhu05SUlJ7Nixg08//ZQ333yTmTNn8s477/Dss8/anTs/Px93d3e73tjGOreoqDHvy/k+6+dq7PvY0O+gC/muaexrEK2H9LSJNsvb25thw4bx5Zdf2v1labFYWL58OV26dCEqKsruOStWrLB7/Nlnn2EymRg3bhwA3bp1Izs7226AsNFo5Mcff2xQTIqi2Hpwqn333Xc1JgRuSO9XU19jU3h7ezN06FC+/PJLux6MkpISvvnmm0adq2vXrtxzzz1MnDiRxMREADw9PRk7diyff/55nQlwS73W2nh5eTF+/HiSkpKIjY1l8ODBNf5VJ/YNeS1Q+3vcmHYc+Z6cbceOHeTk5NjNH2c2m3n44Yfp1q0b06ZNIyMjg3feeYdly5YRFhZG586dueiii2y3RgGio6MBOHLkSL3tdenShf/7v//D09PTdktzz549xMXF2R2XlJTEvHnzGD58OBqNhp49e6Kqao3zHT16lH79+jX15deqMe/L2Wr7rJ+rse9jQ7+DGvpdcz4NeQ2i9ZCeNtGmLVy4kIkTJzJ+/Hgeeugh3NzceOONN9i7dy8ff/xxjb+ov/zyS3Q6HRMnTrRVj8bFxXHjjTcCcNNNN/HEE09w8803869//QuDwcArr7xSY0xOXa6++mqWLl1KdHQ0sbGx7Ny5k+eee67GrbSYmBjAOs/VrFmz0Ov1dVZ7NfY1NtWCBQu4/PLLmThxIg8++CBms5lnn30Wb29v8vPz63xeUVER48ePZ9q0aURHR+Pr68v27dtZs2aN3fxdixcvZtSoUQwbNoz//Oc/9OrVi6ysLFavXs3bb7+Nr69vi73W2rz88suMGjWK0aNH8/e//51u3bpRUlLC4cOH+eabb/jll18a9Vrqeo8b005j3hNFURg7dqxtWpHapKWlkZeXR9euXbnhhht48MEHbZ/xnTt3smHDBtzc3Fi3bh1Dhw6lQ4cOtufm5OTYVYpW/6GzdetWYmNjbdvvueceioqKmDhxIl27diUnJ4fXXnsNNzc37rzzTsBafXvPPffYxZaUlMTy5cttj/ft22e7NVnNYrHwxx9/cPvttzf6tZ9PQ96Xhn7Wz9WY97Gh30EN/a45V1Nfg2glnFoGIUQdqqudtm/fft5jf/vtN3XChAmqt7e36unpqQ4fPlz95ptv7I6prrzauXOnOmnSJNXHx0f19fVVp06dqmZlZdkd+/3336vx8fGqp6en2qNHD/W1115rcPVoQUGBevvtt6sdOnRQvby81FGjRqm//fabOnbsWHXs2LF2z3/kkUfUTp06qRqNRgXU9evX11mR2pjXeG71XUOqXKutXr1ajY2NVd3c3NSuXbuqzzzzzHlfu8FgUO+66y41NjZW9fPzUz09PdU+ffqoTz75pFpWVmb3vP3796s33HCDGhwcbGvj1ltvVQ0GQ7O91sYcm5aWpt52221q586dVb1er4aGhqojR45Un3rqqRrXqiGvpbb3uLHtNOQ9KSkpUQH15ptvrvH8s3322WcqoG7evFmdMWOG6ufnp/r6+qqTJ09W9+/fbztu8eLF6o033mh7nJWVpXp4eKg7d+60O9/o0aPVK6+80m7bq6++qo4ePVrt0KGD6u7urnbv3l297bbb1CNHjqiqqqqVlZWqm5ubWlpaanvOiRMn1PDwcLvz9O7du8bP/7p162w/x4197apa92eh2vnel4Z+1mv7bDX0Z0tVG/Yd1Jjvmqb+vIrWR5I24RLO92UtRFv23XffqYqiqHv27Kn3uH/961+qt7e3ajKZznu+0NBQ9dixY2pOTo562WWXqXq93i4hVVVV/eKLL1StVqueOnWqwbHm5uaqer3ebmqTr7/+Wr300kttj8vKylS9Xq+Wl5fbPfeWW25RR44cWSPWhrx2IdoDGdMmhBBt3Pr167n55pttt2TrsmPHDgYOHFhrxefZLr/8cq688kpiYmIYM2YMvXv3pl+/fjXGUE2ZMoUhQ4awcOHCBscaHBzMtGnT6Nq1K0OHDgWwjSWrtm/fPnr27Imnp6dt25EjR/j0009rFCY09LUL0R4oqlrLSE8h2pm5c+cyb948cnJymq0CUYjWTFVVAgMDue2221i8eLHDzrt3715b9WFzLhq/fv16UlNT+dvf/tZsbQjR2knSJoQQQgjRBrjM7dGFCxeiKAr333+/s0MRQgghhGg0l0jatm/fzv/+9z+7MRNCCCGEEG1Ju0/aSktLmT59Ou+88w6BgYHODkcIIYQQokna/eS6c+bM4aqrruKSSy7hqaeeqvO4yspKu6VDLBYL+fn5BAcHN+uEnkIIIYRwXaqqUlJSQqdOnc5bzNOuk7ZPPvmExMREtm/fft5jFy5cyLx581ogKiGEEEIIeydPnjzvihbtNmk7efIk9913Hz/99FONhZFr88gjj/DAAw/YHhcVFdG1a1fS0tLw9fVtlhirqqpYv34948ePR6/XN0sbbZFcl9rJdamdXJe6ybWpnVyX2sl1qV1zX5eSkhK6d+/eoFyj3SZtO3fuJDs7m0GDBtm2mc1mNm7cyGuvvUZlZaXdBJPu7u41Jo4ECAoKws/Pr1lirKqqwsvLi+DgYPkBOYtcl9rJdamdXJe6ybWpnVyX2sl1qV1zX5fqczZkKFa7TdouvvhikpOT7bbNnj2b6OhoHn744fPOCC6EEEII0Zq026TN19eXAQMG2G3z9vYmODi4xnYhhBBCiNau3SZtQgghhGgZFosFo9Ho7DCaRVVVFTqdDoPBgNlsbvJ53NzcLnipN5dK2jZs2ODsEIQQQoh2xWg0kpaWhsVicXYozUJVVcLDwzl58uQFTQGm0Wjo3r07bm5uTT6HSyVtQgghhHAcVVXJzMxEq9USERFxwT1JrZHFYqG0tBQfH58mvz6LxUJGRgaZmZl07dq1ycmfJG1CCCGEaBKTyUR5eTmdOnXCy8vL2eE0i+pbvx4eHheUlIaGhpKRkYHJZGpyFWr7S4mFEEII0SKqx3hdyC0/V1F9jS5kXJwkbUIIIYS4ILLc4/k54hpJ0iaEEEII0QZI0iaEEEII0QZI0iaEEEKIFnX69Gn+8Y9/0KNHD9zd3YmIiGDSpEmsW7euReNQFIVVq1a1aJsXQqpHhRBCCNFijh07xkUXXURAQACLFi0iNjaWqqoqfvzxR+bMmcPBgwedHaKdqqoqZ4dgIz1tQgghhGgxd999N4qi8Mcff3D99dcTFRVF//79eeCBB9i6dSsAJ06cYPLkyfj4+ODn58eNN95IVlaW7Ry33nor11xzjd1577//fsaNG2d7PG7cOO69917+/e9/ExQURHh4OHPnzrXt79atGwDXXnstiqLYHs+dO5f4+Hjef/99evTogaenJx9//DGhoaFUVlbatXndddcxc+ZMh12b85GkTQghhBAtIj8/nzVr1jBnzhy8vb1r7A8ICEBVVa655hry8/P59ddfWbt2LUeOHOGmm25qdHsffPAB3t7ebNu2jUWLFjF//nzWrl0LwPbt2wFYsmQJmZmZtscAhw8f5rPPPmPlypUkJiZyzTXXYDabWb16te2Y3Nxcvv32W2bPnt3ouJpKbo8KIYQQokUcPnwYVVWJjo6u85iff/6ZPXv2kJaWRkREBAAffvgh/fv3Z/v27QwZMqTB7cXGxvLkk08C0Lt3b1577TXWrVvHxIkTCQ0NBayJYnh4uN3zjEYjH374IaGhoVgsFoqLi5k6dSpLlizhhhtuAGDFihV06dLFrnevuUlPmxBCCCFahKqqQP1zlh04cICIiAhbwgbQr18/AgICOHDgQKPai42NtXvcsWNHsrOzz/u8yMhIW1JX7Y477uCnn34iPT0dsPbQ3XrrrS06R50kbUIIIYRoEb1790ZRlHqTL1VVa02Ezt6u0WhsCWC12goGzl0uSlGUBi1sX9ut24SEBOLi4li2bBmJiYkkJydz6623nvdcjiRJmxBCCCFaRFBQEJdddhmvv/46ZWVlNfYXFhbSr18/Tpw4wcmTJ23b9+/fT1FREX379gWs63hmZmbaPXfXrl2Njkev1zdqWak77riDJUuW8P7773PJJZfY9Qa2BEnahBBCCNFi3njjDcxmM0OHDmXlypWkpqZy4MABXnnlFUaMGMEll1xCbGws06dPJzExkT/++IOZM2cyduxYBg8eDMCECRPYsWMHy5YtIzU1lSeffJK9e/c2OpZu3bqxbt06Tp8+TUFBwXmPnz59Ounp6bzzzjvcdtttjW7vQknSJoQQQogW0717dxITExk/fjwPPvggAwYMYOLEiaxbt44333zTNuFtYGAgY8aM4ZJLLqFHjx58+umntnNcdtllPP744/z73/9myJAhlJSUNGnqjRdeeIG1a9cSERFBQkLCeY/38/Pjuuuuw8fHp8aUIy1BqkeFEEII0aI6duzIa6+9xmuvvVbr/q5du/L111/Xe4558+Yxb968Ovdv2LChxrZzVz+YNGkSkyZNsts2d+5cu/nczpWZmcn06dNxd3evN77mIEmbEEIIIcR55Ofn8/PPP/PLL7/UmWw2N0nahBBCCCHOY/DgwRQUFPDss8/Sp08fp8QgSZsQQgghxHkcPXoUjca5pQBSiCCEEEII0QZI0iaEEEII0QZI0iaEEEII0QZI0iaEEEII0QZI0iaEEEIIpzJb1PMfJKR6VAghhBAtz2RR0WkUdp8s4nSxgXA/D+Ii/G3bRU3S0yaEEEKIFqWqKr+n5nLN61uYvXQnj3y5j9lLd3LN61v4PTUXVW2enrfbbrsNRVE4cOCAbdvSpUuJj4+vceytt97K/fffb3v84YcfEhMTg5+fH8HBwYwaNYrt27c3S5x1kaRNCCGEEC3GZFHZmJLLg58ncyK/wm7fifwKHvw8mY0puZgcfMu0tLSUzz77jKCgIN57771GPXfz5s3cf//9vPnmmxQVFXH8+HEeffTRFl/KSpI2IYQQQrQYnUbhxZ8PU1dOZlHhpXVHHH6L9JNPPsHb25tnn32WZcuWUVVV1eDn7ty5k4EDBzJq1CgURcHHx4crr7yS2NhYh8Z4PpK0CSGEEKLF7D5ZVKOH7VzH88rZfbLIoe2+9957TJ8+nZtvvpny8nK++eabBj936NCh/PbbbzzyyCOsX7+ekpISh8bWUJK0CSGEEKJFmC0qp4sNDTo2q9jgsKrS/fv3s3XrVmbNmoWPjw/XXntto26RDhs2jO+//57U1FRuuukmgoODuf7668nJyXFIfA0lSZsQQgghWoRWoxDu59GgY8P8PNA66Bbpe++9R1xcHHFxcQDMmjWLH3/8kfT0dPR6fa23SquqqtDr9bbHEyZM4IsvviA7O5vt27dz5MgR7rvvPofE11Ay5YcQQgghWkxchD9dgzzrvUUaGexFXIS/Q9qrqqriww8/pLS0lPDwcMBavWo2m1m6dCljx47l1KlTNZK0I0eOMHLkyNpfQ1wct912G//73/8cEmNDSU+bEEIIIVqMyaLyz0t6UVcnmkaB+y/u6bDq0dWrV1NcXExiYiK7du1i165d7N69m8cff5z333+fIUOGEBYWxmOPPUZZWRlGo5ElS5awb98+Jk+eDMB3333H8uXLbbdD09LSWLFiRZ1JXXORpE0IIYQQLUanURgTFcILN8TQNcjTbl9ksBcv3BDDmKgQh1WPvvfee0ydOpXo6GjCw8Nt/+69914yMjL4/fff+f777zl06BA9evQgPDycJUuWsGbNGrp06QJAQEAAH374If369cPHx4dx48YxZMgQXnjhBYfE2FBye1QIIYQQLUpRFC7qHcLYPqHsPllEVrGBsLNWRFAUx0338f3339e6PSQkhIqKM7doV61aVec5LrroIq644go0Guf2dUnSJoQQQogWV92TFhfhj9niZys6kCWs6ia3R4UQQgjhVI6qEm3vJGkTQgghhGgDJGkTQgghhGgDJGkTQgghhGgDJGkTQgghhGgDJGkTQgghhGgDJGkTQgghhFNZVMesftDeyTxtQgghhGhxFlVFoyhklVRSZjTh7aYjzNfdtl3UJD1tQgghhGhRqqpyqrCClXsy+P5gFr8ezeP7g1ms3JPBqcIKVAf3vI0bNw53d3d8fHzw9fWlf//+fP7557b9eXl53HfffXTv3h1vb2+6dOnCFVdcwXfffWc7Zvbs2bi5ueHr64u/vz9RUVHcddddpKWlOTTW+kjSJoQQQogWY1FVThZW8MvhXIorTXb7iitN/HI4l5OFFQ6/Zfrss89SWlpKcXExixYtYvr06Rw/fpzCwkJGjhzJ8ePH+e677yguLubw4cPce++9rF692u4cd999NyUlJRQVFfHjjz/i5uZGQkICBw4ccGisdZHbo0IIIYRoMRpFYfvJQupKyVRg+6lCugZ6NUv7iqJw1VVXERAQwKFDh9i8eTM6nY4vvvgCnc6aFmm1Wq644gquuOIKLBZLrefp3r07r7zyCikpKcydO5dPP/20WeI9m/S0CSGEEKLFZJVU1uhhO1exwUR2aWWztG+xWPj6668xGAwkJCTw448/ct1119kStsa6/vrr2bBhg2ODrIMkbUIIIYRoERZVpcxYf8JWrcxocugt0kceeYSAgAC8vb2ZMmUKjz32GKGhoeTm5tKpUyfbcampqQQEBODv74+HhwdFRUX1nrdz587k5+c7LM76yO1RIYQQQrQIjaLg7daw1MPbTefQKtKFCxdy//33A3D48GEmTZqEv78/ISEhZGRk2I7r3bs3hYWFHDt2jO7du6OqKko9caSnpxMUFOSwOOsjPW1CCCGEaDFhvu74udefuPl56Ojg495sMfTq1YurrrqKb7/9lokTJ/Lll19iNpubdK6VK1cybtw4xwZYB0nahBBCCNFiLKrKkIgA6uq7UoAhXQKadcLd48eP8/333xMTE8M///lPKisrufHGGzlw4ABmsxmj0cjmzZvPe45//vOfbNmyhblz5zZbrGeTpE0IIYQQLUajKEQEeDKhV0iNHjc/Dx0TeoUQEeDp8Al2H374YXx8fPDx8eGiiy7ikksu4YknniAwMJAtW7bQsWNHLr/8cnx9fenZsyfLli3j22+/JSAgwHaON954A19fX/z8/Lj44ospKysjMTGRvn37OjTWusiYNiGEEEK0KEVR6BLgSddAL7JLz6yI0MHHuiJCfWPImuJ81Z0hISG89tprvPbaazX2VU/5sWTJEj744AOHxtVYkrQJIYQQosVV96RZEzU322NZwqpucnu0hW1KT8RsqTnY0aJa+O3UTidEJIQQQjiXJGoNI0lbC1q2+3PuXb+QuRuet0vcLKqFhb+9wn0bnuHtHR86MUIhhBBCtFaStLUgv63fo7FY+C5jh13itnjLW6w88TuKqhKw7QcnRymEEEKI1kiSthY06Yb/8p+j2bbE7b+/vQLA1ye3oagqDx7O5LobFjo5SiGEEEK0RpK0tSBtUEeuvfcza+Kmqvx0epdt34OHM7lxzkfoOkQ6L0AhhBBCtFqStLUwbVBHJv/jE3yqzqy9pqgq1929XBI2IYQQQtRJkrYWZlEtLNr3OcVuets2VVF4at9ntVaVCiGEEEKAJG0tqrpKtLro4J69BwFqLU4QQgghXIUqv/saRJK2FvTi5jNVog8ezuS6e78A4IFjOWeKEza+5NwghRBCiBagmq3DhIyHtmHYsgrjoW1225vDpk2buOKKKwgMDCQgIIC4uDgWLVqE0WhEURR27dpld/yGDRsICgqyPb711ltRFIVvv/3W7riAgIDzrrrgCJK0taBhe3bgXVXFA9VFB6ERAFx91wf850gWnlUmhu/Z4eQohRBCiOalqiqViT+Rfd9A8h6fSOHLs8l7fCLZ9w2kMvEn1GZYLP7bb7/liiuu4LLLLiM1NZXCwkI+/fRT9u/fT2ZmZoPPExwczKOPPmpb3qolSdLWgoKG382LR830Hv4gJr8w23azdyCRox/hpaNGOo74hxMjFEIIIZqXajZRueMHCp6fhjnzsN0+c+ZhCp6fRuWOHxza46aqKvfeey8PP/ww999/PyEhIQBER0ezdOlSIiMbXgh40003UV5ezvLlyx0WX0NJ0taCevQdgPGKRyh1DyAxMZHKykoAdu/eTYnGE+Plj9Kjf7xzgxRCCCGakaLVUbz8MVDr6KlSLRQvfwxF67jl0VNTU0lLS2Pq1KkXfC69Xs+CBQt44oknbL/HW4okbS3Iw8ODgQMH4uHhgcFgYMcO663QiooK3N3dSUhIwMvLy8lRCiGEEM3HeGhbjR62c5kzD2M89IfD2szJyQGgc+fO9R43evRoAgICbP+uvvrqWo+7+eabCQ4O5s0333RYjA0hSVsLq07ctFotZvOZahlJ2IQQQrR3qsWMOfdUg4415510WFVp9e3Q9PT0eo/77bffKCwstP07t+CgmqIoLFy4kKeffpri4mKHxNgQkrQ5gaIoNbZpNPJWCCGEaN8UjRZtSJcGHasNjkDRaB3SblRUFN26deOTTz5xyPkALr30UuLi4nj++ecdds7zkUyhhVVWVpKUlGTXywaQmJiIwWBwUlRCCCFEy3DrMwxtx171HqPt2Au3PkMd1qaiKLz66qs888wzvPrqq+Tl5QGQkpLC7bffzvHjx5t03meeeYaXXnqpxX5/S9LWgqoTtvLyctzd3RkyZAgA7u7uGAwGSdyEEEK0e6rZhN8tT4FSRwqiaPC75SmHz9d29dVX88MPP/Ddd9/Rs2dPAgICuP7664mOjqZjx45NOufgwYO54oorWqwgod0mbW+++SaxsbH4+fnh5+fHiBEj+OGHH5wa05EjR2wJW0JCAp6engDEx8fbihNSU1OdGqMQQgjRnBStDvfBVxD40Ec1ety0HXsR+NBHuA++wqHVo9VGjRrFmjVrbGPW9uzZw7/+9S/c3NxQVZX4+Hi748eNG0d+fr7t8dKlS3nppZfsjvn0009RVZVx48Y5PN5zOf6KtBJdunThmWeeoVcv6wfigw8+YPLkySQlJdG/f3+nxBQVFYXZbKZnz554eXlRVVUFWHvaBg4cSGpqKtHR0U6JTQghhGgpiqLgPvBSOgy5EuOhPzDnnUQbHIFbn6GoZlOtY79FO07aJk2aZPf46aef5s0332Tr1q1OS9p0Oh0xMTG17vPw8KhznxBCCNHeVPekufUZimoZZCs6aI4etvbCJa6M2Wzm888/p6ysjBEjRtR6TGVlpd096eoS3qqqKluPmKNVn7e5zt9WyXWpnVyX2sl1qZtcm9rJdaldU65LVVUVqqpisVgucFknBdUJy0I1RPWSWtWvs6ksFguqqlJVVYVWe6YqtjHXW1GbY4GvViI5OZkRI0ZgMBjw8fHho48+4sorr6z12Llz5zJv3rwa2z/66COZP00IIYSohU6nIzw8nIiICNzc3JwdTqtmNBo5efIkp0+fxmQ6U2RRXl7OtGnTKCoqws/Pr95ztOukzWg0cuLECQoLC1m5ciXvvvsuv/76K/369atxbG09bREREeTm5p73IjZVVVUVa9euZeLEiej1+mZpo63IyMggJCQENzc3u+ui0+lIT0+nY8eOdn+ZuCL5vNROrkvd5NrUTq5L7ZpyXQwGAydPnqRbt254eHg0c4TOoaoqJSUl+Pr6XtBYO4PBwLFjx4iIiLC7VsXFxYSEhDQoaWvXt0fd3NxshQiDBw9m+/btvPzyy7z99ts1jnV3d8fd3b3Gdr1e3+w/1C3RRmt28uRJjhw5QmZmJgkJCbZrodPpbNsLCwuJj4+XwanI56Uucl3qJtemdnJdateY62I2m1EUBY1G024nia++JVr9OptKo9GgKEqN69uYz2D7vMJ1UFW1xRd3FecXHByMu7s75eXlJCUlYTQaAeukh5mZmSiKQqdOnSRhE0II4dLabU/bo48+yhVXXEFERAQlJSV88sknbNiwgTVr1jg7NHEOLy8vEhISbBMP7969G4CsrCw0Gg39+vUjLCzMyVE6h8ViqfMvu/r2CSGEaH/a7Td+VlYWM2bMoE+fPlx88cVs27aNNWvWMHHiRGeHJmpRnbi5u7tTUVFh2+7KCZvZbGbXrl2kpaXV2Gc0Gtm+fTunT592QmRCCOFYrbVytLVptz1t7733nrNDEI3k6emJp6en3VJeAQEBzgvIyXJycmyzdoN1wmiwJmzJycmUl5dz9OhRQkNDXb5IQwjR9qgWM4pGi5p3FCoKUD0DUYJ72LaLmtptT5toW1RV5eDBg7YEpVpSUpLLjkMMDw+nZ8+eAKSlpdkWNN69e7dtObT4+HhJ2IQQbY6qqpC1D8va+agbF6NuX4K6cTGWtfMhax/NNbHFpk2buOKKKwgMDCQgIIC4uDgWLVpESkoKiqLU+B20dOlSBg4caHvcrVs3PD098fHxwc/Pj8GDB7N+/fpmibU2krQJp6tO2KqLDqqX8nJzc7MVJ7hq4hYZGWlL3KqTtoqKCtv6ta46h2BOTg55eXm17ktPT6ekpKSFIxJCNJRqMcPpZNSt70Bptv3O0mzr9tPJ1uMc6Ntvv+WKK67gsssuIzU1lcLCQj799FP2799PZmZmg8/z8ccfU1paSmFhIXfccQeTJ0+2u0PUnCRpE0537NgxW8LWr18/OnToAEBcXJytqnTPnj3N9pdXaxcZGUlERITdNldO2IqKiti7dy/Jyck1ErdTp05x6NAhl070hWjtFI0Wde8qoK7vdBV17yqH3iJVVZV7772Xhx9+mPvvv5+QkBAAoqOjWbp0KZGRkY0+p0ajYebMmZSUlHDixAmHxVpvmy3SihD16NKlC76+vjWKDjw9PUlISMDb25vevXu77JQfRqOxRnKSlZXlpGicz9fXl5CQECwWC8nJyeTn5wPWCZpTUlIA6Ny5s8zOLkQrpeYdrdnDdq7SbOtxDpKamkpaWhpTp0512DlNJhNLliwhIiKCbt26Oey89Wm3hQii7dDr9QwePLjWpMzLy4uhQ4e6dMKWmJhIeXm5XRJSXVHavXt3Z4XmNBqNhv79+7Nv3z5ycnLYv38/AIcPH0ZRFCIjI+nRo4fLfmaEaM1UiwUqChp2cEUBqmpBUS68fyknJwew/kF3oaZPn45er6eiogJFUXjvvfda7I9E6WkTrUJ9v2Bd9Zfv2Qmbu7s7cXFxwJlELS0trdbpQFxBdeIWGhpqt4CzJGxCtG6KRgOegQ072DPQIQkbYLsdmp6eXuv+6lUJzl28vaqqqsaKBStWrKCwsBCDwcCWLVt46KGHWmwOWEnahGiliouL7YoOPD09AYiIiLAVJ+Tk5GA2O3awbluh0Wjw9/e32xYQECAJmxCtnBLcA3w61H+QTwfrcQ4SFRVFt27d+OSTT2rd37FjR9zc3Gr8IXzkyJE6x7spikJCQgIXXXQR3333ncNirY8kbUK0UiEhIQwYMKDWooPIyEiio6NdesqPU6dOcfjwYbtttRUnCCFaF9ViRhlwDVDXH1gKyoBrHFo9qigKr776Ks888wyvvvqq7XsiJSWF22+/nZMnTzJ16lQee+wxMjIysFgsbN68mffee49p06bVed7k5GR+++03YmJiHBZrfSRpE6IVCw0NrbNKtFOnTi472P7UqVO2ooPqytqzixMkcROi9VI0WgiPQRn+15o9bj4drNvDYxw+we7VV1/NDz/8wHfffUfPnj0JCAjg+uuvJzo6mo4dO/LKK68QHR3NiBEjCAgI4M477+SZZ57hmmuusTvP1KlT8fHxwcfHh7/85S/8/e9/569//atDY62LFCIIIdqUwsJCW8JWPR3KgQMHiI6OJiUlhZycHJKTkxkxYgTu7u5OjlYIURtFUVDD+qPpGGtbEYGzV0RopmEOo0aNqnP8mZubG6+88gqvvPKK3fazx80eO3asWeJqKEnahBBtir+/PxEREWg0Gnr06IHJZALsq0qDgoIkYROilavuSVOCe9hVicoSVnWTpE0I0aYoikKvXr1s/z+bRqNhwIABUowgRBvjqCrR9k6SNiFEmyNTxAghXJGktkII0U6oqmo3/uZsFovFZZeCE6K9kKRNCCHaAVVVOXLkCLt3764xd5/FYmH//v0cPHhQEjch2jBJ2oQQoh0wGAykp6dTUFDAnj177BK3Q4cOkZ2dzenTpyktLXVilEKICyFJmxBCtAOenp7ExcWh1WptiVt1ZW1OTg6KohATE4Ovr6+TIxVCNJUkbUII0U4EBATYJW6bN28GsCVs1esvCtHamOsYiynsSdImhBDtSEBAALGxsXbboqOjJWETrY7pz2Wqducc4ucTW9idc8huu6hJkjYhhGhHLBYL6enpdtsyMzNrFCcI4UyqqvJ7eiLXfH0vs398jEc2vcTsHx/jmq/v5ff0RIcXzIwbNw53d3d8fX3x9/dnwIABPPjgg+Tk5NiOqaqqYt68efTs2RNPT08iIiL45z//aTcOdMOGDSiKwqhRo+zOX1lZSXBwMIqiUFhY6NDYzyZJmxBCtBPVVaLZ2dkoikKXLl0A69Jf5xYnCOEsJouZjad28ODG5zlRkmm370RJJg9ufJ6Np3Y4vMft2WefpaSkhMLCQj777DPS09MZNGgQWVlZAEybNo2vvvqKzz77jNLSUtatW8fu3bu5/PLLqaqqsp3H19eXY8eO2ZbTA/j666/p0KFDjTYdTZI2IYRoB85N2GJiYujRoweAXXGCJG7C2XQaLS8mfohFrWNOQdXCS0nL0TXTclaKotCvXz+WL1+Ov78/ixcvZsOGDaxevZqvvvqKQYMGodVqiYqK4quvviIlJYXPP//c9nyNRsOMGTNYunSpbduSJUuYPXt2s8R7NknahBCiHTAajRQWFtZadDBgwAC0Wi0lJSUYDAYnRimEdQzbuT1s5zpenGEb49ZcdDodkydPZsOGDfz4448MGzaM7t272x3j7+/P5Zdfzi+//GK3ffbs2Sxbtgyz2Ux6ejo7duxg8uTJzRovyDJWQgjRLnh4eDBw4EAqKioIDg622+fv709cXBwajQZvb28nRSiEtUr0dFlug47NKsvDHGxBq2m+/qXOnTuTn59Pbm4unTp1qvWYTp06sX37drttUVFRREZG8tNPP5GUlMRNN92Eu7t7s8VZTZI2IYRoJ7y8vPDy8qp1X0BAQMsGI0QttBoN4d4Nq2QO8w5u1oQNID09naCgIEJCQjh0qPaevYyMjBp/CIG1t+39999n9+7dfPzxx80aZzW5PSqEEEKIFhMX2oeuvh3rPSbSrxNxoX2aNQ6TycTXX3/NuHHjmDhxItu2bSMtLc3umOLiYtasWcP48eNrPP+mm25izZo1eHh4MGjQoGaNtZokbUIIIYRoMSaLmX8OnIFGqT0F0Sga7k+4pVnnazt48CCzZs2iqKiIBx54gAkTJnDllVdy7bXXkpiYiNlsJiUlhWuvvZaePXtyww031DiHr68v69evtytSaG6StAkhhBCixeg0WsZ0GcwLYx6q0eMW6deJF8Y8xJgugx1ePfrwww/b5mmbMmUK4eHh7Nixg7CwMAA+/fRTJk+ezPXXX4+3tzfjx49nwIAB/Pjjj7i5udV6zsGDB9OnT/P2CJ5NxrSJVsF4eAf6brEoupo/GMZD29BHDUVRFCdEJoQQwtEUReGizgMZGzGE3TmHyCrLI8w7mLjQPpgsZod/32/YsOG8x7i5uTFv3jzmzZtnt91isVBcXAxYJ+mta/Lcbt26OXxS4HNJT5twOkPST+Q9cTkFL81GNRnt9pWtfZ+8xydS8sEjzf7DIIQQouVU96TFhfbh4q7DbWPYmmt+tvZAkjbhfIoCikLlH9/YJW7l65dT/M791mOauYJICCGE8zR3lWh7IVdJOJ1H/EQC//UR6N2p/OMbCt+8G4CSpQ8D4H31PfjOeFpujwohhHBpzZa0abXSvSka7uzEzbjjB9t2SdiEEEIIq2ZL2mT8kWgsj/iJuCdcarfNd9pcSdiEEEIIHJC0ZWdnU1FRUWO7/KIVjVW29n0q//jGblttxQlCCCGEK2py0vbQQw+RnZ3NXXfdxV//+ldHxiRcUNna921FB16X32nd+OcYN0nchBBCiAtI2oqLi1m5ciVPPPEE4eHhjoxJuJjyXz60JWzeV9+Dz82PAxBw33tnihNeuk1uuQshRDtlUS3ODqFNaHLSNmHCBMrKyoiPjycqKsqRMQkXo+8Rj+ITWKPowD1m/J/FCR64DRgjt9yFEKIdqU7UsiuyOF6SRnZFlt12UVOTk7a8vDySkpKYMWMGVVVVjoxJuBh9txhCn9tca5WoR/xEOryShPflf3NSdEIIIRxNVVXSy07yVdpnrDn5Db+dXs+ak9/wVdpnpJeddPidlXHjxqEoCj///LPd9ueeew5FUbj//vsB63h8Ly8vfHx8bP+mTJkCwLp16/D39+f48eO25584cYKAgADWrl3r0Hjr0uSkLTU1lRUrVvDhhx+SlpbmyJiEC9IGd66zJ00b3LmFoxFCCNFcLKqFU2Un2JDxMyVVxXb7SqqK2ZDxM6fKTji8x61Pnz4sWbLEbtvSpUuJjo6227Z582ZKS0tt/7788ksALr74YmbMmMHs2bNRVRVVVbntttuYOnUqEydOdGisdWnS2qPr1q0jLy+PTz/9FEVRyMnJcXRcQgghhGiHNIqGHTnbUKm9N01FZWfOH0T4RDq03ZtvvplXXnmFoqIi/P392bZtG6qqMmzYsAaf49lnnyUuLo7XXnsNgLS0NFatWuXQOOvTpJ62U6dOcckll1BZWYnBYGDChAmOjksIAVTu/x1zYVat+wyJa7AYylo4IiGEuDDZFVk1etjOVVxVZBvj5igBAQFcfvnlfPzxxwC8//77zJ49u1Hn8Pb2ZunSpTz66KM8+uijLF26FB8fH4fGWZ8mJW2zZs2iZ8+erFu3jl9++YUePXo4Oi4hXF7l3o3kP30tefOuqpG4lW9YQcGzN1HwzA2oxprzJAohRGtkUS2UVZU26NhyU5nDb5HOnj2bJUuWUFFRwcqVK5kxY0aNY0aPHk1AQIDt3/z58+32x8TE4OnpSadOnbjoooscGt/5NHlM25IlS1iyZAnvvvsuy5Ytc2RMQghAG9IFjV8w5vQUa+JWlA1AxabPKHrzblBVdF2iQe/h5EiFEKJhNIoGb33Deqa8dN5oFMcu3HTxxRdz+vRpFixYwIgRI2qdsuy3336jsLDQ9u+JJ56w23/vvfcyfPhwNBoNixcvdmh859OkMW0AVVVV5ObmoqqqVI8K0Qx04T0IfvI7a8KWnkL+MzfA6IcpfvcBtKqK16V34Hf7CzIVihCiTengGYav3q/eW6R+en86eIY5vG2NRsPMmTN5+umn+eKLLxr9/NWrV/P999+zd+9e0tLSuOSSS5g0aRJ9+vRxeKy1aXIK+/jjj7No0SKee+45HnnkEUfGJIT4U3XipgnujCXjsHWjJGxCiDbMoloYHDoMhdq/vxQUBoUObbb52v75z3/y008/MWnSpEY9Ly8vj7/97W+8/vrrhIWFMXz4cObMmcOtt96K2WxulljP1eSkrXfv3jz//PM8//zzLZZhCuGKdOE98Bo33W6bz3X/loRNCNEmaRQNXby7Mq7TJfjq/ez2+en9GdfpErp4d3X4rdFqQUFBXHLJJej1+lr3jxw50m6etuHDhwMwZ84cxowZw4033mg7dv78+RQVFfHCCy80S6znavLtUSFEyyjfsILSL58DrbttW978qwl+8ju0AY6/fSCEEM1NURQ6e0cQ4RNJdkUW5aYyvHTedPAMw6JaHP5H6YYNG+rct3TpUtv/a5vU12KxUFxczCeffIJGY59Iuru7s3//fkeFeV4OSWPXrl3LiRMnHHEqIcRZyjessBUdeF48CwAlqNOZ4oQ6pgMRQojWrronrYNnGF19utnGsDVXD1t74JArEx4ezi+//OKIUwkh/mT44xtbwuZ16R34zngagKD/fI4muLO1OGHe1TLlhxCizZNErWGadHt0xowZGAwGDAYDGo0GrVZrW+ZBCOEYbn1HoouMwS1qKH63v4DJZAJAF9bNVlXqOWEmipunkyMVQgjREpqUtH344Yc8/vjjPPHEE+h0Op5//nlHxyWEy9P4BhM87wcUD58a4zt04T0IfWEbGi+/Op4thBCivWlyIUJKSgp5eXm4ubnJeDYhmonG07fufZKwCSGES2ly0rZgwQJbD9ucOXMcFpAQQgghhKipyUlbVFRUk2+LZmdn4+vri6enjMURQgghhGiIBidtqqqycuVKNm/ejKIojBw5kilTpjRqLpWHHnqIf//739x11114eXmxfPnyJgUthBBCCOFqGlxje+edd7J8+XKGDBnC4MGDWbFiBXfeeWejGisuLmblypU88cQTtS7SKoQQDVGxeSWGP76pdV/pt69hTN3ewhEJIS6ExdI8S1a1Nw1O2rZs2cKqVauYOnUqU6dOZeXKlWzZsqVRjU2YMIHS0lLi4+OJiopqdLBCCGE8uJXCl2+n4MVZNRK30lWLKVn2KPlPXYs5P9NJEQohGsJstiZqx47msycpk2NH8+22O9K4ceNwd3fHx8eHwMBAxo4dy/bt29mwYQMBAQE1jp87dy7XXHON7XFsbCyrVq1yeFyN1eDbo7GxsezatYv4+HgAdu/ezbBhwxrV2M0332z7/9/+9rdGPVcIIQD0UUPwuOg6DJs+p+DFWfjetxSAsu9eo+KjuQB4/+VetEEdnRekEKJeqqpycF82363aR252mW17SAdvrrqmP/1iwhy+lNWzzz7L/fffj8Fg4JFHHuGaa65hxYoVDm2juTW4p23v3r0MHjyY6OhooqOjGTRoEDt37mTIkCEMHTq0Qed44403mD59OjNmzOD1119vctBCCNelaLQE3PM/PEbdAGYTha/fBUDpZwsB8LnpMXyv+7czQxRC1MNstrA/OYtl7/xhl7AB5GaXseydP9ifnNUsPW4AHh4e3H777WRkZJCXl9csbTSXBve0rV69+oIbS0lJsWW1Dz300AWfTwjhmqoTt0KgbOuZW6SSsAnR+mm1Gr5btY9a1mYHQFXh+1X76B/bPGPfy8vLeffdd4mMjCQ4OLhZ2mguDU7aIiMjL6ihdevWkZeXx6effoqiKOTk5FzQ+doiVVXhxDboMghFq7ffZzHDiT8gcrjDu4SFaI8UjRZdl2jgTNKmj+jrvICEEA1y7Gh+jR62c+Vkl3H8aD6RPYIc1u4jjzzC3Llz8fDwID4+ntWrV5Ofn09RUVGNcW0Gg4HLL7/cYW07Sout0Hrq1CkuueQSKisrMRgMTJgwoaWabjXUA9+iJi5H3fYuqrnqzHaLGXXHUtSkFajJK50YoRBtR+mqxZR+ssBuW23FCUKI1sNisVBYUNGgYwsLKrBY6uiOa4KFCxdSWFjI6dOnWbNmDbGxsQD4+/tTWFho9+8///mPw9p1pEYnbadPn25SQ7NmzaJnz56sW7eOX375hR49ejTpPG2ZEhIFGj1k7bNL3NSkjyA9CTQ6lNA+To5SiNavdNViSqqLDv68Heo+4lowmyRxE6IV02g0BAQ2bGL9gEBPNBq583S2Ridtl156aZMbW7JkCUuWLOHdd99l2bJlTT5PW6V06IMy4q4zidv2pdYdmbutCdvQ21E6xjg1RiFau8r9v9sSNp+bHsPnL/cB4P+3l23FCQUv3yZTfgibiooKTp48Weu+4uLiJndGiKbp1iOIkA7e9R4T2sHbobdGHaGqqgqDwWD7ZzQaWzyGRi9jpdY1crABqqqqyM3NRVVVqqqqzv+Edkjp0AdG3IW6+XXIPQSaztbtkrAJ0SBufUfiM+VfoHfH97p/275LqosTijQ63OMmyJQfAgCTyURiYiKVlZWYTCa6d+9u21dSUsLevXsxmUzo9fo2Nyi9rTKbLVx1TX+WvfNHrcUIigJXXtMfs9mCVttio7jO6+xpywDGjh3Lhg0bWjSGRidtFzJI/vHHH2fRokWAdUCgywrpBToPqKo8s61DtPPiEaINURQF35sfr32fRkvAPW+3cESiNdPpdHTp0oUjR46QlpYGQJcuXQBITk7GbDbj7++Pv7+/M8N0KVqthn4xYcz869Aa87SFdvDmymaYp62u5GrcuHEUFhbW2D537ly7x3v27MHPzw+NxrlJZJMXjG+K3r17N3mR+faiuuiAqnJAe2b7tndh2B01qkqFEEJcmOrZD6oTt6KiIsDaCxcQEEBcXBw6XYv+OnR5iqIQ3b8D/WPDOX40n8KCCgICPYnsEYTZbJFZFOrgtJTx559/5sSJE85q3ilsCVt10cGQ26w7ailOEEII4TiRkZH07NkTwDahqp+fnyRsTlR96zOyRxAxCZ1sY9ha0y3R1qbRV8bNzc0hDYeFhfHLL7845Fxthbrn8zMJ29DbUcL6AViTt+rELekjJ0cphBDtU2BgoN1jPz8/SdhaCakSbZhGJ207duxwSMMxMTHceuutDjlXW6H0GAOeATWKDpTQ3taqUg9/lF6uN3+dEEI0t+LiYnbt2mW37dSpU7ZxbkK0BS32J8aMGTNsZbIajQatVsuXX37ZUs23CopfJ5j4ZK3j1pQOfeDSuTKmTQghHKw6YTOZTPj7+9OvXz9++uknAFvSdnZVqRCtVYvdOP7www+Jjo7myy+/ZNWqVYwYMaKlmm5V6kvKJGETQgjHMplM7N6925awnT2GrTpRS0tLc8mlFUXb06Setqb2mqWkpJCXl4ebm1uzFyEsXLiQL7/8koMHD+Lp6cnIkSN59tln6dNHVhwQQghXodPpiIqKIj09ndjYWHQ6nW1uv4iICLRaLSUlJTJHm2gTmtTT1tReswULFvD888/z3//+lzlz5jSl6Qb79ddfmTNnDlu3bmXt2rWYTCYuvfRSysrqX6RWCCFE+xIWFkZCQkKtRQeRkZH079/f6fNvCdEQTR7TlpKSQm5ubr29ZqqqsnLlSjZv3oyiKIwcOZLnnnuuReZfWbNmjd3jJUuW0KFDB3bu3MmYMWOavX0hhBCtR32/d2ROMOdTVVXehwZoctK2YMECFi9ejKqq3HPPPTX2q6rKnXfeSXZ2NjfddBMAK1as4Mcff+R///tf0yNuourJFIOCal/LrLKyksrKMysUFBcXA9alt5prya3q87rqkl51ketSO7kutZPrUje5NrWT61K7plyXqqoqVFXFYrFgsVga2aKCRqNQWFhBZaUJd3cdAQGeWCwq0PQlMx2tevnO6tfZVBaLxbaMp1Z7ZnL9xlxvRW3iYqKbNm3inXfeAeCOO+5g9OjRdvs1Gg0DBgxgz549tm2qqhIbG0tycnJTmmwyVVWZPHkyBQUF/Pbbb7UeM3fuXObNm1dj+0cffYSXl1dzhyiEEEK0OTqdjvDwcCIiIho8j6tOp8Pb25vc3HJSD+dRUXEmafH01NO7VzAhIV6UlZVhMpkcEufVV1/N9u3b0ev16HQ6+vfvz4IFCygvL2fSpEl4e3ujKAoBAQFcf/31PP7447Zb5s888wzJycmsWLHigmIwGo2cPHmS06dP272u8vJypk2bRlFREX5+fvWeo8k9bUuWLGHJkiWoqspdd91VI2kDiI2NZdeuXcTHxwOwe/duhg0b1tQmm+yee+5hz549bNq0qc5jHnnkER544AHb4+LiYiIiIrj00kvPexGbqqqqirVr1zJx4kT0eqkcrSbXpXZyXWon16Vucm1qJ9eldk25LgaDgZMnT+Lj44OHh0cDW1LIzS1nT/LpGnsqKqrYk3ya2JhwgoO9cVSPm06n45lnnuG+++7DYDDw6KOPMmPGDD788EP8/f3Jz88H4MCBA1xyySX079+f226zrlpUnYz6+vpe0C1cg8GAp6cnY8aMsbtW1Xf2GvQ6mtp4VVUVubm5tq6+2iQnJzNo0CB69+4NQGpqKrGxsQwZMgRFUfjjjz+a2nyD/eMf/2D16tVs3LjRtkhwbdzd3XF3d6+xXa/XN/sPdUu00RbJdamdXJfayXWpm1yb2sl1qV1jrovZbEZRFDQaTaOKOVIP59W7//CRPEJDvQHHjXOrjtPLy4s77riDl19+mYKCAgBb7P3792fUqFEkJSXZtlUnatXPbyqNRoOiKDWub2M+g01O2h5//HEWLVoEWHupavPNN9/QxLuvF0xVVf7xj3/w1VdfsWHDBpk4UQghhGgFCosq7G6J1qa8vIqiIgP+/g3tvWu48vJy3n33XSIjI2tM9ZKcnMzGjRt59NFHHd6uIzQ5aevduzfPP/98nYPyFEWha9euTQ7sQs2ZM4ePPvqIr7/+Gl9fX06ftnbD+vv74+np6bS4hBBCCFelqiqVhoaNUzMYTPj5Oa6q9JFHHmHu3Ll4eHgQHx/P6tWryc/Pp6ioiICAACorKzEYDMyePZu7777bIW06WpOTtr///e+Ul5fbuvvef/99R8Z1wd58800Axo0bZ7d9yZIlLrfmqRBCCNEaKIqCu0fDUg8PD51DpwFZuHAh999/v922DRs24O/vT2FhIWazmffff59FixZRXl6Ov7+/w9p2lCYnbUFBQbbEqDVy1m1ZIYQQQtQtwN8TT099vbdIvbz0zXJrtD5arZa//vWvfPvtt8ydO5cXX3yxRdtviCaPqPPz8+Oaa65h5syZzJw505ExtWv1JZOSaAohhGjvLKpK7171LxvWq2ew034nPv7447z11lukp6c7pf36NDlpS0lJ4YsvvmDZsmUsW7bMkTG1W5WVlezcubPW8t7S0lJ27NhBRUWFEyITQgghWoZGUQgJ8SI2JhxPT/vKSS8vPbEx4YSEeDlthYTBgwczZswYnn76aae0X58m3x5VVZVvv/3WNofZhAkTHBZUe3XkyBGKi4ttc9dVF0SUlZWRnJxMVVUVhw8fJiYmxsmRCiGEEM1H+TNxCw31pqjIgMFgwsNDh7+/R7MsabVhw4Zat48bN47CwsIa23/88Ufb/5988slGzaXWnJqctI0dO5aioiLb8lDi/KKioqioqKCoqIhdu3YxYMAAAPbs2YPJZMLX15fo6GgnRymEEEI0v+rEzN/fw65KVNYgrVuTk7ZZs2Y5Mg6XoNPpiIuLY/fu3RQVFZGUlARYJyr28/MjPj5eJnoUQgjhciRRa5imT+17lp9//pkTJ0444lTtXnXiptPZ58uSsAkhhBCiPg5J2sLCwvjll18ccSqXYDAYakxKLAUIQgghhKiPQ5K2mJgYmbC2gUpLS0lKSsJisditzLBr165WM9BRCCGEEK1Pk8a0zZgxA4PBgMFgQKPRoNVq+fLLLx0dW7tTnbBVVVXh6+tL//79Wbt2LX5+fpSUlNiqSqsrcoUQQgghqjWpp+3DDz8kOjqaL7/8klWrVjFixAhHx9Uupaen2xK2s8ewDRgwAH9/f0wmEydPnnRylEIIIYRojZpcPZqSkkJeXh5ubm5ShNBAvXv3Rq/XExERgV6vp6rKuoRHdXHC8ePH6d69u5OjFEIIIVqWxWJBo3HIiK12rclJ24IFC3j++ecBmDNnjsMCas80Gg09evSodZ9Op6Nnz54tHJEQQgjhHGazGa1Wy+HDh8nPzycoKIhevXrZtouaGpy0qarKypUr2bx5M4qiMHLkSJ577jmZW0UIIVoJ1WxCrShB4xNYY5/FUIqi0aG4tewi3ELURlVVkpOT+fzzz8nKyrJtDwsL44YbbiAuLs5h+YWPj4/t/xUVFeh0OtvwpNGjR6PVaomJiWHhwoW247p06ULv3r1Zv369bdv1119Ply5deOWVV7j11lv54IMP+Oabb7j66qttxwQEBLBq1SrGjRvnkNjP1eC+yDvvvJPly5czZMgQBg8ezIoVK7jzzjubJSghhBCNo5pNFL76V/LmXYWlOM9un6WyjPz/XkfBc1NRjQYnRSiEldlsZvfu3bz++ut2CRtAVlYWr7/+Ort378ZsNjukvdLSUtu/0aNH8+yzz9oe//DDD4wfP94uOUtNTUWv17N7924MBuvPi6qq/Pbbb4wfP952XHBwMI8++miNKbyaU4OTti1btrBq1SqmTp3K1KlTWblyJVu2bGnO2IQQQjSQpSAT4/5NmI7vJW/BJLvEreD5W6g6uAVj6g5MWWlOjFII0Gq1fP7556iqWut+VVX5/PPPW+wW6fjx49m5cyclJSWAdZ3Siy++mISEBFues3//fvLz8xk7dqzteTfddBPl5eUsX768ReKERiRtsbGx7Nq1y/Z49+7dDBs2rDliEkII0UjakAiCn/wOjX8HW+JmyrFWo5tS/kDx8ifosVXoI/o6OVLh6g4fPlyjh+1cWVlZHDlypEXiiY+Px9fXl02bNgHWpG3cuHGMHTvWttD877//TlxcHEFBQbbn6fV6FixYwBNPPEFlZWWLxNrgpG3v3r0MHjyY6OhooqOjGTRoEDt37mTIkCEMHTq0OWMUQgjRALrOUQTP/f5M4vbQcOuOPxM2t16DnBugcHkWi4X8/PwGHZufn98itx41Gg1jxoyx3SL99ddfGTt2LGPHjrVt27RpU63j1G6++WaCg4N58803mz1OaEQhwurVqxt14rq6PYUQQjQfXecoAv/zGXmPjLNtC/j7a5KwiVZBo9HY9VbVJygoqMWmARk/fjzLly8nNTUVd3d3IiIiCA0NZffu3ZSVlbF582buuOOOGs9TFIWFCxcyffp0brvttmaPs8FJW2RkZKNO3JID84QQQlhZDKUUf/CI3baSzxfi1XswGr9gJ0UlxBm9evUiLCys3lukYWFhLToN1vjx43nwwQf5+uuvbePWPDw8iI+P591336WwsJAxY8bU+txLL72UuLg42zRozUlmshNCiHbCYigl/7/XUXVwC4qXP353vgyA+cT+GsUJQjiL2WzmhhtuqHNKD0VRuOGGGxxWPdoQMTExBAYG8sILL9jdBh07diyLFi067xKTzzzzDC+99JKt2rS5SNImhBDtwLkJW9Bjq/AceT0Ain9orVWlQjiDVqslLi6OOXPmEBYWZrcvLCyMOXPmEBcX16IT7CqKwtixYzl9+rRdhWj1tlGjRtX7/MGDB3PFFVc0e0FCk1dEEEII0XqolRWopQW2hM2t1yDbUnlBj3xB8YJJqOXFWAylcptUOJ2iKMTExBAfH8+RI0dsKyL07NkTs9ncbBP3V1eD1uaLL76ose3iiy/GbDZTXFxst33p0qU1jv3000/59NNPLzTEeknSJoQQ7YDWP5SgJ77Fkp+Bvke83T5dx14Ez/0e9O7oOjRufLIQzaW6J61nz550797dVnQgS1jVTZI2IYRoJ7QBHdAGdKh1n65zVAtHI0TDyWLxDdMiV0mj0TBhwgR27tzZEs0JIYQQQrQ7LZK0vf/++4wdO5Z77723JZoTQgghhGh3WuT26K233grAk08+2RLNCSGEEEK0O3ITuYXVt1KErCIhhBCOp1osmHNP1r7PaMBcWP86mEK0FhfU0/bAAw80+NjFixdfSFPtQkVFBbt376ZPnz4EBgba7SsqKuLAgQPExMTg7e3tpAiFEKJ9US0Wit65n8o/viHoyW/Rd+1/Zp+xkoKXZmDKPkbwk9+jDeroxEiFOL8LStqSkpIadFxzzbfS1hw7dozy8nJ2795NXFwcPj4+ABQXF7N3717MZjNpaWkMGDDAyZEKIUT7oFaWYTq2G0tJHvnzriboyW+ho7WStvCV2zDvXofi7oU5+7gkbU6kqqrkCg1wQUnb+vXrHRWHS4iKiqK0rIri4lx2795N//7Wv/iSk5MxWyz4+gTTt29fJ0cphBDth8bTl6D/W0X+09dQdSSJ/HlX4/PvzwAwJm9A5+5F4CNf4BY93LmBuqDqRK2oqAiDwYCHhwf+/v6SwNXD4WPa9u/fz5o1a1i9erXt3zfffOPoZtqkzMwSiou9cHcLw2yxsGfPHgBMZjPubh0oKfXh1KkiJ0cphBDti8YnkKD/W4W+ZwKWkjwK5l1l3fFnwuber/4lioTjqapKbm4uW7ZsYefOnezbt4+dO3eyZcsWcnNzHT7Gu1u3bqxatcpu27Fjx1AUhcLCQjIzM5k2bRrh4eH4+vrSo0cP/vnPf9Y4z8aNG1EUhYcfftih8TWUw6pHjx49yrXXXktycjKKotgueHW23JILv7ZWp0+fBvRUGj1QlCAsavUagH5UGj3/PCaLyMggp8UohBDtkcYnkMCHPyP7b71t23xvfFQSNieoTtiSk5Nr7KuoqCA5OZmYmBhCQkJarMdtxowZdO3alYMHD+Ln50daWhqbNm2qcdx7771HUFAQH3zwAU8//TQ6XcuuUeCwnrb77ruP7t27k5WVhZeXF/v27WPjxo0MHjy43rW+XElMTHfc9CUAqKovEPDnHn8A9LoSYmO7OSM0IYRo11SjgaLX77LbVrpqMVUn9jkpItelKAqHDx+u95gjR4606C3SrVu3Mnv2bAICAtBoNPTs2ZNZs2bZHVNcXMwXX3zBa6+9RmlpKd99912LxVfNYUnbli1bmD9/PqGhoWg0GjQaDaNGjWLhwoUyqe6f3N3d6du3C1Ddw+Z71t58oqLC8fT0dEJkQgjRfqlGAwXPTaXyz6KDgPvet24vySd/3tWSuLWwoqIiKioq6j2mvLycoqKWGy40atQo7r//fpYtW0ZKSkqtx3z88cd4e3tzww03cN111/Hee++1WHzVHJa0mc1mWzVkSEgIGRkZAERGRnLo0CFHNdOmFRUVsW/fPqAUOPt2sQqUcPDgQQoKCpwTnBBCtEPnJmyBj3yB+8DLAND1iLNVlUri1jJUVcVgMDToWIPB0GLzl3722WdMmjSJl156if79+xMZGclHH31kd8ySJUuYPn06Op2OmTNn8v3335OZmdki8VVzWNI2YMAA28D6YcOGsWjRIn7//Xfmz59Pjx49HNVMm5adnW0rOgDtWXsUW3FCVpZM8iiEEA6j0YDO7UzCdtYYtsCHPkLfMwE0WhSt3olBug5FUfDw8GjQsR4eHg67RarX66mqqrLbVv1Yr9fj5+fH3LlzSUxMpKCggHvvvZeZM2dy4MABAPbt28f27dttt0zHjx9Pp06d+OCDDxwSX0M5LGl77LHHsFgsADz11FMcP36c0aNH8/333/PKK684qpk2rWfPngT4R9qKDhSl0Lav0uiBn28kUVFRTorOuSyWuv+aqm+fEELUR9G5EfjghwQv+KlG0YHGO4Cg/1tF8Lwf0HV2ze9eZ/D39z/vUCAvLy/8/f0d1mZkZCRpaWl2244cOUJISEiNCe19fHx48MEH8ff3Z//+/QAsX74cgMsvv5zw8HA6depEdnY277//vsNibAiHJW2XXXYZU6ZMAaBHjx7s37+f3NxcsrOzmTBhgqOaadMOH8ml8M9b9HpdCUOHWOdkc9OXAlBcAodScpwVntNUVpr4Y/tJMjKKa+wrLTOyZesJ8vLLnRCZEKI9UHRu6LvF1rpP4xOIrlPvWveJ5qGqKr169ar3mJ49ezr01ugtt9zC66+/TlJSEqqqcvz4cebOncv06dMB+Ne//sWuXbswGo0YjUbeffddysrKGDRoEEajkc8++4yFCxeya9cu279t27Zx9OhRNm7c6LA4z6dZa1WDgmTqirOVluYDOvS6UoYM6WMrFR40qA+JiakYq3woLc0DwpwaZ0vLzCyhrKyKAwetCWtoqPUvsLJyI8nJORiNZtKO5hMU6CkTLgohhAOZi3PR+oXU2K6qKmpJPhq/YIe3qSgKISEhxMTEcPjwYbuiBC8vL3r27Onw6T5mzZpFSUkJ06dP59SpU4SEhHD99dczd+5cACorK7n55ptJT09Hr9fTt29fvv76a7p168Ynn3xCVVUVf//73+16/8LDw7nmmmt49913GTNmjMNirY/Dkrb58+fXu/+JJ55wVFNtVmxML/YfSKF3rz54enra7qe7ubkxdGhfDh06TN++rtdFHxkZQGVpCaeyrYmb2Wxdl3XP7tNUmcDHS0NcXEdJ2IQQwoHK1vyPkk8WEPR/X+LWe4htu6qqlHz4GBVbviJ47nfowro7vO3qxC00NLRFVkRQFIV//OMf/OMf/6h1f33DuG688UYuv/xyfH19a+z74osvHBZjQzgsafvqq6/sHldVVZGWloZOp6Nnz56StAE6nY7YmH617nN3dyc2tn+t+9q9/DR6pb2OGjiFdGM4h1JyATBWmfH1gPist9EdnQB9LndyoEII0T6oFjOGratQy4vIf+pagh77CqVbPAClnyyg8ttXATAe2NwsSRucmXzf398fPz8/22P5A71uDkvaals8vri4mFtvvZVrr73WUc2I9qiiAMVkpHfOx5QH30Z+lY9tV3zuu+gt5ailOSDr0QkhhEMoGi2B//mMgoU3YDzwO/lPXYvvIysBKF/zNlrA744X8Ro3vWXike/2BnH42qNn8/PzY/78+Tz++OPN2Yxo45Qug1AGz6JcE0yp0f7viFxtd+g6DGXgdPmhFkIIB9J4+BD4yOe49b0ItaKYgvmTbPv87ngR70tvd2J0ojbNmrQBFBYWtuisxqJtKguKZVfALVRpvPE2n6mgPeg1kcyOf0FRmv2jKoQQLqc6cTubx+ibJGFrpRx2e/TcQXyqqpKZmcmHH37I5ZfLWCRRt9IyI0lJGRjNGnyUEgaUr+ZnZSQdK/dw2iOBgwdzUVDo1MnP2aEKIUS7oqoqpZ8ttNtm2PEDxtTtdsUJDTmPqJ8jrpHDkrYXX3zR7rFGoyE0NJRZs2bxyCOPOKoZ0Q4VFlZgNJrxcTcTn/sRqJWgQM/K39D6dSTdGE52ThkdO/rKLVIhhHCQ6irRsj+LDnxufsK6qmJFsa044XyJm1ZrXd3HaDTK2tnnYTQagTPXrCkclrSdO9OwEA3VpbM/2qITBKV+iN5STlWXYZABCgq9cz7GO3wyHfuPl4RNCCEc5NyEze+OF3EbPxO+/x59n+FY9m1oUOKm0+nw8vIiJycHvV6PRtP+hrJYLBaMRiMGg6HJr89isZCTk4OXl5dtjtamaNbJdYVoCDU9ibCUJaBarEUHMTdCxhqUhGkoSR/S+fTXsCcbNWGaJG5CCOEIqgVz4WngTNFB9dyhAQ8uo/S5qRhTt2Mpya/3NIqi0LFjR9LS0jh+/Hizh+0MqqpSUVGBp+eFTfCu0Wjo2rXrBZ3jgpK2Bx54oMHHLl68+EKaEu2Zuy9odNA5wVolajIDoHROQNFqUHd8AJ4BkrAJIYSDKBotAXPexjhuOu6x9ktNaty9CXzkc0xpe3DrO/K853Jzc6N3796223/tTVVVFRs3bmTMmDHo9fomn8fNze2CeyIvKGk7d262nTt3Yjab6dOnDwApKSlotVoGDRp0Ic2Idk4J6UXliHtxC474s0rUfGZfxGAq3YPx6NA8kzsKIYSrUrS6GglbNY2HT4MSNtvxGg0eHh6OCq1V0Wq1mEwmPDw8Lihpc4QLStrWr19v+//ixYvx9fXlgw8+IDDQugxRQUEBs2fPZvTo0RcWpWjXiouL2XXgBGFhlURF2S/jlZOTw959x+hp0NK1a1cnRSiEEEI4n8NGDL7wwgssXLjQlrABBAYG8tRTT/HCCy84qhnRDpWVlWEymUhPTyclJcVWFp2bm8vevXtRVZXi4mIpKRdCCOHSHJa0FRcXk5WVVWN7dnY2JSUljmpGtEMdO3akb9++AKSnp3P48GEADhw4gKqqdOjQgX79+smYNiGEEC7NYUnbtddey+zZs/niiy84deoUp06d4osvvuD2229nypQpjmpGtFNnJ26ZmZkAdglbeywjF0IIIRrDYVN+vPXWWzz00EPccssttrJhnU7H7bffznPPPeeoZkQ71rFjR3Jzc8nOzrZtk4RNCCGEsHJY0ubl5cUbb7zBc889x5EjR1BVlV69euHt7e2oJkQ7l5OTQ25urt221NRUoqKi5NaoEEIIl+fwyXW9vb2JjY119GlFO5eTk2MrOggNDaW0tBSwjnEDJHETQgjh8i54ct0FCxbg7e193ol2ZXJdUZecnBySk5MB6NChA7179yYtLY0+ffqQkpJCeno6qqrSp08fSdyEEEK4rAueXLd6/Nq5E+2eTX7RivoUFRUBoNfr7XrUwsLCyM/PJzc3l8LCQlRVdanPkqqqHDmaT2CAJ8HBXnb7LBaVQyk5dOnsj6+vu5MiFEII0ZIcNrnu2f8XojE6dOhAeno6VVVVJCcn069fPwCOHTtmG+PWsWNHlytIOH26lOPHCzl5sojYmHD8/KwzcVssKgcPZZGdXUZubjkjR3RFq3WtayOEEK7IYd/0FRUVlJeX2x4fP36cl156iZ9++slRTYh2ys/Pj4SEBHQ6HUVFRezduxeAEydOANCrVy8iIyOdGaJThIX5EBrijcWisif5NPn5FQAcPJRNdnYZigJ9o0MlYRNCCBfhsG/7yZMns2zZMgAKCwsZOnQoL7zwApMnT+bNN990VDOinfLz8yM+Ph6dTkdxcbFte69evVx2+SqNRmHAgDBb4rZ332kAcnLKURSIjQknJESqs4UQwlU4LGlLTEy0rTH6xRdfEB4ezvHjx1m2bBmvvPKKo5oR7Zifnx/+/v522zp16uSkaFqH6sQtJNiLs1fxkoRNCCFcj8OStvLycnx9fQH46aefmDJlChqNhuHDh3P8+HFHNSPasaNHj5KXl2e3bffu3ZhMJidF1IqcU3/hSgUZQgghrByWtPXq1YtVq1Zx8uRJfvzxRy699FLAuvaon5+fo5oR7dTRo0c5duwYAD169ACwjXFz5cTNYlHZtz+L3Nxyu+17kk+Tl1dex7OEEEK0Rw5L2p544gkeeughunXrxtChQxkxYgRg7XVLSEhwVDOiHTp58qQtYevVqxddunQBICYmxpa47dmzB/Xs+4MuoDphqy46GNA/DICQYC9bcYIkbkII4ToclrRdf/31nDhxgh07dthVjF588cW8+OKLjmpGtEMhISF4eHjUKDrw9fUlPj4evV5Ply5dXO6WYFZWiS1hi40Jt83V1rdvB1txwv4D2ZjNFidHKoQQoiU4dBmr1NRU3n77bY4ePcrnn39O586dOXToEN27d3dkM6Kd8fT0ZOjQoeh0NT+Ofn5+jBgxotZ97V14uC+lZUYCAzwJCfG2TWRdXZxw8GAOXbr4y5QfQgjhIhz2bb9y5Uouu+wyPD09SUxMpLKyEoCSkhL++9//OqqZNs1gMPHR0p3k13JLq6jQwIolOykvNzohMuerLylzxYQNrMUGvXuF1FolqtEo9OvXAT8/WQ1BCCFchcOStqeeeoq33nqLd955B71eb9s+cuRIEhMTHdVMm/b158ns2pHO2y//bpe4FRdV8vbLv7N7ZzorP9rtxAidp7Kyss4xa9V/AAghhBCuzGFJ26FDhxgzZkyN7X5+fhQWFjqqmTbt8knRhIR6U5Bfwdsv/07BnzPcL3lzK7k5ZQQGeXLVtf2dHGXLKy0t5Y8//uDo0aM1Erf8/Hy2bNlCenq6k6JzrsrKSiyW2sesGQwGlyvOEEIIV+awpK1jx44cPny4xvZNmzbZpnBwdf4Bntx530hb4vbKsxsAyMu1Jmx33ncRQecsDO4KioqKqKqq4vjx43aJW0FBAXv27MFisZCXl+dyCUpFRQU7d+5k3759NRK34uJi/vjjDw4fPuxy10UIIVyVw5K2O++8k/vuu49t27ahKAoZGRmsWLGChx56iLvvvttRzTTYxo0bmTRpEp06dUJRFFatWtXiMdSmOnFzc9NiNp/5ZeuqCRtA586diYqKAqxr1lZP/1GdrAQHBzNgwACXqx6tqKjAaDSSk5Njl7iVlJSwa9cuTCYTxcXFdfbECSGEaF8cNsL73//+N0VFRYwfPx6DwcCYMWNwd3fnoYce4p577nFUMw1WVlZGXFwcs2fP5rrrrmvx9uvnWslHQ1TPzZaSksLJkycBsFgshISEEBMTg0bjehWSQUFBxMTEkJycTE5Oji05S05Oxmw24+/vT1xcHFqt1smRCiGEaAkOLct7+umn+b//+z/279+PxWKhX79++Pj4OLKJBrviiiu44oornNJ2fYoKDbz98u8YjWbc3BTA2tv29su/u3RvG1gTt/z8fHJycmzbXDVhqxYcHGxL3HJzcwEwmUwEBAQQFxfnspW1QgjhihzyjV9VVcWll17K22+/TVRUFIMHD3bEaVtUZWWlXZVicXExYH1t1fNjXajiokqWvLmVgvwygkM8mfHXwWzf8RuhHbzIyS7nnVc3MfvvwwkM8nRIe21NQUGB3dg1VVU5fPgw3bp1c7lbo2fz8/MjIiKCtLQ0wHpd+vbti6qqDvtstmXV10CuRU1ybWon16V2cl1q19zXpTHnVVQHjWIODQ1l8+bN9O7d2xGncyhFUfjqq6+45ppr6jxm7ty5zJs3r8b2jz76CC8v1+39EkIIIUTzKS8vZ9q0aRQVFZ13rXaHJW0PPvgger2eZ555xhGnc6iGJG219bRFRESQm5vrsAXvKytNrP58L5dc2YfAIE+qqqpYu3YtEydOpKLczJpvDjDpuv54ero5pL22oqCgwDbQPigoiKioKH7++WdiYmJsvUsREREu2eNWUlJCcnIyJpMJHx8fTp8+ja+vL6qqEhISQnR0tEvfPgbsfo7OniNSyLWpi1yX2sl1qV1zX5fi4mJCQkIalLQ5bECM0Wjk3XffZe3atQwePBhvb/tZ3BcvXuyoppqFu7s77u41Z5fX6/UOe5P0ej3TZg+pdbtXiBfTZw91SDttTXUiVl10YDabAWui5ubmRkpKCqqqotfrXSppKy4uJnX3NiwWHQEBQfTr14/Tp0/Tv39/Dhw4QHn2cVIUhf4DBrh84gaO/Vltb+Ta1E6uS+3kutSuua5LY87psKRt7969DBw4ELBWAJ7NlX7RisYLDQ1l4MCB+Pr6otFobEkbWIsTvL29CQgIcLnPkaYij9jiXzC4BeM74H5UjbVKNCgoiPjIALx2raJYGwVqPxw4e48QQohWymFJ2/r16x11KocoLS21m+w3LS2NXbt2ERQURNeuXZ0YmaiNv79/nfsCAwNbMJLWw1tThQUT7oZTsHMJpoGzAFDzj+G3dzlgIkhfhYJMriuEEK6g3f55vmPHDhISEkhISADggQceICEhgSeeeMKpcVnqGUJY3z7hepTQKDQj7wKtHrL2oe5YBoC67V0wGSAkCmXEXShauY0hhBCuoN0mbePGjUNV1Rr/li5d6rSYMgormPq/7ew+WVRj3/7MYm5++w9OnLWQvBBKaB+UEX8mbjkHrBvN1QnbnSi6muMwhRBCtE/tNmlrjd7emEZqdilzPtpll7gdzCrh78t3cTinjNfXH3VihKI1UkL7oPS53H7bsDtcOmE7cbKQU6dq/vGjqiqpqbnk5pY5ISohhGhekrS1oP9c0Ych3QIpN5qZ89Eu9qZbJ/B94NNkSgwm4rr488SkaCdHKVobNe8oaspa+207PkA1u+YEmAWFFaSm5nEoJdcucVNVlZTUXE6cLCJ5bxaVlSYnRimEEI4nSVsL8tRreenmWFvi9vcVuwBsCdtr0+LwdpdlicQZat5R1M1vWMewBfeybtT8OcZt27sumbgF+HvQtau1cOVQSi4ZGdY/fg4fyePUKev/+0SF4C4/S0KIduaCvtUeeOCBBh/b2udpaynVidtlL/6O8c+lKxSQhE3UoOannUnYQqJQBt8GP/2MMvQ22P6OLXFj2B0uVYygKAq9egYDcOJEEamH8wDIyChBUbT0jQ6lUyfHTIgthBCtyQVlCUlJSXaPd+7cidlspk+fPoB1vjatVsugQYMupJl2Jy23DKPJYnusAoezy4iLqHvaC+GCdB6g0Z0pOlCtHeNKSG+UEXehbnkL3Lzgz/nbXInRaKRrhC+ocPxEvm173+hQAgJ0mM1mtFrXuy5CiPbtgpK2s+dmW7x4Mb6+vnzwwQe2ebUKCgqYPXs2o0ePvrAo25H9mcX8ffkujGYLAzp6A6UAzPloF69Pi5fETdgofh1hzD/BM8BadHDWosJKaB8Y+xD4dURRXGuUQ2Vl5Z9/MCr4+Xez21dRYeDIkUP4+PgQGxsriZsQol1x2Lf9Cy+8wMKFC+0mQg0MDOSpp57ihRdecFQzbVp1wlY9hu3VqXEADOoaYCtOqG06EOG6FN+wOqtEFf/OLpewAZjNZqqqTJSVu5GZWWq379jxEoxV7phMJiwWSx1nEEKItslh3/jFxcVkZWXV2J6dnU1JSYmjmmnTvt192q7owMvN2tH5zHX9bcUJXyVlODlKIVo3T09PgoJ6An6AipvemrhpNNXTfATToUNPWTtRCNHuOGzk+7XXXsvs2bN54YUXGD58OABbt27lX//6F1OmTHFUM23ag5f2JtTXjRsHd8HbXUfVn7e7PP4sTvho20lmjpAltoSoT2GRgdNZ1kmoddoiqqoKAbBY8nF302Os8uRoWiHh4X5SQSqEaFcc9o321ltv8dBDD3HLLbfYkhGdTsftt9/Oc88956hm2jStRmH2Rd1q3eep13L7qNr3CSHOCAzwJCoqGI1GwU3vx549hYC1CjshoRunTxsIDPKShE0I0e447FvNy8uLN954g+eee44jR46gqiq9evXC29vbUU0IIQSqaqFz5ipMFpVtlT3t9h1I3sVA43Y0pr4QdHkdZxBCiLbJ4X+Kent7Exsb6+jTCiGEVX4a6qmd6FDpoc/lVMhoSktLcddr6JnzM4o5F0txOprI4SieAc6OVgghHMahpWe//fYbt9xyCyNGjCA9PR2ADz/8kE2bNjmyGSGECyv3CCfFdzgq0LHqOLGaFAAGmZMIMOdiQseBgHFUab2cG6gQQjiYw5K2lStXctlll+Hp6UlSUhKVlZUAlJSU8N///tdRzQghXJxer6fYtxdpQWNQUdCk7wRAU3gcVefB/oDxmP0i0OlkTJsQon1xWNL21FNP8dZbb/HOO+/YldqPHDmSxMRERzUjhHBxbm5uJCQkEDnyWjQJ0+z2aUbeTZ/hlxITE4NG43pz2KmFJ1FP7ax93+l9qLmpLRyREMKRHPatdujQIcaMGVNju5+fH4WFhY5qRgghcHNzQ6dYUE9ss9uuHtuMh4e7ayZsZXmom15F3b4U9eR2+31ZB1G3vYO6+U3UolNOilAIcaEc9s3WsWNHDh8+XGP7pk2b6NGjh6OaEUIIVFMl6uY3Ie8waD3+3KrAia2oiR+hqi64GoJXIHSOB1TUHcvsEjd151KwmCCsL/h2dFaEQogL5LCk7c477+S+++5j27ZtKIpCRkYGK1as4KGHHuLuu+92VDNCCBdnl7DpPFCG/w0AZeB0XDlxUxQN5gE3UhExjurEzZL0kXWnxURl+BBM8bNQNLIeqxBtlcNG6v773/+mqKiI8ePHYzAYGDNmDO7u7jz00EPcc889jmqmTTMajezbt4/evXvj4+Njt6+8vJyDBw/Sv39/3N1rX2tSCAGUZEHhCWvCdtE9KL6dgb0oneJRtBrU7Ush5xBUloKHn7OjbTEmk4U9yVlUVA4mPkLB6+R6SE8EzQSMHQayl3FodmcxMKETer0kbkK0RQ4tr3r66af5v//7P/bv34/FYqFfv341khNXdvjwYQoKCkhKSiIhIcGWnFVUVLBnzx6MRiMpKSnExMQ4OVIhWi8lsCuMnAMaLUpQN/hzBRYApcsg0OjAvzOKCyVsABaLBaPRTGWlmV3mWOI1iegt1nVZ95iHYKg04eGuw2SySNImRBvlsNujFRUVlJeX4+XlxeDBgwkLC+Pdd9/lp59+clQTbV7v3r3x9fWlqqqKpKQkysqsC1zv2rULo9GIt7c3ffr0cXKUQrR+SkhPa8JW275OcSjeIS0bUCvg5qZj4MBOeLlZqDRp2OV9A0Ua6/i1iiod7jozAwd2wtNTf54zCSFaK4clbZMnT2bZsmUAFBYWMmzYMF544QUmT57Mm2++6ahm2jS9Xk98fLwtcdu501qaX1VVhbe3NwkJCbi5uTk5SiFEW+WWf4iE/PfxMudRqfFlj88U63ZLCQn5H+CRu8u5AQohLojDkrbExERGjx4NwBdffEFYWBjHjx9n2bJlvPLKK45qps2rTty0WvvbE66esBlMlU3aJ4SwUstyUbe9g5u5hH7eR+z2Rflm4KkWWatKC044KUIhxIVyWNJWXl6Or68vAD/99BNTpkxBo9EwfPhwjh8/7qhm2oWqqipUVbXbZjQanRSN82WV5XHTdw/x6aE1NfalFBzjL1//g411TBja3p0+fdp2G/1sqqpy6tQp28ojQijeISjRV1IZPoT9yki7fSlV/SiPGA+9xkNAhJMiFEJcKIclbb169WLVqlWcPHmSH3/8kUsvvRSA7Oxs/Pxca0BwffbuOUliYiIWi8WuZy0pKYm9u13zL+A1xzZxsuQ0z25/zy5xO1x4gjvXziO3ooAP9n9dI9Ft73Jycti/f7/d+EewJmxpaWmkpKSQlJSE2Wx2YpSiNTF2m8AuZTzlFdaig4T4TtbtRjO7KgdR0eNqFEVxcpRCiKZyWNL2xBNP8NBDD9GtWzeGDRvGiBEjAGuvW0JCgqOaadM2/nKQEycP2YoOBg4cCICPjw9VVVWcykhl3Y/7nBxly5vZ7y/M6jcZgGe3v8eXqT8DcP/6ZygyljIguBcvjXvY5X7ZBAQE4OPjg9FoJCkpifLycgCOHz/OsWPHAOjUqVONW+3CNVUaTSQmZVBeXoWHu7Uowc/PWqHu6amnstJM0q4MKiqqznMmIURr5bCk7frrr+fEiRPs2LGDNWvO9JZcfPHFvPjii45qpk1TtCV4eGooKTJz4ogOnc5axZV5Qk9RgRk3dwWtW4mTo2x5iqJwb8J0W+L2YuKHABQZyxgQ3IvXL34MXzdvZ4boFHq9noSEBFvitnv3bgBOnLD2yPbq1YuuXbs6M0TRiui0GtzdtLaE7ewq0fi4cLy89Li5adHpXG+JLyHaC4fO0xYeHk54eLjdtqFDhzqyiTYtMNiTE8eL2Pm7AYMhHdUM7n6wbdNJFI3CRRd70SXC09lhOkV14pZScIydmftt2101YatWnbglJSVRUnImoZeETZxLq9UQF9eRqiozHh7203pUTweiURSZo02INuyCkrYHHniABQsW4O3tzQMPPFDvsYsXL76QptoFT09PPDw1DBvnycafyknacYrhE6z7Roz3wtNLg6enayZtAKmFx9mfZ1/19n3ab9zU53InRdQ66HQ6/P397ZK24OBgJ0YkWiutVoNWW3tPmrubQ/9Gb1PUikLIOoDSbUTNfUXpUJaH0im25QMTopEu6Kc4KSmJqj9nI09KSqrzOFcbi1QXf39/FEXB00tDwjAP9myvAKBfgjvePhoURSEgIMC5QTpJSsEx7lw7jyJjKfFBfeDPYTfPbn8PwGUTt+qig/T0dLvt1atqeHu7bi+kEA2hVlWg/vYylOWAqQKl14Qz+4ozUbe+AVXlMPLvKB36OjFSIc7vgpK29evX1/p/UbuQkBBiYmLYvXsPHTrqiBnsARjoFKFHVaF//3506NDB2WG2uLMTtgHBvXhhzL/Y+PMGpkVfydKDX7ts4ladsFUXHfTo0YM9e/bg7e1NeXm5JG5CNITOA7oMgkNrUJO/tG6LtM4pqm55G6pKIaArBEQ6MUghGkZGpLYgVVXZ9EsGOzdXYLGodOh4Jmfeta2CX9dmYLG41rQWAPvzjlJkLKVvYE9ev/gxfNy8ALgr9kZm9fsLANsyk11uyo+srCxbwtarVy+6dOkCQGxsrK04YdeuXTLlhxD1UBQFpe9V8OcffWryl1h2fWrd+WfCplx0D8qf3ztCtGYXPKatoWRMG3z/9X42bzwGgKpC9V1jVVXJOW0mK+Mker2Wa29yrbEVYZk9iEkZQ3/vKDRj9eB+Zl/X1Dj6H86jb8lQGOu8GJ0hNDSU4OBgAgMD6dq1q20oQnVxwq5du4iMjJQpP4Q4D0VRoO9VqACH1sCp7aCZAP4RKBfdLQmbaDMueExbQ8iYNqugUNDpYMQEL7RaxdZzpCgKoy/14vd15QS73t1RevQKpuf3vck9Wck7r21m9l1DAPh+1QG2/HacTkoP4i/r4nKfI61WS2xsbK2vW6/XM3jwYJe7JqJ+ZVVllJlK6eAZVmNffmUeWkWLv1tAywfWCiiKAp0TUM9eeaVDtCRsok1x2Jg2cX569wrGX+WNVmv9RRsdHc2OHTsA8PTSMOFKb9y9KpwZolOEdfTlznsv4u1XfifjVDFL3v6D7tGw7fdjKIrC9dPiGTLCNae3qC8pk4RNnK3cVM5Pp76jwlTOxZ0vJ8zrzPRLBcZ81mf+hEbRclnEVfi5+TsxUudQi9JRN71qvzF1LaqHl11xghCtmcNrwPfv38+JEyfs1tJUFIVJkyY5uqk2x83NzZawATXWlNRoFZddNL46cXvr5d/Jyiime7R1uysnbEI0hpvGDR+9DyVVxaxLX8PFnS8nSG+dGmb9qZ+oVCoJ8QjFQ+vh5Ehbni1hM/45hm3oXfCztdOhujhBEjfRFjgsaTt69CjXXnstycnJKIr9rT9ABktjnW/rbCdPnjzvMa6kQ7gPHTv7kXY4x7atX0x4Pc8QQlTTaXSM73Qp6zN+IrM8g3Xpa4gLHARApcVIiHcol3S+HDet+3nO1L6oVRWov792JmG76B4U5c/Jh3tdAod/tCZuXiEyV5to9RxWPXrffffRvXt3srKy8PLyYt++fWzcuJHBgwezYcMGRzXTpvXt25dOnTrVuT88PJwBAwa0YESth6qqfP35Xg4fyrXb/s5rmykrNdbxrPbPWGmqs2rWWGlq4WhEa1eduHX06oRJNbEz5w8Agj1CXDJhA1D0nij9/wKB3WpUiSp9LrNWlYbHQHg/J0YpRMM4LGnbsmUL8+fPJzQ0FI1Gg0ajYdSoUSxcuJB7773XUc20aYqi0KdPH/z8/Grs8/HxITo62iXHKVUnbJs3pqEocM2N1r92vX3dyDhV7LKJW0V5FW+9vJlvv9xXI3HLzyvnhf9u4Pdf05wUnWitdBod8cGD7bYNCIx1yYStmhI5AmXMP2sUHVRPB6IMuwNF47p3OUTb4bCkzWw24+PjA1gnkc3IyAAgMjKSQ4cOOaqZNu/48eMUFxfX2F5aWkpaWprLzUUGsP6nw7aE7fpp8Qwcap2PbPZdw/H5M3Fb+vY2l7s2hw/lcOpEIb+tP2qXuBXkV/D2K5spyCvn91+PUmWUoQfijPzKPH5J/9Fu2++nfyWr/LSTImodFE3tU+MoilLnPiFaG4clbQMGDGDPnj0ADBs2jEWLFvH7778zf/58evTo4ahm2rTjx49z9OjRevenpblez8mQERGEhfvWKDroEObDnfdeRGCQJxOv7ONyvZAxCZ2YcrO11/G39UdZ881BAJa8tY2CvHJCQr25896R6N3kF46wyq/MY+3J76m0WIsOru12AwAm1cy69DUun7gJ0dY5LGl77LHHsFgsADz11FMcP36c0aNH8/333/PKK684qpk2zcvLvms+LKzmXErnHuMKfP08uO8/Y2utEg3r6Mu/nriYqL4uOIEdMHxUN1vitmWjNaEvzP8zYbtvJP4Bns4Mz2ksFrXO1UPMZksLR9M6lFaV2CVsl3S+HA+d9fMR7hWOSTWxLn0NBZV5To5UtCaqoeadH7AOW6lrn3AehyVtl112GVOmTAGsayTu37+f3NxcsrOzmTBBSqnBvoK2Y8eOREVFAdgVJ1Qnvq5Gp6v7o1jfPlcwfFQ3Jlza226bqydsX3y0i1Wf7amRuBmNJt5/Yysbfj7spOicx1vnQxefSFvCdvYYttHhE+jo1YmOXp3xc9HJdUVN6uH1qGvno+bZ3wFSVRU1eSXq+mdRS7OdFJ2oTbP+NgwKCnK5W1r1qV6GqGPHjnZFBz179rStK3n2/HZCgLXoIGlnut22jeuOuNwYv2rH0/LZue0kWzcdt0vcjEYTH7z9B6mHcvn5h0MUFRqcHGnLUhSFkWGjmdjlihpFB9VVpWM6TUCryO10AapqQT29F0wG1M2v2yVu6v7VcGQDGIog/5jTYnQWVVVRT9csAANQLWbUrANOiMrKoeUyBoOBPXv2kJ2dXaPH6C9/+Ysjm2qTIiIi8Pb2JjAw0C6ZVRSF3r17ExwcTHBwsBMjFK1Nfl65reigQ5g3YJ2Q+bf11i/Yq6f0d7k/jLr3DObGGQl89mESWzcdByxoPeHjJTtJPZSPm7uW2+8ejn+A600iqygKeqX2Cbp1Uh0pzqIoGhh+J+rWtyAnxZq4Db3TujPtN+sxCdNQug51YpTOoe5fDSlrofcl0H/yme0WM2rSh5CeCPE3o3Qf1eKxOeyneM2aNcycOZPc3Nwa+xRFkcl1/xQUFFTrdkVRXDZhs1gspKam0qlTJ3x9fe32mUwmUlJS6NGjBx4ervVL+OyELSTUm9l/H8qm339h0nUDWPXZPpdO3GITwrGY4/jio91s33KC4RPgSGoebu46Zt4xiMjugc4OUYhWT9G5wfC77BI3NNbhTErCNJRuI50coXMonoGoAKk/owJq1JUAqEkfQ2YiKFrwcM5ScA67PXrPPfdwww03kJmZicVisfsnCZuVqqocO3YMk6nmpKhms5m0tDSXHNN2/Phx0tPT2bVrFyUlJbbtJpOJPXv2cPr0aZKTk13udmBeThklRQZb0YGfvzVpHTKiq6044cTxAkxVrvWZqaqqYteuXSj6HCbfYD8Z9S23JZBbcJR9+/a55M+SEI2l6NxQht9pvzFiqMsmbABKjzEocTdaH6T+jLr/G+v/M3eBorXO69cxximxOaynLTs7mwceeKDWikhhlZqayqlTp8jNzSU+Pt623Ww2k5ycTGFhIRUVFfTr51ozc3fp0oXc3FxKSkrYtWuXbVWIffv2UVxcjEajoU8f15vyo3d0KLP/PowOYT74B3jaxkSCtTjBx9edXn1CXW7Kj8rKSioqKqg0VLFnu33P/i9r99InRotGo8FkMrncWr67dqaTfrKQKyf3q/Hzsn5tKu5uOkaO7e6k6ERrpKrqmaSkWsZu1LwRKMGuO12X0mMMAOruzyBto7UHUtGiDJvttIQNHNjTdv3118tyVefRsWNHdDodxcXF7Nq1y9bjtnfvXgoLC9FqtXTu3NnJUTqHqqp4enraelEAioqK0Gg0uLm5uWyvSe8+oXVWiQ6I64iHh+uNU/Lx8WFA/1iStlWSlWlEpzuTnBw7bCBlr4W4uHiXS9jycsv45INEfv35CN9+ZT+I+rdfjvDD1wdY9Xkyp04UOi9I0apUV4lyZAMASv9rrDvMlTWKE1xSt4vsH3sFQ7hzl5p02Df+a6+9xg033MBvv/1GTEwMer3ebr8sZQW+vr4kJCSQlJRkS9zAmpzodDri4+Px93fOfXJnOnXqFKWlpQC4u7tjMJyp+tPpdBgMBlJTUxk8eLDL9baJmoxGEys/2k9ulgmtDuKHeQAV9EtwJ3mHkbTUCn74+hDX3BiLRuM6n5fgEG+uuTGGLz/Zw2+/WH/ZXna1dVqhtd8fAhQuuzqaLl0DnBekaDVqJGwJ01A6D4ED30NwL8g7ZB3jNnKOS/a4qRYz6o4P7DeWZaPu+xr6T3ba7yKHJW0fffQRP/74I56enmzYsKFGdaQkbdaxOEeOHCE6Opr9+/dTXl5u2xcdHc3Ro0fp168f7u6utUZgt27dMBgMZGZmUllZabfPaDTi5eVFbGysJGwCgKzMEo4dLcDNXct106LJLzxGaSl0itDTs2cvvv5sP/uTs7jkikrbOEBXMXxUNwBb4rb51yMM/3OazMuujubiy6OcF5xoZVQwWn8H2YoO/hyCoQy5DXa+B3lHweRaU+fAWQlburXoQBl8G+w8Zt35Z3GCsxI3hyVtjz32GPPnz+c///kPGo1rT4Zal9TUVPLz8ykuLq7xZqempmI0GklJSSEmxnn3y51BURR69epFXl5erfPURUVFuVwiK+oWERnI7L8Pw2Qykl94zG6fm2chN82IJyIyyOUStmpnJ27VLr48yqUTNkNFFSePF9I7OrTGvsKCCoqLDHTt5loVx4qigUG3QORwlFD7z4a1OOEuKDrlmr1siSvOJGzD7kAJiQaOoQyYAns/tyZuWj1K36taPDaHZVdGo5GbbrpJErZ6GL3DOF1urYo8t6LWaDSSWwEVnq5XyGEymUhOTq5zYuF9+/bZVZUK0TnCm/zCYxgMBjw9rWP+qseLWjTZBAa7ZsJWraK8yu5xeUWVy1VfV6usNPHem1t5742tJCdl2O0rKjTw9iubeee1LZw4VuCkCJ1HUTQ1EjbbPp2bSyZsAErnBNC516gSVbqNtFaV6r1QnDS2zWEZ1qxZs/j0008ddbp2af2hXMprzvZhU2GGdYdqznPX3p04cYLCwkI0Gk2NsZDVxQkHDx502V86wl5FRQVJSUkYDAa8vLyIi4sDIDY2ttZCH1ez/qdUflhtnbG9uohly69pNYoTXIVeryU42BuLRWXFkp12iduSt7aRl1OGl7cbvn7Smy+slI4xKJfOq7VKVOkxBmXiEyiBkU6IzIG3R81mM4sWLeLHH38kNja2xi/fxYsXO6qpNuuyLmZOnwaDGRQVzp6podwEET6QEOp6c9p169aN0tJSiouLMRqNeHp62goTKioq8PX1ZcCAATKmTQDYPgdeXl4kJCTYevd9fHxshT6u+lk5O2G77Opoxlzcne+//x7AVpxw9bWuNRmzRqNw44wEABK3n2LFkp1ceW00APm5ZQQGe3PXfSMJDPJyZpiilVGrqlDqyOPr29fcHNbTlpycbPsC3bt3L0lJSbZ/1VWSrq5Hjx74+PhwzBTIud+Zh43+eHv70KtnT+cE50QGg4GSkhJb0UF1z0n1nH/VCZ0QAB4eHgwcOJCEhIQaYx19fX0ZOHAgcXFx6HSuNR1KXm4ZP31/CKhZdDDpOuutnE3rj5J+ssgp8TlTdeI2cEgXLBaVH1btByAgyEsSNlGDYddasufEYEj8sca+8p+XkH1fAlVpu50QmQN72tavX++oU7VbHh4e9O/fn6pdu6ishOJKqM7dBvmX079/Al5ervflkZeXR2VlZY2ek6ioKLRaLZmZmWRkZNChQweX6iEQdatvSTMfH58WjKT1CA7xZtZfh5CZXsz4S3vb7RsyoisajRY3d53LTvmh0ShcNimaxO2nbNuGj4qUhE3UULHxE9SKYgqen07gQyvQxlhLsCs2LKfsnfsAMPzxDfrucS0em0N62qqqqhg/fjwpKSmOOF27VV5ezq5du6isrCSrHF5Ltm5PL7Vew6SkJMrKypwbpBP4+YZw/LCKxRhs13OiKAr+vh05lmrGTRcuCZsQ5xHdP6xGwlZt+KhuDBzSpYUjaj0KCyr436tb7Lb99O3BGsUJQgTc/RYeQ/8CJiMFz0+ncvc6AIqXPAyA91Vz8Lnx/5wSm0OSNr1ez969e+WX6nkcP37clrC9uRdG9O4AwJKDZxK3tLQ0J0fZ8pK2n+LAnjJWfXaALb+def1ZmcX879WtHEyu4Nefj7jkIGohxIUrLKjg7Vc2k5dTRmCwF/c/Mg6g1uIEIRSdnoD7l9gSt8LFM237vK+ag+/M/zot33HYmLaZM2fy3nvvOep07VKGGsjvmdaEbUx0GP93ZR8AJvYP56198HsmHDcHOTnKljf2kl6Mudg6lu+rT5P5Y8txAN5/6w/Ky4xERAYw+85hLvlHQamxvM5ktcToer2yQjSWoaLKLmG7676RBAVbb4nGDexsS9xSDmQ7OVLRmlQnbmfTdOzp1IQNHDimzWg08u6777J27VoGDx6Mt7e33X6pHoVThZV8dRSujAlj3l/6YTFbpyR48NLeWBQtXyZmENLZ9WafVhSFq67pB8DGdUf4duU+hk+AijIjEZGB3DFnBJ5e+vOcpf0prCzhrp/nERfah/8MucNu34mSTO5cO4+p0Vcys99fnBShEK2fu4eO+MGd2HMwjTtmW4sOqv6c+f/am2NRNSp5RcVERLrW5Lri/Co2LLd7bMk5SWXST3gMvMxJETkwadu7dy8DBw4EqDG2zRV7SGoza2Qk3UO8uahXMFqNguXP2T00isKjV/ZhdK9gxkSFODdIJ6lO3E6nF3Mk9cxfvK6asAEkZR8gteAEKQXWnscH42cBcKo0i7vXP0VWeR6rj6znxqjL8NDJHFNC1EZFxSMhg85ROZg8S4EzhQdmqggYm4muqhSTrgJwze8aUVP5z0so+p+16MBz4mzrxj/HuAU+tMJpiZtUj7awupIyjaIwtk/NJVZcyemMYk6dMx3Brp2nGDG6u5Micq7xEUOZO+Ju5m55g89TfkJjUYgmlPvWP0NWeR7d/Tvz9iVPSsImRD0sqgWD2YBJreLn9B+4pPMVBOisvWobMn4mtyoHN40bRkvtK7II13N2wuZ91Rw8ps6DH37AffCVmLZ+6dTEzaFrThUWFvLCCy9wxx138Ne//pUXX3yRoiLXmxNINF5mehFvv7KF8jIjnc+akuCrT5PtihNczaSe45g74m4UFL46/AsA2eX5dPfvzP8umUuwZ4BzAxSildNpdEzofClhnh2pslgTt9Pl1sKDXEMubho3Jna5kmAP17zLIWoyZR4BahYd+P/9DVtxgjnnhFNic1jStmPHDnr27MmLL75Ifn4+ubm5LF68mJ49e5KYmOioZkQ7dHbCFhEZwKy/DgFg5DjruneunLgZjUau6j6GO2Km2G1/+5In8dF4SkWtEA2g1+jtErf1GT8D4KbRu3zCZjDUvdxbffvaM99bFhD4709qFB1UFycE/udzvC/7q1Nic1jS9s9//pO//OUvHDt2jC+//JKvvvqKtLQ0rr76au6//35HNSPaoZPHC20J2x1zRuDhaR1XctlVfWxVpSkHclwuQTEYDOzYsYP1SZtYfWSD3b7Xd37M1q1bOXJEpkIRoiH0Gj1jOo632xYTnODSCVviHydZNG8dmek1V5z5+YdDvPLsrxQVVjghMudSFAWPwVfWOh5f0enbRyHCjh07eOedd+yWjtHpdPz73/9m8ODBjmpGtENDR0bi4aGnd3Qonl56W2VXdXFCeEdf4gd3cbmClrKyMtLLsnnj2CqKLGVE+XYFrKtofH1s/f+3d+bhdVXl/v/sM5/M89QkndI2SZMm6UhLoS0zDoAoCCqDgCiCCjig9zrgCOJVGRQEUUGuiBcF7/UnCAXagrR0ytgkTdI2YzPPZ8yZ9u+P3bOTk6kDJSfJXp/nydNmr3X2ec/K3ut897ve9110R3Rzc8SHCQQC6PX66U8mEGgcb8DDzhMetiCVfaWkRKaSbE0Jk1XhIxCQ2f12E3bbCE89tpvbv7SJpBQrADu3N7D9lSMA1B7q4pzNi8JoqWAsZ83TFhMTQ0vLxDXe1tZWoqOjz9bbCOYpq1ZnTJolKkkSa8/JxmA4q+GXcwKHycNvh15hKOAgxRDPnZkfB+Ca+K1IwB5nNa/7S9VtvwQCweR4Ax7eaPsXPe5uTDoTFy649MRxH28cf5Uel/ZqtOl0Erd8cQOZ2XE47B6eemw3XR02AN56rQGAy6/ME4JtlnHWZvtPfvKT3HrrrfzlL3+htbWVtrY2XnjhBW677Tauv/76s/U2AoFm6Hb0Y/c6yI5M44tJV+I5sUxRZFnKTekfQkKi2daBJ+ANs6UCwezFG/CGCLaLMz9EijUVgBRrqpqc0KtB4RYRYeK2u85Rhduvf/6O2nb5lXlsu3jyLdEE4eOsLY/+13/9F5IkceONN+LzKcGLRqORO+64gwcffPBsvY1AoBnWpq3kVxd+m4XR6Qx3DnDs2DG17Y7zP8Pq7iLWpOZj1pvCaKVAMLvRS3qijTEMu21clHkpiZYkNQTj/PQLeKdrBw6PA4vBGmZLw0NQuN3/jX+px4pWLxCCbZZy1kSbyWTikUce4YEHHuDIEWUtPCcnh4iIiJO8UiAQTMXqlDxsNhutra0hx+vq6tiUXyyWRgWCk6CTdKS7CqFnIZHZsSFtBslAhm0NDqcHyyLtflft3hWand9Q30PH8WHSF8SEySLBVJz1GT8iIoJVq1axatUqIdgEgveJzWajrKwMn8+nxoZKkkR3dzc1NTUEAoEwWygQzG58vgBdXXZGRgIcLG3H7R4NJ6ir66G7y4HT7mVoaCSMVoaPN16t4/V/1gFw3gVKmSXniRi3ybJKBeHlfYs2nU6HXq+f9mdsRqlAIDg1bDYbBw8exOfzERMTQ2FhIQD5+fmqcDt06JAQbgLBNBgMOlaXLMBqNeB2+0KEW1e3A0mClStTSUzUnpNhrGC7/Mo8Lv5QLgAZWaPJCVoUboGATOn+NgKBieWUvF4/5QePh8Eqhfetpl5++eUp23bv3s1jjz0W1jpSjz/+OD/72c/o6Ohg5cqVPPzww5x33nlhs0cgOFUGBwcJBAJIkkRubq768JOYmEh6ejrt7e0MDg7i9/vFMqlAMA0Wi4HVJQsoLTuOy+Vj7742AFWwpaZEhdnCmScQkGltHgRGkw6CsX433b6WZ35zkOOtg/R02zW3TPq/L1ax550mjjX0cvV1Repxr9fPn585SF1NN0MDLrZclDPjtr1v0XbllVdOOHb48GG+9a1v8Y9//INPf/rT/PCHP3y/b3NG/OUvf+Huu+/m8ccf59xzz+XJJ5/k8ssvp6amhuzs7LDYJBCcKsnJyTQ2NuLz+aisrGTVqlUAtLe3096ubMOTmpqqSU+2P+BHkiR00kSx6gv4MehE3TpBKBaLgZLiDHbvGS1NtWRxgiYFGyglP264dS21h7ooLMkIabNaleSElsYBclemhsnC8LFoSQLv/buJfbuVa+WjH88H4IVnS6mr6cVo0pM5ZrvFmeSszvbt7e1873vf49lnn+XSSy+lvLycgoKCs/kWp8UvfvELbr31Vm677TYAHn74YV577TWeeOIJHnjggVM6x4hXZsQ70VOok8BokEL6TYUkgWmSvl6vjC+gY8QrE0Cetu9UmI1n1tfjk5nOAXqmfb0+mUk8yqfVNzguYz20Xr/MdKuAJgNq8d2T9TUaQHeir88v4z9bffXKRHi2+vYN2HB7AugkZXeE8vJyArLE4fpjSCfESnfvIFkL/WpxXYMe9CfO6w/I+PxT26DXgUF/+n0DARnvB9FXlvFOs2tOsK8/4Od7ux/HKFn4xrpb8PtG7yOHz8XX3/45G9ILuG3VVQDIsoxnmvPqdGA8YcNJ+57GfX825oj329fnC22bL3NEkNO67/Uyxxr7AfAHwBfQ0dg6TEJSDBZLaI3IuTJHBBl7359OX0mvY3lB+qTfSUajkZzc0aLDc2mOOJW+0933+cUL+Lgf/vp8OXv3tOHx+oiMg4bDPRhMBj7zuQ1kLk5839pgfN9TQZLPwtrl0NAQP/nJT3jssccoLi7mpz/9adiXID0eDxEREbz44ot87GMfU49/5Stfoby8nF27doX0HxkZYWRkNBB1eHiYrKwsbvyvRkzWia7hlVl67rxsNAbi7j/Yppzsl6Xruecjo32/8Zwdu3vyYc9O0vHNj0Wqv3/7z3b67ZP3TY/T8Z1rRvv+8EUHHYOT360JURI/un70ifLBlx209E7eN8oi8dANo31/+f+cNHRMfleZDPDwZ0eLJ//6X06qW6e+Ax//3Gjf377hoqxx6rvqoU+biYpQyln8caeL9xqm7vvTz0QSbVWEzAvvunm7ZuraZT+8LpLEaKXvS3vdvFE5dd9vfzyCjARFEP2/gyO8UuqZsu83ropgUbLSd3uFh5f3TR3YfPeHrSzPUJ6ZdlV7+Mvuqfuev+AoGVHDyLLM4e5IKgZXTNn3tgstrF6ifAGVHvPy9JvuKfvesMXCxuVK36oWH0+8NvV2NZ/cZGbLSuVvUd/u4+F/Tt33Y+vNXFyk9G3q8fPQ351T9v3QahMfWWMGoL3fz4/+NnXfi1YZuXqDhaqeeu558wmW234wZd8h87s8cs0Gkqzx2FwB7vtvx5R9z1lm4MatSrmHEa/MPc/Yp+xbstjA5y4aLQ3xxd/apuw7G+aItDiJtZFvc/HFF2M0GufdHPHLm6NUkXeyOeK2DS5sg0oMW50jnrLWqb2xc22OuONSK4XZSt899V6e2zX1fa+FOQKgzxbgOy9Mfd+fn2/kunOVviebIyzDXVyUV0/pbolrbljPI29PXWbpTOaI4eFhkpKSGBoaIiZm+qXo9+1pe+ihh/jpT39KWloaf/7znyddLg0Hvb29+P1+UlNDXbupqal0dnZO6P/AAw/w/e9//5TP39PdwyuvVKu/+/2bgMkngb6+Pl55Zaf6u8dzDjCx+j8oAviVV0YFpcu1DrBM2tdmt4X0tdlXA5GT9nW5XLzyyttj3qcYmHynCo/HwyuvvDLG/kIgbtK+fr8/pG9P70ogYdK+QEjfzr5cIHnKvm+99RYGnfKl0TawHJjaTf/GG29i1isTa/PgUiBjyr47duwgwqBMgMeGFgOZU/Z95513iDYqk0TDcDawcMq+u999lxqT8oV/1LYAWDJl3/f27uWIeQiAJns6MHVshMvtwk5QSEz+9w1SWlZG5+FeANpdSUDelH0rKyoYOKIUFO1yxwNTe8Wrq6txNHcA0DsSC6yasu/hw7V4jyuBuoOeKKBkyr4NDQ280qUsQdi8EcCaKfseO9bIK31KaYIvRHyEt6aeC1llWMy+HXsAGPEbgXOm7Nt2/DivvFIPKN4XOHfKvp0dHbzyyuExR6Z+OJ0Nc4TdbodI2L59OzD/5ojXXnvtlOeI5uYKdY7on2dzxIED+2k9NABAqyMFmPrBTitzhNNnBtZP2be5uZlXho4CJ58jktKUf1dvkqlr2M/ZniOczqmF6Hjet6dNp9NhtVq56KKLpt3/8KWXXno/b3PatLe3s2DBAnbv3s3GjRvV4z/+8Y957rnnOHz4cEj/qTxtxzt6JlW+Z7L0cfjwYbq7u0FvorCgAKPRxFtvvcWmTZuoqa3B5/WRlJjIqsLRm2i6ZYfxyyRnqy+Ee3nUy1tvvcVll1yAyaQ80czn5dGTLTt0HG+lpaUJWZax2Z1YI6IwGg0UF5dgNptD+p7O8uiZ9p0tSx//OraXhw78DoNs4MtRV/Ko/X8xGg385NyvUJC89NSXPOf48uh096fP52XXjjdUT9t8mSOCnMp97/MFqK7uwuUcIS8vhZTkSFxuD9vfeIvzzttCdU0vPp+fgpVpREcr99NcmyPO1n0fnHsvuOACjEbjnJ8jznR5FJSkg7/+qZyj9b3odTLrt8js3wVFa7K49MqV6t9mwnnPYI6YUU/bjTfeOCs38k5KSkKv10/wqnV3d0/wvgGYzeYJX4AAUREmdYluOoyTPxSHkJubi9vtxmazUVd7iMLCQgy6AA111UgBH3ExkRQW5GIcc7JTOe986+v1Shh0AUwmkzoWs9ne9913mra2tjZaW5vVe0wnyRj1MpLso662itWrV2OxTO5lOQ0TTqsvwMQ75Sz1PY3NHa7MPQ+/foSH9v4egy7AiOTk0Qu/R1HyRC+D6TTOezp9Z8X1M01fr1c60cd44mfmbZgNfTesy2Jo2E1iwugStEEXID7Wysb12YyM+IiNneI+mg2f7dS7nnZfl8+J1aCMS3DujYowYTAYcPtdGE+0zcU54nT6jr3vvV4/f3mmlIaaHowmPTd9bg219XsJBGD/njYkScfV1xVNKdzGcip/Z+NpXAzvW7Q988wz7/cUHwgmk4k1a9awffv2kJi27du3h20J12g0UlxcTHl5uVqDC5Snm6ioKEpKSlTPktbo6+sjLi5uUm9tT08PSUlJs/Lh4IOkq6uL+vr6KdvdbjelpaVs2LBhWi/3fMXlc/Ovpn+HHPu/ozsoTFo2aVapQLsYDLoQwTYWi8WAxaK9DGyAmoFDVPQd5MIFl5JiTVOPy7LMvp49tNiauDTrw8SYYqc5y/zjhT+WUlfTjdGk55YvbCB7cSy19fDx64v5n/+uYN/uFiIiTHzoqvwZt21ez2z33nsvTz/9NL///e+pra3lnnvuoaWlhS984Qthsyko3MZ/yWpZsHV2dlJRUUFFRQV+f6ifvLGxkaqqKmpqasJa7y8cJCYmhnh/Fy9eDBCy00h6erpmBdtXdjzIga5qIo2Kh0QnwctH3uTHe58iIIuCwwLBdATkAG2OFrwBL2+0vUa3a3RV6mDvPuoGa3D5nfS6e8JoZXg4d8sSoqJN3PKFDSxdnqQeX7U6g+tuXE1MrIU152SFxbZ5Ldo++clP8vDDD/ODH/yA4uJi3n77bV555RUWLpw6UHQm8Hg8EwSIxzN1xtF8x2q1otfrGRwcDBFuzc3NNDYqQaVRUVGa87T19PSocZZLly4lK0uZJFatWkVkpBJM3tbWNkHozndcPjeff/X+E4LNyn+d/zUA/nPDF9BJEi8feZPv7HxUCDeBYBp0ko4LMi4hLSIDn3xCuLm7AGgYUnZJ2Jh6HktiZr6AbLhZkpPIN++/KESwBSlZl8k3vnsBqWmTJ+l80Mxr0QbwxS9+kaamJkZGRjh48CDnn39+WO1xOByUlZURCARCPGtlZWVKppcGiY2NVb2Pg4ODHDp0CFBEGyiCJdxCOxyM3Z5q7LUS3B5ufB+tUNFaS91wM2bJyHdW3kZB0jIALs4+hy8svBoJid0d5XQMdYfZUoFgdmPQGUKE25ttr6ltG1PPY1ns1Fmo8x2Teeol8+naPmjmvWibTdjtdg4cOIDH4yEyMpLVq1cDihfJ6/Vy8OBBbLZp6hjMY8YKt6GhIfW4VgUbQEZGBhkZSlmC2tpaurqUp+BDhw4xPDyMTqebdKl9vlOcnsfnk6/gc4kfwdDto61N2ZKovr6eJZ4UPhN/MfdmXUda9NSlIgQCgYJBZ2BbxsUhx5ZE52hasM1mhGibQWpqavD7ler1RUVFqvekoKAAg8GA3++nurr6JGeZf8iyzNGjRzEajcTFxYW0ZWRkUF9fr8nlY0mSWLFiBQsWLACgrk5ZshgaGkKv11NSUkJsrLYChEHxLi6zZrLIpAROHzt2DEAVtUXWpaSaEzTphRQIThdZlint3R9yrMXeFBLjJpg9CNE2gwQDyf1+Pw0NDeqXyrFjx/D5fCF9tERzczPNzc3s37+fvr6+kLY9e/bQ1tZGZWWl5hIRQBFuy5cvJy0tLeR4cXGxJgUbKIkYq1evnjJNPpiJfTpp9AKBFglmidYN1gCwJlkpRuuTfROSEwSzAyHaZpDk5GSKiorQ6XT09PRQW1sLKLXjJEmisLBw0hpy852MjAyMRqMaUB/0LAGqmF20aJHmEhGCBAIB3O7QrWZOp4L2fCQyMpKSkhJ0utApzGQyaVqwDQ4OcvxEpfnxdHV10dvbO8MWCWYr4wXbxtTzWB6bC0BqRNpocoIQbrMKIdpmmMTERAoLC5EkKcSrVFBQQHKyNmNwurq68Hq9Ib+Pp7W1VZOeNr/fT0VFBYODgyGxa7W1tXR0dITRsvAiyzKtra0TlkA9Ho9mx8XlclFeXk5dXZ0a5xeku7ub6upqKisrNRs3K5iIL6DMu+OTDs5Pu4C0iAxkAvgC02wrIJhxhGgLA/Hx8ROCxxMTE8NkTfgJ1iNbuHAhVqtV9a4BLF++HIPBQEZGhuY8beMFW2FhIaDUZgPtCjdZljl8+PCUn/3IkSO0tLTMsFXhR6fTqZ7H+vr6EOEW3LZPp9NpLnFFMDmSJLEx9TwuzfzwhKSDYFbpJZkfJiNy6n1XBTOPEG0zTCAQoLa2NkSYgLLZrlYDpyMiItiwYQOLFi3CYAhNpU5ISGDTpk2aXDbu6elRBVtxcbG6J11OTo66hHzs2DHN1WkbGhoKEWzBmnVjl0SPHTsWspewFjAYDERFRam/19fXU1FREdInIiJCs0vHgonoJB2pEemTthl0BpKtKTNskeBkCNE2gwQFW1dXF5IkkZ+vbIERjHHTsnCTJIlDhw5NWLopLS3VZOYoQFpaGr6RBDLSl4UkHUiSxLJlyxjqi2LpknzNeU4MBoPqdY2KimLVqlUAFBUVqYJkrNdJKwSz0sdmYI8tnyMSNASCuY+2ZrUw09DQoAq2goICkpKUasv5+fmqcAsuY2gJv9/PoUOH6OvrQ6fTqV/CEREReDweSktLNRl4X1Xezhv/bOH531fS2T6sHpdlmdf/Xx17dnXy3NNleD3a8rS5XC41vjEqKkr1zprNZiwWZUsrn883wZutBYLCbexWZyASNGRZxuVyTdrm9/s155UVzF2EaJtBMjIyMJlME5IOEhISKCwsxGg0hmROaoXm5mZVsI31FAS3a/J4PBw6dEhziQhLlyexICsWh93Dk4/upqtT8UK++Wo9b73eAMDGzYswmrTlaUtOTmb58uWAsm9tQ4MyFkFPrU6no6SkBKvVGk4zw0Zvb++EhxyPxzNpgo8WkGWZ2tpa9u/fP8GT7/f7qays5ODBgxMytLWAx+Pj6NG+SedWh8NDU/OA5ubd2Y4QbTNIdHQ0GzdunDRLNDExkU2bNmmy9tbChQtJSkqiqKiI+Ph49XjQOxAfH8/KlSs1l4gQEWHic1/aqAq3P/xmLwBvv3UUgCs+XsDmbUvCaWLYyMzMVMMLOjuVkgRjiw6PvY60RFdX15QFuscnJ2gFv9+P0+nE5/NRVlYWItyqq6sZGBjA6/VqztsmyzLl5R00NQ9SXdMdIs6cTg+lZe0cPdpP2/Hhac4imGmEaJthpouz0VoMThC9Xs+qVasm/aINCrdgsLnWGCvcnPbR2D4tC7YgaWlprFgRmvVWVFSkyQcfUJaNxwq2qKgoNmzYENKnvr6e4WFtfQkbDAY1kSco3IKxfmMTfbR23UiSRHyCDpDp6rKHCLeKik48Hj86yUdCvGn6EwlmFG2qhDAxMuLjwMHjDA9PdMPb7SMcOHAcl8s7ySsFWsZqNZK9KFTQ5qxICpM1swe/3z9hya+zs1PTyznBpJRg0oHZbAZQBYkkSZp8OBwv3IJZtVoVbKB42vr72oAegsKttEzJyvZ4/YCHgNzBwEDfdKcRzDDau3vDyJGjfQwPj1BW3hEi3BwOxRU9bBuh4Yi4QQSjyLLMa/84zJ53mkKOP/no7pDkBK0xVdHh9vZ26urqNCncLBYLSUlJk2aJFhQUEBcXR0JCwoQkBa1gMBjUWodBFi9erEnBFkSWZSRcKMJNcR4oeIAuJAKavJdmM0K0zSArlicTE2PG5wtQVt6BzabcIBWVHXi9AaKiTOTlanNXBJ9v6lIn07XNZ4KCLZh0cPmVSgxXeqYS4/b0r9/TpHDz+/2Ul1cwMK7ocHCp9Hh7B4cPa0+4SZJEXl4eRUXFE7JE9Xo9BQWFrFxZoElPG4DD4aKmpibkWFNTE0NDQ4yMaK+sULB0kCIDxq/wBIAA0dExE/Y91gqz9TtJm3dvmHA6PTidHiIijPh8AUrL2gHwegNYrQZcLi8Oh/YmD5fLy969rTS3DE5oGxp2s3tPM13d9pk3LMwc2NeKy+cnryiNj169ko3nLQLg5s+vY3FOAsUbs/jn/9VqruSHzWZncMiERAqrVhWpRYdTU1NZvjwPSKOr26PJwPK6ul4qq7rx+UKvCb8/QHVNDzW1PQQC2hKzAAcPHuW9vc30DwyfELAFAHh9Pg4cbGL3nmO43dqbez0eEzp9NjBemFnQSQvweJPx+7WVAAbQ1+fknX830tvrmNDWdnyQf7/bqDpdZhoh2maQjk47Pp+M0+lFpwu9EVwuH36/THuH9vYF7Ol14B7xceRIX4hwG7aNUF6ueCGPHx/WnOckKzuO6FgL2UsTSVkQM+bzSxSszcQaYWJpXjI6vbYmVUlnRpKsyFhpaXWpIsTr9XO83QeY0OmikSTD9CeaZ7jdPrp7HGoIxljhVl3TTX+/i74+Jw6ntsSJw+FicMgHGIFUcnJySUhIAEAnJQFRBAIGmpu1tTG6LMu0tA7i98uAHsXbdjzYSkA24Hb76O2bKFzmO4fr2ggElFWwscKtvWOIurpe/H6orw9PJrYQbTPI8mWJpKdHA0z6tJuSEknuCu0tj2ZnxbH4RKD9kSN9tLYpmV1VVZ34fAHiYi2sKkzTXMmPtPQY8nKVbWTajg9z5ES8Y/mJzK6ICCMbz8lGr9fWbRwbY6FoVTo6nURvr5Oa2m4AKio7sds9mEx61qxegNmsLdFmNEpYrUNAQBVuHo9SYHhgwAXImM2DWMzaul6sVjNxsW4UUWKkrn6QwSHFcx+QrYCMXjdAVpb2knv8/rHLfDoU8QYwOtf6NRiekrM0DnACEhWVHfT1KXUPGxr6AAlJsrN0aXj2C9fW3RtmJEkiKzN2gpdNaYOszLhJ2+Y7Sh2ldtLTlGKox471A0rcQEyMGb2+F49He4UvARYsiFHjHINeWI/HR0SEkdUlGZoTJkESEyNYVZiGTiepE6rDoQi21SUZREZqr0xBIBAg4HcDnQSF2573Wk+0ykAXcsCluZ0ilGLLhazMT0KS/MiygYqKnhOtMgsWmNmwoUBzCRqSJJGYIANuYARFsI1dJrWhk9wkJGhvF43U1BQKVqYSFG6HqoNZ6opgW12yMGS7uJlEiLYZxG4foay8nUBAZrzTSJYVV+xk5UDmO83NzXR3d9PT00BMTOgEEfC309/fp8kdEYKV3HU6J4vGlfwoWpVKXV0NAwMDYbIu/CQmRpCXF+qZLi5K16Rgg9GahhFWAzB+94NezCaZ4uJiTe4U4XQ6cTqHKSkO3Rw9MUFPSnIkfX3ay9qXZRmbrRflWhl/vTiR6Ccgd2G3ay9kB8YKt7F4wyrYQIi2GaWtbUhJOrAYGK8/rFYDPl+AltahyV88j1m4cCHx8fH4/HqGh0ODO+0OHUajUZM7InR2dtLR0UFNTQ1tbe1jWgKUlpbT29tLdXU1fr+2EhGCeL1+mpsHQ44da+zXZKA9KF/CR44cQZJ06HQJIW2SFIvJZOHIkSOau158Ph/l5eU0NjVRWdkc0tbX76G8/BD19fX09PRMcYb5i8fjQQJMptCHH70+Ehkj0ok+WsXrG/8AaMDnC6/nUYi2GcRotAEOXG4lvTo5adQdrxTVdWAyaq+Eg16vZ9GiFUhSGsolOVa4xZOWvkKTOyKkpaWRkqIsV/h83ZiMwXHpweNxIEk6CgoKQuqUaYX+gSEOHGxTYtiMyucPxriVlrbicmnPY+12u+nvH8DhjCQQMKOUbVA8sbJswmaPYGBgaMqN0+crBoOBRYsWAYn4/EoMW2JC8KvPgEwKMTHxJCaGJ0YpnBiNRmRi8XgU72t2dhzAieSENGSMmEza81z7fD4OHqyjrq73xJFg9QIlxq2iop5AIDyxfkK0zSCSFAlEABJmk4/ly5XAV4vZhxL4GXGij7YYGnZTUXEMWZbR67wECz3CECDT0tJBU7P2lgFdLh8DgxHIRCEBXq8ScC/hQUYiICfT1eXV3LLxwMAwZWXtOJ0+jEYdRUWKsF2Zn4okwdCwl737juF2a6vkh8lkxhqxELCiCLZuJPXLxg+YsVgWYrFoa3k0EAjQ0uoEolBi+3pxu4NzjJKcMGyLwGZzhs3GcCBJEgZDEhAHQEI8LFqo/F+n86LIgzT0Bm1dLwAHDh5mcEhPMIatuCj7RIsLkOjtk6iqOhIW24Rom0F0OjMgIeFkxHOcurrDALhHOlCUvISkM4fTxLDQ0d5BINCNXt+DyTSAhCJCJIaJirQj0cfxtqNhe7IJF+4RHz5fAKs1leTklJC2hdkrAAt2h0dzy4GSpEfCAPhB7kSWg4VBXUh0owgWI1qb3ny+ACMjfkYF21jR2gME8HgDeDzauo+8Xh8ejwzIxMf7kXDidCoCLSbajST5kGUddru2vLOyLKPTW078NsDAQDNHjihCJBDoQpI8gA5k7SU7+bw6FEeKDavFpa70GA1DKMkJOjze8My72vtrhJFFi+KJiDCi07mpqupVg18loLAgHZkIUpK152lbsCCJ9o5mAn43bj8hFdsdDiWTNDMzWXOV3BPirRQXpWM26zh8ODRQOipKR9GqNOLjrZor+REXF0nJ6gwOHz6My+misrISgJqaGmRZJi7Ww8qVy7FYtJX1JkmBE6LVi8kYwDumyL3ZJOHxdiJhPBGGoJ2xMZtNnLNhMZ2dA8TEGCkfOK62RUVZWb48A4djhAULtFXyQ5IkCgvS6O1z4HYZOXJkmI4OZe9Rk9FAUVEmPp+exERtZdUCFBYu4GBlLTr/CC6Xn/379wPg83kxGgfx65wUrFwVFtu0NdvPAlJSokhISMBgCNXLSUlJpKZEaS7YHqC6sR3k0af/ybLbqo+2aW4ZECAmxsThw9UT9tisqanB57NpTrAFMeoNrMzLJSoqCu8JdRIIBEhOTmZRtvZq14ESG6rTBdDrvFgslpA2g8GA0SCj0/knzD1awGIxERNjVAV+kI6ODrq7O8jI0F48GyhxoCnJURO2qoqLiyMmJkqTgg2gV+rmeGo1SXlK1n5wjjEajUSuMNOeWsOg3B8W27Q3s4WZQCBAbW2tehEEOXTokOaW/4LYHKOxJLIMDsfECtxyQHuxW+M3RQ/usRmcYGtqaujs1FYVdwC7bYSnHt3N7584QFpqRkhbTHQKj/9yN889vR+vV1tZkh6PB6fTSSAQwGazodfr1f1YnU4nPp+PkZERzSUiAPT391NZWUkgECAxMZHNmzerbW1tbTQ0NGhufgni8XgoKysLOdbT00NjY6Nmx6TX3YOMTOnQPhwRoyVPBiP6qR6qxC/7GRgRom3eExRsXV1dSJJEfr6yAbhOp6O3t1ezwu3CDUUE9GacXibUrwvI4A7oOG/9Gs0tj/b09KiCrbi4WN1jc9myZWRkKGLl6NGjmivh4HR4sNtH8Hjt1DfUh7TV1h5Clr0MDrjwjGhrXEwmU4iXOiEhgZSUlGn7aAGfz6fOrYmJiRQWFqpzyfLlywFFuGm15EdZWRkOhwOTycTatWvVtqamJs0Kt/XJG1kapVwbA/E9OKxKQs9gpBKmUpywlvz4wrDYpq1vwTDT0NCgCraCggKSkpQYivz8fFW4HT58OMxWzjwtLS1Ifi9W48SlYRkw66C+vk5zk0daWho5OTkUFxcTGxurHpckiRUrVrBw4UJKSko0V/IjJS2aT92yktXnWNDpYPhEYrHdJmMyS2zYEsFnbismMkpbpQr8fj+SJKmCpKenh3feeUdt1+v1SJKkuR0RJEnCbFYSvNLT00Me/hISEjCZTEiSNGFJeb4jyzLl5eWqYCspKVF3hViyZAmgCLfjx49Pd5p5ycjICDTpibTHgASD8b1qW+xgAp4mX9juIyHaZpCMjAxMJhMFBQUkJ48WM0xISKCwsBCTyURmZmYYLQwPsbFJQAYQw3hZppPMwAKio9M1F+8nyzI+XxR+/8SgcVkGry+GQEBbgg1gaGiItuNH0eklersC7P+38hR84N8OnA4wmqCu7pAy8WoIk8nEUIqP8ogWdVk0yOLFizkW18fxeJvmPG2SJKlipLq6mt7e0S/giooKPB4PJpNJc7F+kiSxaNEizGYzJSUlIbUwMzMzycnJITIycoK3VgscPnyYEfcIae4FIcdjDDHEu5MYHh7m6NGjYbFNW1dpmImOjmbjxo2TekYSExOnbJvvtLX1oOx7FweAzOCJf01IcgpIOrq6bCxbFtDUEmlnp53GpgF0OomiVWlERyviLRCQqavvpqvLTm+Pg40btRV4Hx0dTXx8PDqdjuSERMreO5HZ5YXVq1fTdrye+Ph4zRUFbbN18Z33foUv4MfhdHCOvFxt+0frLp5tfQWAgtRl5CcuDZeZM45Op2PlypVUV1fT09NDVVUVOTk5ALhcLiwWS4iXSUukpKSQmJg46fdOdnY2CxYs0OR3Um5uLocPH8af7lHKhZ5g2DdMzooV+Dtlli4Nzz2knZl+ljDdDaDFmwMgJyeNYOV2RbjFnPh/Mkg6ZNnFkqUxmhJsAKmpUSQlRhAIyFRUdjIwoASQ19X30NVlR5JgxYpkTQk2UL6ECwsLSUleyN//pyqk7X+eqyAvt5CcnBzNeWYzo1O5e/UNAPyt7S3+ZdunLvn9uXU7ALcWXE1ewpKw2RgugsItOTkZWZapr1diIccvC2oR8Z00EYvFgpQVoHpIyTYuTlyttpUO7SNqkTVsnlltzfaCWcnuQ8eQGEZWU6iD8Vs6/AEXktTNgRrtFdfV6SQKC9NU4VZ1SMkU7e52IElQWJBGsgbr+gH09jh56tE92IZHSEmPBiAy2kR72xC/e3wfLqf3JGeYn2w053NlzLkAvGkv5dutv1XbLopaw0XW1VO9dN6j0+lYtmxZyLGsrCxNCzbB5FT0lVLRVwrA6qT15MUXAJATo3iv3+16m6ND9VO+/oNEiDZB2IlJSKbbBc6AC6Xa9Ch6XR/DIzBsTNCcpw1GhVtiYgRj8zC0LNh6uuw8+ci72IZHSMuI5rOf3wDAzV/YQNQJ4fbUY3twOrS10bXL5aK5uZnzolZxy5IrlWM+ZQw+nn0Bl0avo729HZvNNt1p5i0ej4fy8vKQY8eOHQuJcRMIAAyS4kVbnbSegoTRIrprkzewPDYPCQm9LjyeNhHTJgg7axYn4e2LxWV3AxYISUeIIs7q4NL1i8Nk3exApwtd6tPrtbX0NxazxYDVaiQyysTtX9qE2aKI+dTUaG7/8iaeenQ3kVEmjEZtLe1YrVZWrVqF3W6nwxFaiy0yKpLc1FwMBoNaOkZLeDweSktLcTqdmM1mCgoK2LlzJ7IsU1VVRWFhoZrNLxCsTFhFakQ6SZbkkOOSJLEhZRPLYleQaAnP9aI914Vg1tHU1HRCsKUAOhISxi5XxBEIRFJVdUhzJT9ASTqoqe2mpye04HBFZSf9/dra4DpITKyFz39lE7d/aRNR0aF79aalx/DFezdz8+3rMZq0JdpAyUR/x1HFzw8+A0CkUYlp+2PNP/h7z9uazAT0+Xwhgm1sDFtSUpIq3Pr7w1MsVTA7GS/YgkiSFDbBBkK0CWYBMbEpQCqgIzExgvw85WZZujThRI84YmKzw2Ve2AgKtmDSwcr8VAASE0aTE7Qq3CKjzFPWYUtIjNSkYAP4U+0/VcF2W8HHefVjv1HbfnfoJR6veEFzDz96vZ6kpKQJgg2ULMHk5GQiIyOJiooKo5UCwakhRJsg7AQCJ55eEiMoLEhVsyEzF8SybJmyJ6CE9r6Eu7psqmArLEgjKUn5ssnPT1GTEw5Vd+H3aytBIxCQqa7poqa2e4IA8fkClJa1c+yY9rwmbbYuHil7DlAE2x1Fn1QzaL9c8ikAfn/oZWr7j4XNxnAgSRJLly5l3bp1E5IOglmlJSUlmisRI5ibCNEmCDspyVGUlGSECLYg2VlxlBSns2JFkuZKOIyM9IM8jCx3YzaPbsmk00no9AOAHZ+vg0BAW9s1DdtG6Op20NlpDxFuPl+A8op2hobcNDYPMDKircr/mdGp3LjkVtbEXBQi2ACuWX4pF6RcxRULrtNUjbYg1e02fvlWE/7ARC/jrvo+nn1Pe1X/AY4c7+Wrf3wXh2tiIer3alv5zgt7NLdN3mxHJCIIZgXxcVNXaQ+NcdMO1T1ezAygAw4cOEBxcTEAtYcP09vTgwR0O8EbgIl7JsxfjvTZcHvbsRii6eyEgF8RZ1WHOrHZvCD30+tyM+hKJ9WsnSmubcDFH9804Ass48nYRr6wZbQe299K23lrbzoScE3uMPnp2klGsI/4+PKfKxh0eXF6fHz3I3lq2zv1vXzz74fxBWQWJ0VwYZ52Yv58/gBf+UsVHQ6ZO599j1/fdA4mg/LQvL/uOF//xzFcPkh5/RBfurwozNYKgghPm0AwS7lsTQ7ljjiCzoGysjIAerq7Aeh0wqLcVUSYtSTZYIHVR4TRi07qR5ZtdHUrSRrDw26Q+5EkO0lWH5EGbS0bZ8Zb+dIFihftqbeb+M2u0WXQh984AsBNm7LJS4sOi33hIsps4JuXL0cvSfyjopMf/L9a1eP23f+rxReQuWxlKltWaCt71KDX8fVLl2PUQWWPnzuffQ+nWykR85//PIrLB0vjDdy0Ne8kZ5p/9NhG+MoLFXQPT/RAHum289X/qcQRJk++EG0CwSxFr5O45yMlIcItSKcTluSt4pyl2vqiAUhLSyMtLQ0AndQP2E+0DCJJyv+X5eRoMrD8gmw93z8/BglFuH30sT1q232bovnoEr3mwgwALlmZyo8/lq8Kt4/+ShmXoGD7wVV5GDRYB3LrygX89KoVqnC79jfvAaiC7Xe3nkOMVXuxfvf/o5Z3Gvq4/bnSEOF2rMfB7c+VsaOul0ffDM/eo9q7SgWCOURH+3FuPX8pg77QZb5FS5aRqrPhcrmmeOX8RZIk8vLySElRsmmlE1ugSSfEW05ODtnZ2ss2drlc1NfXE+kf5v7zo5GAQZeyM8Q9G6JIlmw0NjYyPDwcXkPDRFC4AdjcipfkwtxkzQq2IEHhBjB0oh51doxes4IN4D8/tIKMOAst/S5uf66UHpsyMF95oZJBp5e89Gju3Bae7eC0e6UKBLOcrq4u6uvrKS8rJcEY6op3dzbQ2NhIWVmZJgOF/X4ZlzsGmdClPpkEbHaz5spagFJcNzc3F4BIv41rciDoU0s64YFcunSpJovrBjGOS3TS6yUktOd5HI9FFxpKYNTJ6NHePRQkI87KUzeUqMLt6icUD+SgSxFsT3y6mBhreMJShGgTCGYpiYmJGI1GVYD0nXCqjdUjaWlpmtvUOZglOjw8EjoYKL+OzyrVCn6/n87OTgLoCMiwPhV+dM5ouw893d3deL3a3Jd1x+Ee7vvbIQD0J5aIX6/uDolx0yLv1bby1b83hBw7OhjgzmffmzSrVCsEhdtYEiONYRVsIESbQDBrOXqsMeQLNtGqfNFI0qhWaWpqxuPR1h6bTqeH/kGXmnQwlmByQnuXHY9HWx5In89HZ/cQOgI4faEixOaRMeCnt9+mSdH21qE2Xn2vSo1he+Or5wKKeKtu7OSpfx3UpHALCrZgDNsrX1ZU/tjkBC0LN+e4OcQfALc3vAlOQrQJBLOUI3YTHj90OUEyRTB2T9bmESsBGY4Mg19jt/Hhrn7kQLsq2JYsUWJLgls06aR+HCMt9DvcYbMxHBxps9N61IXPKxNlDF3yizZJ+HwyXW0e9tdqq/DwkMONva2ey7LhztURfP/KXDWG7buXZnFbnswKyzA7ysMTWB4ufP4A33/1SEjSQbRFiWH7wUeWqcLt6Z11YbY0PBzptnP7c0rGftwJz9qgyzshOWGm0dZsPwuw2+1TLtvY7fZJjwu0yYdKsjluzGRRbiGpCaFxSB/blE+VN40LNq7FatJOLTKAxXFGjHrlCTgnJ4fMzEwAVqxYoWaVxphk4qzaWjZekhHB0hVmDMbJY7QMBomsRSZKlmkrps2s03O8QfEuLrY6aTp2TJ2DDYOtmAwSvd0+kjFPd5p5h0Gv4+fXFrE2wzIh6WBzbjo/vWoF5y+K4I6LV4bRyvAQFGzBpIPnP7cWgPRYs5qcEC7hJkTbDNLV1cW+ffs4NmbSCNLU1MS+fftob28Pk3WC2YYkSdyyZRkJ/n46OztD2qoqK7h1UyY5qdqquQVKrF9ERARRUVGqYANlvJYtW4bRaCQ5ORmLxRJGK2cei8VCSsrkm1wHiY+PIzpaW9eMxWpkzboMRkaUZa3W1lbKyspPtMq4nAFiY83kFaSFzcZwYXL4yev2II9MDCWIdgRY3usjEOblwHDw6JtH8Q251aSDaIviaXv0uiIyYs30d9n5w+7msNgmRNsMEow9am5uDhFuLS0tHDt2LKSP1hgeHiYQmHxyGBoa0lxQOYAsy9TX13P8uLLFzvLlywGIiYnB5/NRXl6uyfINNptS6sRut1NbW6teNz6fj4qKCrxeLwMDA5q7l9xuN/390y99Dg0Nac6j7/P58AVsmM06VbjZ7TYAXM4A1ggdRrMfm01b91IgIPO/Lx6i4/gwv3lkN0ODo+WDyg8e53+eK6PpaD/7dreE0crwcFVyJOf0u/jswriQpIPUGDOfTorknAEXl6WGpw6kEG0zSFZWFsuWLQMU4dbU1ASg/rtkyRIWLVoUHuPCSF9fH6WlpVRXV08Qbu3t7Rw8eJCjR49qTrh1dnaqgi03N1dd+isoKCA2Nhafz0dlZaXmSn7ExsZSUFCAJElqWRSAqqoqhoeHMRgMlJSUYDZra7nLarWSn58/5cbnRqORFStWaM7TFrweLBYLZnPoV541Qvk9Pz+fxMTEcJgXNnQ6iUs+ugBrhERfj4PfPLKb4SElDvTlFyqQZVi41ETJOu1s7RXE7VCWPl//31r+vXN0Z5FX/3GYst0tIIPLEZ6HQiHaZpixwq21tVU9rlXBBopHSZZlenp6QoRbZ2cnhw8fBpjSCzefSU1NJTU1ldzcXDIyMtTjBoOBoqIiEhISyM/P11zJD4Dk5GRVuHWf2NbLZrOpX9BaEyageOmPHj2Kx+PBNy571OeV8Xq9NDY2arIgs9VqZenSpZO2JSQkkpqaOsMWhR9ZlgngYv35VlW4/dcP3zrRBlmLDeSuMuJya+96Sc/2sGSF4mH7v78eYs87TQC893YjACtLzMQni5g2zZCVlTXhaXjhwoVhsib8JCUlUVhYiCRJ9PT0qEIt6EHJzMxk2bJlmtt+R6fTkZ+fHyLYgowVblolOTlZLSYbpLi4WJOCTUFiaHAEv0/GYFDulWBGrcGoZI/abR7N3UcAAwMDVFfXTNrW39/HkSNHNOfJlySJwsJCMhYksv58a0hbUqqe/GLziZ1HtOdp8/v9LMs3qcLt1f8dvXZWlpjJWmzE5xN7j2qGpqamCfE2kyUnaAmny0Vubi6SJNHb26seX7BgAQajUXNLgEGm+4LV4pfvWHw+n7p8HKS1tVWTXlmAwQEnsuxDf0Kw5efnh4hag0FCkgJ0ddjCZWJYUOI/KwgmHYxlbHJCV1d3GKwLL52dndhsNnze0FAChz1AbGwCTU1NuN3aKp0DkJeXh8FgYFl+qHMlMkZH1mIjJpNJXTGbaYRom2GamprUpIOxy6HjkxO0RN3RRo40NFBdf5T4+PiQtiHHCE2Njby7r1STYzMyMjKlCHG73ZocEyAkEcNgUEqeBGPcxiYnaAmLVcJkVgSbXq8P8TgajYrHwGCUiIrR1rTv88pUHRzB5QioMWzBuTeYnNDe4qW7Izyek3AhyzIdHR34fD4sVg/RsToSU5RQi4wsI8PDA6eU3DIfaWpqwu/347DJjH02HnEG8IwooQhtbW1hsU1bd2+YCQozUGLYgptaB2MtmpubaWxsDJt94WLPcR8DbtD5PbR3j04Qbh/YB3vxy/BGi/Y8bS6Xi/3793Po0KEJImR4eJi9e/fS0NCgOeE2XrCtWrUKUJ6OtSzcYmJi1AQMv99PWVmZ+oXr9XoxmUysXLlScwH3ZouBTVvSsEaOJh0E516z2YzZrCM9y8KK/KRwmjnjSJKE7EtksN+P0SSxYYuV4g1KmZzFyxUPU8tRmciI+OlOMy9JTU1FliEqRkfxBgu5RYonsmSjFZMZQEdy8vTldT4ohGibQSIiIpAkaULSwYIFC9SYrYiIiPAZGCZuPC+HY+5IBtxgMYBXVi5LiwH8MrzTLvGVD5dobjmwv78fj8dDb29viHCz2WyUlpbi9/vp6urS3NJxsNyHXq+npKSEqCgl9T4pKYmCggIABgcHwxZzEk4kyUJmVh5RUVF4PB4OHVL22rRYLCxclIdeH54yBeHE7/cTkJWg8fz8fDULG6CoqAiTyYReL2suQSMQkNnzTgv7/+3C6QicWD4fnWOP1I5QU+Gg9lBXGK0MD3ve7uTguy78fpnUDAOZCxVPdWy8Hs+IzLtv2qks7T3JWT4YtFVKPcwkJyezfv16IiMjJ7RlZWWRkJAwadt8p6mxkdWxDlrtyr6asaYAwbyc0m7YkiFztKaCxPXrNSXcoqOj0el0BAIBent7VdFWUVGhetdiYmLQ6bT17GUwGDAYDEiSpC77BTGbzeh0OoxGo+bGxen0UFp2HFmWyM7Oxm4fDZ5OSl5Iff0AAOvWZhITo63Cw0EBP/4BJxAIKKIuENCcx1qSYNO2WFqbR7BGhM6rJpOJzMUyKRlGluVpL7EnMclKb4+f/h4/yWmjMkmWZTrafDhsAeITwnMPaWtWmwVMJ8q0KNhAyZKUJMiOBrMhdPJYl6pMLlr7AgZFkK1evVr97H19fcBo+ZPExEQKCws1NzaSJKHT6RgZGaGsrIyREUXi22w2ysvLCQQCmiyDAj5AKZzb0uJAZtSr1trqACQknIC2ig4HAgE18auuri4keaW8vFwVcsHrSCvIsozDMURMnH5CNQO/34/FoiMmVkdPT0+YLAwfBksfF30kMkSwgTL3ZC8xcsGHI5F14Yn109ZsL5iVLFq0iJycHACs+olPuwkJCaxdu1ZTXrYgQeE2/rMnJCRoUrCBstS3evVqLBYLLpeLiooKQCmu6/P5iI2NpaioSE1Q0AoREREUrMwAgpX9E4mKWnLi/xJgZ/nyBGJitLX3aFDkB6mrq1Nji8cuoWvtXgqWFAIl5hGUFR8Y9UiazWZ1btYSbrd7yj18JUnCYJSw2cKTha2tq1QwK5Flma6+wRP/n9jeO2jT3JZE4xkv2rQoYMcyVrgFSxJoWbCB4ik6cuQIMEBQuNns3hOtDqCPpqYmnE5nmCwMD0ajkQ0bNoRcE+Mz/7RYjywQCJy4XkYZv8fxyMiIJvfDXrJkScjvhYWFE/qsWLFipswJQYg2Qdgpr23ANqBkiXa7Qy/JATfoAl7e2XtQczEnoGSJlpaWTsiE7OvrmzSrVEtYLJYJXoDc3FxNCjZQYv0iIiKIsFrJzgoVIKkpcURHRWGxWKbc5mo+Yzab2bBhw6TL5nl5eaSnp4fBqvAzfk4Nety05nUcz/gqDsGEnrE0NDTMlDkhaPsvI5gVNNjNtNigasBAasS47XcMFjodsKvLOMWr5y/jBVtw94PghDo+q1RrDA8Pq7tnBKmsrNRkMVBQarMVFhaSlbWCltbQTMiubi8pqUspLi7WrKj1+XyTeqi1ev9MV61g7JhYrdZJ+8xnxoeejBe3er1ezVSfaYRoE4Sda9cvJCk1g+JEP8hyyDJFssFNTGwM37pSeyU/bDZbSNJBMP6kqKhInVCGhoY0V/ID4OjRo5SWluLz+dQYLbPZjMvlYt++fXR1aa9MAUBPr5O6+n6UpAMHC7NH75mjRwfp6LSHz7gw4nA4OHjw4KRlYMYnJ2iJk235ptfrsVi0lWkMEBcXx7nnnquWExpLYmIimzdvDlt5LiHaBGGnu7ubSFcHyDKpqalqrEDw3wjfMC3HtLc3YEJCAiaTaUKWaHR0NKtXr0av15OSkqI5z0l7ezvNzc0EAgGsVqv6xBuMZfP5fFRXV4ctUDhcOBwjVFd3ERRsq1ZlqPUgJUkRa/X1fQwOaiumzefzTRBs42OW6urqQrbP0wKSJJGYmDjtUmhUVJQma4eCsuvBZLHULpcrrA/KQrQJwo7RaESSJFJTU8nPz1c9asHfAU3G4VitVtauXTtplmhMTAzr169n+fLlmvNAJicnq/XZXC6XWgoluCUPKF82Wiuho9fLGAw2VbAlJY1W+C9alY0k2dDpbBgM2loODNZiC5KXl0dmZiZAyAOP1orryrKs7hwy2RwiSRJDQ0Nh264pnDgcDsrKyiYVbU6nc8q2mUCINkHYiY+PZ+3atSGCLUhaWhrr1q1j8eLFmhMnoATbT/UkbLVaNTkmRqORc845R61sX1dXByibfgMsXryYtWvXai6Y2mKxsG7tCgoK0kIEG0BsbCzFRdmsLlk86ZLPfGbsEt/4pIO1a9eqwu1kS4XzDUmS1I3RJ1vFkGWZ6OhotQyIlmhoaAgRZeP3xHY4HGHbclJbs5pg1hIVFTWlAImOjtakOBFMjdFoJC8vj4yMjJDjy5YtY/HixZoTbKB8yTY2NtLU1KRmAQbx+/00NTXR1NSkucB7vV5PUVERWVlZE7JETSYTBQUFLFmyhLi4uPAYGCZkWebIkSNTJmiAElc7vgyIFvB4DQRlbHJyMitXrgRGhb0M+HzhKeCtvZktjHj9AR598wiDTu+ENpvbx8NvHGHEp72gcoDANPFq07XNdxwOx5TxEzabTXNxfkFaW1s5fvz4hG2sDAYDDQ0NmotPAqUgaH9/P3a7nbKyshDhdujQIQYHBxkcHNRcnTafz0dlZSWtra2qNzaIw+GgurqaxsZG+vvDU+E+XEiSpG56LssyBoOB1atXh/TR6/Vq1rqWcDqGkQCZCGQ5Sn0I9PujkDEjAYODA2GxTYi2GeSn/6rnmd0tfOG/y0KEm33Ex53Pl/PHPS384B+HpznD/MTm9nLrM6W8Wds9oa190MWnfrufyrahMFgWXux2O/v37+fgwYMThFtfXx8HDhygsrJSc8JtcHCQhoYG6uvraW5uDmmrra2ltbWVqqoqzW1LZLVaKSkpwWg0qsItOAZDQ0Po9XqKi4s1uTwaGxsLKMteY4VbZWUlXq8Xk8mkueXRQCCgLvFJkhRybSxYsABQPLThWgYMJ5mZKchYgSR6egPU1LQA4HAagBRkzCxevCAstgnRNoN8an0WiZEm6rvsfOG/yxhyKcLtqy9Wcej4MLFWAzduzA6zlTPPn/e1UdE2xLdeqg4Rbp1Dbm5/roz6LjsP/atec+Kku7sbnz+A3W4PEW79/f3qpvF9/f2TljGYz1gslpDlnKC3YGyWm8Fg1FxWLcCgy4clIV0Vbnv37gVOCJfULLps2ttZxO/309bRTa9LWRZuaGhQ4yC9Xi/+ADT0uBgcHAyjlTOPTqcjMTERUDxtvb296hw7MDDqRQrGjmqJhQsXEhWpAwYB6Okd+9DcR1yshdTU1HCYJkTbTLIkOZInbyhRhdvtfywFoKbdRqzVwG8+U8KKNG097QHcunkRlxek4gvIfOulanbVKRsUf/mFCtoH3WQnWPnFtas0F9fWJ8XyZDWM+BWvW3l5OTBanbumH/7caCUgaes2rm/pDBHwwQ2txy77eTweugaGJ7x2PtPRZ6O0tIyBjhaMsaFfKFGJaXS0NtFQU8XR9r4wWRgevAGJRxsbeLDj77Q6FM9jsI6fPwA/OrqfX3W/TptLW/MLQEFBAYsXLwagqalJrfLvdDoxmUysWbNmQhC+FqipqcHhcGA2uYGxgs2F0eBhaGhowhZgM4W2ZvtZQFC4WQw62odGl2+0KtgA9DqJH1yZrwq3b/9vLQAdQyNkJ1h56obVpMSYw2zlzJMSY6XTrefJQ4pwczgcaltNPzx7GBJjIzHqtXUbp6Wm8EoTOKdwMPa74dVWHQmx2rqfYiItDHjAoANHT2iZhoGu45j1MOiRSIjRVimUEdmFHHGIrUm5PN77/3AFRufd57pKSYzvYU1iIkcdtWG0Mjy8caCMf9UeIjVDWeoLJh0YjUaa3CP86d+7NBcDCSBFRnPY5aTP6QS6GRVuA7TbHdS6HCSEaa/aeTvb//jHP2bTpk1ERETMuqyg5GgzBn3oU11qjPaqTo8lKNyKs2JDjmtVsAEc7rThGPHTaoe3xpVK+nMD+GWobrfh8WkrG/Bo5yA72+FXleAeJ9x6XfBwBbzXEaBvWFt1t5q7+njqkExFL0gSyDJ4DcqSsU6ChkH4daVMTVNHeA2dYVzDXr6U8nk+HHM5FyaU8FTfqHDzmHq5NeEWro3/BObOmDBbOrMMOZx097lYbslnT2MTvjFZxU0OO1FyIiusK3n6re1htDI87G84xgprHkMBM3afE2gHoNftRDIkkGvN58Xdu8Ni27wVbR6Ph2uuuYY77rgj3KaEYHMrSQf2kdDA8vHJCVqka9hN51DovpFVx7WXgBBkc04ixVmx5MTCRZmhbTfngkmnLC1bjOFJPQ8Xa3PS2Lw0jm4X/GXcCsXvahUP3CfXZZKRoK2A+5z0BNanSvypHlW4GX2Kl+ToEPy+FgoSoWSptjZHT0+Op9+jCPgLo7ex0lLCj7r+G4Ab4j+DRWfG7nFx7uqccJo548RGRtDl6cUv+1lszqHF61eFW4w+jWh9ND3eblYtXBZmS2eeEZ8Hd8DNAlMmQwEzjhNxw5IhniRDEsP+YSJ04dmTdd6Ktu9///vcc889FBYWhtsUlaBgCyYd/P4mJb06IcKoJidoVbi1D7q4/bkyOodHWBA36lkbn5ygJSLNBn54WRa35oNRD4dPxAa7fLA0Fr63ycxHV4UnGDacGHQSt5dEsjkdPha6GxGfWQ6XZ8PHciM0FwMJcE2umc3psHucM21fF6xKhBtWmpDQVkKPz+cjM8pBu10p6XFh9DZuS/gsgCrYzPoe/B7tLQPeeell1DprVOHW51dWfKL0UfR4u4mMlNlSkBdmK2eekqRsWl3HVeHmRvHCJhoSGfYPM+ixUZwenuxR7aVXTcHIyEhIiYDhYSWI2ev1TihUeab8/LXD1HcMkRxp4JfXFrIowUwD8ItrVnLvi9U09dh44J81/Oiq/LPyfnOFziE3X36hgt7hEZYmWvjFJwoo3bOTS/OTeK2ml+/9/RCyP5ctK5LDbeqMMjAwwOHqKvQS1PbDX4/I3J0Hzx+W+XQuWAxu9u/fT3FxMXq9drxtQ0NDdBxv44pFijepwy4TDdhGZDIiIT0C6uvriY+P19T2Z5IkUVRUhCmmjZ72NmQZNWHjmqUyUcnpFC7NxGAwnLU5ba6QlJSEy93OuwMtbIorZKEpE6e3nlZ3C/i85CREER0dralxkWWZ0tJSCiKiqXHUkBeZT7IhCedIP33eHggMEzFioqWlZUIR6/lOVlYcTmcfRxxHWBqZR4I+DifdOPwOhj3HybZGk5ERf9aul9M5jyTP8zoKzzzzDHffffdJ07nvv/9+vv/97084/vzzz2t2w1yBQCAQCAQfLE6nk0996lMMDQ0REzN9bOWc8rRNJazGsn//ftauXXva5/7Wt77Fvffeq/4+PDxMVlYWl1xyyUkH8XSQZVldtvF6vWzfvp2LL74Yo9EY0qYlZFnmxYPtbFuRTHK0KWRcdHoDf9rbyifWZBBhmlOX6/vm3w29PPjPGuxeJenApJP5ar6Dn9dE4g1IxFsgJsLE0zetw6yhuLaatn5qqw/hCyhxWr7A6LjEmiVuzYM+j8Rlm9eRoqEEn5buQeqqKzHrlRi25+pAQhmbppFIChIlfAHIWJpLblZ4Mt/CgcPj45o/P0FCTJcawybLfpyOeiIil/O2Yzdv9FXw43O+ynnLtOVRAnjx7beJ8McTpY8KGZcWTzMfWreWpLjYk59knlFVVUV9RyeSIZ5EQ2LIuHR4u4jVjbAsK4tly85OvF9wZe9UmFPfgnfddRfXXXfdtH0WLVp0Ruc2m82YzROzFI1G44Stcs42M/Ees51Pb1w04VhwXG49f+nMGzQLWJWdgEcy4vIrQbDfvGw5tJWSmx7LgVYbXU44Ly+FqAjtCBOAhUlR3H9EoselJB3cck4GOOtZvyiOt44M8+tDsCBGz42xVowaKrC7MC2RN/brIRDg97WwOlXPzz+9ge2vv8ZfjkgEkIg2SWzNSsOoIZGvlz2kxQxzXcJNagzbxnVZ7Pl3PZKkZ2v0VgLIeI2dGI0Lw23ujPL8WzuICCQSbVCSDlLTosABAWCRZRn/PHCQj23aSGKstjJre/wSkjFRTToYMdqwAiOyjwXmLI572pAjIs/a9/bpnGdOJSIkJSWRm5s77Y/Foq0vMMH8ZffRfoZcimD77kdy+fAqpTL5z64poDgrFhnYUdeD26ut/WprO+w02xTB9tmNmdy+RRH1P/hYIVty4uhzQ22vn16btraxqmvt5reHAjxdowi2R2/ejNGgiLPzM438qR6eqJLZe7j5JGeaX9iHPNyYeL0q2M7buJj4GCXkpW/EBsAF0dtwt2qrtNCQw4nBF6FmiaZlxLI5PxeAWme9mpzwp3d2hNnSmaejb2BUsJkcfPzcjQAc97apyQnv1FSHxbY5JdpOh5aWFsrLy2lpacHv91NeXk55eTl2uz3cpgkEp8Tlhalckp/Cdz+Sy1Ulo8s2ESYDj11fxIbF8Xz/ijzNlfw4Z1kK169N57MbM7nrwmVqSIFRr+Oha4vZtiyeb16+nPR4bRWRXbkojc+simJtWqhgA7j/2vVsyzbykWVmzi9cMs1Z5h/pyfE4dB6GTwi2hNjR6+Lqi1fROzJMn9vOh84vCKOVM09sZAR9vkHaPcdJy4hla+FoAtydl3+Iaudhmkea+fCaDWG0MjxYrCY6vO2MmBxct2WzevyWiy+i1dtKu+c4eVmLwmLbvF07+O53v8uzzz6r/l5SUgLAjh072Lp1a5isEghOHYNOxwNXr5w0zjHSbODxTxdrMgZSkiS+dlmu+v+xGPU6/uuT2hwXgLuvWI/f75+QTazX63nw05s0lWU8lqu2FeLz+Sbdj/aTl5dM2TbfueNDl+J2uyddobrno1dM2TbfuW7LZlwuF1brxFpsX7j8sinbZoJ562l75plnkGV5wo8QbIK5xHTiQ6vCBJTPPtXn1/K4AFMKM60KtiDTiTItCrYg04kyLQq2INOJsnAJNpjHok0gEAgEAoFgPiFEm0AgEAgEAsEcQIg2gUAgEAgEgjmAEG0CgUAgEAgEcwAh2gQCgUAgEAjmAEK0CQQCgUAgEMwBhGgTCAQCgUAgmAMI0SYQCAQCgUAwBxCiTSAQCAQCgWAOIESbQCAQCAQCwRxAiDaBQCAQCASCOYAQbQKBQCAQCARzACHaBAKBQCAQCOYAQrQJBAKBQCAQzAGEaBMIBAKBQCCYAwjRJhAIBAKBQDAHEKJNIBAIBAKBYA4gRJtAIBAIBALBHECINoFAIBAIBII5gBBtAoFAIBAIBHMAIdoEAoFAIBAI5gBCtAkEAoFAIBDMAYRoEwgEAoFAIJgDCNEmEAgEAoFAMAcQok0gEAgEAoFgDiBEm0AgEAgEAsEcQIg2gUAgEAgEgjmAEG0CgUAgEAgEcwAh2gQCgUAgEAjmAEK0CQQCgUAgEMwBhGgTCAQCgUAgmAMI0SYQCAQCgUAwBxCiTSAQCAQCgWAOIESbQCAQCAQCwRzAEG4DZiuyLAMwPDz8gb2H1+vF6XQyPDyM0Wj8wN5nriHGZXLEuEyOGJepEWMzOWJcJkeMy+R80OMS1BlB3TEdQrRNgc1mAyArKyvMlggEAoFAIJjv2Gw2YmNjp+0jyaci7TRIIBCgvb2d6OhoJEn6QN5jeHiYrKwsWltbiYmJ+UDeYy4ixmVyxLhMjhiXqRFjMzliXCZHjMvkfNDjIssyNpuNjIwMdLrpo9aEp20KdDodmZmZM/JeMTEx4gaZBDEukyPGZXLEuEyNGJvJEeMyOWJcJueDHJeTediCiEQEgUAgEAgEgjmAEG0CgUAgEAgEcwAh2sKI2Wzme9/7HmazOdymzCrEuEyOGJfJEeMyNWJsJkeMy+SIcZmc2TQuIhFBIBAIBAKBYA4gPG0CgUAgEAgEcwAh2gQCgUAgEAjmAEK0CQQCgUAgEMwBhGgTCAQCgUAgmAMI0XaWeOCBB1i3bh3R0dGkpKRw1VVXUVdXF9JHkqRJf372s59Ned5nnnlm0te43e4P+iOdFZ544glWrVqlFiXcuHEjr776qtouyzL3338/GRkZWK1Wtm7dSnV19UnP+7e//Y38/HzMZjP5+fm8/PLLH+THOOtMNy5er5f77ruPwsJCIiMjycjI4MYbb6S9vX3ac871awVOfr3cfPPNEz7fOeecc9LzzufrBbQ5t0zGAw88gCRJ3H333eoxrc4xYxk/LlqeY8Yy2fUy2+cYIdrOErt27eLOO+/kvffeY/v27fh8Pi655BIcDofap6OjI+Tn97//PZIk8fGPf3zac8fExEx4rcVi+aA/0lkhMzOTBx98kAMHDnDgwAEuuOACrrzySnXSfOihh/jFL37Br371K/bv309aWhoXX3yxuvfrZOzZs4dPfvKT3HDDDVRUVHDDDTdw7bXXsnfv3pn6WO+b6cbF6XRSWlrKd77zHUpLS3nppZeor6/niiuuOOl55/K1Aie/XgAuu+yykM/3yiuvTHvO+X69gDbnlvHs37+fp556ilWrVoUc1+ocE2SycdHyHBNkqusFZvkcIws+ELq7u2VA3rVr15R9rrzySvmCCy6Y9jx/+MMf5NjY2LNsXXiJj4+Xn376aTkQCMhpaWnygw8+qLa53W45NjZW/s1vfjPl66+99lr5sssuCzl26aWXytddd90HZvNMEByXydi3b58MyM3NzVO+fj5eK7IcOi433XSTfOWVV57W67V4vWhtbrHZbPKyZcvk7du3y1u2bJG/8pWvyLIsa36OmWpcJkNLc8x04zLb5xjhafuAGBoaAiAhIWHS9q6uLv75z39y6623nvRcdrudhQsXkpmZyUc+8hHKysrOqq0zhd/v54UXXsDhcLBx40YaGxvp7OzkkksuUfuYzWa2bNnC7t27pzzPnj17Ql4DcOmll077mtnM+HGZjKGhISRJIi4ubtpzzZdrBaYel507d5KSksLy5cv53Oc+R3d397Tn0dr1osW55c477+TDH/4wF110Uchxrc8xU43LZGhpjjnZuMzmOUZsGP8BIMsy9957L5s3b6agoGDSPs8++yzR0dFcffXV054rNzeXZ555hsLCQoaHh3nkkUc499xzqaioYNmyZR+E+WedqqoqNm7ciNvtJioqipdffpn8/Hz1gk5NTQ3pn5qaSnNz85Tn6+zsnPQ1nZ2dZ9/4D5CpxmU8brebb37zm3zqU5+adrPi+XCtwPTjcvnll3PNNdewcOFCGhsb+c53vsMFF1zAwYMHp6xWrrXrRUtzC8ALL7xAaWkp+/fvn9AW/BtrcY6ZblzGo6U55mTjMuvnmLPuuxPIX/ziF+WFCxfKra2tU/ZZsWKFfNddd532uf1+v1xUVCR/6Utfej8mzigjIyNyQ0ODvH//fvmb3/ymnJSUJFdXV8vvvvuuDMjt7e0h/W+77Tb50ksvnfJ8RqNRfv7550OO/fd//7dsNps/EPs/KKYal7F4PB75yiuvlEtKSuShoaHTOv9cvFZk+dTGJUh7e7tsNBrlv/3tb1OeT0vXiyxra25paWmRU1JS5PLycvXY2OUurc4xJxuXsWhpjjmdcQky2+YY4Wk7y3zpS1/i//7v/3j77bfJzMyctM8777xDXV0df/nLX077/DqdjnXr1tHQ0PB+TZ0xTCYTOTk5AKxdu5b9+/fzyCOPcN999wHKU0p6errav7u7e8JTy1jS0tImPMGc7DWzkanG5cknnwSUDK9rr72WxsZG3nrrrWmfgCdjLl4rcPJxGUt6ejoLFy6c9jNq5XoB7c0tBw8epLu7mzVr1qjH/H4/b7/9Nr/61a/UDH6tzTEnG5eRkRH0er3m5phTHZexzLY5RsS0nSVkWeauu+7ipZde4q233mLx4sVT9v3d737HmjVrKCoqOqP3KS8vD5mA5hqyLDMyMsLixYtJS0tj+/btapvH42HXrl1s2rRpytdv3Lgx5DUAr7/++rSvmQsExwVGBVtDQwNvvPEGiYmJZ3S+uX6tQOi4jKevr4/W1tZpP6MWrpcgWptbLrzwQqqqqigvL1d/1q5dy6c//WnKy8tZsmSJJueYk43LWMGmpTnmVMZlPLNujjnrvjuNcscdd8ixsbHyzp075Y6ODvXH6XSG9BsaGpIjIiLkJ554YtLz3HDDDfI3v/lN9ff7779f/te//iUfPXpULisrkz/72c/KBoNB3rt37wf6ec4W3/rWt+S3335bbmxslCsrK+X/+I//kHU6nfz666/LsizLDz74oBwbGyu/9NJLclVVlXz99dfL6enp8vDwsHqO8WPy7rvvynq9Xn7wwQfl2tpa+cEHH5QNBoP83nvvzfjnO1OmGxev1ytfccUVcmZmplxeXh5yPY2MjKjnmG/XiixPPy42m03+6le/Ku/evVtubGyUd+zYIW/cuFFesGCBpq+XIFqbW6Zi/HKXVueY8YwdFy3PMeMZOy5zYY4Rou0sAUz684c//CGk35NPPilbrVZ5cHBw0vNs2bJFvummm9Tf7777bjk7O1s2mUxycnKyfMkll8i7d+/+AD/J2eWWW26RFy5cqNp/4YUXhnzRBAIB+Xvf+56clpYmm81m+fzzz5erqqpCzjF+TGRZll988UV5xYoVstFolHNzc6eNN5iNTDcujY2NU15PO3bsUM8x364VWZ5+XJxOp3zJJZfIycnJstFolLOzs+WbbrpJbmlpCTmH1q6XIFqbW6ZivGjT6hwznrHjouU5Zjxjx2UuzDGSLMvy2fffCQQCgUAgEAjOJiKmTSAQCAQCgWAOIESbQCAQCAQCwRxAiDaBQCAQCASCOYAQbQKBQCAQCARzACHaBAKBQCAQCOYAQrQJBAKBQCAQzAGEaBMIBAKBQCCYAwjRJhAIBAKBQDAHEKJNIBAIBAKBYA4gRJtAIBAINMfHPvYx4uPj+cQnPhFuUwSCU0aINoFAIBBoji9/+cv88Y9/DLcZAsFpIUSbQDBH2bp1K3ffffesOc9Mc6Z2h+vzztTfazb/Pbdu3YokSUiSRHl5eVht2bZtG9HR0ZO23Xzzzaqdf//732fWMIFgGoRoEwjCzG9+8xuio6Px+XzqMbvdjtFo5Lzzzgvp+8477yBJEvX19bz00kv88Ic/nGlz5wyzWbxomc997nN0dHRQUFAQblOm5JFHHqGjoyPcZggEEzCE2wCBQOts27YNu93OgQMHOOeccwBFnKWlpbF//36cTicREREA7Ny5k4yMDJYvXx5OkzWHx+PBZDKF24x5QUREBGlpaR/4+6xZs4aRkZEJx19//XUyMjKmfW1sbCyxsbEflGkCwRkjPG0CQZhZsWIFGRkZ7Ny5Uz22c+dOrrzySpYuXcru3btDjm/btg2Y6EnaunUrX/7yl/nGN75BQkICaWlp3H///SHv5XA4uPHGG4mKiiI9PZ2f//znJ7Xvr3/9K4WFhVitVhITE7noootwOBzqe951113cddddxMXFkZiYyLe//W1kWVZfL8syDz30EEuWLMFqtVJUVMRf//rXkPc4WZ/Ttfvmm29m165dPPLII+oyV1NTk9oeCASmHafg57r33ntJSkri4osvPqXPMd1Yncr7joyM8OUvf5mUlBQsFgubN29m//79U37OM/l7TkYgEOAnP/kJy5Ytw2KxkJqayg033HBG5zoTmpqakCSJl156ifPPPx+r1cqaNWtoampi586drF+/noiICLZt20Z/f/8p2Xzw4EEOHTo04edkgk0gmM0I0SYQzAK2bt3Kjh071N937NjB1q1b2bJli3rc4/GwZ88eVbRNxrPPPktkZCR79+7loYce4gc/+AHbt29X27/+9a+zY8cOXn75ZV5//XV27tzJwYMHpzxfR0cH119/Pbfccgu1tbXs3LmTq6++OkSUPfvssxgMBvbu3cujjz7KL3/5S55++mm1/dvf/jZ/+MMfeOKJJ6iuruaee+7hM5/5DLt27TrlPqdr9yOPPMLGjRvVpbiOjg6ysrJOeZzGfq53332XJ5988qQ2nupYTfe+3/jGN/jb3/7Gs88+S2lpKTk5OVx66aWqUBnP6Y7LVDzwwAM8//zzPPXUU9TV1fHSSy+xdevW0z7PmRKMb3v88cf5yU9+wp49e+jr6+OGG27gpz/9Kb/+9a/ZuXMnVVVV/O53v5sVNgsEYUEWCARh56mnnpIjIyNlr9crDw8PywaDQe7q6pJfeOEFedOmTbIsy/KuXbtkQD569Kgsy7K8ZcsW+Stf+Yp6ji1btsibN28OOe+6devk++67T5ZlWbbZbLLJZJJfeOEFtb2vr0+2Wq0h5xnLwYMHZUBuamqatH3Lli1yXl6eHAgE1GP33XefnJeXJ8uyLNvtdtlisci7d+8Oed2tt94qX3/99afU50zsDto2WfvJxinYp7i4WP39VD7HqYzVdO9rt9tlo9Eo/+lPf1LbPR6PnJGRIT/00EMTPteZjstknHfeefI3vvGN03rNmTDV3+T++++X4+Pj5Z6eHvXYzTffLGdnZ8t2u109dtlll8n33nvvWbH5kksukZOSkmSr1SovWLBA3rdv34Q+gPzyyy+f8XsIBGcbEdMmEMwCtm3bhsPhYP/+/QwMDLB8+XJSUlLYsmULN9xwAw6Hg507d5Kdnc2SJUumPM+qVatCfk9PT6e7uxuAo0eP4vF42Lhxo9qekJDAihUrpjxfUVERF154IYWFhVx66aVccsklfOITnyA+Pl7tc8455yBJkvr7xo0b+fnPf47f76empga3283FF18ccl6Px0NJSQnASfucid0nY7pxCrJ27Vr1/6fyOU5lrE729/F6vZx77rlqu9FoZP369dTW1k74DGdzXK644gruu+8+ysrKuPrqq7n22mtJSEgA4NixY1RXV/PRj34UgL///e/s2rWLX/7yl6f9PlNRXl7OFVdcQVJSknqspaWF66+/nsjIyJBjH/7wh09q86nw2muvnTX7BYKZQiyPCgSzgJycHDIzM9mxYwc7duxgy5YtAKSlpbF48WLeffddduzYwQUXXDDteYxGY8jvkiQRCAQAQpbpThW9Xs/27dt59dVXyc/P57HHHmPFihU0Njae0uuD7/3Pf/6T8vJy9aempkaNBztZnzOx+2RMN05BxoqFU/kcpzJWp/L3GSuAg8fHHxvb/2zwta99jdraWi666CIee+wxcnJyVLtfffVVDh8+rPatrKykqKjorL03QEVFhZqEE6S8vJwNGzaov7vdburr6ykuLj6pzQLBfEWINoFglrBt2zZ27tzJzp07Q2JztmzZwmuvvcZ77703bTzbycjJycFoNPLee++pxwYGBqivr5/2dZIkce655/L973+fsrIyTCYTL7/8sto+9nzB35ctW4Zeryc/Px+z2UxLSws5OTkhP8EYs5P1OVO7TSYTfr//lMdnOk7lc8DJx2o6cnJyMJlM/Pvf/1aPeb1eDhw4QF5e3qT9z2RcpmL58uV84xvfoLS0FKfTSU1NDbt27eLb3/42v/3tbykpKcHlclFZWUl9fT0bN25k4cKF1NTUnNH7BRkeHqapqUn1WAI0NzfT398fcqy6uhq/3x8iGCezWSCYz4jlUYFglrBt2zbuvPNOvF6v6mkDRbTdcccduN3u9yXaoqKiuPXWW/n6179OYmIiqamp/Od//ic63dTPbnv37uXNN9/kkksuISUlhb1799LT0xMiIlpbW7n33nv5/Oc/T2lpKY899piaxRgdHc3XvvY17rnnHgKBAJs3b2Z4eJjdu3cTFRXFTTfddEp9TtdugEWLFrF3716ampqIiooiISHhpK+ZilOx8VTGajoiIyO54447+PrXv05CQgLZ2dk89NBDOJ1Obr311gn9z+TvORkPPfQQqamprFu3Dr1ez9NPP018fDybNm0iPj6egoICnn/+eVWcVlZW8qEPfYif/OQn/OhHP+If//gH+fn5p/WeY6moqECn04UsHZeXlxMXF8eiRYtC+i1ZsoTo6OhpbRYI5jNCtAkEs4Rt27bhcrnIzc0lNTVVPb5lyxZsNhtLly4N8eqcCT/72c+w2+1cccUVREdH89WvfpWhoaEp+8fExPD222/z8MMPMzw8zMKFC/n5z3/O5Zdfrva58cYbcblcrF+/Hr1ez5e+9CVuv/12tf2HP/whKSkpPPDAAxw7doy4uDhWr17Nf/zHf5xyn9O1G5Tls5tuuon8/HxcLheNjY0hIuB0OZmNpzJWJ+PBBx8kEAhwww03YLPZWLt2La+99lpIXNxYTmVcnnnmGT772c9OuZzqdrv5yU9+QktLC1FRUZx77rm89dZb6nu2tbWp153T6SQQCHDLLbcAijdzbD2zk73XZFRUVJCbm4vValWPlZWVTViCraioUJdGT2azQDBfkeQPImBEIBBogq1bt1JcXMzDDz8cblMEU3D//fery+6nS1tbG9ddd526ZLtv3z5+8Ytf8MILLwCKYL/99tvZvHnzKb3XXLteJEni5Zdf5qqrrgq3KQIBIGLaBAKBYF7z2muv8dBDD53RaxsbG0OK0VZWVlJYWKj+XlVVFbId1am81+OPP05UVBRVVVVnZNNM8IUvfIGoqKhwmyEQTEAsjwoEAsE8Zs+ePWf82oKCAhoaGigsLOTFF1+kqqqKCy+8EACfz4fdbicuLu6U3+tPf/oTLpcLgOzs7DO264PmBz/4AV/72tcApSyLQDBbEMujAoFAIBAIBHMAsTwqEAgEAoFAMAcQok0gEAgEAoFgDiBEm0AgEAgEAsEcQIg2gUAgEAgEgjmAEG0CgUAgEAgEcwAh2gQCgUAgEAjmAEK0CQQCgUAgEMwBhGgTCAQCgUAgmAMI0SYQCAQCgUAwBxCiTSAQCAQCgWAOIESbQCAQCAQCwRxAiDaBQCAQCASCOYAQbQKBQCAQCARzgP8P4e2zQTI10z4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# scatter plot normalised residual as a function of threshold\n", - "\n", - "df = data[\"error_norm\"].reset_index([\"threshold\", \"country_iso_a3\"])\n", - "colours = [country_cmap[value] for value in df.country_iso_a3.values]\n", - "\n", - "f, ax = plt.subplots(figsize=(8,6))\n", - "ax.scatter(df.threshold, df.error_norm, c=colours, label=\"Country\", marker=\"x\")\n", - "handles = [Line2D([0], [0], marker='o', color='w', markerfacecolor=v, label=k, markersize=8) for k, v in country_cmap.items() if isinstance(k, str)]\n", - "ax.legend(title='Country', handles=handles, fontsize=9, loc=\"upper right\")\n", - "ax.grid()\n", - "ax.axhline(0, ls=\"--\", c=\"cornflowerblue\")\n", - "ax.set_xlabel(r\"Wind speed threshold, $s_{th}$, $[m s^{-1}]$\")\n", - "ax.set_ylabel(r\"Normalised residual, $\\mathrm{\\frac{p_{d,mod} - p_{d,obs}}{p_{d,obs}}}$\")\n", - "ax.set_title(\"Population disconnected, $p_{d}(s_{th})$, residuals\")\n", - "ax.set_ylim(-1.5, 4)\n", - "\n", - "plt.subplots_adjust(right=0.8)\n", - "\n", - "# N.B. a couple of values are more more than 400% out, therefore out of plot area\n", - "# -1, worst possible score (model 100% underestimated)\n", - "# 0, perfect score\n", - "# + valued, progressively greater model overestimate\n", - "\n", - "# N.B. our residuals, i.e. (mod - obs) / obs are not symmetric about 0 (-1 is the worst possible score)\n", - "# but we plot this measure as a) it's normalised, so can compare across scales\n", - "# and b) something like sign(mod - obs) * mod / obs, would give a perfect 0 for mod = 0 " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "fa3130db", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGmCAYAAAB1BC5lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACfHklEQVR4nOzdd1xTV/8H8M9NCGFvZCiICoqIOEAFZx2g9dE66qotjlqtrdZatY+1rbut1qrVDjusrbNqna2tVXFrxcVSwaooDmTvDSE5vz/4cR8jSQjkspLv+/Xipbn33HvOubkhX849g2OMMRBCCCGE6CFRQxeAEEIIIaSuUKBDCCGEEL1FgQ4hhBBC9BYFOoQQQgjRWxToEEIIIURvUaBDCCGEEL1FgQ4hhBBC9BYFOoQQQgjRWxToEEIIIURvUaBDCCGEEL1FgQ4hhBBC9BYFOqTR2rp1KziO43+MjIzQokULTJ06FU+fPm3o4gH4XxkfPnxY42MvXbqEZcuWIScnR7Bz1pVly5aB4zilbY2xnI2NuvdYCKreE6L9fVlf148+Jw2PAh3S6P3yyy8IDw9HWFgYpk+fjt27d6NPnz4oLCxs6KLp5NKlS1i+fHmVL8H//Oc/CA8Ph4uLS8MUTEtNpZwNSd17TOoO3ZfkeUYNXQBCquPr64uAgAAAQP/+/SGXy7Fy5UocPnwYr776agOXTniOjo5wdHRs6GJUq6mUkzReRUVFMDMzE/ScdF+S51GLDmlyAgMDAQCPHj3it128eBEDBw6EpaUlzMzM0LNnT/z1119Kx1U2VUdFRWH06NGwsrKCtbU1XnvtNaSnp/PppkyZAg8Pjyr5atvUHR8fj6lTp8LLywtmZmZo3rw5hg8fjps3byqd6/333wcAtGrVin88d/bsWbVN3TWpY2xsLF555RVYW1vDyckJr7/+OnJzc6stOwD89ddf6Ny5M6RSKVq1aoW1a9eqTPd8OdPT0zFjxgy4ublBKpXC0dERvXr1wsmTJ5WO+/fff/HKK6/AyckJUqkU7u7umDRpEkpLS+usrjVJe+/ePUycOBHNmjWDVCpF+/bt8e2336q8Bprqouk9rmk+2r4nNTF8+HAEBARg8+bN6NSpE0xNTeHm5oalS5dCoVDofP7nVb4HkZGRGDNmDGxtbdGmTRt+vzbXQ5t7TNXnR9vrp+1nX5vPuDrafk6IcKhFhzQ58fHxAMD/1Xbu3DkEBwfDz88PW7ZsgVQqxaZNmzB8+HDs3r0b48ePVzp+1KhRGDduHGbOnInY2FgsXrwYcXFxuHLlCiQSic7lS0pKgr29PVavXg1HR0dkZWVh27Zt6NGjB6KiotCuXTu88cYbyMrKwtdff42DBw/yzew+Pj4qn+XXtI4vv/wyxo8fj2nTpuHmzZtYtGgRAODnn3/WWPZTp05hxIgRCAoKwp49eyCXy7FmzRqkpqZWW+/Q0FBERkbi008/Rdu2bZGTk4PIyEhkZmbyaWJiYtC7d284ODhgxYoV8PLyQnJyMv744w+UlZVBKpXWaV2rSxsXF4eePXvC3d0d69atg7OzM44fP445c+YgIyMDS5cu1boumt7jmuSjy3uiSUREBPLy8vDll1/iww8/hJOTE37++WesWLECbm5ueOONN3Q6vzqjR4/GhAkTMHPmTP7xs7bXQ5t77Hl1cf20+YyrU5s6EB0xQhqpX375hQFgly9fZjKZjOXn57M///yTOTo6MktLS5aSksIYYywwMJA1a9aM5efn88eWl5czX19f1qJFC6ZQKBhjjC1dupQBYO+9955SPrt27WIA2M6dOxljjE2ePJm1bNmySnkqj1dVxoSEBLX1KC8vZ2VlZczLy0sp7y+++ELlsarOWdM6rlmzRumcb7/9NjMxMeHTqdOjRw/m6urKiouL+W15eXnMzs6u2rpbWFiwuXPnajz/gAEDmI2NDUtLS1Obpi7qqm3awYMHsxYtWrDc3FyldLNnz2YmJiYsKyurRnVR9x7XJJ+avCfaSkxMZABY69atWU5ODr+9rKyMOTs7s2HDhqk9dsiQIWzXrl01zrPyPViyZEmVfdpeD23usefvy5pcv5p89p+l7jOuqjza1IEIix5dkUYvMDAQEokElpaWGDZsGJydnfH333/DyckJhYWFuHLlCsaMGQMLCwv+GLFYjNDQUCQmJuLOnTtK53u+X8+4ceNgZGSEM2fOCFLe8vJyfPbZZ/Dx8YGxsTGMjIxgbGyMe/fu4fbt2zU+X23q+NJLLym99vPzQ0lJCdLS0jTmc+3aNYwePRomJib8dktLSwwfPrzacnbv3h1bt27FJ598gsuXL0MmkyntLyoqwrlz5zBu3Di1fSjquq6a0paUlODUqVMYNWoUzMzMUF5ezv8MHToUJSUluHz5stZ1Uacm+ej6nqhz7do1ABWPZKytrfntEokEnp6eyMjIUHvs9evX0aVLl1rn/fLLLyu9rsn1qO4ee15dXT9dPuM1rQPRHQU6pNHbvn07rl27hqioKCQlJeHGjRvo1asXACA7OxuMMZUjLFxdXQGgSpOws7Oz0msjIyPY29sL1nQ8b948LF68GCNHjsSRI0dw5coVXLt2DZ06dUJxcXGNz1ebOtrb2yu9lkqlAKAx/+zsbCgUiirXB6h6zVTZu3cvJk+ejJ9++glBQUGws7PDpEmTkJKSwp9fLpejRYsWGstQl3XVlDYzMxPl5eX4+uuvIZFIlH6GDh0KAHwAoE1d1KlpPrq8J+pcv34dEokEY8eOrbIvKSkJbm5uACq+0D/++GO4urrC09MTe/bsQVFRkcZHM9V5/r2tyfWo7h57Xl1dP10+4zWtA9Ed9dEhjV779u35UVfPs7W1hUgkQnJycpV9SUlJAAAHBwel7SkpKWjevDn/ury8HJmZmfyXoImJiVLH2Eqa/sp91s6dOzFp0iR89tlnVY63sbHR6hzPqk0da8PW1hYcx6n8havNL2EHBwds2LABGzZswOPHj/HHH3/ggw8+QFpaGo4dOwY7OzuIxWIkJiZqLEN91FVd3pUtR7NmzVKZplWrVgCgVV2EyEfX90Sd69evw8HBQamVAwCuXLmCBw8eYPHixQCAhQsXIjY2FlFRUSgvL0evXr3QqVMniES1/xv5+Q79Nbke1d1jz6vp9dP2s6/LZ7ymdSC6oxYd0qSZm5ujR48eOHjwoNJfUgqFAjt37kSLFi3Qtm1bpWN27dql9Pq3335DeXk5XnjhBQCAh4cH0tLSlDorlpWV4fjx41qVieM4vqWg0l9//VVlkkNtWllqW8faMDc3R/fu3XHw4EGUlJTw2/Pz83HkyJEancvd3R2zZ89GcHAwIiMjAQCmpqbo168f9u3bpzZorK+6qmJmZob+/fsjKioKfn5+CAgIqPJTGQxrUxdA9Xtck3yEfE+edf36daSnpyvN7yOXy7Fw4UJ4eHhg4sSJSEpKwubNm7F9+3Y4OTmhefPm6NWrl06PrVSpyfV4lqp77Hk1vX7afva1/YxXR5s6EN1Riw5p8latWoXg4GD0798fCxYsgLGxMTZt2oRbt25h9+7dVf6CPHjwIIyMjBAcHMyPuurUqRPGjRsHABg/fjyWLFmCCRMm4P3330dJSQm++uoryOVyrcozbNgwbN26Fd7e3vDz80NERAS++OKLKo85OnbsCADYuHEjJk+eDIlEovaRQE3rWFsrV67EkCFDEBwcjPnz50Mul+Pzzz+Hubk5srKy1B6Xm5uL/v37Y+LEifD29oalpSWuXbuGY8eOYfTo0Xy69evXo3fv3ujRowc++OADeHp6IjU1FX/88Qd++OEHWFpa1ltdVdm4cSN69+6NPn364K233oKHhwfy8/MRHx+PI0eO4PTp0zWqi7r3uCb51OQ94TgO/fr144ewq5KQkIDMzEy4u7tj7NixmD9/Pn+PR0RE4OzZszA2NsapU6fQvXt3NGvWjD82PT0d/fv3r3GeQlx3be+x59Xk+mn72df2M/68mtRBiOtK/l8Dd4YmRK3K0QrXrl2rNu2FCxfYgAEDmLm5OTM1NWWBgYHsyJEjSmkqR05ERESw4cOHMwsLC2ZpacleeeUVlpqaqpT26NGjrHPnzszU1JS1bt2affPNN1qPusrOzmbTpk1jzZo1Y2ZmZqx3797swoULrF+/fqxfv35Kxy9atIi5uroykUjEALAzZ86oHclVkzqmp6dXW051/vjjD+bn58eMjY2Zu7s7W716dbV1LykpYTNnzmR+fn7MysqKmZqasnbt2rGlS5eywsJCpePi4uLY2LFjmb29PZ/HlClTWElJSZ3VtSZpExIS2Ouvv86aN2/OJBIJc3R0ZD179mSffPJJlWulTV1Uvcc1zUeb9yQ/P58BYBMmTKhy/LN+++03BoBdunSJhYaGMisrK2ZpaclGjBjB4uLi+HTr169n48aN41+npqYyExMTFhERUeM8GVP/HlSq7npoe4+pek+1vacZ0+6zX5PPeG0+JzW5rqR6FOgQg1HdL1pCmrK//vqLcRzHbty4oTHd+++/z8zNzVl5eXm153N0dGQPHz5k6enpbPDgwUwikSgFcdrmSWqGrquw6NEVIYTogTNnzmDChAn84zJ1rl+/jq5du0IsFmtMN2TIEAwdOhQdO3ZEixYtMHDgQKSkpCj1TdE2T1IzdF2FxTHGWEMXgpD6sGzZMixfvhzp6el1NnKHkMaMMQZbW1u8/vrrWL9+fUMXh5B6QYEOIYQQQvQWDS8nhBBCiN6iQIcQQggheosCHUIIIYToLQp0CCGEEKK3KNAhhBBCiN6iQIeotHfvXnTo0AGmpqbgOA7R0dF1ltelS5ewbNkypXV3gIrh4BzHab2YZn0Qukxbt24Fx3F4+PCh1nkbClXXRt29AjSO+yUpKQkcx2Hz5s21On7FihXw8fGBQqGo1fEFBQUQi8VYu3ZtrY4XujykcduyZQuaN2+OwsLCGu1raijQIVWkp6cjNDQUbdq0wbFjxxAeHl5nCykCFV9ey5cvV/nlRQzXf/7zH4SHh8PFxYXf1tjvFXNzc4SHh+OVV16p8bFJSUlYs2YNVqxYUevVwSMiIqBQKNCjR49aHS90eUjjNnnyZJibm2PNmjU12tfU0N1Lqrh79y5kMhlee+019OvXD4GBgTAzM9PpnEVFRQKVrnHnSYTj6OiIwMDAKqtEN2bW1tYIDAyEhYVFjY/duHEjbGxsNC5QWZ3r169DLBbD39+/1ucQsjykcTMyMsKbb76JjRs3Vvl9qWlfU0OBDlEyZcoU9O7dG0DFSr4cx+GFF14AAFy8eBEDBw6EpaUlzMzM0LNnT/z1119VzlH5CCEyMhJjxoyBra0t2rRpozK/ZcuW4f333wcAtGrVChzHgeM4pRV7U1NT8corr8Da2hpOTk54/fXXkZubW6M87927h4kTJ6JZs2aQSqVo3749vv32W6VzpKenY8aMGXBzc4NUKoWjoyN69eqFkydPVim3NmXS9nqp8tdff6Fz586QSqVo1aqVII8i/v33X4SGhsLDwwNSqRROTk4ICQnBnTt3dD63JrGxseA4Dvv27eO3RUREgOM4dOjQQSntSy+9xH9JP//oSpt7BdDuvVEnJCQEvXv3xokTJ9C7d2+YmZnBw8MDe/fuBVDxSDcgIABmZmbw8fHBmTNnqhzft29f/vWAAQPQv39/nDt3DoMGDYKFhQWcnZ2xYsUKpePKysqwZcsWTJw4sUrrydWrVzF+/Hh4eHjA1NQUzZo1w6hRo3D//v0q5b927Rp8fX1x6dIl9OnTB+bm5vD09Kxyr1d3L2gqz/DhwxEQEIDNmzejU6dOMDU1hZubG5YuXWrwj7ia4rV59dVXkZeXhz179tRoX5PSoCttkUYnPj6effvttwwA++yzz1h4eDiLjY1lZ8+eZRKJhPn7+7O9e/eyw4cPs5CQEMZxHNuzZ4/SOSoXz2zZsiVbuHAhCwsLY4cPH1aZ35MnT9g777zDALCDBw+y8PBwFh4eznJzc/nztGvXji1ZsoSFhYWx9evXM6lUyqZOnap1nrGxscza2pp17NiRbd++nZ04cYLNnz+fiUQitmzZMv4cgwcPZo6OjuzHH39kZ8+eZYcPH2ZLlixRqp+2ZdL2eqlaafnkyZNMLBaz3r17s4MHD7J9+/axbt26MXd3d5WrLWvj7t27zMLCgg0fPpwdOHCAnTt3ju3evZtNmjSJPXnypFbnrAkXFxc2Y8YM/vXq1auZqakpA8CePn3KGGNMJpMxKysr9t///pcxVvXaaLpXGNP+vdHEwcGBubm5sW7durHdu3ezv//+m1/1eu7cueyFF15gBw4cYIcPH2YtW7Zkrq6uVY6fO3cu/9rW1pZ5eHiwLl26sO3bt7NTp06xsWPHMgDs7NmzfLrz588zAOzo0aNVyvTDDz+wTz/9lB0+fJidO3eO7dy5k/n4+DA/P78qadu0acOaN2/OunXrxvbs2cOOHTvGhg0bxgCwQ4cOMca0uxc0lcfFxYWZm5uz9u3bsx07drATJ06wCRMmMABs8+bNWl1nfdVUr0379u3Z6NGja7yvqaBAh1Rx5swZBoDt27eP3xYYGMiaNWvG8vPz+W3l5eXM19eXtWjRgikUCn575RfOkiVLtMrviy++qPJl/+x51qxZo7T97bffZiYmJlrnOXjwYNaiRQv+C7HS7NmzmYmJCcvKymKMMWZhYaH0JaWKtmXS9nqpCnR69OjBXF1dWXFxMb8tLy+P2dnZ1TrQWbp0KTMzM2NyuVxtGoVCwSwtLVlycrLSayFWe3/ttddY69at+deDBg1i06dPZ7a2tmzbtm2MMcb++ecfBoCdOHGCMab62qi7VyrrqO39osrDhw8ZANatWzdWWlrKb9+5cycDwF588UWlc6xevZoB4O+fyuN37NjBGGPs/v37DADz9/dXWvE7MTGRAWCbNm3it33++ecMAEtJSdFYRrlczmQyGfvpp58YAJadnc3vy8rKYgBYhw4dWFFREb+9sLCQ2dnZsfHjx/PXqbp7QV15KsveunVrlpOTw28vKytjzs7ObNiwYRrLP2TIELZr1y6NaepSXebfkNem8rOalpZWq+NfffVV5uTkVON9TQU9uiLVKiwsxJUrVzBmzBilvgdisRihoaFITExU+fjj5ZdfFiT/l156Sem1n58fSkpKkJaWVm2eJSUlOHXqFEaNGgUzMzOUl5fzP0OHDkVJSQkuX74MAOjevTu2bt2KTz75BJcvX4ZMJqtVmWp7vYCKa33t2jWMHj0aJiYm/HZLS0sMHz5cbXmq4+DggKKiIkydOhX//PMP5HJ5lTQPHz6EVCqFs7MzgIrHfY6OjoIsgDpw4EA8ePAACQkJKCkpwcWLFzFkyBD0798fYWFhAICTJ09CKpXyj05rqyb3y7MiIiIAACtXroSxsTG/PS8vDwCwevVqpVFvBQUFkEgksLS0VDq+a9euAIDIyEgAFSOXnu1nlJmZCQBwdXXlt1WO1nr+WjPGsH//fgwYMACurq4wMjKCRCLBG2+8AZFIBFNTUz7t9evX+fI/u93MzAxeXl5ITU0FoN29oK48165dA1DxGNHa2prfLpFI4OnpWe2It+vXr6NLly4a09QldfmfPXuWfxRa3Y+6EagNeW3i4+Nhb28PR0fHWh3frFkzpKWloby8vEb7mgoKdEi1srOzwRhTGv1SqfKXdeUv72epSl8b9vb2Sq8rvzSKi4urzTMzMxPl5eX4+uuvIZFIlH6GDh0KAPwvoL1792Ly5Mn46aefEBQUBDs7O0yaNAkpKSk1KlNtrxdQca0VCgUfbDxL1TZtzZw5E6tXr8bVq1fRu3dvuLi44N133+W/xOPi4tC+fXtkZ2fDwsIC/v7+iIyMROfOnfHmm2/CxsYGPj4+iI+Pr1X+gwYNAlARzFy8eBEymQwDBgzAoEGDcOrUKX5fr169lL6ka6Mm98uzIiMjIZVKMWDAAKXtERERcHV1hZ+fn9L2qKgo+Pr6wsjIiD/e3Nwc3t7eSuerrPuz+QBQ+lIrLi6GRCKBWCxWSjtjxgy88sor8PHxwaZNm3DhwgVcu3YNnTp1gqenp1IAdf36dZibm1cJ9AAgJSUFbm5uAKq/FzSV5/r165BIJBg7dmyVPJKSkvg8AKC8vBwff/wxXF1d4enpiT179qCoqAjt2rWrcmyljRs3YuzYsZg4cSKsrKzQo0cPpKSkYM6cObCzs4Ovry8ePXqklMeSJUvg6uoKe3t7vPvuu2D/v051TfJv164dNm/erNWPu7u7yrLX9bXRVNeoqCh06tQJr7/+OqysrNC9e3ckJCTwx/77778YNGgQ7OzsYGtri3feeUfp3CYmJmCMoaSkpEq+mvY1FUYNXQDS+Nna2kIkEiE5ObnKvqSkJABQ+Vd/Q8z58nyetra2fEvKrFmzVB7TqlUrABV12LBhAzZs2IDHjx/jjz/+wAcffIC0tDQcO3ZM6zLU9npVHstxnMrgStU2bRkZGWHhwoVYuHAhEhMT8eOPP2LlypUwMTHB559/Dh8fH6xYsQIPHz7Epk2bAAALFy7E9evXsXfvXnz33XeYNGkSNm/ejM8//7zG+bdo0QJt27bFyZMn4eHhgYCAANjY2GDgwIF4++23ceXKFVy+fBnLly+vdR11FRERgU6dOkEikShtv379OgICAlSmHzZsmNLrzp078513IyIi4Ofnp9Q6VHk+BwcHpS9MBwcHlJWVobCwEObm5gCAO3fu4KeffsKaNWv4TthARWAeGxuLcePGVTlvs2bNqgQnly5dwqNHj/Cf//wHQPX3grryPFv2Z1sbAeDKlSt48OABFi9ezG9buHAhYmNjERUVhfLycvTq1QudOnXSOFT9xo0buHr1Kg4ePIiff/4ZPXv2xMCBA7Fx40asX78eo0aNwtatW7F06VIAwPz585GQkIBbt25BJBKhf//+2L17NyZOnFij/F1cXPDGG2+oLZc26vraaKprVFQUwsPDsWfPHnz//fd4/fXXsXjxYuzcuRNARafi+fPnIywsDPn5+bh7967SubOysiCVSlWOFtS0r6mgFh1SLXNzc/To0QMHDx5U+qtYoVBg586d/JdYbWn7F3dtmJmZoX///oiKioKfnx8CAgKq/DzfAgAA7u7umD17NoKDg/m/wLWly/UyNzdH9+7dcfDgQaW/oPLz83HkyJEalUOdFi1a4KOPPoKpqalSc/SNGzfQqVMn/nVUVBSWL1+OwMBAiEQitGnThv8LsjYGDRqE06dPIywsDMHBwQCAtm3bwt3dHUuWLIFMJqvS+vG8urxXIiMjqwQ0JSUliI2NrbI9OTkZKSkpSsO4IyMj+cdWQMX1UxcgPT/8u7IV6NmRVJUtFz4+Pkpp3333XZSXl1c597Vr15CUlKQ0x1B5eTkWLlwIb29vlY+S1d0LqsoDVHyZp6enK+Uhl8uxcOFCeHh4YOLEiQAqAvrNmzdj+/btcHJyQvPmzdGrV69qH83cuHEDy5cvh7+/P0xMTNCmTRuMHTsWgwYNgpGREby9vflHbYmJidi2bRu2bdsGOzs72NjYYOjQoYiIiKh1/rqoy2ujqa5Axb324Ycfon///jA2NsakSZMQGxvLH//gwQPI5XIoFApYWVlVuXcePHhQ5T7TZl9TQYEO0cqqVauQmZmJ/v37Y//+/fjjjz8wdOhQ3Lp1C2vXrtWp9aZjx44AKpqtw8PDcf36deTn5wtVdGzcuBGPHz9Gnz59sHXrVpw9exZHjhzBl19+yT+myM3NRdeuXbF27Vr8+eefOHfuHNauXYtjx47xX8o1ocv1WrlyJVJSUhAcHIzDhw/jwIEDGDhwoNJf1s96dgoAVWbPno3Q0FBs374dZ8+exb59+xASEgJjY2O8+eabfLqYmJgqgU7l4z2gYph45Regtnk/a+DAgcjIyEBUVJTSNR04cCBOnDgBW1vbaud/qat7JTExEWlpaVW+AGJiYlQGFZVfMJXbK4+vLP+TJ0+Qnp5e5bjy8nLExMRU2V55DSv7iwFAp06dYGZmhsWLF+Po0aM4cOAAhgwZgitXrijlDVRMjfDkyRO0aNECY8aMwbFjx3D48GEEBwfj5s2b2LdvH4yMjLS+F1SVJyEhAZmZmXB1dcXYsWOV8oiIiMD+/fv51qtTp06he/fuaNasmVIZNX2ZKxQKxMXFYciQIfy251/fvn2bvwfPnz+PwMBA2Nra8vszMzPh5ORUq/x1UdfXRlNdgYrP6qhRo5TO9+wfcLt378aPP/6I5s2b4/3331fqf6hQKHD16lX079+/Sr6a9jUlFOgQrfTr1w+nT5+Gubk5pkyZggkTJiA3Nxd//PEHxo8fr9O5X3jhBSxatAhHjhxB79690a1bN/6LRAg+Pj6IjIyEr68vPv74Y4SEhGDatGnYv38/Bg4cCKDiOXSPHj2wY8cOvPrqq3jxxRfx008/YeHChbWazl+X61UZ4OTl5WH8+PGYN28eXn75Zbz++utV0hYUFADQ3B/K29sbjx49wvvvv48hQ4Zg4cKF8PT0RGRkJN+yVFZWhrt37/KBxJMnT2BkZKT0y/jGjRtK/VS0yftZAwYMgEgkgrm5OYKCgvjtla04/fv3r3YG3rq6V54PXLTZLpFI+OulriPy88fFxcWhuLi4SkDn5uaGPn364Pfff+e3OTk54bfffkNxcTFGjx6NJUuWYOjQoZg6dSpEIpHSF2NlR9hdu3ahdevWGD9+PCZPngwHBwd+bh1Au3tBXXkqOzvv2bMHLi4uGD9+PCZNmgQrKytcvXpVqU4ZGRlKX7RpaWm4cOGCUovX8+Lj4/l5hgCgtLQU8fHx/DUGlO/BzMxM2NjY8PtkMhmOHTuGwMDAWuWvi7q+NprqmpSUhLS0NKWOyIcPH8aLL77Ivx4yZAguXLiAK1eu4LfffuMHAAAVHbFzc3Px6quvVslX074mpeEGfBFCdPXXX38xjuPYjRs3dDpPRkYGk0gk/FDp33//nYWEhPD7CwsLmUQiURq2LFTepML+/fuZWCxmiYmJDV0UxljV8rz//vvM3NyclZeXV3vsX3/9xRwdHdnDhw9Zeno6Gzx4MJNIJPww+8mTJ7PJkycrHbNv3z4WHBzMv46IiGBeXl786+zsbCaVSplMJmOMMRYeHs5cXFxYYmIiy87OZlOnTmUvvviiVvkLra6vjaa6/vnnn8zIyIht3bqVyWQytmXLFtamTRuWl5fHGGPswIED7MGDB4wxxqKiopiTkxP/mrGKqR969uypsqya9jUl1KJDSBN25swZTJgwQemv3tqwt7fHxIkT4e7uju7du/N9mirFxsaiTZs2SiOihMqbVBg9ejS6deuGVatWNXRRAFQtz/Xr19G1a9cqnZ1VGTJkCIYOHYqOHTuib9++8PLygo+PD9/HKjExEb169VI65ubNm0qPTp9/lHrz5k20b9+eH+UWGBiIWbNmoUuXLmjTpg0kEgl+++03rfIXWl1fG011jYqKwowZM7B37144ODhg165dOHHiBD/twblz5xAUFAQLCwtMmjQJP/74Iz8A4/79+9i7d6/KAQaa9jU1HGM69C4khBAimFu3bvGj/RrDQpqV5Vm4cCHs7e3x+uuvY/369Tqds7y8HH5+foiJiakywq0pYozB1ta2SV6bM2fO4N69e5gxY0aN9jU1FOgQQgghRG81/J8Mdez8+fMYPnw4XF1dwXEcDh8+XO0x586d44c3tm7dGt9//32VNAcOHOCbG318fHDo0KE6KD0hhBBCdKH3gU5hYSE6deqEb775Rqv0CQkJGDp0KPr06cPPTTBnzhwcOHCATxMeHo7x48cjNDQUMTExCA0Nxbhx4/hhn4QQQghpHAzq0RXHcTh06BBGjhypNs3ChQvxxx9/4Pbt2/y2mTNnIiYmBuHh4QCA8ePHIy8vD3///TefZsiQIbC1tcXu3bvrrPyEEEIIqRlaAuI54eHhCAkJUdo2ePBgbNmyBTKZDBKJBOHh4XjvvfeqpNmwYYPGc5eWlqK0tJR/rVAokJWVBXt7+wZZLoEQQghpqhhjyM/Ph6urq8bO+xToPCclJYWfbbKSk5MTysvLkZGRARcXF7VpqluLaNWqVQ26lg8hhBCibypnBVeHAh0Vnm9dqXy69+x2VWmqa5VZtGgR5s2bx7/Ozc2Fu7s7EhIS+DkPdCWTyXDmzBn0799fL4ZuVofqq/8Mrc6GVl/A8OpM9RVGfn4+WrVqVe33JwU6z3F2dq7SMpOWlgYjIyN+2m51aZ5v5XmeVCpVOWGVnZ0drKysdCx5BZlMBjMzM9jb2xvMB4jqq98Mrc6GVl/A8OpM9RVG5bmqa2TQ+1FXNRUUFKS0DggAnDhxAgEBAfxFVZemZ8+e9VZOQgghhFRP71t0CgoKEB8fz79OSEhAdHQ07Ozs4O7ujkWLFuHp06fYvn07gIoRVt988w3mzZuH6dOnIzw8HFu2bFEaTfXuu++ib9+++PzzzzFixAj8/vvvOHnyJC5evFjv9SOEEEKIenrfonP9+nV06dKFX+l33rx56NKlC5YsWQIASE5OxuPHj/n0rVq1wtGjR3H27Fl07twZK1euxFdffYWXX36ZT9OzZ0/s2bMHv/zyC/z8/LB161bs3bsXPXr0qN/KEUIIIUQjvW/ReeGFF6BpqqCtW7dW2davXz9ERkZqPO+YMWMwZswYXYtHCCGEkDqk9y06hBBCCDFcFOgQQgghRG9RoEMIIYQQvUWBDiGEEEL0FgU6hBBCCNFbFOgQQgghRG9RoEMIIYQQvUWBDiGEEEL0FgU6hBBCCNFbFOgQQgghRG9RoEMIIYQQvUWBDiGEEEL0FgU6hBBCCNFbFOgQQgghRG9RoEMIIYQQvUWBDiGEEEL0FgU6hBBCCNFbFOgQQgghRG9RoEMIIYQQvUWBDiGEEEL0FgU6hBBCCNFbFOgQQgghRG9RoEMIIYQQvUWBDiGEEEL0FgU6hBBCCNFbFOgQQgghRG8ZTKCzadMmtGrVCiYmJvD398eFCxfUpp0yZQo4jqvy06FDBz7N1q1bVaYpKSmpj+oQQgghRAsGEejs3bsXc+fOxUcffYSoqCj06dMHL774Ih4/fqwy/caNG5GcnMz/PHnyBHZ2dhg7dqxSOisrK6V0ycnJMDExqY8qEUIIIUQLBhHorF+/HtOmTcMbb7yB9u3bY8OGDXBzc8N3332nMr21tTWcnZ35n+vXryM7OxtTp05VSsdxnFI6Z2fn+qgOIYQQQrRkVNcZiMViyOXyus5GrbKyMkREROCDDz5Q2h4SEoJLly5pdY4tW7Zg0KBBaNmypdL2goICtGzZEnK5HJ07d8bKlSvRpUsXtecpLS1FaWkp/zovLw8AIJPJIJPJtK2SRpXnEep8jR3VV/8ZWp0Nrb6A4dWZ6ivseavDMcaYoDk/RyQSQaFQ1GUWGiUlJaF58+b4559/0LNnT377Z599hm3btuHOnTsaj09OToabmxt+/fVXjBs3jt9++fJlxMfHo2PHjsjLy8PGjRtx9OhRxMTEwMvLS+W5li1bhuXLl1fZ/uuvv8LMzKyWNSSEEEIMT1FRESZOnIjc3FxYWVmpTSdYi05aWhosLS1hamqqtJ3jOKGy0Mnz5WCMaVW2rVu3wsbGBiNHjlTaHhgYiMDAQP51r1690LVrV3z99df46quvVJ5r0aJFmDdvHv86Ly8Pbm5uCAkJ0fgm1YRMJkNYWBiCg4MhkUgEOWdjRvXVf4ZWZ0OrL2B4dab6CqPyqUh1dA50FixYgP/+97+YOXMmzMzMsHPnTl1PKSgHBweIxWKkpKQobU9LS4OTk5PGYxlj+PnnnxEaGgpjY2ONaUUiEbp164Z79+6pTSOVSiGVSqtsl0gkgt/sdXHOxozqq/8Mrc6GVl/A8OpM9dX9fNrQuTNyXl4eDhw4gCVLljTKzrjGxsbw9/dHWFiY0vawsDClR1mqnDt3DvHx8Zg2bVq1+TDGEB0dDRcXF53KSwghhBDh6NyiM2DAACQmJqJz5864evWqEGUS3Lx58xAaGoqAgAAEBQXhxx9/xOPHjzFz5kwAFY+Unj59iu3btysdt2XLFvTo0QO+vr5Vzrl8+XIEBgbCy8sLeXl5+OqrrxAdHY1vv/22XupECCGEkOrpHOhkZmYiKioKoaGhSn1WGpPx48cjMzMTK1asQHJyMnx9fXH06FF+FFVycnKVOXVyc3Nx4MABbNy4UeU5c3JyMGPGDKSkpMDa2hpdunTB+fPn0b179zqvDyGEEEK0o3Ogc+/ePezatQtARX+dxurtt9/G22+/rXLf1q1bq2yztrZGUVGR2vN9+eWX+PLLL4UqHiGEEELqgE6BzqlTp5CZmYm9e/eC4zikp6cLVS5CCCGEEJ3pFOgkJiZi0KBB/CR4AwYMEKRQhBBCCCFC0GnU1eTJk9GmTRucOnUKp0+fRuvWrYUqFyGEEEKIznTuo/PLL7/gl19+gUKhwFtvvYU+ffoIUS5SQ/n5+UhKSkJhYSEAICMjA87Ozo1mwkZCCCGkIegc6MhkMmRkZIAxZjDrdjQmjDHcu3cPiYmJ4DiOX24jLi4OT58+RadOnQxqQipCCCHkWToHOosXL8aaNWsAVMxHQ+pXYmIiEhMTAVQEPc/Ky8tDbGwsOnfu3AAlI4QQQhqezoGOl5cX1q5dK0RZSA0xxvDo0SONabKyslBQUAALC4t6KhUhhBDSeOi8BARpOIWFhSgrK6s2XWZmZj2UhhBCCGl8BA10wsLCqswwTOpOZX8cTTiOq/JIixBCCDEUggY6zs7OOH36tJCnJBqYmZlBJNL8FjLGYGlpWU8lIoQQQhoXnfrohIaGoqSkBCUlJRCJRBCLxTh48KBQZSPVMDIygouLC54+fao2jYmJCezs7OqxVIQQQkjjoVOLzo4dO+Dt7Y2DBw/i8OHDCAoKEqpcREtt2rRR2dGY4ziIxWJ07NiR5tIhhBBisHQedXX37l1kZmbC2NiY+uc0ACMjI/j7++Pp06d4+vQpiouLAQAuLi7w8PCAqalpA5eQEEIIaTg6BzorV67kh5fPmjVL5wKRmhOLxXB3d4e7uztkMhmOHj0KT09PmiiQEEKIwdM50Gnbti3No0MIIYSQRqlWgQ5jDAcOHMClS5fAcRx69uyJ0aNHU18QQgghhDQqtQp03nzzTaSlpWH8+PEAgF27duH48eP48ccfBS0cIYQQQoguahXohIeH4+bNm/zrCRMmwM/PT7BCEUIIIYQIoVbDy/38/BAdHc2/jomJQY8ePYQqEyGEEEKIIGrVonPr1i0EBATA09MTAHDv3j34+fmhW7du4DgOV69eFbSQhBBCCCG1UatA548//hC6HIQQQgghgqtVoNOyZUuhy0EIIYQQIjhBF/UkhBBCCGlMdAp0UlJShCoHIYQQQojgdAp0QkJCdMo8LS2NX5uJEEIIIURoOgU6jLFaHbdgwQKkpaVh5syZmD59ui5F0NqmTZvQqlUrmJiYwN/fHxcuXFCb9uzZs+A4rsrPv//+q5TuwIED8PHxgVQqhY+PDw4dOlTX1SCEEEJIDegU6NR2yYe8vDwcOHAAS5YsgbOzsy5F0MrevXsxd+5cfPTRR4iKikKfPn3w4osvVrva+p07d5CcnMz/eHl58fvCw8Mxfvx4hIaGIiYmBqGhoRg3bhyuXLlS19UhhBBCiJYapDPygAEDUFBQgM6dO6Nt27Z1nt/69esxbdo0vPHGG2jfvj02bNgANzc3fPfddxqPa9asGZydnfkfsVjM79uwYQOCg4OxaNEieHt7Y9GiRRg4cCA2bNhQx7UhhBBCiLZ0Xr28NiZMmMD/f8aMGXWaV1lZGSIiIvDBBx8obQ8JCcGlS5c0HtulSxeUlJTAx8cHH3/8Mfr378/vCw8Px3vvvaeUfvDgwRoDndLSUpSWlvKv8/LyAAAymQwymUzbKqlVXFyM/Px8ABX1NgSV102I69cUGFp9AcOrs6HVFzC8OlN9hT1vdXQKdIyNjWt13KZNm/DPP/9AJBIhMDAQs2bN0qUYGmVkZEAul8PJyUlpu5OTk9pRYy4uLvjxxx/h7++P0tJS7NixAwMHDsTZs2fRt29fABUjzmpyTgBYtWoVli9fXmX7iRMnYGZmVtOqaXTy5ElBz9fYhYWFNXQR6pWh1RcwvDobWn0Bw6sz1Vc3RUVFWqXTKdC5fv16rY67e/cudu3aBaCiY3J9eL4/EWNMbR+jdu3aoV27dvzroKAgPHnyBGvXruUDnZqeEwAWLVqEefPm8a/z8vLg5uaGkJAQWFlZ1ag+lQoLCxEVFQWFQsGXobCwEObm5uA4Dl5eXnBxcanVuZsCmUyGsLAwBAcHQyKRNHRx6pyh1RcwvDobWn0Bw6sz1VcYlU9FqlPvj65OnTqFzMxM7N27FxzHIT09vU7zc3BwgFgsrtLSkpaWVqVFRpPAwEDs3LmTf+3s7Fzjc0qlUkil0irbJRJJrd/8hw8fqgywKkeKPXjwAK6urjAyapCnlPVGl2vYFBlafQHDq7Oh1RcwvDpTfXU/nzbqvTNyYmIiBg0ahNLSUpSUlGDAgAF1mp+xsTH8/f2rNJmFhYWhZ8+eWp8nKipKqWUkKCioyjlPnDhRo3PqqrS0FFlZWRrTKBSKOg8mCSGEkMaqxn/mX7lyBbt378Y///yDlJQUmJiYwMfHBy+++CJeeeUVWFtbazx+8uTJuHjxIjZv3gyO4zBt2rRaF15b8+bNQ2hoKAICAhAUFIQff/wRjx8/xsyZMwFUPFJ6+vQptm/fDqBiRJWHhwc6dOiAsrIy7Ny5EwcOHMCBAwf4c7777rvo27cvPv/8c4wYMQK///47Tp48iYsXL9Z5fSo927FZHY7jUFJSUg+lIYQQQhqfGgU6Q4cOhbu7O4YPH46FCxfC0dERpaWliI+Px7lz5zBmzBjMmjULI0eO1HieX375Bb/88gsUCgXeeust9OnTR5c6VGv8+PHIzMzEihUrkJycDF9fXxw9epRfnDQ5OVlpTp2ysjIsWLAAT58+hampKTp06IC//voLQ4cO5dP07NkTe/bswccff4zFixejTZs22Lt3L3r06FGndXmWNs12jLFadxonhBBCmroaBTq//vorbGxslE9gZIROnTqhU6dOmDNnDnJycqo9j0wmQ0ZGBhhj9Ta87u2338bbb7+tct/WrVuVXv/3v//Ff//732rPOWbMGIwZM0aI4tWKqakprKysNHbI4jgOjo6O9VgqQgghpPGoUaDzfJBT2zSLFy/GmjVrAFQ8NiK116ZNG0RFRand37JlS2rRIYQQYrB0HoqzZcsWnD17FkBF60FlPxdNvLy8sHbtWl2zJgBsbW3h5+eHf//9V2mSQJFIBA8PD3h4eDRc4QghhJAGpnOgc/XqVezYsaPWx588eRJt27aFu7u7rkUxWA4ODujVqxeysrJQUFCA6OhoBAYGwtTUtKGLRgghhDQonYaXnzp1CgqFAocOHcLp06dx+vTpGp/DycmpVscRZRzHwd7eHq6urgCg9/PmEEIIIdrQ6dswMTERvXv3Rl5eHvLy8mq1mnnHjh3RsWNHXYpBCCGEEKKSToHO5MmTcfr0aX7SvxMnTlR7TGhoKEpKSlBSUgKRSASxWIyDBw/qUgxCCCGEEJV0fnS1fft2nD59GqdOncK2bduqPWbHjh3w9vbGwYMHcfjwYQQFBelSBEIIIYQQtXR+dCWVSpGYmAiO47SaewaoWNQzMzMTxsbGShP1EUIIIYQIqVaBTlhYGIKCgjB58mQUFBTg4sWLmDdvHry9vbU6fuXKlfzw8lmzZtWmCIQQQggh1apVoLNgwQLExMTg8uXL2LFjB+bMmYNp06bhn3/+UZmeMYYDBw7g0qVL4DgOPXv2xBdffFGrzsuEEEIIIdrSqY/O4cOHMXv2bEycOBFFRUUq0zDG8Oabb2Lnzp3o1q0bAgICsGvXLrz55pu6ZE0IIYQQUq1atei4uroiNDQUFy5cQFRUFEpLSyGXy9Wmv3z5Mm7cuMG/njBhAvz8/GqTNSGEEEKaCMYUYDmJFf8vzABsXOq9DLVq0dm/fz9GjRqFsLAw2NraIisrS+OSDn5+foiOjuZfx8TE1Osq34QQQgipXywxEuzEcrCLGypen1kNxYUNYLlP67UcNQp0Bg8ejJ9++gmFhYUYPXo0vLy8AFTMbmxlZYXZs2erHGJ+8+ZN+Pv7w9vbG97e3vD390dERAS6deuG7t27C1MTQgghhDQK7FE42LWfgaJM5R2ZD8DOrQPLS6q3stTo0dWhQ4ewZcsWjBgxAikpKbCxseEn/+vXrx/eeustlS01R44cAWNMsEITQgghpHFi5aVgMfvV7FQAinKwm4fA9aqfUdc1CnTMzMzwzjvv4J133oFMJkNGRgZMTExga2ur9hiO42jBTkJIjTHGkJOTg9zcXABAaWkpJBJJA5eKEFKtpBhAXqp+P1MAabfBinPAmdrUeXFqPWGgRCKBi0v9dyoihOi//Px83Lp1C8XFxXxr8JUrV+Ds7Axvb2+IxeIGLiEhRK3iLIATVQQ0GtPlAI050AFo3SpCiPCKiooQGRmpciRnamoqysvL4efnR/NwEdJYGVtUH+QAgLF53ZcFOs6jQ+tWEUKE9ujRIygU6n9JZmZmIi8vrx5LRAipEdfOAKep1ZUDbNzBWTjWS3F0CnSAinWrMjIykJWVRetWEUJ0whhDamqqxsELHMchJSWlHktFCKkJTmoBtA3WnKbDiHoqjY6ProCKdavWr18Pxhhmz54tRJkIIQZKoVBobM0BKoIhmUxWTyUihNQG1/4/ACcCu3sCUDzzh4vUElyXieCatau3sugc6KSlpSEtLY3/f7t29Vd4Qoh+EYlEMDIyQnl5udo0HMfBxMSkHktFCKkpjuOA9kMBz/7gEmOAG6ngur0OztUXnKh+BxPo/Ojql19+wS+//IKff/4Z27dvF6JMhBADxXEcXF1dNaZhjNGIT0KaCE5iCq6Ff8X/nXzqPcgBBGjRqZxPh5qTGw5jDJmZmUhKSkJBQQEAIDk5Gc2bN6dhuKTJadmyJdLS0lBaWqqyr467uzvMzetntAYhpOnTOdBZvHgx1qxZAwBYtGiRzgUiNaNQKBAbG4v09HQA4L8Y7t27h6dPn6JLly7UzE+aFIlEgoCAANy9e5d/LF65vVWrVmjRokUDlo4Q0tToHOh4eXlh7dq11XYgJHXj0aNHfJDzvJKSEty6dQsBAQH1XCpCdGNsbAxfX1+UlZUhNzcXly5dQo8ePSCVShu6aISQJkbnPjpvvfUWJk+ejGnTpuGNN94Qokx1YtOmTWjVqhVMTEzg7++PCxcuqE178OBBBAcHw9HREVZWVggKCsLx48eV0mzduhUcx1X5KSkpqeuq8BQKBZ48eaJ2P2MMeXl5NOcIabKMjY1hY2MDoKKjMiGE1JTOLTp2dnb47rvvhChLndm7dy/mzp2LTZs2oVevXvjhhx/w4osvIi4uTuU6XOfPn0dwcDA+++wz2NjY4JdffsHw4cNx5coVdOnShU9nZWWFO3fuKB1bn4+JCgsLNY5OqZSVlQUrK6t6KBEhhBDSuOgc6FhZWWHkyJH8F2ljHHm1fv16pRanDRs24Pjx4/juu++watWqKuk3bNig9Pqzzz7D77//jiNHjigFOhzHwdnZuU7LrisFLRpPCCHEgOkc6Ny9exf79++HkZHOp6oTZWVliIiIwAcffKC0PSQkBJcuXdLqHAqFAvn5+bCzs1PaXlBQgJYtW0Iul6Nz585YuXKlUiD0vNLSUpSW/m9F18pHSjKZrFYj1kRiMYrLGUyeGVhV2Rm58l8OQGapCM31dERc5XUzlBF/hlZfwPDqbGj1BQyvzlRfYc9bHZ2jE8YY/vzzT75FZ8CAAbqeUlAZGRmQy+VwcnJS2u7k5KT1NPLr1q1DYWEhxo0bx2/z9vbG1q1b0bFjR+Tl5WHjxo3o1asXYmJi4OXlpfI8q1atwvLly6tsP3HiBMzMzGpQK2UFKrYVFhb+b/+/UUj8N6rW528KwsLCGroI9crQ6gsYXp0Nrb6A4dWZ6quboqIirdLpHOj069cPubm5yM3N1fVUder5lY4ZY1qtfrx7924sW7YMv//+O5o1a8ZvDwwMRGBgIP+6V69e6Nq1K77++mt89dVXKs+1aNEizJs3j3+dl5cHNzc3hISE1KoPzd3UAszYHonX2gFtbSoeU3FgKCwshKmZOQplHLbcBl7u5oHXgqr2RdIHMpkMYWFhCA4OhkQiaeji1DlDqy9geHU2tPoChldnQ6pveXI8Ci4fwSVpO/QWJ8Oi5yiILO2qP1AL2g600TnQmTx5sq6nqFMODg4Qi8VVWm/S0tKqtPI8b+/evZg2bRr27duHQYMGaUwrEonQrVs33Lt3T20aqVSqcnisRCKp1c3exskKIrERtsTJ0ckBCHQGHKQVQ+lOJnL4J4VDcTng19JO7z9Mtb2GTZWh1RcwvDobWn0Bw6uzPteXyUqR8/1slFzYC7mxOTD2exTvXoqyXR/BavIqmA+ZoXMe2l47Qcdrnjx5stGtYG5sbAx/f/8qTWZhYWHo2bOn2uN2796NKVOm4Ndff8V//vOfavNhjCE6Orpep6Y3kYgxxr85wAFRGcB3t4DP//8J1fkkoEwBeDqao6u7Tb2ViRBCCMndMh8lF/dVvFDIK/5lDJDLkPfzAhRfOlBvZRE00HFycsLp06eFPKUg5s2bh59++gk///wzbt++jffeew+PHz/GzJkzAVQ8Upo0aRKffvfu3Zg0aRLWrVuHwMBApKSkICUlRenx3PLly3H8+HE8ePAA0dHRmDZtGqKjo/lz1peZL7RCgIctAED0zJM4EQfYmBpj7diOWj2iI4QQQoQgz3iC4jM7AKZuImEO+Xs/VbnES10QdKhUx44d0bFjRyFPKYjx48cjMzMTK1asQHJyMnx9fXH06FG0bNkSQMW6UM+2RP3www8oLy/HrFmzMGvWLH775MmTsXXrVgBATk4OZsyYgZSUFFhbW6NLly44f/48unfvXq91kxqJ8fUrnXA8NhUHIpKQklPRCfmN3h4YFeAGWzPjei1PfUmIz8SFM/dx/146uvYCdm65ht4veMHL27Ghi0YIIQat5OqfqBjzqy6QYZAnx6P86R1IWnjXeXl0CnRCQ0NRUlKCkpISiEQiiMViHDx4UKiyCertt9/G22+/rXJfZfBS6ezZs9We78svv8SXX34pQMl0JxGLMMzPBcP8XCCTyXD06FGEBrnr7bPff84+wO/7b0Ek4sBxFX8xxN/JwO1bGRgy3BsDBrdt4BISQojhYiWFgEgEyDUvDcVKVI0ZFp5Oj6527NgBb29vHDx4EIcPH0ZQUJBQ5SJEpeSnufh9/y0AgOKZ2RAr/3/syL94eD+zQcpGCCEEEDdvC8irmbVfJIZRs1b1Uh6d++jcvXsXmZmZyM7ObnQdkYn+uXT+IUQi9X2ORCIO/5xLqMcSEUIIeZaJ/xCILO0BTk2IIRLDJHAkRFb29VIenfvorFy5EmvXrgUApf4shNSFhw+ylFpynqdQMDx8kFWPJSKEEPIszsgY1u/8iOzV4wBOrLxTJIbIuhmsQj+pt/LUKtBhjOHAgQO4dOkSOI5Dz549MXr0aBrdQ+qcWENrTiWRmFa5JoSQhmTSORj2K44hf99qFMf+/3JLEilMg8bDctyHENvV31QstQp03nzzTaSlpWH8+PEAgF27duH48eP48ccfBS0cIc/z9nVCclIe1I1KFIk4+PhqngiSEEJI3TNu2wP2Hx1CaU46cO4Smm2KhbF5zVcB0FWtAp3w8HDcvHmTfz1hwgT4+fkJVihC1Ans7YHzp+9DXq5QGexwHBDUt346uBFCCKmeyNwGAMAZmzZM/rU5yM/PD9HR0fzrmJgY9OjRQ6gyEaKWja0ppr7ZA0ZGYjz7pJTjALFYhNemdUMzJ4uGKyAhhJBGpVYtOrdu3UJAQAA8PT0BAPfu3YOfnx+6desGjuNw9epVQQtJyLO8vB2xaMUgXL30GPfvpgLIxAshXujRszWsbUwauniEEEIakVoFOn/88YfWaetrimdiWCwspRgw2At9Bnjg6NGj6B/spbcTJBJCCKm9WgU6lUsnaEOh0DwzIiGEEEJIXaFxuIQQQgjRWxToENKEFBcXAwBKS0sbuCSEENI0CLp6OSGkbmRlZSE+Ph75+fkAgCtXrsDOzg5eXl6wsKBRZoQQog616BDSyKWnpyM6OhoFBcor/WZnZ+P69et88EMIIaQqCnQIacQUCgX+/fdfjfvv3r1bjyUihJCmpV4DHZFIhAEDBiAiIqI+syWkycrKyoJMJtOYJjc3F0VFRfVUIkIIaVrqNdD5+eef0a9fP8yZM6c+syWkyarsfFydkpKSOi4JIYQ0TfXaGXnKlCkAgKVLl9ZntoQ0WdpOgkiTJRJCiGrUR4eQRszBwQEikeaPqampKY28IoQQNQRp0Zk3b57WadevXy9EloQYBCMjI7Rs2RIJCQlq07Rp0wbcsyucEkII4QkS6ERFRWmVjn4ZE1JzHh4eAICHDx8qrR0nFovRtm1bNGvWrIFKRohuGGPIzS1BQUFFHzOFgtZGJMITJNA5c+aMEKchhKjAcRxatWqFFi1aICUlBZGRkWjXrh1cXFwgFosbuniE1EpWVhH+vZOO4uJyMCYHAFy+8hhens3g6mrVwKUj+qTOOiPHxcXh8ePHKCsr47dxHIfhw4fXVZaE6DWJRAJnZ2cAgJOTEwU5pMnKzi5GVHRyle0ymQK3/02HgjG0aG7dACUj+kjwQOfBgwcYNWoUbt68CY7j+Kb2ysdWcrlc6CwJIYQ0IffuZWjcHx+fCRdnS4jFNF6G6E7wu+jdd99Fq1atkJqaCjMzM8TGxuL8+fMICAjA2bNnhc6OEEJIE1JQWIb8gjKNaeRyhowMmgSTCEPwQCc8PBwrVqyAo6MjRCIRRCIRevfujVWrVtFEgYTUkkKhQEpKCm7cuAEAiI2NRUZGhlLnZEKagrLScq3SlZZpl440XnK5AtERT7Hrl+sAgIN7buDh/cx6/70leKAjl8v5OT0cHByQlJQEAGjZsiXu3LkjdHZa27RpE1q1agUTExP4+/vjwoULGtOfO3cO/v7+MDExQevWrfH9999XSXPgwAH4+PhAKpXCx8cHhw4dqqviEwMmk8lw/fp1xMXFIScnBwCQmZmJGzdu4MaNG1AoFA1bQEJqwFiqXY8JqXG9zmdLBFaQX4qv1pzHr79E4G5cGgDgRuRTbPryH+z/NaZeR9gJHuj4+vryf3X26NEDa9aswT///IMVK1agdevWQmenlb1792Lu3Ln46KOPEBUVhT59+uDFF1/E48ePVaZPSEjA0KFD0adPH0RFReHDDz/EnDlzcODAAT5NeHg4xo8fj9DQUMTExCA0NBTjxo3DlStX6qtaxEDExsaisLBQ5b7MzEw8ePCgnktESO1ZmBvD0sJYYxqxmIODg1k9lYjUhV2/RCA1OR8AUNmAUxncXAt/jPOn79dbWQQPdD7++GP+L8xPPvkEjx49Qp8+fXD06FF89dVXQmenlfXr12PatGl444030L59e2zYsAFubm747rvvVKb//vvv4e7ujg0bNqB9+/Z444038Prrr2Pt2rV8mg0bNiA4OBiLFi2Ct7c3Fi1ahIEDB2LDhg31VCtiCAoLC5GVlaWxqffp06fUyZ80KV5eDtA0rZqXpwN1RG7CkhJzcf9uhsZWm/On4iGX109rtOBtg4MHD+b/37p1a8TFxSErKwu2trYNMmFgWVkZIiIi8MEHHyhtDwkJwaVLl1QeEx4ejpCQEKVtgwcPxpYtWyCTySCRSBAeHo733nuvShpNgU5paSlKS0v513l5eQAqHk1Ut0K1tirPI9T5Gjt9r29mpvLz7Mr/P7utvLwcWVlZsLGxqe/i1SnGGG5l3EN85mNIAaTmZ8DJ0qGhi1Xn9P2eBgALCyP4dnDE3XuZKCmR8fPoGBkBbdrYolkzU72uv76/x3dvp8DIiPEtOZUzYVT8W7GxuKgUSYnZcNZhziRtr1+9PAS1s7Orj2xUysjIgFwuh5OTk9J2JycnpKSkqDwmJSVFZfry8nJkZGTAxcVFbRp15wSAVatWYfny5VW2nzhxAmZmwjbThoWFCXq+xs7Q6vv8oyx1Qbs+kP7/vxEXrjZoOeqbod3TAJCbcxuREQ1divqjz+9xj/5Vt3Xrp/w6MvoiEF37PIqKtBuZJ3igs2LFCo37lyxZInSWWnm+NYkxprGFSVX657fX9JyLFi1SWhcsLy8Pbm5uCAkJgZWVMDOBymQyhIWFITg42CBWtNb3+ubm5iImJoZ/zRhDYWEhzM3Nle61wMBAGBtr7vfQVDwtSMW0E0tQXF4KBWMwhhHmW76MdfkHUI5y9GreFZ/2mqO3S8ro+z2tiqHVWd/r+yA+E1u//19/VbG4Isi5dg6ofMpuZCzGB8sGwliHTueVT0WqI3ig8/zII5lMhoSEBBgZGaFNmzb1Hug4ODhALBZXaWlJS0ur0iJTydnZWWV6IyMj2Nvba0yj7pwAIJVKIZVKq2yXSCSC3+x1cc7GTF/rW15ervILneM4pe0KhUJv6r/jzp/IKy+EnCk/vy9DOcogw6mnVzA57xF8HbwaqIT1Q1/vaU0Mrc76Wt+23k6ws7dARkYRmIKh8nGVXA7I5RW/u7r18IC5ualO+Wh77QTv7RUVFaX0c+vWLSQnJ2PgwIFV+rTUB2NjY/j7+1dpIgwLC0PPnj1VHhMUFFQl/YkTJxAQEMBfWHVp1J2zruXn5+POnTu4efMmgKp9O0jTpO0zaH151q9gChxNuFAlyHmWmBPjr4Tz9VgqQkhNcByH0OndYGpqBE5U9Q81Nw8bDBnuXW/lqZc+OlZWVlixYgWGDRuG0NDQ+shSybx58xAaGoqAgAAEBQXhxx9/xOPHjzFz5kwAFY+Unj59iu3btwMAZs6ciW+++Qbz5s3D9OnTER4eji1btmD37t38Od9991307dsXn3/+OUaMGIHff/8dJ0+exMWLF+u1bowx3Lt3D4mJieA4jh/xFhsbi8TERHTq1Ekv/2IwFCYmJoKma+xK5TKUyjXPmsuYAtkl2jVZE0IahrOLFd5b1B+Xzicg6vpjACVwdLZEYM9W6NbTHRJJ/a3VV28zMuXk5CA3N7e+slMyfvx4ZGZmYsWKFUhOToavry+OHj2Kli1bAgCSk5OV5tRp1aoVjh49ivfeew/ffvstXF1d8dVXX+Hll1/m0/Ts2RN79uzBxx9/jMWLF6NNmzbYu3cvevToUa91S0xMRGJiIgBUacHJz89HbGwsOnfuXK9lIsKxt7eHkZERysvVzxJrZWUleGf2hmIiNoaFxAwFMvWdDDmOg7O5/o++IqSps7YxwYsvtcegFz1x9OhRvLOgT4P84S14oPP8XDmMMSQnJ2PHjh0YMmSI0Nlp7e2338bbb7+tct/WrVurbOvXrx8iIyM1nnPMmDEYM2aMEMWrFcYYHj16pHF/VlYWCgoK+NmqSdMiEonQrl07xMbGqtzPcRzatm1bz6WqOxzHYZTnQOz69y8o1Dy+kjMFRrQZUM8lI4Q0VYIHOl9++aXSa5FIBEdHR0yePBmLFi0SOjuDVlhYiLIyzc38QEV/HQp0mi4nJyeIRCLEx8crDae0srJC27ZtBRux11hM6TACYY/DkV6UpbKvziveQ9HKunkDlIwQYVD/yfoleKCTkJAg9CmJGtqsccRxHH2o9ICjoyMcHByQk5OD8+fPIyAgANbW1g1drDpha2KNbYM/xeprW3DuyTV+u7WxOV7pMAyTfV5qwNIRUjuMMTwueIi47FvIKEyHFexx6ulx+Dr4oYWFe0MXT6/RqmlNmJmZGUQikcaAhzEGS0vLeiwVqSscx/Etc/rSJ0cdRzM7rOv3PtKLsnAv6xHSIx7j0EsbYWai3/Um+isq4zpuZceAA4fKPz3Ti9NwOukEOtv7w8++S4OWT58JEug8OwleddavXy9ElgSAkZERXFxc8PTpU7VpTExMGnRmakJ04WhmBxuJJY7iMSRiGj1ImqaUoiTcyq6Y+JOBAeCe+T8QnRkBV7PmcDBt1lBF1GuCBDpRUVFKryMiIiCXy9GuXTsAwN27dyEWi+Hv7y9EduQZbdq0QW5uLgoKCpS2cxwHsViMjh076u0MsoQQ0hT8mxP3/y05qrsRcOBwJ+c2BTp1RJBA58yZM/z/169fD0tLS2zbtg22trYAgOzsbEydOhV9+vQRIjvyDCMjI/j7++Pp06d4+vQpiouLAQAuLi7w8PCAqaluM08SQgjRTUZJutogB6ho2ckoTa/HEhkWwWdGXrduHVatWsUHOQBga2uLTz75BOvWrRM6OwJALBbD3d0dQUFBfDDp6elJQQ4hhDQCYq76r1oxV38T6BkawQOdvLw8pKamVtmelpaG/Px8obMjhBBCGjU3Cw9w0LCINDi4WbSsxxIZFsEDnVGjRmHq1KnYv38/P2vv/v37MW3aNIwePVro7AghhJBGzdvGByINrTpiTgwv6/pb+8nQCD68/Pvvv8eCBQvw2muv8QsNGhkZYdq0afjiiy+Ezo7gfzMgJyUl8Z2Sk5OT0bx5c4jF1BxKCCENyUJiiQHNB+PM0xMoZ8rLuUhEEgxsPgRmRjR1Ql0RPNAxMzPDpk2b8MUXX+D+/ftgjMHT0xPm5uZCZ0VQMWlgXFwc0tLSAPxvxs179+7h6dOn6Nq1K6RSaUMWsc4UFhYiMzOT/7+NjU3DFogQQtRwMXPFmNav4H7ePaQUJCMPRfB37A4v23YwFhs3dPH0Wp1NGGhubg4/P7+6Oj35f48ePeKDnOeVlJTg5s2bCAgIqOdS1a2ysjLExcUhKyuLD+wiIiJgY2MDX19fvQ3sCCFNm7FYiva2vvC0aIejOIq21t40P1Q9EGzCwJUrV8Lc3LzayQNpwkDhKBQKPHnyRO1+xhjy8vKQl5enN+shyeVyREVFobCwsMq+vLw8REREoHv37jAyokm/CSGECDhhYGV/nOcnD3wWTVwnrMLCQpSXl1ebLjs7W28CndTUVJVBDlAR2JWUlCA5ORlubm71XDJCCCGNkeATBj77f9I46NOinikpKdWmoUCHEEJIJcGHlxcXF6OoqIh//ejRI2zYsAEnTpwQOiuDZ2ZmptWoKn1a5bqsrEyQNIQQQgyD4IHOiBEjsH37dgBATk4OunfvjnXr1mHEiBH47rvvhM7OoInFYjRv3lxjGnNzc70ajaTNbM8mJib1UBJCCCFNgeCBTmRkJL8Mwf79++Hs7IxHjx5h+/bt+Oqrr4TOzuC1bt1aabmNZxkbG+vdop6urq7Vpqku+COEEGI4BB+aUlRUBEtLSwDAiRMnMHr0aIhEIgQGBuLRo0dCZ2fwRCIROnXqhLS0NDx9+pTvqOvh4QF3d3dIJPo1dNHBwQF2dnbIyspSud/a2hpOTk71XCpCCCGNleAtOp6enjh8+DCePHmC48ePIyQkBEDFWlf6MvKnsRGJRHB2doa/vz+CgoIAQC+DHKBi5J6fnx/c3NwgEv3v9hWJRGjevDk6d+6stJ0QQohhE/wbYcmSJViwYAE8PDzQvXt3/ov3xIkT6NKli9DZEQMkEong5eWF3r1785NS9ujRA+3ataMlLwghhCgR/NHVmDFj0Lt3byQnJ6Nz58789oEDB2LUqFFCZ0cMmJGREd/RWh9brwghhOiuTtr47927h3Xr1qFXr154+vQpAODOnTvIyMioi+wIIYQQQlQSPNA5cOAABg8eDFNTU0RGRqK0tBQAkJ+fj88++0zo7AghhBBC1BI80Pnkk0/w/fffY/PmzUqPE3r27InIyEihsyOEEEIIUUvwQOfOnTvo27dvle1WVlbIyckROrtqZWdnIzQ0FNbW1rC2tkZoaKjGcshkMixcuBAdO3aEubk5XF1dMWnSJCQlJSmle+GFF8BxnNLPhAkT6rg2hBBCCKkJwQMdFxcXxMfHV9l+8eJFtG7dWujsqjVx4kRER0fj2LFjOHbsGKKjoxEaGqo2fVFRESIjI7F48WJERkbi4MGDuHv3Ll566aUqaadPn47k5GT+54cffqjLqhBCCCGkhgQfdfXmm2/i3Xffxc8//wyO45CUlITw8HAsWLAAS5YsETo7jW7fvo1jx47h8uXL6NGjBwBg8+bNCAoKwp07d9CuXbsqx1hbWyMsLExp29dff43u3bvj8ePHcHd357ebmZnB2dm5bitBCCFELygUCqSlpfETnqanp8PZ2Znm/qpjggc6//3vf5Gbm4v+/fujpKQEffv2hVQqxYIFCzB79myhs9MoPDwc1tbWfJADAIGBgbC2tsalS5dUBjqq5ObmguO4KmtG7dq1Czt37oSTkxNefPFFLF26lJ8VWpXS0lK+czYA5OXlAah4XCaTyWpQM/UqzyPU+Ro7qq/+M7Q6G1p9AcOoc35+Pm7duqVUx7i4ONy/f5/vKqGv6ur91fZ8HGOMCZrz/ysqKkJcXBwUCgV8fHxgYWFRF9lo9Nlnn2Hr1q24e/eu0va2bdti6tSpWLRoUbXnKCkpQe/eveHt7Y2dO3fy2zdv3oxWrVrB2dkZt27dwqJFi+Dp6VmlNehZy5Ytw/Lly6ts//XXX2FmZlaDmhFCCCGGraioCBMnTkRubq7GlRcEbdGRyWQICQnBDz/8gLZt2yIgIEDI0/PUBQzPunbtGgCoXNCSMabVQpcymQwTJkyAQqHApk2blPZNnz6d/7+vry+8vLwQEBCAyMhIdO3aVeX5Fi1ahHnz5vGv8/Ly4ObmhpCQEJ2Wx3jyJAcPErL//5UchQV3YWbeFg4Olmjv7QixWH+bRWUyGcLCwhAcHGwQkwYaWn0Bw6uzodUX0P86P3z4EI8fP+ZfM8ZQWFgIc3Nz/ruoVatWcHNza6gi1qm6en8rn4pUR9BARyKR4NatW3W+Wvbs2bOrHeHk4eGBGzduIDU1tcq+9PT0ahd+lMlkGDduHBISEnD69OlqA5GuXbtCIpHg3r17agMdqVQKqVRaZbtEIqn1m5+cnI+Eh3nguIqlDyrb5zhOjKysUsTH58DXV/8XudTlGjZFhlZfwPDqbGj1BfS3zpmZmSq/FytH7FamaYgBO/VJ6PdX23MJ3kdn0qRJ2LJlC1avXi30qXkODg5wcHCoNl1QUBByc3Nx9epVdO/eHQBw5coV5ObmomfPnmqPqwxy7t27hzNnzsDe3r7avGJjYyGTyeDi4qJ9RXTEGMODBNWreFdKTStAm2I7mJrq3y8PQghpCuRyuSBpSO0IHuiUlZXhp59+QlhYGAICAqp0sFq/fr3QWarVvn17DBkyBNOnT+eHfs+YMQPDhg1T6ojs7e2NVatWYdSoUSgvL8eYMWMQGRmJP//8E3K5HCkpKQAAOzs7GBsb4/79+9i1axeGDh0KBwcHxMXFYf78+ejSpQt69epVb/UrKpKhpKS82nTp6YVwd7ep+wIRQgipwsLCAmVlZVDXJZbjuAbpx2ooBA90bt26xT+6eb4TcF0/0lJl165dmDNnDkJCQgAAL730Er755hulNHfu3EFubi4AIDExEX/88QcAKC1KCgBnzpzBCy+8AGNjY5w6dQobN25EQUEB3Nzc8J///AdLly6t19Wz5XJFtWk4DpAr6qS/OSGEEC00b94cmZmZavczxtC8efN6LJFhETzQOXPmjNCn1ImdnZ3SaClVno2yPTw81Ebdldzc3HDu3DlByqcLU1MJOO5//XJUYQywMDeuv0IRQghRYm9vDxcXFyQnJ6vc7+bmBltb23ouleHQ3+E4BkAiEcPJSXNzp7GxGPb2NHSdEEIaCsdx8Pb2Rrt27WBqaspvNzU1hbe3Nzw9PRuwdPpP8BYdUr88Pe2Rk1Oisq8OxwEdfJpBJKr/R4aEEEL+h+M4NG/eHK6uriguLub7sRobU4t7XaMWnSZOamyEbgEt4OZmDbH4fwGNg70ZAgJawM6OWnMIIaSx4DiOHxbdEP1WDRG16OgBY2Mx2no5wLONPYqLS3Hy5G106OCkl/NREEIIITVBLTp6RCTiYGxcf6O+CCGEkMZOkBadZ5c1qE59zqNDCCGEEMMmSKATFRWl9DoiIgJyuZyflO/u3bsQi8Xw9/cXIjtCCCGEEK0IEug8O3fO+vXrYWlpiW3btvHzAmRnZ2Pq1Kno06ePENkRQgghhGhF8M7I69atw4kTJ5QmP7K1tcUnn3yCkJAQzJ8/X+gsDZ5CoUBaWhqePn2KwsJCAMDjx4/h7u5OHZIJIYQYNME7I+fl5alcMTwtLQ35+flCZ2fwFAoFYmJiEBcXh9zcXMhkMgDAw4cPceXKFRQVFTVwCQkhhJCGI3igM2rUKEydOhX79+9HYmIiEhMTsX//fkybNg2jR48WOjuDl5CQgOzsbJX7ysrKcPPmzWqXtCCEEEL0leCPrr7//nssWLAAr732Gt+6YGRkhGnTpuGLL74QOjuDJpfLkZiYqDFNYWEhcnNzYWNjUz+FIoQQQhoRwQMdMzMzbNq0CV988QXu378Pxhg8PT1hbm4udFYGr6ioCHK5vNp0OTk5FOgQQggxSHU2M7K5uTn8/Pzq6vSEEEIIIdWqk5mRL1y4gNdeew1BQUF4+vQpAGDHjh24ePFiXWRnsMzNzWFkVH2samdnVw+lIYQQQhofwQOdAwcOYPDgwTA1NUVUVBRKS0sBAPn5+fjss8+Ezs6giUQiuLm5qd3PcRysrKxgZWVVj6UihBBCGg/BA51PPvkE33//PTZv3qw0h0vPnj0RGRkpdHYGr2XLlmjWrJnKfSYmJujYsWM9l4gQUhvl5eV48uQJYmJiAAD37t1DQUFBA5eKkKZP8D46d+7cQd++fatst7KyQk5OjtDZGTyRSIQOHTrAxcWFnzCwoKAAXl5eaN68OcRiWuSTkMauoKAAUVFRkMlk/HQQKSkpSElJQevWreHh4dGwBSSkCRO8RcfFxQXx8fFVtl+8eBGtW7cWOjuCikdU9vb28PPzQ0BAAICK94GCHEIaP4VCgejoaH46jkqVAc+DBw+Qnp7eEEUjRC8IHui8+eabePfdd3HlyhVwHIekpCTs2rULCxYswNtvvy10dsTA0WSIpKlLS0tDWVmZxjSPHz+up9IQon8Ef3T13//+F7m5uejfvz9KSkrQt29fSKVSLFiwALNnzxY6O2Kg0tPT8fjxY/5xaFRUFN9fieO4hi0cITWQlZUFjuM0Bu25ublQKBQQiepkoCwheq1O5tH59NNP8dFHHyEuLg4KhQI+Pj6wsLCoi6yIAUpISEBCQoLStvz8fMTGxiI/Px+enp4NVDJCao4xplXLJLVeElI7gv95UFxcjKKiIpiZmSEgIABOTk746aefcOLECaGzIgYoLy+vSpDzrMePHyMrK6seS0SIbqytratNY25uTn3uCKklwQOdESNGYPv27QAqlh7o0aMH1q1bhxEjRuC7774TOjtiYBITEzU+muI4rtr1vwhpTJydnasNYjTNl0UI0UzwQCcyMhJ9+vQBAOzfvx9OTk549OgRtm/fjq+++kro7IiBycvL09iEzxhDfn5+PZaIEN0YGRmhY8eOavvfuLi4wMXFpZ5LRYj+ELyPTlFRESwtLQEAJ06cwOjRoyESiRAYGIhHjx4JnR0xMNo031OHTdLU2NnZoXv37khMTERKSgqAikda7u7ucHR0pA72hOhA8G8ET09PHD58GE+ePMHx48cREhICoGIIZUMsRZCdnY3Q0FBYW1vD2toaoaGh1U5cOGXKFHAcp/QTGBiolKa0tBTvvPMOHBwcYG5ujpdeeokemdQDBweHatM4OjrWQ0kIEZaZmRnatm2LoKAgAECnTp1oFCEhAhA80FmyZAkWLFgADw8P9OjRg//QnjhxAl26dBE6u2pNnDgR0dHROHbsGI4dO4bo6GiEhoZWe9yQIUOQnJzM/xw9elRp/9y5c3Ho0CHs2bMHFy9eREFBAYYNGwa5XF5XVSFAtbM9i0QiNG/evB5LRAghpDET/NHVmDFj0Lt3byQnJ6NTp0789oEDB2LUqFFCZ6fR7du3cezYMVy+fBk9evQAAGzevBlBQUG4c+cO2rVrp/ZYqVQKZ2dnlftyc3OxZcsW7NixA4MGDQIA7Ny5E25ubjh58iQGDx4sfGUIAMDY2BidO3dGTEwMysvLlfaJxWL4+fnB1NS0gUpHCCGksamTeXScnZ2rBAndu3evi6w0Cg8Ph7W1NR/kAEBgYCCsra1x6dIljYHO2bNn0axZM9jY2KBfv3749NNP+cUzIyIiIJPJ+MdyAODq6gpfX19cunRJbaBTWlrKr+YOVHSsBQCZTFZl+vfaqjyPUOdrjMzMzNCtWzekp6cjKysLBQUFaNWqFVxcXGBkZKTXdTeE9/d5hlZnQ6svYHh1pvoKe97qCBLozJs3DytXroS5uTnmzZunMe369euFyFIrKSkpKlf2btasGd/hT5UXX3wRY8eORcuWLZGQkIDFixdjwIABiIiIgFQqRUpKCoyNjWFra6t0nJOTk8bzrlq1CsuXL6+y/cSJEzAzM6tBzaoXFhYm6Pkau5s3b+LmzZsNXYx6Y2jvL2B4dTa0+gKGV2eqr26Kioq0SidIoFO56m7l/9URqlPdsmXLVAYMz7p27ZraPBljGssyfvx4/v++vr4ICAhAy5Yt8ddff2H06NFqj6vuvIsWLVIKBPPy8uDm5oaQkBDBOmrLZDKEhYUhODgYEolEkHM2ZlRf/WdodTa0+gKGV2eqrzAqn4pUR5BA58yZMyr/X1dmz56NCRMmaEzj4eGBGzduIDU1tcq+9PR0ODk5aZ2fi4sLWrZsiXv37gGoeDRXVlaG7OxspVadtLQ09OzZU+15pFIppFJple0SiUTwm70uztmYUX31n6HV2dDqCxhenam+up9PG3XSR6euOTg4aDXMOCgoCLm5ubh69SrfR+jKlSvIzc3VGJA8LzMzE0+ePOEn7fL394dEIkFYWBjGjRsHAEhOTsatW7ewZs2aWtSIEEIIIXVBsD462qrPPjrt27fHkCFDMH36dPzwww8AgBkzZmDYsGFKHZG9vb2xatUqjBo1CgUFBVi2bBlefvlluLi44OHDh/jwww/h4ODAjxqztrbGtGnTMH/+fNjb28POzg4LFixAx44d+VFYhBBCCGl4gvXR0UZDTHy1a9cuzJkzhx8h9dJLL+Gbb75RSnPnzh3k5uYCqBiifPPmTWzfvh05OTlwcXFB//79sXfvXn7GZwD48ssvYWRkhHHjxqG4uBgDBw7E1q1baeE9QgghpBERvI9OY2NnZ4edO3dqTPPs2kmmpqY4fvx4tec1MTHB119/ja+//lrnMhJCCCGkbtRZH524uDg8fvwYZWVl/DaO4zB8+PC6ypIQQgghRInggc6DBw8watQo3Lx5ExzH8a0llY+taIkEQgghhNQXwde6evfdd9GqVSukpqbCzMwMsbGxOH/+PAICAnD27FmhsyOEEEIIUUvwFp3w8HCcPn0ajo6OEIlEEIlE6N27N1atWoU5c+Zo3XGZEEIIIURXgrfoyOVyWFhYAKiY7yYpKQkA0LJlS9y5c0fo7AghhBBC1BK8RcfX1xc3btxA69at0aNHD6xZswbGxsb48ccf0bp1a6GzI4QQQghRS/BA5+OPP0ZhYSEA4JNPPsGwYcPQp08f2NvbY+/evUJnRwghhBCiluCBzuDBg/n/t27dGnFxccjKyoKtrW2DTBhICCGEEMNVL2td2dnZ1Uc2hBBCCCFK6iTQKSkpwY0bN5CWlgaFQqG076WXXqqLLAkhhBBCqhA80Dl27BgmTZqEjIyMKvs4jqMJAwkhhBBSbwQfXj579myMHTsWycnJUCgUSj8U5BBCCCGkPgke6KSlpWHevHlwcnIS+tSEEEIIITUieKAzZswYWuqBEEIIIY2C4H10vvnmG4wdOxYXLlxAx44dIZFIlPbPmTNH6CwJIYQQQlQSPND59ddfcfz4cZiamuLs2bNKc+dwHEeBDiGEEELqTZ3MjLxixQp88MEHEIkEfzJGCCGEEKI1wSORsrIyjB8/noIcQgghhDQ4waORyZMn05pWDYAxhszMTH61+PLy8gYuESGEENLwBH90JZfLsWbNGhw/fhx+fn5VOiOvX79e6CwNXmZmJm7fvo2ysjIwxgAAly9fhoeHBzw8PGiNMUIIIQZL8EDn5s2b6NKlCwDg1q1bSvvoC1d42dnZiImJqbJdoVAgISEBjDG0bt26AUpGCCGENDzBA50zZ84IfUqiwf379zXuf/ToEVq0aAFjY+N6KhEhhBDSeAjaR0cmk6F///64e/eukKclahQXFyMvL09jGsYY0tPT66lEhBBCSOMiaKAjkUhw69YtekRVT2QyWbVpOI5DWVlZPZSGEEIIaXwEH3U1adIkbNmyRejTEhWkUmm1aRhjMDExqYfSEEIIIY2P4H10ysrK8NNPPyEsLAwBAQEwNzdX2k+jroQjlUphZ2eHrKwstWlEIhEcHR3rsVSEEEJI4yF4i86tW7fQtWtXWFlZ4e7du4iKiuJ/oqOjhc6uWtnZ2QgNDYW1tTWsra0RGhqKnJwcjcdwHKfy54svvuDTvPDCC1X2T5gwoY5rU5Wnp6fGyRm9vLxgZCR4PEsIIYQ0CXo/6mrixIlITEzEsWPHAAAzZsxAaGgojhw5ovaY5ORkpdd///03pk2bhpdffllp+/Tp07FixQr+tampqYAl146FhQX8/f1x9+5d5Obm8tuNjY3h5eUFZ2fnei8TIYQQ0ljUyZ/6OTk52LJlC27fvg2O4+Dj44PXX38d1tbWdZGdWrdv38axY8dw+fJl9OjRAwCwefNmBAUF4c6dO2jXrp3K454PDn7//Xf079+/ynw0ZmZmjSKQsLS0hL+/P4qKipCfn8/Xl4aUE0IIMXSCBzrXr1/H4MGDYWpqiu7du4MxhvXr1+PTTz/FiRMn0LVrV6GzVCs8PBzW1tZ8kAMAgYGBsLa2xqVLl9QGOs9KTU3FX3/9hW3btlXZt2vXLuzcuRNOTk548cUXsXTpUlhaWqo9V2lpKUpLS/nXlUPDZTKZViOoqiORSPj8y8vL9X7025OsYkQ9yoQRgPiUXHg6128g3RAq7xMh7pemwtDqbGj1BQyvzlRfYc9bHY5VrhkgkD59+sDT0xObN2/m+4aUl5fjjTfewIMHD3D+/Hkhs9Pos88+w9atW6vM69O2bVtMnToVixYtqvYca9aswerVq5GUlKQ0emnz5s1o1aoVnJ2dcevWLSxatAienp4ICwtTe65ly5Zh+fLlVbb/+uuvMDMzq0HNCCGEEMNWVFSEiRMnIjc3F1ZWVmrTCR7omJqaIioqCt7e3krb4+LiEBAQgKKiIp3zUBcwPOvatWs4ceIEtm3bhjt37ijt8/LywrRp0/DBBx9Um5e3tzeCg4Px9ddfa0wXERGBgIAAREREqG21UtWi4+bmhoyMDI1vUk3IZDKEhYUhODi4yjpj+qCsXI7p26PwKLMIcgYYixjm+xRiXZw55BDB2UqKLVO6wtxYPztg6/v7q4qh1dnQ6gsYXp2pvsLIy8uDg4NDtYGO4N8GVlZWePz4cZVA58mTJxof69TE7Nmzqx3h5OHhgRs3biA1NbXKvvT0dDg5OVWbz4ULF3Dnzh2tVmPv2rUrJBIJ7t27pzbQkUqlKue+kUgkgt/sdXHOxuDvuAz8m1YMQPmxXJmCQ5kCeJhVir9jM/BKd7eGKWA90df3VxNDq7Oh1RcwvDpTfXU/nzYED3TGjx+PadOmYe3atejZsyc4jsPFixfx/vvv45VXXhEkDwcHBzg4OFSbLigoCLm5ubh69Sq6d+8OALhy5Qpyc3PRs2fPao/fsmUL/P390alTp2rTxsbGQiaTwcXFpfoKkFo7EpMMjgPUtUMyAH9EJ+t9oEMIIUQ7ggc6a9euBcdxmDRpEsrLywFURF1vvfUWVq9eLXR2GrVv3x5DhgzB9OnT8cMPPwCoGF4+bNgwpY7I3t7eWLVqFUaNGsVvy8vLw759+7Bu3boq571//z527dqFoUOHwsHBAXFxcZg/fz66dOmCXr161X3FDFhmQZnaIKdSViEteUEIIaSC4BMGGhsbY+PGjcjOzuYnCszKysKXX36p1ZIFQtu1axc6duyIkJAQhISEwM/PDzt27FBKc+fOHaU5aABgz549YIypbIUyNjbGqVOnMHjwYLRr1w5z5sxBSEgITp48CbFYXKf1MXSuNiYQaRhMxnGAiw0teUEIIaRCnfXYNDMzg5+fX12dXmt2dnbYuXOnxjSq+mPPmDEDM2bMUJnezc0N586dE6R8pGZGdXHFpfvql7xgDBjdtXk9logQQkhjJliLjkgkglgs1vhDSxEQXb3QzhE9WtlC1RRBIg7wa2GFIR2q72hOCCHEMAgWeRw6dEjtvkuXLuHrr79W2XJCSE2IRRw2TPDDV6fu42BkEphCDgCQiDkM7+iK94I9YWwk+BNZQgghTZRggc6IESOqbPv333+xaNEiHDlyBK+++ipWrlwpVHbEgEmNxHh/cFu89UJr3HqShdTYcPw+KxB2ljTpIiGEEGV18qdvUlISpk+fDj8/P5SXlyM6Ohrbtm2Du7t7XWRHDJSF1Aj+LW0BAJYmhjMXBSGEEO0JGujk5uZi4cKF8PT0RGxsLE6dOoUjR47A19dXyGwIIYQQQrQi2KOrNWvW4PPPP4ezszN2796t8lEWIYQQQkh9EizQ+eCDD2BqagpPT09s27ZN5WrfAHDw4EGhsiREb8jlcq1W4pXJZDAyMkJJSQnkcnk9lKzhGVqdDa2+gOHVmepbcxKJpNbz1AkW6EyaNAmcqjG/hBCNCgoKkJiYqNWoRMYYnJ2d8eTJE4P5vBlanQ2tvoDh1ZnqW3Mcx6FFixawsLCo8bGCBTpbt24V6lSEGAy5XI7ExESYmZnB0dGx2l8CCoUCBQUFsLCwgEhkGMPoDa3OhlZfwPDqTPWtGcYY0tPTkZiYCC8vrxq37NAMfoQ0IJlMBsYYHB0dYWpqWm16hUIBxhhMTU2hYBXzCuk7hUKBsrIymJiYVPtLkink4ERNexmWmtS3OnKFAuIm8EUqZJ21za8hA4z6rq+6MtRX3kLU19HREQ8fPoRMJqNAh5CmSNvmXAUDzM3NEfMkByl5pXC2MkEnN2uUKxiMDCDoUYXJy8GJjVB25wrkGYkQO7SAcbse/HZDU66Qw0gkRkz6HaQUZsDZ3AGdHNvx2w2VXK6AWCzCwwdZyMkuho2tKTxa2/HbDYFcLodYLEZ8fDyysrJgZ2cHT09PfntjpssjPsP7LUBIE8UYwz/xmfjyZDweZxXz293tTPHeIE/0beug0y+Dn376CbNmzUJqaipsbGywbNkyODg4YPbs2XwaBwcHZGRkoKCgANOmTcPt27dRXl6Oli1b4u+//9apfrXBGENp5Ank7fwY8uR4frvYxRNWr30CacCLtb4mT548wTvvvIObN29CKpWiS5cuGDNmDHbt2oX9+/fz6QICArB//354eHjAw8MDvXv35tfX++abb5CRkYFly5bpVE9tMcbwz9NIfBm5A4/zk/nt7pYueK9rKPq2CKjV9TAyMkLHjh1RWloKU1NTzJw5E9OnT+f379mzBytWrIBCoYCdnR2+/fZbdOnSBQDg4eGBDh064K+//gIAlJWVoVmzZhg5cmS9dXlgjOHf2DT8dTgWGWmF/HaHZub4z8gO8OnoVOvr4uvri/LycrRv3x7btm2DmZkZ/zmptGDBAvj6+mLKlCmYMmUKRo8ejb59+wpSN20xxnDz5k3s27cPqamp/HYnJyeMHTsWnTp1qtU1kMvl8Pf3BwCkpKTAyMgIDg4OuH//Pvbv34/BgwdDLpejRYsW+OWXXzB27FgAgKurK+Li4rBhwwasX78ejx49gq2tLQoKCuDr64uHDx8KUm+gjiYMJIQIq1zBcP5uBubvu6kU5ADA46xizN93E+fvZqBcUftlVn777TcEBARoXM6l0ldffYV27drhxo0biIuLw5o1a2qdb20xeTlKr/+N7LUTlYIcAJAnxyN77USUXv8bTF5e83MzhlGjRmH06NG4f/8+4uLiMHnyZGRnZ1d77D///IOEhIQa56mrcoUc5xOvY/75tUpBDgA8zk/G/PNrcT7xOsoVNR/1YmNjg6ioKMTFxeHgwYP47rvv8OOPPwIArl+/jqVLl+LkyZP4999/8fnnn2P06NEoKirij09JSeGv3fHjx+t18li5XIG4m6nYvvmqUpADABlphdi++SribqZCLlfU+Nw2NjaIjo7GrVu3YGxsjO+//16oYgtKLpcjJiYG3377rVKQAwCpqan49ttvERMTU6sRUWKxGNHR0YiOjsbMmTPxwQcfIDo6Gh999BHCw8MBADdu3EDr1q1x+fJlAEBCQgJsbW1hY2MDALC2tsY333yjWyU1oECHkCbASMThy5PxUBfHKBiw4dT9Wj++ysjIwIMHD/D555/jt99+qzZ9SkoKHB0d+dcdO3asVb664MRGyNv5McDUfEExBfJ2flyrx1enTp2CpaUlJk2axG8LCQlB69atqz323XffbZDAz0gkxpeRO6BQcz0UTIENUTt1fnzVsmVLrFu3Dps2bQIAfPnll/jwww/h6uoKAOjTpw/69euHXbt28ceMHDmSD6B/++03jBs3Tqcy1IRYLMJfh2OhblAjY8DRw7E6P77q06cP4uPjq0/YAMRiMfbt26d2ZCdjDPv27RP08VVQUBAf2Fy+fBlTp05FVFQU/zooKIhPO2PGDPz8888oLCxUeS5dUaBDSBMQ8yS3SkvO8x5lFiHmSW6tzn/gwAGMHj0avXr1wr///ovMzEyN6adMmYLly5ejd+/eWL58OZ48eVKrfLUhEolgY2NTpRNj2Z0rVVpynidPjkfZnas1zjMuLg6dO3dWue/kyZPo3Lkz/xMXF6e0f9KkSQgLC0NKSkqN89VFTPqdKi05z3uUl4SY9Ds659W1a1fcuVNxnri4OP4xVaUuXbrg9u3b/OuxY8di//79KC0txb///qv22taFhw+yqrTkPC89rRCPHmTVOo/y8nL8/ffffMCfk5OjdI9s37691ucWQnx8fJWWnOelpqbi/v37guXZrVs3REZGgjGGK1euoFevXpDL5SgrK6sS6Nja2mLMmDHYvHmzYPk/iwIdQho5uYIhJa9Eq7SpeSWQ1+Lx1d69ezFu3DhwHIcRI0bg0KFDKp/XV27r2rUrHjx4gDlz5iA+Ph5du3ZFWlpajfOtLaaQQ56RqFVaeeYTfpV7rc/PmNr+CoMGDeKb6qOjo+Hj46O039jYGLNmzcL69etrlKcu5AoFUgozqk8IILUwE3JFzR/TPEubOZ+e1aJFCxQVFeHXX3/F4MGDdcq7JhQKBXKyNf+BUCknuxiKGn52KgOagIAAuLu7Y9q0aQD+90ir8ufZlsH6plAokJWlXRCXlZUFhY73RiUzMzO0aNECd+7cwZ07d+Dl5QU/Pz9ERUVVCXQAYP78+fjmm29QVlYmSP7Pos7IhDRyYhEHZysTrdI6WZnUeMh5amoqLl26hDFjxgAASktLERsbixEjRij1ScnKyoKDgwP/2srKCuPGjcO4cePwn//8B+fPn+fPISSFQoG8vDxYWVnxrTqcSAyxQwutjhfbu9V4yLmPjw8OHz5c06LyZsyYAV9fX7z++uu1PkdNiEUiOJs7VJ8QgJO5vc5DzqOjo+Ht7Q0AaN++PSIjI+Hn58fvj4qKQq9evZSOGTlyJObPn48zZ87UaQvgs0QiEWxsq5+2AQBsbE0hquFnpzKgacxEIhHs7Oy0SmtnZyfokPPAwEAcPXoUNjY24DgO3bt3x7lz5/Dw4UO0b99eKa2zszMGDRqEHTt2CJZ/JWrR0RMKxnA1IQtHYiqarkvK9H9acUPSyc0a7naaf2G3tDdDJzfrGp97//79eOutt/Dw4UM8fPgQSUlJuHv3Ljp27IjDhw/znUp37tyJPn36AKjocJuTkwMAKCwsREJCAlq2bFnjvHVh3K4HxC6eGtOIXTxh3K57jc89aNAg5Obm8qOnAODIkSN48OCBVsebm5tj6tSpfIfd+tDJsR3cLV00pmlp5YpOju10yufJkydYsGABPxrvvffew2effYakpCQAwMWLF3HmzBlMnDhR6biJEydiyZIl6NSpk07515RHazs4NDPXmMaxmTlattYuGGiKPD094eTkpDGNk5MT2rRpI2i+QUFB+Oabb9C9e8VnMDAwEN9//z26dOmissX0v//9LzZs2CBoGQAKdPTC5QdZGP71JczcGY01x+8BAF769jK2/vOoxk3MpHEqVzC8N8gT6v7gFHHA3IFtajXq6rfffsPIkSP51xzHYdiwYbh9+zZef/11BAUFoXPnzjhz5gw+/fRTAMD9+/fRp08f+Pn5oXv37pgyZQq6detWm6rVGpOXw+q1TwBOza8xTgSr1z6p1agrjuNw+PBh/Pbbb/D09ESHDh3w22+/af2XMQC88847fDBYH8oVcrzXNRQiNddDxIkwt8trtRp1VfmIxsfHByNHjsTMmTP5xzTdunXD0qVLMXDgQLRr1w7vv/8+Dh48CHNz5eCiWbNmmDt3bo3z1pVcrsB/RnaAupHTHAcMHdmhVqOuauv1119Hhw4d4O7uzg+3rktyuRxjx45V+ziW4ziMHTtW8HW3goKCkJCQwAc6bdq0QX5+PgIDA1Wmb926NXr27CloGQCAY/RN2GDy8vJgbW2N3NxcWFlZ1eocUY9zMGNHFBSMgTHAWMSwyLcAq25ZoEzB4a1+rTC9byuBS954yGQyHD16FEOHDoVEImno4tRYSUkJEhIS0KpVK5iYaH48xVjFEPPn59FpaW+GuQPb6DyPTmOl6tFVJcYYSq//XSfz6DQUTfWtDmMM5xOvV5lHp6WVK+Z2ea3W8+jUNV3qrA3GGOJuplaZR8exmTmG6jCPTm3VdX1VYYwhJiZG8Hl0tCFEfVX9rtT2O5T66DRxG0/Fg/1/kKPKTxcfYly3FrA2bXpBAFHGcRx6edmjXztHxDzJRWpeCZyemRm5MX6B1TWO4yDtGoJm3Yai7M5VyDOfQGzvBuN23StmRjawa8JxHHo174p+bt0Qk34HqYWZcDK352dGNrTrUYnjOHh3aIYOfs549MzMyC3/f2ZkQ7guHMehY8eO6Ny5M+7fv8/PjNymTRvI5fp9b1Cg04Ql5RTjRmKexjTlcoaTt9Pwctfm9VQqUpdEqOgT49fCCgpmxXc8NtTlHwDw8+QYt+sOpvDnOx4b4vIPAPh5cjo5toPc/n9rXRny8g8A+HlyWra2g5uC8R2PDWX5BwD8PDlt2rRBq1at+NaVxr78g64M5x3WQ9lFsmrTiEQcsgqEH65HGk7lQqCGsKBnTTX1BT2F1hQW9GwINR1dpY8MYdX0SoZTUz3kaCGtNo1cwdDMqvp0hBBCiD6iQKcJa2YlRY9WtmpH4gCAiUSEQe2b1V+hSJ2TSCTgOA4KGkdQBRNosjN9oW45CENHY3AM6xrofaDz6aefomfPnjAzM+MXEKsOYwzLli2Dq6srTE1N8cILLyA2NlYpTWlpKd555x04ODjA3NwcL730EhITtZupVUhzB3lCIhapDXbeHegJc6lh9lXQSxwHc3NzpBWU4WFWEVLzSwHAoIOeylmPWeYDICmq4t9nthuayuAmrTgVj/ITkFacqrTdUFV+RnJyi5GWVoCc3GKl7YagMrjJzc1FWloacnNzlbbrK70PdMrKyjB27Fi89dZbWh+zZs0arF+/Ht988w2uXbsGZ2dnBAcHIz8/n08zd+5cHDp0CHv27MHFixdRUFCAYcOGCT4PQXXaOVtiy+SuaO9iqbTdwVyCZS+1x/hu2s0eSxo/xhgSc4px4EYSjv6binMPMnH031QcuJGExJxinX5ZGRkZ8evydOvWTWm2199//x1dunSBj48POnXqhLfeeoufRNDDwwN+fn7w9fVFx44dsXr16nr9DDDGgNRYKMJWgJ1fD3btF7Dz66EIWwGkxup0TZ48eYKRI0eiTZs28PHxwauvvoovv/wSCxYsUErn4eGBgoICPHz4EGZmZujcuTM6deqEvn374vHjx7pWsUYYY3ha+ASHEn7DsSdHcCHlDI49OYJDCb/haeGTWl8PjuPw9ttv86+Tk5MhFouxbNkyAMCyZcvQokUL/h6qnFhy9erVeO+99/jjli5dikWLFtW+grXEGENmRhEuhT9GREQSbsWmISIiCZfCHyMzo6jW16Xyc+Pr64uxY8fyn4vK7R06dMDw4cP5+ZQePnyIgIAAoapVI4wxZGRkIDw8HBEREYiNjUVERATCw8ORkZGh02dFVb2mTJmCP//8E5s3b0bnzp3Rq1cvdOnShV/oEwAKCgpgZmbGLxBbV/Q+0Fm+fDnee+89rVdXZoxhw4YN+OijjzB69Gj4+vpi27Zt/DotQEU0vGXLFqxbtw6DBg1Cly5dsHPnTty8eRMnT56sy+qo5ONqhR3TumHfm92xenQHAMD+twLxUifNs6SSpkPBGJ7kFON0fAbySpUnwMsrLcfp+Aw8ySmu9V+nz67N88EHH2DFihUAKqbyX7BgAfbt24e4uDhERkaiY8eOSktDXLp0Cbdu3cLZs2dx5swZLF68uPYVrQGmkAMpN8EubwYKnltnqyCtYnvKzVq17DDGMGrUKIwePRr3799HXFwcJk+eDGtrzTNP+/j4IDo6GjExMRgxYkSdzPKqjoIpkFj4GGeTTiJfpjwaM1+Wh7NJJ5FY+LhWLTt2dna4fPkyH8Tu378fHTp0UErzwQcf8PfQhQsXAADz5s3DiRMncOvWLSQkJODXX3/Fxx9/XMsa1o6CMWRkFOHGzRQUFysP4CguluHGzRRk1DLYqfzc3Lp1C8bGxvj++++VtsfGxsLGxgbffvutIHWprcog5+bNmyguVl77q7i4GDdv3tQ52FElJycHGzZswKVLl/DPP//g5MmTcHd35/f/8ccf6NKlC/bu3Stovs+jZxrPSUhIQEpKCkJCQvhtUqkU/fr1w6VLl/Dmm28iIiICMplMKY2rqyt8fX1x6dIltYvWlZaWorS0lH+dl1fxy0gmk0Emq34EVXXcbaVwsRAh7C6gkJdDJtP/kQWV102I69cQKkdQKRQKjYvpiUQiXHuSA3W/hhiAa4k5cLc1q/WifJXH5eTkwMrKCgqFAl988QU+/PBDtG7dGgpFxXwjM2fOVEpfWXZbW1ts2rQJAQEBWLlypWDzclT+8q28TpVEIjEUtw4DGq4Ku3UYIhe/Gl+TkydPwtLSEq+99hp/7KBBg7B169Yq5QCg9P5V/ls5QVpN81ZX3+qIRCJcT78CpuZ6MDBEpF+Fm0XLGpeJ4zj07t0bZ86cwYABA3Do0CGMGjWKL2PFXF5Vy2tkZIS1a9finXfegaWlJZYvXw5TU9Mq6WpbZ22IRCLci8/UmCb+fiYcHc1rlXflMb169cLNmzer3AdBQUG4ceOG0j1Sl/VVRSQSIT4+XmOa+/fvw9HRUadr8OyxjDHcv38f5ubmkEqlKC8vh52dXUX/wv9Pt2fPHqxYsQKzZs1CYmIiXF1dNebBGINMJuOHw2v7e58CneekpKQAQJV1QZycnPDo0SM+jbGxMWxtbaukqTxelVWrVmH58uVVtp84cQJmZma6Fl1JWFiYoOdr7JpqfY2MjODs7IyCggKUlZWp7UeWml9apSXneXkl5UgrKEUzFaPxqluKICcnB506dUJxcTEyMzNx/Phx5OXlITY2Fm+99RYflD+vcsbTyl9c9vb2/C+4Zs2E6QRvY2Oj8rqwzAdVW3KeV5AGlvkAIvvWSpurux5RUVFo3759lXqXlJSgrKxMaXvlNSgoKEBcXBw6deqE3NxcMMZw5swZtdeuOs8+Kn+WunskrTi1SkvO8/JkuUgrTkUzU+Xfb9VdD8YYhg4dil27dqF58+YQiUQwNzdHVlYW8vLyUFpaitWrV/Nre3l7e2Pz5s0AKr7oOY5Deno6hg4dqvF6qKuzNtRdl5zc4iotOc8rKpIhN7cE1tZVZyfXdG0YY8jLy0N5eTn+/PNPDBw4EHl5efx2uVyOY8eO4dVXX+XvEblcztdTl/qqo+o65ObmVmnJeV5RURFyc3NVtlpWd39U1uvZ91Ymk8HLywumpqZo06YNBgwYgJEjR+KFF14AUPGHQHR0NLp06cLfW2+++abaPMrKylBcXIzz58+jvLycL7M2mmSgs2zZMpUBw7OuXbum07PQ5/8aZaz6mWerS7No0SLMmzePf52Xlwc3NzeEhITUegmI58lkMoSFhSE4OLhJLolQU029viUlJXjy5AksLCzULgGhYAyFZdqt11RYVg4FM4boufuwuvvLxsYGMTExACoeS3z44Yc4ceIERCIRLC0tYWVlhbi4OLz22mvIzc3FDz/8gEGDBkEkEsHKygoWFhZK56s8pq4whQIozq4+IQAUZ4MxBbhn1oCqrmxSqRRSqbRKOlNTUxgbGyttF4lEsLa2RllZGXx8fHD16lUAwLp167Bq1Sr+C19bjDHk5+fD0tJS61YxBVOgUFagVdqi8kIomEJpTazqrgfHcQgODsaHH36Io0ePYty4cSgtLeWvkVQqxQcffIBZs2ZVOTYzMxOPHz8Gx3EwMjJS+UddbeqsDcYYSku0++yUlJTDyqrq73BN1yY3N5f/4u7duzdmzZoFY2NjfntiYiI6dOiAUaNGwcjICBYWFhCLxbC0tKyT+qrCGENJSYlWaUtKSmBlZVWjawBUfN7FYrFSOolEAktLS5w+fRr//PMPjh49ijfffBOffPIJpk2bhsOHD2P48OGwsbHBa6+9hjlz5uD999/XWDZTU1P07dtXaQkIbTTJQGf27NmYMGGCxjQeHh61OrezszOAilYbF5f/9XFJS0vjW3mcnZ1RVlaG7OxspVadtLQ0jQuSVf7yfJ5EIhH8S7ouztmYNdX6Vk69LhKJ1E7gJeI4mBtr91E1NzaqEuQA2k0OVpnmpZdewpQpUyASieDj44MbN27wHS6jo6MxZcoUlJWV8emfLfvDhw8hEong7Ows2C9wVevkcCIRmKltNUf+P1NbpSDn2bqq06FDB/z+++9V0jk6OiInJ0dpe0lJCSwsLJCZmal07uHDh+OXX36p8cRsla1jlfeFNkScCOYSi+oTAjAzMq+y8Kc2+YjFYvTt2xeff/45bt++jd27d/Nl5DhObXk//vhjvPfee0hOTsbq1avxySefVElTmzprg+M4SE20++yYmBipvGc1laeyL4667UVFRQgODsb333+POXPm/O/+/f98hK6vKhzHVbuOXiUTE5MaXwOg4nORnZ2tlC47OxvNmjWDWCxG79694efnhy5dumDHjh2YPn069u/fj+vXr+Ovv/4CUNHBPSkpCS1aqB5AU3mfPfu7Xtvf+U2yM7KDgwO8vb01/mj7xj6vVatWcHZ2VnoUUlZWhnPnzvFBjL+/PyQSiVKa5ORk3Lp1q05WXiXEyVIKq2qmCbAyMVL52KqmLl26hNatKx71zJ8/H59++inu37/P71fXBJ6VlYW33noLs2bNqpd1czj71oBFNY/HLJpVpKuhQYMGITc3Fzt37uS3HTlyBI6Ojjh37hwyMjIAVHSm9PPzU1nfZ69jfWhm6gRLiea/vK0k1lUeW9XErFmz8Pnnn8Pe3l6r9BEREbh69SpmzpyJDz/8EHv37sWDBw9qnX9t2FibwrSatf7MzCQqH1vpyszMDBs3bsS6dev4xy0NwdraGqamphrTmJmZVdvZXh0LCwvY2Njg0qVLAIDExETcvHkTLi4uSoFgbGwsWrZsiZycHERFReHp06d4+PAhHj58iPnz52Pfvn21yr86TbJFpyYeP36MrKwsPH78GHK5nL/onp6efHO7t7c3Vq1ahVGjRoHjOMydOxefffYZvLy84OXlhc8++wxmZmaYOHEigIqbZtq0aZg/fz7s7e1hZ2eHBQsWoGPHjhg0aFBDVZXoMQVj6OZmg9PxGSq7mnIAurWwgYIxlS061cnJyUHnzp3BGIORkRHf16Jr165YtWoVXn75Zb4PUdeuXZUC+p49e/IdlV977bUqw6/rClPIwfmOrBhdpeaqcL4jK9LVcGkIjuNw+PBhzJ49G8uWLYNUKkXXrl3x9ddf4/PPP0dwcDAYY3B0dMQPP/zAHxcXF8dfR0tLS/z000+6VbIGFEyBAMceOJt0UmWHZA4c/B27V3lsVROVvxNVWb16tVJ9r1y5gnfeeQcbNmyAWCyGmZkZPvnkE8ybNw+HDx+uVf61oWAMXp72uHFTff9Jzzb2WnVPqI2AgAB07NgRBw4cQI8ePQQ/vzYYY/D09MTNmzfVpmnTpo1O12Dbtm14++23kZeXByMjI/zwww9gjGHu3LlITU2FSCRC69at8fPPP+PQoUMICQlRWmNr1KhReOedd5SmIxAKx/R8pqApU6Zg27ZtVbafOXOGf7bKcRx++eUXTJkyBUDFTbF8+XL88MMPyM7ORo8ePfDtt9/C19eXP76kpATvv/8+fv31VxQXF2PgwIHYtGkT3NzctC6btkvM14RMJsPRo0cxdOjQJvkop6aaen1LSkqQkJCAVq1aVdsKyf5/iPm1JzlKHZOtTIzQrYUN3GxM9XIFYlWPrioxxiqGkN86rNwx2aIZON+RgHPHJndNNNW3OowxJBY+xvX0K0odk60k1vB37I4W5u6N8nroUmdtsP8fYn4vPlOpY7KZmQSebezh4GBWr9elruurSuUQ8/j4eKVWWTMzM7Rp0wYODg51dg2EqK+q35XafofqfaDTmFGgo7umXt+aBDoA+BabtIJSFJaVw9y44nFVbVtymoLqfklWttiwzAcVHZRNbcHZt65VS05joOuXQmWLTVpxKorKC2FmZI5mpk46teTUtfr44q9srcjNLUFJSTlMTIxgbW1SZy05mjREoAM8ew1yUVJSAhMTE1hbW9f5NWjoQEfvH10RolcYQ2FRERzNzeBg/r/RVfoa5GijMpjh7Fsrja5qikGOECqDmeeDm8Ya5NSXyi9ya2sTpdFVjbGFq6787xpYK42u0vdrYNh3PiGNRE0aVisnGTTk4Ead50dXGTpDD27U0fcvdm00tWug0xI3ApaDEFJDlSuRp6enw9HRsdpfPgqFAmVlZSgpKanXJu+GZGh1NrT6AoZXZ6pvzTDGkJ6ezg8vrykKdAhpQGKxGC1atEBiYiIePnxYbXrGGIqLi2Fqqp8dj1UxtDobWn0Bw6sz1bfmOI5DixYtlEZqaYsCHUIamIWFBby8vLRat0Umk+H8+fPo27dvk+x8XRuGVmdDqy9geHWm+tacRCKpVZADUKBDSKMgFou1+hCLxWKUl5fDxMTEIH5BAoZXZ0OrL2B4dab61i/9fzhICCGEEINFLToNqLIXeW1XN1ZFJpOhqKgIeXl5BvGXAtVX/xlanQ2tvoDh1ZnqK4zK787qRmRRoNOA8vPzAaBGsykTQggh5H/y8/M1rtNFMyM3IIVCgaSkJFhaWgrW8z4vLw9ubm548uSJYLMtN2ZUX/1naHU2tPoChldnqq8wGGPIz8+Hq6urxmHr1KLTgEQikdol6XVlZWVlEB+gSlRf/WdodTa0+gKGV2eqr+60WXGdOiMTQgghRG9RoEMIIYQQvUWBjp6RSqVYunQppFJpQxelXlB99Z+h1dnQ6gsYXp2pvvWLOiMTQgghRG9Riw4hhBBC9BYFOoQQQgjRWxToEEIIIURvUaBDCCGEEL1FgU4jtWrVKnTr1g2WlpZo1qwZRo4ciTt37iil4ThO5c8XX3yh9rxbt25VeUxJSUldV6la3333Hfz8/PhJpYKCgvD333/z+xljWLZsGVxdXWFqaooXXngBsbGx1Z73wIED8PHxgVQqhY+PDw4dOlSX1dCapvrKZDIsXLgQHTt2hLm5OVxdXTFp0iQkJSVpPGdTfn+nTJlSpdyBgYHVnrexvr9A9XXWt8/w81atWgWO4zB37lx+m759jp/1fH318XP8PFXvcWP7LFOg00idO3cOs2bNwuXLlxEWFoby8nKEhISgsLCQT5OcnKz08/PPP4PjOLz88ssaz21lZVXlWBMTk7quUrVatGiB1atX4/r167h+/ToGDBiAESNG8L8E16xZg/Xr1+Obb77BtWvX4OzsjODgYH7NMFXCw8Mxfvx4hIaGIiYmBqGhoRg3bhyuXLlSX9VSS1N9i4qKEBkZicWLFyMyMhIHDx7E3f9r785jojq/PoB/RxgQHGSVTQouIEhBtC4VxQ6IIlaLrbVGbRCXaktd615rU37VWEKjldhFrY3aqKHRimnjArYwoKKIygAVLUQH0YhiXNg3mfP+Ybgvg7OBIHB7Pskkvc997nPPuc88ncO9AxYUICIiwuC43XV+ASA8PFwj7pMnT+odsyvPL2A4Z7Gt4eaysrKwZ88eDBkyRKNdbOu4ibZ8xbiOm9M1x0AXW8vEuoXS0lICQGlpaTr7TJs2jcaPH693nH379pG1tXU7R9dxbG1tae/evaRWq8nZ2ZliY2OFfbW1tWRtbU27du3SefzMmTMpPDxco23SpEk0a9asDov5ZTTlq82lS5cIAN2+fVvn8d11fomIoqKiaNq0aa06vrvNL5H+ORbLGq6oqCAvLy86c+YMyeVyWrFiBRGRaNexrny1Ecs61pdzV1vLfEenmygrKwMA2NnZad3/4MEDnDhxAgsXLjQ4VmVlJTw8PODm5oapU6ciOzu7XWNtD42NjUhISEBVVRUCAwOhUqlw//59hIWFCX3Mzc0hl8uRkZGhc5wLFy5oHAMAkyZN0ntMZ2iZrzZlZWWQSCSwsbHRO1Z3nN8mCoUCjo6OGDRoEBYtWoTS0lK943SX+QUMz7GY1vCSJUswZcoUTJgwQaNdrOtYV77aiGUdG8q5K61l/kc9uwEiwqpVqxAUFAQ/Pz+tfQ4cOAArKytMnz5d71g+Pj7Yv38//P39UV5ejvj4eIwdOxY5OTnw8vLqiPBbJS8vD4GBgaitrYVMJkNiYiJ8fX2FN7uTk5NGfycnJ9y+fVvnePfv39d6zP3799s/+DbQlW9LtbW12LBhA+bMmaP3H8XrrvMLAJMnT8YHH3wADw8PqFQqfPnllxg/fjyuXLmi8y+qdvX5BYyfY7Gs4YSEBFy9ehVZWVkv7GuaFzGtY335tiSWdWwo5y63ll/6nhDrcJ9++il5eHjQnTt3dPbx9vampUuXtnrsxsZGCggIoGXLlr1MiO2mrq6OCgsLKSsrizZs2EAODg507do1On/+PAGge/fuafT/6KOPaNKkSTrHk0qldPjwYY22gwcPkrm5eYfE31q68m2uvr6epk2bRsOGDaOysrJWjd9d5lebe/fukVQqpd9//13neF19fomMz1kMa7i4uJgcHR1JqVQKbc0fa4htHRvKtzmxrOPW5Nyks9cy39Hp4pYtW4Y//vgD6enpcHNz09rn7Nmz+Pfff/Hbb7+1evwePXpg5MiRKCwsfNlQ24WZmRk8PT0BACNGjEBWVhbi4+Oxfv16AM+rfhcXF6F/aWnpCz8FNOfs7PzCTwSGjnmVdOW7e/duAM9/a2PmzJlQqVRISUnR+1OgNt1lfpvybc7FxQUeHh56Y+/q8wsYl7NY1vCVK1dQWlqK4cOHC22NjY1IT0/H999/L/zmqFjWsaF86+rqYGJiIqp1bGzOzXX2Wubv6HRRRISlS5fi2LFjSElJQf/+/XX2/eWXXzB8+HAEBAS06TxKpVLjfzpdCRGhrq4O/fv3h7OzM86cOSPsq6+vR1paGsaMGaPz+MDAQI1jACA5OVnvMZ2pKV/g/4ucwsJC/PXXX7C3t2/TeN1hfrV59OgR7ty5ozf27ja/gPacxbKGQ0NDkZeXB6VSKbxGjBiBDz/8EEqlEgMGDBDVOjaUb/MiRyzr2JicW+r0tfzS94RYh4iOjiZra2tSKBRUUlIivKqrqzX6lZWVkaWlJf30009ax4mMjKQNGzYI2zExMXT69Gm6efMmZWdn0/z588nU1JQyMzM7NB9jfP7555Senk4qlYpyc3Np48aN1KNHD0pOTiYiotjYWLK2tqZjx45RXl4ezZ49m1xcXKi8vFwYo2W+58+fJxMTE4qNjaXr169TbGwsmZqa0sWLF195fi3py7ehoYEiIiLIzc2NlEqlxnugrq5OGEMs81tRUUGrV6+mjIwMUqlUlJqaSoGBgdS3b99uO79Eht/TROJaw9q0fKwhtnXcUvN8xbiOtWmec1dcy1zodFEAtL727dun0W/37t1kYWFBT58+1TqOXC6nqKgoYXvlypXk7u5OZmZm1KdPHwoLC6OMjIwOzMR4CxYsIA8PDyG20NBQjQ8EtVpNX331FTk7O5O5uTm99dZblJeXpzFGy3yJiI4cOULe3t4klUrJx8dH73PiV0lfviqVSud7IDU1VRhDLPNbXV1NYWFh1KdPH5JKpeTu7k5RUVFUXFysMUZ3ml8iw+9pInGtYW1aFjpiW8ctNc9XjOtYm+Y5d8W1LCEievn7QowxxhhjXQ9/R4cxxhhjosWFDmOMMcZEiwsdxhhjjIkWFzqMMcYYEy0udBhjjDEmWlzoMMYYY0y0uNBhjDHGmGhxocMYY4wx0eJChzHGGGOixYUOY4wxxkSLCx3GGGPd2nvvvQdbW1vMmDGjs0NhXRAXOowxxrq15cuX49dff+3sMFgXxYUOY11AcHAwVq5c2WXGedXaGndn5fuq5qsrz2dwcDAkEgkkEgmUSmWnxhISEgIrKyut++bNmyfEefz48VcbGOsSuNBhrB3t2rULVlZWePbsmdBWWVkJqVSKcePGafQ9e/YsJBIJCgoKcOzYMWzevPlVh9ttdOUP/P+yRYsWoaSkBH5+fp0dik7x8fEoKSnp7DBYJzLt7AAYE5OQkBBUVlbi8uXLGD16NIDnBY2zszOysrJQXV0NS0tLAIBCoYCrqysGDRrUmSH/59TX18PMzKyzwxAFS0tLODs7d/h5hg8fjrq6uhfak5OT4erqqvdYa2trWFtbd1RorBvgOzqMtSNvb2+4urpCoVAIbQqFAtOmTcPAgQORkZGh0R4SEgLgxTsWwcHBWL58OdatWwc7Ozs4OzsjJiZG41xVVVWYO3cuZDIZXFxcsG3bNoPxHT16FP7+/rCwsIC9vT0mTJiAqqoq4ZxLly7F0qVLYWNjA3t7e2zatAlEJBxPRIiLi8OAAQNgYWGBgIAAHD16VOMchvq0Nu558+YhLS0N8fHxwiOIoqIiYb9ardZ7nZryWrVqFRwcHDBx4kSj8tB3rYw5b11dHZYvXw5HR0f07NkTQUFByMrK0plnW+ZTG7Vaja1bt8LLyws9e/aEk5MTIiMj2zRWWxQVFUEikeDYsWN46623YGFhgeHDh6OoqAgKhQKjRo2CpaUlQkJC8PjxY6NivnLlCv75558XXoaKHMYAAMQYa1dz5syhsLAwYXvkyJF05MgRio6Opo0bNxIRUV1dHVlYWNDevXuJiEgul9OKFSuEY+RyOfXu3ZtiYmKooKCADhw4QBKJhJKTk4U+0dHR5ObmRsnJyZSbm0tTp04lmUymMU5z9+7dI1NTU9q+fTupVCrKzc2lH374gSoqKoRzNh1/48YNOnjwIFlaWtKePXuEMTZu3Eg+Pj50+vRpunnzJu3bt4/Mzc1JoVAY3ae1cT99+pQCAwNp0aJFVFJSQiUlJfTs2TOjr1NTXmvXrqUbN27Q9evXDcZozLUydN7ly5eTq6srnTx5kq5du0ZRUVFka2tLjx490oitKe/WXhddtmzZQq+//jqlpKRQUVERnTt3TniftaeW79kmiYmJBIBCQ0Pp7NmzlJ2dTR4eHhQUFETh4eF06dIlyszMJHt7e4qLi2u3mFNTU+n999/XuR8AJSYmtmpMJg5c6DDWzvbs2UO9evWihoYGKi8vJ1NTU3rw4AElJCTQmDFjiIgoLS2NANDNmzeJSHuhExQUpDHuyJEjaf369UREVFFRQWZmZpSQkCDsf/ToEVlYWOj8YLxy5QoBoKKiIq375XI5DR48mNRqtdC2fv16Gjx4MBERVVZWUs+ePSkjI0PjuIULF9Ls2bON6tOWuJti07bf0HVq6jN06FBh25g8jLlW+s5bWVlJUqmUDh06JOyvr68nV1dX4cO9eV5tvS7ajBs3jtatW9eqY9pC15zExMSQra0tPXz4UGibN28eubu7U2VlpdAWHh5Oq1atapeYw8LCyMHBgSwsLKhv37506dKlF/pwofPfxd/RYaydhYSEoKqqCllZWXjy5AkGDRoER0dHyOVyREZGoqqqCgqFAu7u7hgwYIDOcYYMGaKx7eLigtLSUgDAzZs3UV9fj8DAQGG/nZ0dvL29dY4XEBCA0NBQ+Pv7Y9KkSQgLC8OMGTNga2sr9Bk9ejQkEomwHRgYiG3btqGxsRH5+fmora3FxIkTNcatr6/HsGHDAMBgn7bEbYi+69RkxIgRwn8bk4cx18rQ/DQ0NGDs2LHCfqlUilGjRuH69esv5NCe1yUiIgLr169HdnY2pk+fjpkzZ8LOzg4AcOvWLVy7dg3vvPMOAOD48eNIS0vDd9991+rz6KJUKhEREQEHBwehrbi4GLNnz0avXr002qZMmWIwZmMkJSW1W/xMfPg7Ooy1M09PT7i5uSE1NRWpqamQy+UAAGdnZ/Tv3x/nz59Hamoqxo8fr3ccqVSqsS2RSKBWqwFA43szxjIxMcGZM2dw6tQp+Pr6YufOnfD29oZKpTLq+KZznzhxAkqlUnjl5+cL328x1KctcRui7zo1af4Ba0wexlwrY+anedHY1N6yrXn/9rBmzRpcv34dEyZMwM6dO+Hp6SnEferUKdy4cUPom5ubi4CAgHY7NwDk5OQIX8RvolQq8eabbwrbtbW1KCgowNChQw3GzNjL4kKHsQ4QEhIChUIBhUKB4OBgoV0ulyMpKQkXL14UvojcFp6enpBKpbh48aLQ9uTJExQUFOg9TiKRYOzYsfjf//6H7OxsmJmZITExUdjffLymbS8vL5iYmMDX1xfm5uYoLi6Gp6enxuu1114DAIN92hq3mZkZGhsbjb4++hiTB2D4Wunj6ekJMzMznDt3TmhraGjA5cuXMXjwYK3923JddBk0aBDWrVuHq1evorq6Gvn5+UhLS8OmTZvw888/Y9iwYaipqUFubi4KCgoQGBgIDw8P5Ofnt+l8TcrLy1FUVCTcGQOA27dv4/Hjxxpt165dQ2Njo0aRpS1mxtoDP7pirAOEhIRgyZIlaGhoEO7oAM8LnejoaNTW1r5UoSOTybBw4UKsXbsW9vb2cHJywhdffIEePXT/7JKZmYm///4bYWFhcHR0RGZmJh4+fKjxwXvnzh2sWrUKH3/8Ma5evYqdO3cKv/1jZWWFNWvW4LPPPoNarUZQUBDKy8uRkZEBmUyGqKgoo/q0Nm4A6NevHzIzM1FUVASZTAY7OzuDx+hiTIzGXCt9evXqhejoaKxduxZ2dnZwd3dHXFwcqqursXDhwhf6t2U+tYmLi4OTkxNGjhwJExMT7N27F7a2thgzZgxsbW3h5+eHw4cPCwVdbm4u3n77bWzduhVbtmzBn3/+CV9f31ads7mcnBz06NFD47GeUqmEjY0N+vXrp9FvwIABsLKy0hszY+2BCx3GOkBISAhqamrg4+MDJycnoV0ul6OiogIDBw7UuHvQFt9++y0qKysREREBKysrrF69GmVlZTr79+7dG+np6dixYwfKy8vh4eGBbdu2YfLkyUKfuXPnoqamBqNGjYKJiQmWLVuGxYsXC/s3b94MR0dHfPPNN7h16xZsbGzwxhtvYOPGjUb3aW3cwPNHG1FRUfD19UVNTQ1UKpXGB2drGYrRmGtlSGxsLNRqNSIjI1FRUYERI0YgKSlJ43s+zRlzXfbv34/58+frfNRVW1uLrVu3ori4GDKZDGPHjkVKSopwzrt37wrvu+rqaqjVaixYsADA87tmzf/ejKFzaZOTkwMfHx9YWFgIbdnZ2S88HsvJyREeWxmKmbGXJaGOeGjOGOt2goODMXToUOzYsaOzQ2E6xMTECI9EW+vu3buYNWuW8Djt0qVL2L59OxISEgA8L3IXL16MoKAgo87V3d4vEokEiYmJePfddzs7FPaK8Xd0GGOsm0hKSkJcXFybjlWpVBp/YC83Nxf+/v7Cdl5ensY/5WDMuX788UfIZDLk5eW1KaZX4ZNPPoFMJuvsMFgn4kdXjDHWTVy4cKHNx/r5+aGwsBD+/v44cuQI8vLyEBoaCgB49uwZKisrYWNjY/S5Dh06hJqaGgCAu7t7m+PqaF9//TXWrFkD4PmfAGD/PfzoijHGGGOixY+uGGOMMSZaXOgwxhhjTLS40GGMMcaYaHGhwxhjjDHR4kKHMcYYY6LFhQ5jjDHGRIsLHcYYY4yJFhc6jDHGGBMtLnQYY4wxJlpc6DDGGGNMtLjQYYwxxphocaHDGGOMMdH6P3C9LOzJ/0+7AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# as above, but only plot each storm-country pair once, at the threshold with minimum absolute error\n", - "\n", - "measure = \"error_norm\"\n", - "\n", - "results = []\n", - "for event_iso, df in data.groupby([\"event_id\", \"country_iso_a3\"]):\n", - " min_error_mask = df.error_abs == df.error_abs.min()\n", - " try:\n", - " # only store the threshold, error pair if there's only a single minima\n", - " threshold, = df[min_error_mask].index.get_level_values(\"threshold\")\n", - " statistic, = df.loc[min_error_mask, measure]\n", - " results.append((threshold, *event_iso, statistic))\n", - " except ValueError:\n", - " continue\n", - " \n", - "df = pd.DataFrame(results, columns=[\"threshold\", \"event_id\", \"country_iso_a3\", measure])\n", - "\n", - "f, ax = plt.subplots(figsize=(6,4))\n", - "ax.scatter(\n", - " df.threshold,\n", - " df.error_norm,\n", - " c=[country_cmap[value] for value in df.country_iso_a3]\n", - ")\n", - "ax.set_ylabel(r\"Normalised residual, $\\mathrm{\\frac{p_{d,mod}(s_{th}) - p_{d,obs}}{p_{d,obs}}}$\")\n", - "ax.set_xlabel(r\"Wind speed threshold, $s_{th}$, $[m s^{-1}]$\")\n", - "ax.set_title(\"Population disconnected, $p_{d}$, residuals,\\nfor threshold, $s_{th}$, with $min(abs(p_{d,mod}-p_{d,obs}))$\")\n", - "ax.set_ylim(-1.1, 1)\n", - "ax.set_xticks(thresholds)\n", - "ax.grid()\n", - "handles = [\n", - " Line2D([0], [0], marker='o', color='w', markerfacecolor=v, label=k, markersize=8)\n", - " for k, v in country_cmap.items() if isinstance(k, str)\n", - "]\n", - "ax.legend(handles=handles, ncol=int(len(handles) / 2), fontsize=7, loc=\"lower right\")" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "b0ba11bc", - "metadata": {}, - "outputs": [], - "source": [ - "def plot_residual_distribution_by_threshold(*, measure: str, x_label: str, x_min: float, x_max: float, bin_width: float, target: float = None):\n", - " n = len(thresholds)\n", - " ncols = min([n, 4])\n", - " nrows = (n // ncols) + (n % ncols)\n", - " f, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=(3 + 2.5 * ncols, 2 + 2.25 * nrows), squeeze=False)\n", - " \n", - " n_bins = int((x_max - x_min) / bin_width + 1)\n", - " bins = np.linspace(x_min, x_max, n_bins)\n", - "\n", - " max_ylim = 0\n", - " for row in range(nrows):\n", - " for col in range(ncols):\n", - "\n", - " i = col + (row * ncols)\n", - " ax = axes[row, col]\n", - " if i < n:\n", - " threshold = thresholds[i]\n", - " residual = data.loc[threshold, :, :][measure]\n", - "\n", - " ax.grid()\n", - "\n", - " # distribution\n", - " ax.hist(\n", - " residual,\n", - " bins=bins,\n", - " alpha=0.5,\n", - " label=\"Dist.\",\n", - " facecolor=wind_cmap[threshold]\n", - " )\n", - "\n", - " # rug plot\n", - " ax.plot(residual, np.zeros(len(residual)), 'b|', ms=15, alpha=0.5, label=\"Data\")\n", - "\n", - " # average measures\n", - " mean = np.nanmean(residual)\n", - " median = np.nanmedian(residual)\n", - " ax.axvline(median, ls=\"--\", c=\"red\", label=r\"$p_{50}$\")\n", - " ax.axvline(mean, ls=\"-\", c=\"green\", label=r\"$\\mu$\")\n", - "\n", - " # target\n", - " if target is not None:\n", - " ax.axvline(0, ls=\"--\", c=\"cornflowerblue\", label=\"Target\")\n", - "\n", - " ax.set_xlim(x_min, x_max)\n", - " _, max_y = ax.get_ylim()\n", - " max_ylim = max([max_ylim, max_y])\n", - "\n", - " ax.set_title(f\"$s_{{th}} = {threshold} \\ m s^{{-1}}$\", size=10)\n", - " props = dict(boxstyle='round', facecolor='wheat', alpha=0.35)\n", - " ax.text(\n", - " 0.95,\n", - " 0.95,\n", - " \"\\n\".join([f\"$p_{{50}}$ = {median:.2f}\", f\"$\\mu$ = {mean:.2f}\"]),\n", - " transform=ax.transAxes,\n", - " fontsize=8,\n", - " verticalalignment='top',\n", - " horizontalalignment='right',\n", - " bbox=props\n", - " )\n", - "\n", - " # disable any axes we don't need\n", - " else:\n", - " ax.set_axis_off()\n", - "\n", - " # set a common y range for all subplots\n", - " for row in range(nrows):\n", - " for col in range(ncols):\n", - " i = col + (row * ncols)\n", - " ax = axes[row, col]\n", - " if i < n:\n", - " ax.set_ylim(0, max_ylim)\n", - "\n", - " handles, labels = plt.gca().get_legend_handles_labels()\n", - " by_label = dict(zip(labels, handles))\n", - " f.legend(by_label.values(), by_label.keys(), ncol=5, bbox_to_anchor=(0.68, 0.93))\n", - "\n", - " f.supxlabel(x_label)\n", - " f.supylabel(\"Frequency\")\n", - " f.suptitle(\"Population disconnected, $p_{d}(s_{th})$, residuals\")\n", - "\n", - " plt.subplots_adjust(bottom=0.1, top=0.82, left=0.08, right=0.87, hspace=0.3, wspace=0.25)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "84279603", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABGkAAAKKCAYAAACOFAa9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADsuklEQVR4nOzdd3hTZf8G8PskTdO9aGkpLVDZG9lThgKCoIgKiDIcr6KA8iI/xQkisnzFDYr6Ar6I4ABEBRFlKkNGyxQsUFpGoVCgu2nG8/ujNjRt0mY2J8n9ua5cJGc855uTnjvnPJxzIgkhBIiIiIiIiIiIyK0U7i6AiIiIiIiIiIjYSUNEREREREREJAvspCEiIiIiIiIikgF20hARERERERERyQA7aYiIiIiIiIiIZICdNEREREREREREMsBOGiIiIiIiIiIiGWAnDRERERERERGRDLCThoiIiIiIiIhIBthJQ0REREREREQkA+ykISIiIiIiIiKSAXbSEBERVWPZsmWQJMn48PPzQ0JCAh555BFcuHDB3eUBuFnj2bNnbZ53165dmDlzJm7cuOG0Nl1l5syZkCTJZJgc65QbS5+xM5j7TNxl1qxZaNGiBQwGg0uX8/nnn6Nu3booKChw6XKcwdrto6Y+R26vRERVYycNERGRlZYuXYrdu3dj8+bN+Ne//oWvvvoKvXr18ogDtars2rULr7/+eqUD+Lvuugu7d+9GnTp13FOYlTylTney9Bl7k4sXL2LBggWYNWsWFArX7uKOGzcOwcHBWLBggUuX4wzcPoiIPIufuwsgIiLyFK1atULHjh0BAH379oVer8cbb7yBdevW4aGHHnJzdc4XExODmJgYd5dRLU+pk1zrvffeQ0REBIYPH+7yZfn5+eHJJ5/EG2+8gRdeeAFBQUFOabewsNBpbZXh9kFE5Fl4Jg0REZGdunbtCgBIT083Dvv9999x++23IzQ0FEFBQejevTt++uknk/nKLitITk7G8OHDERYWhvDwcDz88MO4cuWKcbrx48ejQYMGlZZr7WUJp06dwiOPPILGjRsjKCgIdevWxdChQ3HkyBGTtv7v//4PAJCUlGS8pGvbtm0WL0uw5T0eO3YMDz74IMLDwxEbG4tHH30UOTk51dYOAD/99BPatWsHtVqNpKQk/Oc//zE7XcU6r1y5gieeeAKJiYlQq9WIiYlBjx498Ouvv5rMd+LECTz44IOIjY2FWq1GvXr1MHbsWGg0Gpe9V1umTU1NxejRo1G7dm2o1Wo0b94cH330kdl1UNV7qeoztnU51n4mthg6dCg6duyITz/9FG3btkVgYCASExMxY8YMqy9bKikpweeff47Ro0ebPYvmxIkTGDNmDBo0aAC1Wo3Y2FgMGDAAJ0+etLvuhx56CLm5uVi1apVd85f9LRw8eBD3338/IiMj0bBhQ+N4az4Xa/7WzW3H1n6O1maQNVljibXbKxGRr+CZNERERHY6deoUABj/l3r79u3o378/2rRpg88//xxqtRqLFi3C0KFD8dVXX2HkyJEm8997770YMWIEJkyYgGPHjuHVV1/F8ePHsXfvXqhUKofru3jxImrVqoV58+YhJiYG165dw/Lly9GlSxckJyejadOmePzxx3Ht2jV88MEHWLNmjfGSiBYtWpi9Z4St7/G+++7DyJEj8dhjj+HIkSN48cUXAQD//e9/q6z9t99+wz333INu3bph1apV0Ov1WLBgAS5fvlzt+x4zZgwOHjyIN998E02aNMGNGzdw8OBBZGdnG6c5dOgQevbsiejoaMyaNQuNGzdGZmYm1q9fj5KSEqjVape+1+qmPX78OLp374569erh7bffRlxcHDZt2oRnnnkGV69exYwZM6x+L1V9xrYsx5HPpCoHDhxAbm4u3nnnHbz00kuIjY3Ff//7X8yaNQuJiYl4/PHHq21j7969yM7ORt++fSuNS01NRadOndC3b18sXLgQ0dHRuHjxIjZu3Ijg4GC7646Li0OzZs3w008/4dFHH7W7neHDh2PUqFGYMGGC8dJJaz8Xa/7WK3LF52hN1lhiz3sgIvJqgoiIiKq0dOlSAUDs2bNHaLVakZeXJ3788UcRExMjQkNDxaVLl4QQQnTt2lXUrl1b5OXlGefV6XSiVatWIiEhQRgMBiGEEDNmzBAAxL///W+T5Xz55ZcCgFixYoUQQohx48aJ+vXrV6qnbH5zNaalpVl8HzqdTpSUlIjGjRubLPutt94yO6+5Nm19jwsWLDBp8+mnnxYBAQHG6Szp0qWLiI+PF0VFRcZhubm5Iioqqtr3HhISIqZMmVJl+/369RMREREiKyvL4jSueK/WTjtw4ECRkJAgcnJyTKabNGmSCAgIENeuXbPpvVj6jG1Zji2fibXOnz8vAIhbbrlF3Lhxwzi8pKRExMXFiSFDhlic98477xRffvmlEEKI+fPnCwDGbbG8GTNmiKCgIKHX6822YzAYRGhoqMjMzKw07MqVK1XW/9BDD4nY2Ngqp7Gk7G/htddeqzTO2s/Fmr/1ituHLZ+jLRlUnqWsMVePNe+BiMiX8HInIiIiK3Xt2hUqlQqhoaEYMmQI4uLisHHjRsTGxqKgoAB79+7F/fffj5CQEOM8SqUSY8aMwfnz5ytdWlHxPjYjRoyAn58ftm7d6pR6dTod5syZgxYtWsDf3x9+fn7w9/dHamoq/vrrL5vbs+c93n333Sav27Rpg+LiYmRlZVW5nH379mH48OEICAgwDg8NDcXQoUOrrbNz585YtmwZZs+ejT179kCr1ZqMLywsxPbt2zFixAiL9+pw9Xutatri4mL89ttvuPfeexEUFASdTmd8DB48GMXFxdizZ4/V78USW5bj6Gdiyb59+wCUXj4THh5uHK5SqdCoUSNcvXrV4rz79+/HrbfeCqD0TA5JkhAdHV1puujoaBQWFuKRRx7BH3/8Ab1ebzL+7NmzUKvViIuLMw5LTU1FTEyM2fbKq127NrKysqDT6ap/sxbcd999Jq9t+Vyq+1uvyFWfoyNZY+t7ICLyduykISIistIXX3yBffv2ITk5GRcvXsThw4fRo0cPAMD169chhDD7Cyrx8fEAUOn0/fIHhUDpzUhr1arltNP8p06dildffRXDhg3DDz/8gL1792Lfvn1o27YtioqKbG7PnvdYq1Ytk9dqtRoAqlz+9evXYTAYKq0foPI6M2f16tUYN24cPvvsM3Tr1g1RUVEYO3YsLl26ZGxfr9cjISGhyhpc+V6rmjY7Oxs6nQ4ffPABVCqVyWPw4MEAYOy8sOa9WGLrchz5TCzZv38/VCoVHnjggUrjLl68iMTERAClnQCvvPIK4uPj0ahRI6xatQqFhYXGy2iKioqgUqmgVCortTNhwgTMmzcPf/75J3r27Ik6derg2WefRW5uLo4fP47mzZvj+vXrCAkJQYcOHQAABw8eRLt27fDkk08iIiICLVq0MF7eWF5AQACEECguLrZ7HVT8G7Plc6nub70iV32OjmSNre+BiMjb8Z40REREVmrevLnx150qioyMhEKhQGZmZqVxFy9eBIBK/yt/6dIl1K1b1/hap9MhOzvbeAAfEBBgchPbMlWdXVDeihUrMHbsWMyZM6fS/BEREVa1UZ4979EekZGRkCTJ7EGaNQdu0dHRePfdd/Huu+8iIyMD69evx/Tp05GVlYWff/4ZUVFRUCqVOH/+fJU11MR7tbTssjN2Jk6caHaapKQkALDqvThjOY5+Jpbs378f0dHRJmd1AKX3mDlz5gxeffVVAMALL7yAY8eOITk5GTqdDj169EDbtm2NNwmOjo5GSUkJCgoKKt1nxs/PDy+88AJeeOEFnD9/HkuWLMEbb7yBgIAAzJ8/H7NmzcLZs2exaNEi4zzJycnYv38/Vq9ejcWLF2Ps2LH49NNPMX/+fJO2r127BrVabXK2la0q3gTcls+lur/1imz9HK3NIEeyxtb3QETk7XgmDRERkRMEBwejS5cuWLNmjcn/HBsMBqxYsQIJCQlo0qSJyTxffvmlyeuvv/4aOp0Offr0AQA0aNAAWVlZJjf0LCkpwaZNm6yqSZIk4xkaZX766SdcuHDBZJg1Z7fY+x7tERwcjM6dO2PNmjUmZyjk5eXhhx9+sKmtevXqYdKkSejfvz8OHjwIAAgMDETv3r3xzTffWOzwqqn3ak5QUBD69u2L5ORktGnTBh07dqz0KOvIs+a9AOY/Y1uW48zPpLz9+/fjypUruHHjhnGYXq/HCy+8gAYNGmD06NG4ePEiPv30U3zxxReIjY1F3bp10aNHD+OlTgDQrFkzAMDp06erXF5CQgJefvllBAYGGi9ROnz4MNq2bWsyXXJyMl5//XV07doVCoUCDRs2hBCiUntnzpxBixYt7H37ZtnyuZRn7m+9Ils/R2szyNqsqY4174GIyNvxTBoiIiInmTt3Lvr374++ffti2rRp8Pf3x6JFi3D06FF89dVXlf7HfM2aNfDz80P//v2Nv+7Utm1bjBgxAgAwcuRIvPbaaxg1ahT+7//+D8XFxXj//fcr3VPDkiFDhmDZsmVo1qwZ2rRpgwMHDuCtt96qdGlM69atAQDvvfcexo0bB5VKZfHXWGx9j/Z64403cOedd6J///547rnnoNfrMX/+fAQHB+PatWsW58vJyUHfvn0xevRoNGvWDKGhodi3bx9+/vlnDB8+3DjdwoUL0bNnT3Tp0gXTp09Ho0aNcPnyZaxfvx6ffPIJQkNDa+y9mvPee++hZ8+e6NWrF5566ik0aNAAeXl5OHXqFH744Qds2bLFpvdi6TO2ZTm2fCaSJKF3797Gn/k2Jy0tDdnZ2ahXrx4eeOABPPfcc8a/8QMHDmDbtm3w9/fHb7/9hs6dO6N27drGea9cuWLyS05lHZt79uxBmzZtjMMnTZqEnJwc9O/fH/Xq1cOVK1fw4Ycfwt/fH08++SSA0l/HmjRpkkltycnJWLFihfH1sWPHjJcalTEYDPjzzz/x2GOP2fzeq2PN52Lt33pFtnyO1maQtVlTkb3vgYjIq7n1tsVEREQeoOzXSPbt21fttDt37hT9+vUTwcHBIjAwUHTt2lX88MMPJtOU/TLKgQMHxNChQ0VISIgIDQ0VDz74oLh8+bLJtBs2bBDt2rUTgYGB4pZbbhEffvih1b/udP36dfHYY4+J2rVri6CgINGzZ0+xc+dO0bt3b9G7d2+T+V988UURHx8vFAqFACC2bt1q8RejbHmPFX8dx5pfoSqzfv160aZNG+Hv7y/q1asn5s2bV+17Ly4uFhMmTBBt2rQRYWFhIjAwUDRt2lTMmDFDFBQUmMx3/Phx8cADD4hatWoZlzF+/HhRXFzssvdqy7RpaWni0UcfFXXr1hUqlUrExMSI7t27i9mzZ1daV9a8F3Ofsa3LseYzycvLEwDEqFGjKs1f3tdffy0AiF27dokxY8aIsLAwERoaKu655x5x/Phx43QLFy4UI0aMML6+fPmyCAgIEAcOHDBpr1evXmLw4MEmwz744APRq1cvUbt2baFWq0VSUpJ49NFHxenTp4UQQmg0GuHv7y/y8/ON82RkZIi4uDiTdho3blxp+//tt9+M27Gt710Iy38LZar7XKz9Wzf3t2XttiWEdRlkS9bYu70SEfkKSQgz524SERGRy8ycOROvv/46rly54rL7mhC5y4YNGzBkyBAcOnTIeAaPOc8//zwWLVqEnJwcszf8Ld/e+PHjsW/fPgQHB+Phhx/Gli1bkJeXZ3KJzXfffYeRI0ciPT3d5F5PVcnOzkadOnVw+fJlREZGAgDWr1+Pjz76yHhJT2FhISIiIpCTk4PAwEDjvGPGjMGZM2fwxx9/2PzeiYiILOE9aYiIiIjIabZu3YpRo0ZV20mxf/9+tG/fvsoOGgC48847MXjwYLRu3Rq33XYbGjdujBYtWlS6B8rw4cPRqVMnzJ071+paa9WqhdGjR6NevXro3LkzABjvBVPm2LFjaNiwoUkHzenTp7F69epKNxK29r0TERFZwjNpiIiIahjPpCFfJ4RAZGQkHn30USxcuNBp7R49etT460Blv/zkClu3bkVqaiqeeOIJly2DiIh8EztpiIiIiIiIiIhkgJc7ERERERERERHJADtpiIiIiIiIiIhkgJ00REREREREREQywE4aIiIiIiIiIiIZYCcNEREREREREZEMsJOGiIiIiIiIiEgG2ElDRERERERERCQD7KQhIiIiIiIiIpIBdtIQEREREREREckAO2mIiIiIiIiIiGSAnTRERERERERERDLAThoiIiIiIiIiIhlgJw0RERERERERkQywk4aIiIiIiIiISAbYSUNEREREREREJAPspCEiIiIiIiIikgF20hARERERERERyQA7aYiIiIiIiIiIZICdNEREREREREREMsBOGiIiIiIiIiIiGfBzdwFEROQ99Ho9tFqtu8sgIiKSBZVKBaVS6e4yiMiDsJOGiIgcJoTApUuXcOPGDXeXQkREJCsRERGIi4uDJEnuLoWIPAA7aYiIyGFlHTS1a9dGUFAQd0SJiMjnCSFQWFiIrKwsAECdOnXcXBEReQJ20hARkUP0er2xg6ZWrVruLoecJC8POHAA6NABCA11dzVERJ4pMDAQAJCVlYXatWvz0iciqhZvHExERA4puwdNUFCQmyshZ8rPB7ZtK/2XiIjsV/b9yHu2EZE12ElDREROwUuciIiIKuP3IxHZgp00REREREREREQywE4aIiKiakiShHXr1rm7DCIiIiLycrxxMBERuYQh44MaXZ6i3mSb5xk/fjyWL18OAPDz80NUVBTatGmDBx98EOPHj4dCUfp/GZmZmYiMjLSqTUmSsHbtWgwbNszmenyVtZ9DdZYtW4YpU6bwp+CJvEx1lwuNGzcOy5Ytq5liKmjQoAGmTJmCKVOmuGX5ROR9eCYNERH5tDvvvBOZmZk4e/YsNm7ciL59++LZZ5/FkCFDoNPpAABxcXFQq9VurtS7WfM5EJFvyszMND7effddhIWFmQx77733bGqvpKTERZUSETmOnTREROTT1Go14uLiULduXbRv3x4vvfQSvv/+e2zcuNH4P7PlL3cqKSnBpEmTUKdOHQQEBKBBgwaYO3cugNL/UQWAe++9F5IkGV9T9az5HBYuXIjWrVsjODgYiYmJePrpp5H/z89Pbdu2DY888ghycnIgSRIkScLMmTMBACtWrEDHjh0RGhqKuLg4jB49GllZWW56p57h8uXLkCQJ7733Hm699VYEBASgZcuW+P33391dmtf4/fffoVKpoNFojMPS0tIgSRLS09PdWJn8xMXFGR/h4eGQJMn4WqVSYcKECUhISEBQUBBat26Nr776ymT+Pn36YNKkSZg6dSqio6PRv39/AMD69evRuHFjBAYGom/fvli+fDkkSTI5G2/Xrl247bbbEBgYiMTERDzzzDMoKCgwtpueno5///vfxtwhInIUO2mIiIgq6NevH9q2bYs1a9ZUGvf+++9j/fr1+Prrr3Hy5EmsWLHC2Bmzb98+AMDSpUuRmZlpfE32qfg5KBQKvP/++zh69CiWL1+OLVu24PnnnwcAdO/evdL/sE+bNg1AacfaG2+8gUOHDmHdunVIS0vD+PHj3fW2gIICy4/iYuunLSqyblo7JCcnAwAWLVqEd955B4cOHUKDBg3w0EMPwWAw2NVmTRBCoKCkwC0PIYRNtaakpKB58+YmZ+mlpKQgIiIC9evXd/aqqZZGKyw+tDph9bQlVk7rLMXFxejQoQN+/PFHHD16FE888QTGjBmDvXv3mky3fPly+Pn54Y8//sAnn3yCs2fP4v7778ewYcOQkpKCJ598Ei+//LLJPEeOHMHAgQMxfPhwHD58GKtXr8bvv/+OSZMmAQDWrFmDhIQEzJo1y5g7RESO4j1piIiIzGjWrBkOHz5caXhGRgYaN26Mnj17QpIkk4OpmJgYAEBERATi4uJqrFZvVv5zKH/Ph6SkJLzxxht46qmnsGjRIvj7+5v8D3t5jz76qPH5Lbfcgvfffx+dO3dGfn4+QkJCauR9mKhqmYMHAz/9dPN17dpAYaH5aXv3BrZtu/m6QQPg6tXK09nYeQAAhw4dgkqlws8//4ykpCQAwKxZs9CxY0dcuHABSUlJaNWqFQCgY8eO+Oyzz4zz/vjjj3juuedgMBjwwgsv4PHHH7d5+fYq1BYiZK4bPlMA+S/mI9g/2OrpDx06hFtvvdVkWEpKCtq2bevs0qwy6dPrFse1rqfCM0NCja+nLr2OEgtXITaJ98P/DQszvp7+vxvIL678N/jp01H2F1tO3bp1jR2yADB58mT8/PPP+Oabb9ClSxfj8EaNGmHBggU365o+HU2bNsVbb70FAGjatCmOHj2KN9980zjNW2+9hdGjRxuzp3Hjxnj//ffRu3dvLF68GFFRUVAqlcaz9IiInIGdNERERGYIIcyeuj5+/Hj0798fTZs2xZ133okhQ4ZgwIABbqjQN5T/HLZu3Yo5c+bg+PHjyM3NhU6nQ3FxMQoKChAcbPngODk5GTNnzkRKSgquXbtmPBMkIyMDLVq0qJH34WlSUlIwfPhwYwcNAJMzPiIiIpCSklJpPp1Oh6lTp2Lr1q0ICwtD+/btMXz4cERFOeeA3JukpKRg9OjRJsOSk5Pd1knjqfR6PebNm4fVq1fjwoUL0Gg00Gg0lTKhY8eOJq9PnjyJTp06mQzr3LmzyesDBw7g1KlT+PLLL43DhBAwGAxIS0tD8+bNnfxuiIjYSUNERGTWX3/9ZXKAWqZ9+/ZIS0vDxo0b8euvv2LEiBG444478O2337qhSu9X9jmkp6dj8ODBmDBhAt544w1ERUXh999/x2OPPQatVmtx/oKCAgwYMAADBgzAihUrEBMTg4yMDAwcONB9Nw/95z46ZimVpq+rundOxV+9OnvW7pIqSklJwbhx40yGHTx4ENHR0ahbt67F+f7880+0bNnSOM3gwYOxadMmPPjgg06rrSpBqiDkv1jF+nXxsq2l1+tx7NixSmfSHDx4EPfee6+zS7PKh/+y/At2igr91QsfsTxtxb7teWMiHKiqem+//TbeeecdvPvuu8Z7Vk2ZMqXS9l2x08ZcR3zFS9YMBgOefPJJPPPMM5WWW69ePSe9AyIiU+ykISIiqmDLli04cuQI/v3vf5sdHxYWhpEjR2LkyJG4//77ceedd+LatWuIioqCSqWCXq+v4Yq9U/nPYf/+/dDpdHj77beNP8n99ddfm0zv7+9fad2fOHECV69exbx585CYmAgA2L9/f828AUuqOOunxqatQlFREVJTU03WpcFgwHvvvYdx48ZBoVAgNzcXHTp0QGBgIN5880307t0bAHDx4kWTTpyEhARcuHDBKXVZQ5Ikmy45cpeTJ0+iqKgI8fHxxmG7d+/GhQsX3HYmjVpl/U1vXTWtPXbu3Il77rkHDz/8MIDSv9XU1NRqz3Jp1qwZNmzYYDKsYja0b98ex44dQ6NGjSy2Yy53iIgcwRsHExGRT9NoNLh06RIuXLiAgwcPYs6cObjnnnswZMgQjB07ttL077zzDlatWoUTJ07g77//xjfffIO4uDhEREQAKP2Fp99++w2XLl3C9eul93j4888/0axZsxo9WPU01X0ODRs2hE6nwwcffIAzZ87gf//7Hz7++GOTNho0aID8/Hz89ttvuHr1KgoLC1GvXj34+/sb51u/fj3eeOMNN71Lz3DkyBFIkoQVK1Zg9+7d+OuvvzBy5EjcuHEDr7zyCgDg7NmzOHDgAD7++GOMHTsWubm5ACqfiQCAv3hjRtmlYh988AFSU1OxceNGY96U/7Unql6jRo2wefNm7Nq1C3/99ReefPJJXLp0qdr5nnzySZw4cQIvvPAC/v77b3z99dcmv+gHAC+88AJ2796NiRMnIiUlBampqVi/fj0mT55sbKdBgwbYsWMHLly4gKvm7glFRGQjdtIQEZFP+/nnn1GnTh00aNAAd955J7Zu3Yr3338f33//PZQVLz0BEBISgvnz56Njx47o1KkTzp49iw0bNhjP7nj77bexefNmJCYmGi9lKCwsxMmTJ6u8LMfXVfc5tGvXDgsXLsT8+fPRqlUrfPnll8afPi/TvXt3TJgwASNHjkRMTAwWLFiAmJgYLFu2DN988w1atGiBefPm4T//+Y+b3qVnSElJQbNmzfDKK6/g/vvvR8eOHaFQKLB7925jZ2TZGSCtWrVCixYt8PfffwMovYlr+c7I8+fPo06dOjX+HuQuJSUF/fv3R1paGlq1aoWXXnoJ8+bNQ1hYGD766CN3l+dRXn31VbRv3x4DBw5Enz59EBcXh2HDhlU7X1JSEr799lusWbMGbdq0weLFi42/7lR2/6U2bdpg+/btSE1NRa9evXDrrbfi1VdfNfmbnjVrFs6ePYuGDRsabx5PROQISdj6e4FERETlFBcXIy0tDUlJSQgICHB3OeQkmZnAJ58ATz4J8Bjbt0ycOBHXr1/HypUrzY6/fv06goKCoFarcf78efTo0QPJycmIioqCTqdD8+bNsW3bNuONg/fs2YNatWrV8LuQt4EDB6J9+/aVOhrJvd588018/PHHOHfunFPb5fckEdmC96QhIiIiIqOUlBQMHTrU4viyS0oUCgUkScJ7771n/PUmPz8/vP322+jbty8MBgOef/55dtCYcejQIYwfP97dZfi8RYsWoVOnTqhVqxb++OMPvPXWW5g0aZK7yyIiH8dOGiIiIiICUHpPmSNHjhgv+zCne/fuOHLkiMXxd999N+6++25XlOcVLl26hMuXL6NNmzbuLsXnpaamYvbs2bh27Rrq1auH5557Di+++KK7yyIiH8dOGiIiIiICUHrD1LKbAJNrxMXFmb3BMtW8d955B++88467yyAiMsEbBxMRERERERERyQA7aYiIiKiSkBCgT5/Sf4mIiIioZvByJyIiIqokNLS0k4aIiIiIag7PpCEiIqfgPRaIiIgq4/cjEdmCnTREROQQlUoFACgsLHRzJURERPJT9v1Y9n1JRFQVXu5EREQOUSqViIiIQFZWFgAgKCgIkiS5uSoiIiL3EkKgsLAQWVlZiIiIgFKpdHdJROQBJMHz74iIyEFCCFy6dAk3btxwdylERESyEhERgbi4OP4HBhFZhZ00RETkNHq9Hlqt1t1lEBERyYJKpeIZNERkE3bSEBERERERERHJAG8cTEREREREREQkA+ykISIiIiIiIiKSAXbSEBERERERERHJADtpiIiIiIiIiIhkgJ00REREREREREQywE4aIiIiIiIiIiIZYCcNEREREREREZEMsJOGiIiIiIiIiEgG2ElDRERERERERCQD7KQhIiIiIiIiIpIBdtIQEREREREREckAO2mIiIiIiIiIiGSAnTRERERERERERDLAThoiL3LvvfciMjIS999/v7tLISIPwdwgIlsxN4jIVswN67GThsiLPPPMM/jiiy/cXQYReRDmBhHZirlBRLZibliPnTREXqRv374IDQ11dxlE5EGYG0RkK+YGEdmKuWE9dtKQ15g7dy46deqE0NBQ1K5dG8OGDcPJkydNpmnQoAEkSar0mDhxosV2Z86cWWn6uLg4V78dIqoBixcvRps2bRAWFoawsDB069YNGzdurDTdokWLkJSUhICAAHTo0AE7d+6stm175iEi+bMmN6zZJ6mI+xtE3sua3LA3A7i/4X383F0AkbNs374dEydORKdOnaDT6fDyyy9jwIABOH78OIKDgwEA+/btg16vN85z9OhR9O/fHw888ECVbbds2RK//vqr8bVSqXTNm6hGhw4doNFoKg3/5ZdfEB8f74aKiDxbQkIC5s2bh0aNGgEAli9fjnvuuQfJyclo2bIlAGD16tWYMmUKFi1ahB49euCTTz7BoEGDcPz4cdSrV89su/bM4yrMDSLnsiY3rNknMYf7G0TeyZrcAGzPAO5veClB5CC9Xi/efPNN0ahRI6FWq0Xt2rXFww8/7O6yRFZWlgAgtm/fbnGaZ599VjRs2FAYDAaL08yYMUO0bdvW5uWnpaUJAOK7774TvXr1EgEBAaJ9+/YiLS1NbN26VXTq1EkEBgaKPn36iOzsbCGEc9bl1q1bxX333WdzvUQ1Sa65IYQQkZGR4rPPPjO+7ty5s5gwYYLJNM2aNRPTp0+32IY98wjB3CCqiiflRkXW7JNwf4PI+TwpN+zJAO5veCde7kQOmzt3LlauXIklS5bg5MmTWLNmDfr06WN3e3PmzEFISEiVD2tO48vJyQEAREVFmR1fUlKCFStW4NFHH4UkSVW2lZqaivj4eCQlJWHUqFE4c+ZMtctPSUkBUHoK4pw5c7B7925kZ2djzJgxmD9/Pj766CNs27YNR44cweeffw7A+euSSK7kmBt6vR6rVq1CQUEBunXrBqA0Jw4cOIABAwaYTDtgwADs2rXLbDv2zFOGuUFkmafkhjnV7ZOU4f4GkXN5Wm7YkgHc3/BevNyJHLZp0ybcdddd6Nu3LwCgfv366NGjh93tTZgwASNGjKhymrp161Y5XgiBqVOnomfPnmjVqpXZadatW4cbN25g/PjxVbbVpUsXfPHFF2jSpAkuX76M2bNno3v37jh27Bhq1aplcb5Dhw4hMjISq1atQnR0NIDSG2Zt2bLF5HTnTp064dKlSwAcX5cDBw7EwYMHUVBQgISEBKxduxadOnWyen6imiKn3Dhy5Ai6deuG4uJihISEYO3atWjRogUA4OrVq9Dr9YiNjTWZJzY21rjdVmTPPGWYG0SWeUpuVGTNPgnA/Q0iV/Ck3LA1A7i/4cXcfSoPeb633npLKBQK0b9/f7F48WLjKXFCCHH69Gmxfv164+u1a9eKKVOmuLymp59+WtSvX1+cO3fO4jQDBgwQQ4YMsbnt/Px8ERsbK95+++0qpxs2bJgYN26cybB+/fqJF154wWRYixYtxAcffCCEqHpdEnkTOeWGRqMRqampYt++fWL69OkiOjpaHDt2TAghxIULFwQAsWvXLpN5Zs+eLZo2bWq2PXvmKcPcILLMU3KjImv2Sczh/gaR4zw1N4SoPgO4v+G9eLkTOWzatGn466+/cMcdd+CDDz5Ao0aNkJaWBgDYuHEjTpw4YZz28OHDaNu2bZXtOXoa4eTJk7F+/Xps3boVCQkJZqdJT0/Hr7/+iscff9zm9xscHIzWrVsjNTW1yukOHTqErl27mgxLSUlBly5djK+Li4vx999/o127dgCqXpdE3kROueHv749GjRqhY8eOmDt3Ltq2bYv33nsPABAdHQ2lUlnpf6SysrIq/c9VGXvmKcPcILLMU3KjPGv2SSzh/gaR4zwxN8pUlwHc3/Bi7u4lIu9SXFws1Gq1+PHHH8W2bdtERESEaNy4sWjXrp0oLCwU9913n3jxxRdF165dRb169cz2HmdnZ4vU1NQqH4WFhZXmMxgMYuLEiSI+Pl78/fffVdY5Y8YMERcXJ7RarV3vsW7duuL111+3OE1OTo6QJEns2bPHOOzs2bMCgEhLSzMO279/v5AkSeTm5ppdTtm6JPJm7swNc/r162fyv0udO3cWTz31lMk0zZs3r/bGwbbOw9wgsp7cc8OWfZKq3iP3N4icR+65Ya7e6jKA+xveiZ005JD58+eLZcuWiWPHjokTJ06IadOmibi4OHHt2jUhhBA9e/YUGRkZxukbN24sPv/8cyGEEG+88YaYN2+e02p56qmnRHh4uNi2bZvIzMw0PioGpV6vF/Xq1at0Ol+ZDz74QPTr18/4+rnnnhPbtm0TZ86cEXv27BFDhgwRoaGh4uzZsxZr2bFjh1AqlSbLXrdunYiIiDCZ7vPPPxcNGzYUQlS/Lom8hZxy48UXXxQ7duwQaWlp4vDhw+Kll14SCoVC/PLLL8ZpVq1aJVQqlfj888/F8ePHxZQpU0RwcLBJBlTMDWvmqYi5QWSZp+WGNfsk3N8gci1Pyw1rMoD7G76BNw4mhxQXF2POnDnIyMhASEgIevTogS1btiAyMhIAcP78eSQmJgIACgsLYTAY8OijjwIoPeUvPDzcabUsXrwYACrdZXzp0qUmNwf+9ddfkZGRYayjoqtXr+L06dPG1+fPn8eDDz6Iq1evIiYmBl27dsWePXtQv359i7UcOnQIzZo1Q2BgoHFYcnJypVMoDx06ZDyFsLp1SeQt5JQbly9fxpgxY5CZmYnw8HC0adMGP//8M/r372+cZuTIkcjOzsasWbOQmZmJVq1aYcOGDSYZUDE3rJmnIuYGkWWelhvW7JNwf4PItTwtN6zJAO5v+AZJCCHcXQR5p/Pnz2PUqFH4/fffAQB//vknFi5ciFWrVgEAxo4diyeeeAI9e/Z0Z5lEJCPMDSKyFXODiGzF3CA5442DyWXS0tIQHx9vfH348GG0bt3a+PrIkSNV/hQlEfke5gYR2Yq5QUS2Ym6QnLGThlymVatWSE1NRevWrXHixAkcOXLEGH46nQ75+fmIiIhwb5FEJCvMDSKyFXODiGzF3CA54+VOREREREREREQywDNpiIiIiIiIiIhkgJ00REREREREREQywE4aIiIiIiIiIiIZYCcNEREREREREZEM+Lm7AG9mMBhw8eJFhIaGQpIkd5dD5FWEEMjLy0N8fDwUCu/pb2ZuELmOt+YGwOwgciVvzQ7mBpHrOJIb7KRxoYsXLyIxMdHdZRB5tXPnziEhIcHdZTgNc4PI9bwtNwBmB1FN8LbsYG4QuZ49ucFOGhcKDQ0FAKSlpSEqKsrN1Vim0QpMW3YdADD3oRCEBPk7dwEFBUB8fOnzixeB4GCHmtNqtfjll18wYMAAqFQqJxToWp5Ur1xrLSgpQPzbpX9DF5+7iGD/YFy7dg1JSUnG7cxbeEpuAKbZ8Z8XW0Cdftrh7duV5Pr3bY4n12pue5ULb80NQEbZUc13vsv3OZzMk7dFe9TU9utJ6xXw3uyo0dxw4HiAueE65bf59GfSEREc4d6CquFJ69aR3GAnjQuVnTYYGhqKsLAwN1djmUYr4B+oBwCEhbkg+JTKm8/DwpzSSRMUFISwsDDZb5yAZ9Ur11qVJUogoPR5WFgYgv2DodVqAcDrTs/1lNwAKmSHJEHthO3bleT6922OJ9dqbnuVC2/NDUBG2VHNd77L9zmczJO3RXvU1PbrSesV8N7sqNHccOB4gLnhOhW3+bBgee97etK6dSQ3vOeiSiIiIiIiIiIiD8YzaQgqJTDlrkDs2bsXKmV35y8gIADYuvXmcyLyCiolMGWQGn+tXg3px++5fRNRtd/5Lt/nICJ5cuB4gLlBvsZnO2nmzp2LNWvW4MSJEwgMDET37t0xf/58NG3a1DiNEAKvv/46lixZguvXr6NLly746KOP0LJlSzdW7nwKhYQm8X44pc6BQuGC0ziVSqBPH+e36wNycnKQk5MDg8FQI8vTarW4fPkyzp4967ZTCCVJQnBwMGrVqiW704qZG6YUCglNEvxxqnktSH16m57KTG5TVFSEq1evQq/X18jyKuZGYUkhUHrrAKSfTUeQf1CN1KFWq1G7dm0oZfZ36HO5Uc13vsv3OcgqBoMBV65cQXFxMYQQxuE1tf3KYX8DAPz8/BAdHY0Amf0ng1fmhgPHA8wNeRBC4OrVqygsLDTJjZokh+xQKBSIiIhw6SWCPttJs337dkycOBGdOnWCTqfDyy+/jAEDBuD48eMI/ucayQULFmDhwoVYtmwZmjRpgtmzZ6N///44efKk1904jOSluLgY27ZtQfaVy4BBD6BmglBv0OPc2VTs/t0ApcKNBzoKJYJDItCnbz9ERES4r44KmBskZwaDAbt378bZM6mAQQd35UaJvgSNcktvQrj3963wV9bQvQMkBVTqQHTs1BW33HJLzSzTCswNkptLly7h953boSkqAIRpZ25Nbb+y2d+QJEgKFRo1aY5OnTrJ5j+HmBskN9nZ2dixfRsKC3L+OTZxD3lkhwQolIiJjUfv3n2gVqudvgSf7aT5+eefTV4vXboUtWvXxoEDB3DbbbdBCIF3330XL7/8MoYPHw4AWL58OWJjY7Fy5Uo8+eST7ijbJXR6ge3HSnA2vw70BgGn90lqtcCSJaXPn3gCkPlNnuTg9993ojAnCz27tEbtmGgoFDVz+yi9Xo+UlFi0a9fObf8bbTAYcONGLg4eOootv/2KYfcOd0sd5jA3TOn0AtsPFyFv7zWI9I+BpyZw+3ajo0ePIuPMCbRv3QSJCfE19j9MFXNDo9Ngg7QaAHDf3QOg9nP+zos5BQWFOH7ib+z+YwciIyMRGRlZI8utjs/lRjXf+S7f56AqFRcXY9vWXxETEYA2XbsgNDTEpGOiprZfOexvAEBJSQnSMy7g8PHDCAsLQ7NmzdxWS3lemRsOHA8wN9xLr9dj65ZfERIg0K1XJ0REhLmtQ1MO2aHX65F15SoOJB/Frl270LdvX6cvw2c7aSrKyckBAOPPz6WlpeHSpUsYMGCAcRq1Wo3evXtj165dZsNPo9FAo9EYX+fm5gIoPS2r7O7OcqTRCqzepQHQCEXFWiidfRphQQFUkyYBALQPPeSUX3cq/6/c2VpvUVERMi9koPOtzRAXW9uVpVUmRGnguekURqD0FMKoqAh0vLU1ftmyGxcuXEBo1M3/EdJqtdBK8timfDk3gH+yY68OSLgHD/w7EdqxY2T/607l/5Uze2o9depv1EuojVuS6ruqLPPM5IbkhtPRg4OD0LF9W1y89CtOnTqFdu3aVZpGDp+9M3IDkHF2VPOd7/J9Difzttw4c+YMtJoCdO7YFf7+5s+SqZHtVwb7GwDg7++Pxo2ScOXqVaSmpqJhw4Zmp3P35+8VueHA8QBzw3XK12jp7+DcuXMozM9Bn249ERoaUpPlVSaD7FAqlagTF4vmzYpx8HAq8vM7mT2bxpHPn500KL2+burUqejZsydatWoFoPRUUACIjY01mTY2Nhbp6elm25k7dy5ef/31SsO3bt2KoKCauSbfHjqDAkAPAMCWLVvgp3Du/U+UxcUY8s/zTZs2Qe+k6343b97slHZqirX15uTk4ORfx1E3Jhg3rme7uCrzjhw96pblVnT6dCryi/WIio0yDtu0aRMClAEoLCx0Y2XMDcA0OwDnbt+u5EnZYW2tQgj8uWc3OrVrgpQU9+y4lOVGiaHEOOzQ4UPwV9TsT6VezbqEU2cv4+LFi5XGeUtuAPLNjuq+8129z+Eq3pIbZ86cgbYwG8ePHzc7vqa3X7nsb2RdvoxDf6VbvAegO7PDW3LDkeMB5obrFOuLjc+3bNmCAGXlz+XcuXO4fuUcTp+Oq8nSqiSH7MjNy8dfx48BinVmLzF0JDfYSQNg0qRJOHz4MH7//fdK4yqeyiWEsHh614svvoipU6caX+fm5iIxMRF9+/ZFrVq1nFu0E2m0Aj8vywcA9OvXDyFBTv5CLigwPh04cKBTzqTZvHkz+vfv79abzVnL1nqzsrIg6YvRtm1bhITU7FkJep0OR44eRetWraD0c388nDp7Ce069kDdBnWBI6XDBg4ciGD/YGRnu6cDq4yv5wZgmh2Ac7ZvV/Kk7LC1VoPBgLyca2jZsgmSGtSrgQpvqpgbGp0GyCgd17ZN2xq73KlMXoEGioBa6NWrV6Vx3pIbgIyzo5rvfJfvcziZt+VGcnIyMjNOmD3TDECNbb9y298ICg6FQRmKwYMHmx3vzuzwmtxw4HiAueE6BSUFxn3sfv36ISI4otI0x48fx4mj+y3mRk2SU3bk5OTi0pV83H777YiOjq403pHccH8qutnkyZOxfv167NixAwkJCcbhcXGlPYWXLl1CnTp1jMOzsrIq9VqXUavVZk91UqlUst5ADeVuLumSWsu1p1KpnHbPCrmv14qsrVelUkGhVEL5z8MdlH5+sviFFKVSUWm9lb1252fP3ChlqHBjWmdu367kCeu2jLW1GgwG2eSGUtxcvjvqUSoUUPr5mV1v3pIbgIyzo5rvfJfvc7iIt9Tq5+cHhcLydlnT269c9jcUCiWUfkqL681dn71X5YYDxwPMDddRicr72JWmUalKv1tlsK2WkUN2KJVKKJR+Va43e9XM3UhlSAiBSZMmYc2aNdiyZQuSkpJMxiclJSEuLs7kNLWSkhJs374d3bt3r+lyiWQj9dQZ9Lr9HrRo1wvd+tyF4yf+tjhto5Zd0ap9b3ToPgAdug/A19+tN47TaDR45rmX0bxdT7Tt1A9jH59cE+U7hLlBZB9bcsOaad+YuxCq0AQcPX7ClWU7BXODyD625MaU/3sVjVp2rZQLN27kGPdBOnQfgBbteiEgoj6uXbteE2/BbswNIvvZkh2D7hmNW7vegQ7dB6DPgOFIOXzMOM6dxyo+eybNxIkTsXLlSnz//fcIDQ01XtsZHh6OwMBASJKEKVOmYM6cOWjcuDEaN26MOXPmICgoCKNHj3Zz9UTu8/Sz0/H4Iw9h3MMj8N26H/HE09Pw+5b1FqdfteITtGpR+dcSXpoxFwqFAseTd0KSJGReuuzKsp2CuUFkH1tyo7ppD6Ycwd59B1EvsW5Nle8Q5gaRfWzJjfvuuQvTpjyFPgNMfxEyIiIcB3b9Yny98L2PseP3PYiKksevv1nC3CCyny3Z8dXyxYiICAcAfP/Dz/jX089h3++lv67mzmMVn+2kWbx4MQCgT58+JsOXLl2K8ePHAwCef/55FBUV4emnn8b169fRpUsX/PLLL2ZvDERUE2a88Rb2H0xBfn4hrl7NRp06sfh25WfGcHG1rCtXkXzoKDZ+vxIAMPyeu/Dsc6/ibPo5NKifaHU7BQWFWL7ia5w9sc947XSdOMun58oFc4M8kSflRnXTajQaPDP1Zfzvvx+i/10jaqR+RzE3yBOU5UReXj6OpB9HYIQ/bvTJRWytGLfUY+v+Rq+eXa1qd/mKrzHrteedWqsrMDfIU7h7H6MiW7OjfJ05uXlQKEovNHL3sYrPdtIIK362S5IkzJw5EzNnznR9QW7kpwSeGhiI/fv3wU9p3ZecTdRq4Mcfbz4nux1IPoTiYg1+XPM/hIQEY+h9Y/DFym/wzNOP29XeyIefwKkzZ28OEKU/AR4YGIh13yxDYkK8yfTnzl9EfFws/P65UZckSUhMjMe5cxcsdtKMfWwyDAYDOne8FW/OfBExMbVwOu0sakVFYs6C9/Dbtt8RGBCA116ain59etr1PmoKc8OUnxJ46g5/nPr6a2D1Sm7fMlXTuVE7zvTmk7bkRnXTzpz9H4weNbzGb47sCJ/LjWq+812+z0F2KcuJNd/8F5N/m4TfFx7Fl199h6mTJtjVXqWcKGfd18sQX6fqgx179jeqs3vvAWRfu467Bt1h1/w1yStzw4HjAeaGfLl8H6McV2XH+CeexfYduwAAP65dAQBuP1bx2U4aukmpkNC6nh/OHb0OpcLyHeHt5ucH3HWX89v1QQeTj2DD9ysRGhoCAGjTqgWuXbuOs+nnMHT4GPTq2RVxsTF47aXnoNFo8NQz0xEWFgK93oAPFr5Zqb3VK5aYvNbr9UhJSUG7du0s3oyr8i8JWK53y8/foV5iXWi1Wrw2awEenTAFP3z3P2i1OpxJS0fzZk0wZ9ZLOHTkOO4cOgqH921FTIy8f9GIblIqJLROUuNc61pQDB5cuq2T7NR0bmh0mkrz2JIblqbdvfcA9h88hDmzXrLmbZO7VPOd7/J9DrJL+ZyQJAnhiSG4du2G03KiIr1eX21NtuSGNZb9bxUefvA+48Eb1TAHjgeYG/Ll6n2MilyRHcuWvAcA+OLLbzD9ldmyOFbx2RsHE3ma9IzzyMvPR9vWLYzD9h1IQYdb2wIAwsJCUVysQYP6pf/DvHb9RtzWsyvefesNREaEY/feA5XaHPnwEyY31OvccxDGPDYFnXsOwrnzFytNn5gQj/MXM6HT6QCU/k/P+fMXkWjh3hBl94xQqVR4ZuLj+H3XnwCA+okJUCgUGD3yXgBA29Yt0KBBIo6fOGnv6iEiMzwtN6qadufvu3Hy79No3KobGrXsivMXMnHXsIfw8y9bHF9RRD7MXE5cS8tF+3atATgnJ8o/zOXE/1Z+axy/7H+rbd7fqE5BQSG+WfMDxo8ZZdf8RFRZTexj1GR2jH3oAWzbsQvZ2dfdfqzCrmSCTi+w+28tzhXUht4g4PQfitNqgS+/LH3+0EMe8RO9cnQg+RA0mhKcSUtHw1sa4Kuv1yIvvwB3DboDkiThj60/QAiBkQ8/gdt6dkVGxnl07nQrACCpQT1knDuPbl06mLRp65k0tWOi0a5NS3y5ag3GPTwCa77/CfXrJZg9fbCgoBBardZ4reeqb75HuzatAADR0VHo16cnfvl1GwYNvB3pGedx9uw5NGnc0CnrimqGTi+w+3gRCvZnw3Dlf8C4Mdy+ZcYduVHxTBpbcqOqaZ9/bhKef26ScdpGLbti3TfLzN6YnNyomu98l+9zkM3K50RCvTrI2J0FXbEeg+7shwBVgFNyoqKK/xs+ZvT9GDP6fpNh1uaGNb5d+yNat2yOZk0b2TU/OYEDxwPMDXmqiX2MipyZHbm5ecgvKEB8ndKftF+3fiNqRUUiKioCkiS59ViFnTQEvQH43/ZiAE2hq/4MMtuVlACPPFL6/IEHeBBnpwMHD2PihEcwccqLuHQ5C40bJmH9t8uNN7gCSk/vq107Bnn5+UhIiEd6xgUAQHrGOQy4o69T6lj03nw8NuHfmP+fDxAaFor/fvKOcdzQ+8ZgxsvT0LF9W1zOuoIRDz8BvV4PIQRuaVAfS5e8a5z2o3fn4l9PP4cXX5sDpVKJxe/P94ibB9NNegPwvz90QJ1huG9iIvDgSG7fMuNpuVHdtOQBqvnOd/k+B9msfE5kXrqMnKBs9Px3KygUCuNlAzWRExXZkhuTp76MH37ahEuXr+DOoQ8iJCQIJw79YZx+6Rer8MhYnkXjVg4cDzA35Eku+xgVWZsdObl5GPHwv1BUVAyFQoGY6FpY981yY+6581iFnTREHuJA8mE89+wEvLNgVqVx23b8gf+t/A4AEBERhtYtm6NxwyQ8/eyLOHL0LxQVF6N7145OqaNpk4YWf8buh+/+Z3x+S1J97P9jk8V2bkmqj982fuuUmojIPE/LjeqmLe/UsT1OqY3I15XPCY1Og0e+f8Q4riZzoiJbcuODhW+avb9FmW2/rHFqbUQkn32MiqzNjsSEeOze9pPFdtx5rMJOGiIPkZxyBB1ubWN2XJ/beqDPbT1MhgUEBPB/oIl8HHODiKrDnCAiezA7XIedNEQe4nLGUXeXQEQehrlBRNVhThCRPZgdrsNfdyIiIiIiIiIikgF20hARERERERERyQA7aYiIiIiIiIiIZID3pCH4KYHHbw/AweRk+Ck7OX8BajXw9dc3nxORV/BTAo/38cfZr1cDSz/n9k1E1X7nu3yfg4jkyYHjAeYG+Rp20hCUCgntb1Hh0omrUCok5y/Azw944AHnt0tEbqVUSGjfWI1Lt0ZDMXhw6bZORL6tmu98l+9zEJE8OXA8wNwgX8PLnYjIJoPuGY1bu96BDt0HoM+A4Ug5fMzitJs2b0WX2wbj1q53oEffoTh05LhxXOqpM+h1+z1o0a4XuvW5C8dP/F0T5RORG9iSG1P+71U0atkVqtAEHD1+wupxRORdiouLcd+ox9CiXS906D4Ad937EM6mn6t2vjfmLqyUEcwOIt9ga25UdTzizmMVdtIQ9AaBg2e0uFgUDb1BOH8BOh3wzTelD53O+e1Tjfpq+WIk7/kVB3b9gn9PfgL/evo5s9Ndv34D4x5/BsuWvIfkPb9i7hsvYdxjk43jn352Oh5/5CEcT9mJaVOewhNPT6upt0BOojcIHEzVoDj5KgzffMftmyyyNjcA4L577sK2X9agfr0Em8aRTFTzne/yfQ7yKo8/MhrHknfgwK5fMPjOO/DUMy9UOf3BlCPYu+8g6iXWNRnO7JABB44HmBtkC1tyo6rjEXceq7CThqDTA5/9VoyD15pDp3fBAjQaYMSI0odG44IFUEWPTZiKZf9bbXz9ysx5mP+fD53SdkREuPF5Tm4eFArzMXI6LR21Y6LRvFljAMBtPbsh/dx5HEw5gqwrV5F86CgeGjUcADD8nrtwNv2cVf9DRvKh0wOfbSvBr7XvBR55jNu3h5NDbgBAr55dkVA33uZxJBPVfOe7fJ+DapyrsiMgIACDBt4OSSq9vKVLp/ZIO5tucXqNRoNnpr6MDxbOMc5ThtkhAw4cDzA3vI8ccqOq4xF3H6vwBgJEXuhA8iE8O+nxcq8PY+ozT1aabuTDT+DUmbM3BwigqKgIgYGBWPfNMiQmmN+hGf/Es9i+YxcA4Me1K8xO07hhEq5czcaePw+ga+cOWLd+I/LzC5Cefg5CCMTHxcLvn3uYSJKExMR4nDt3AQ3qJ9r5ronIEc7Kjdpxtcy2b01uEJHnsSs7yuUGJGDd15b3Ocp8+PF/cdeg/hbHz5z9H4weNRxJDerZ9T6IqOa4+lilTFW5ce78RYvHI0HBQW49VmEnDZGXKSwsQnrGebRo1sQ4LDnlCG5t27rStKtXLDF5rdfrkZKSgnbt2kGpVFpcxrIl7wEAvvjyG0x/ZTZ++O5/laYJDw/D1yuW4OUZc5GXX4Ae3TqhRbMmUKlUAFDpf7kEz14lchtn5oZGZ/5/SK3JDSLyLPZmh7X7G2XmvfUBTp1Kw6If55kdv3vvAew/eAhzZr1kx7sgoppUE8cqQPW5AVR9POLOYxV20hB5meRDR9GiWRNjz+/Jv08jJCQY0dFRlaZ1tHd67EMPYOKU6cjOvo5atSIrje/Vsyt+2/gtgNLTkBMatUezpo0QFhaK8xczodPp4OfnByEEzp+/iMQK15ATUc1wZm5YOpOmTHW5QUSew+7ssOFMmoXvfYy1P2zEpvVfISgo0Ow0O3/fjZN/n0bjVt0AAOcvZOKuYQ/hkw/fwp0D+jn+RonIaWriWMWa3EhMiLd4PBIUFOjWYxV20hB5mQPJh6ApKYHBYIBer8ect95D29YtzU5ra+90bm4e8gsKEF8nDgCwbv1G1IqKRFRUhNn2My9dRp24WADAm/PfQ9/buqNRwyQAQLs2LfHlqjUY9/AIrPn+J9Svl8BLnYjcxJm5UfFMGltzg4g8h73ZYe3/hr/zwRKs+vZ7bFr/lcm9rSp6/rlJeP65ScbXjVp2xbpvlqFVi2Z2vCsiciVXHqsA1udG7ZjoKo9H3HmswhsHE3mZA8mH0bxpI+NP3datE4f9B1Nw5NhfDredk5uH+x58DO263I723fpj8afLse6b5cbTAYfeNwb7Dx4yTj/jjbfQqn1vNGvbA+nnzmPJR/8xjlv03nx8+t8VaNGuFxYsXIQli/5TaXlEVDPklBuTp76MBk074vyFTNw59EE0a9vDqnFEVPNcmR3nL1zE8y/NQk5OLu64awQ6dB+A7n2HGMdXzI6qMDuI5ENOuVHV8Yg7j1V4Jg2Rlzl48DBWf7nE5DpPZ12jnZgQj93bfrI4vuI9Jsp3ylTUtElD/L5lvVPqIiLHyCk3Plj4Jj5Y+KbZaasaR0Q1z5XZkVA3Htq88xbHV3Vfq1PH9pi8ZnYQyYeccqOq4xF3Hquwk4agVABjegfg8KFD8FN2cP4C/P2BpUtvPieXyc8vwMVLl9GsSSN3l0I+QKkAxvTww/lvvwU++oDbt4dibpBTVfOd7/J9DqoxzA6yiQPHA8wN78HcsA47aQh+Sgndmqhw/VQWlAqp+hlspVIB48c7v12qJCQkGNkXHD9VkMgafkoJ3VoEYkPHWlAMHly6rZPHYW6QU1Xzne/yfQ6qMcwOsokDxwPMDe/B3LAO70lDJFOCv0nNdUBkI24zgADXAREREbmWEAJwUZ8hO2kIeoPAkQwdLhdHQm9wwc6tTgf89FPpQ6dzfvtext/fH5AkFBYVubsUt9JoNDAYJKjVaneXQhboDQJH0jTQHMmG4acN3L7dSKFQwN/f3+dzAwAKizTMDXeq5jvf5fscVCV/f38UazTs0K2goLAQ/v7MDZdy4HiAueFe/v7+KNHqoNVq3V2KrJTuc7nmWIWdNASdHli8qQj7sltBp3fBAjQaYMiQ0odGU/30Pi48PBzBIRE4cfIUDAaDu8txCyEEjv31NyQ/f8TFxbm7HLJApwcW/1qCzVHDgJGjuX27WZ34RKSdPY8iH+6ouZh5CTl5RYiPj3d3Kb6rmu98l+9zUJXi4+NRopOQeirN3aXIRkFBIc6dz0TdhHruLsW7OXA8wNxwr/j4eAhJhb9Oprq7FNnQ6/U4+fdphIVHITQ01Ont8540RDIjSRI6de6CHdu34PsfNyMqMhRKhbJGlq03GHDqVCryC0ugVLinD9cgDMjJLUChxoAOnbpBrVZDV8IzNIiq07ZtW/yadQk//rwV0VHh8FMqjT9z7UoVc6NEr8WVkzkAgD927YO/0vX3KhJCoLBYgxu5hUio3xh169Z1+TKJPFFUVBSaNm+N5KOHcepMOkKDA01yoqa2XznsbwghoNXpcPVaLkLCY9CyZUu31EEkd0FBQWh7a0ccSt6HjHOZCA8NrpH9C3PkkB16gx7XbuRBL1To0+82lyyDnTREMlS3bl0MvutupKenIycnB3p9zfy3gdDpcDXXgIaqCMDPPfHgp1CgXkww6tWrh5iYGLfUQOSJQkNDMWjwEKSnp+PKlSvQ6/U1cklDxdwwaIuxLfMQAOAFVTigCnB5DQpJQq0INVq3j0dCQgIUbtpxI/IEHTt2RHx8PC5cuICioiKTs3ZravuVw/6GQpIQ7OeHBk1iUL9+fV4mSVSFVq1aISYmBufOnUNhYaHbzvaXQ3b4K5VoltAM9evXR1hYmEuWwU4aIpkKDw9HmzZtanSZWq0WBQUF6N27N1T8pR4ijxMQEICmTZuiadOmNbbMirlRUFIA7Cod16t3LwT7B9dYLURknfj4eLOXBdbU9sv9DSLPExsbi9jYWLfW4CvZwf9qIiIiIiIiIiKSAXbSEBERERERERHJADtpiIiIiIiIiIhkgPekISgVwMjuahw7dgx+ynbOX4C/P/DhhzefE5FXUCqAkV38cOm77yC9NY/bNxFV+53v8n0OIpInB44HmBvka9hJQ/BTSujd0h8F6ZlQKm51/gJUKmDiROe3S0Ru5aeU0LtNIDacj4I0+OHSbZ2IfFs13/ku3+cgInly4HiAuUG+hpc7ERERERERERHJADtpCAaDwN8XdbiqCYfBIJy/AL0e2Lat9KHXO799InILg0Hg7/Ml0P6VDbFtO7dvIqr2O9/l+xxEJE8OHA8wN8jX8HInglYPvPtTEYA2GKkH1M5eQHEx0Ldv6fP8fCA42NlLICI30OqBdzdqgLBhGDokEbiWxe2byNdV853v8n0OIpInB44HmBvka3gmDRERERERERGRDPhsJ82OHTswdOhQxMfHQ5IkrFu3zmT8+PHjIUmSyaNr167uKZaIZIG5QUT2YHYQka2YG0S+y2c7aQoKCtC2bVt8WPZTcGbceeedyMzMND42bNhQgxUSkdwwN4jIHswOIrIVc4PId/nsPWkGDRqEQYMGVTmNWq1GXFxcDVVERHLH3CAiezA7iMhWzA0i3+WznTTW2LZtG2rXro2IiAj07t0bb775JmrXrm1xeo1GA41GY3ydm5sLANBqtdBqtS6v115arSj3XAutVnL2AqAq1z4cXBdl61LO67Q8T6pXrrWWr0er1UIryXeb8pXcAEyzo/S149u3K8n179scT67V3PYqF3Jen16THdV857t8n8PJPHlbdKSNsueu2n49ab0C8q3To3LDgeMB5obrVNrmZV6zp65bW7GTxoJBgwbhgQceQP369ZGWloZXX30V/fr1w4EDB6BWm7+n+Ny5c/H6669XGr5161YEBQW5umS76QwKAD0AAFu2bIGfwuDU9pXFxRjyz/NNmzZBHxDglHY3b97slHZqiifVK7dai/XFxuebNm1CgDIAhYWFbqzIPF/KDcA0OwDnbt+uJLe/76p4Yq3mtle5kGNuAN6VHdV957t6n8NVPHFbtEdNb7+esl7lmB2elhuOHA8wN1yn/Da/ZcsWWX1nV8UT1q0juSEJIXz+x+YlScLatWsxbNgwi9NkZmaifv36WLVqFYYPH252GnO904mJicjMzEStWrWcXbbT6PQCvx4uRurff+Pxe5ojMMDfuQsoKYHigw8AAIbJkwF/x9rXarXYvHkz+vfvD5VKVf0MbuZJ9cq11oKSAkT+JxIAcH3adQT7ByM7Oxt16tRBTk4OwsLCarwmX88N4J/sOFiAa+vX44HQi1BNecbh7duV5Pr3bY4n12pue5ULd+cG4APZUc13vsv3OZzMk7dFe9TU9utJ6xVwf3Z4RW44cDzA3HCd8tt81rNZiAiOcG9B1fCkdetIbvBMGivVqVMH9evXR2pqqsVp1Gq12Z5rlUol6z8ilQq481YJhswLCAxo6/xaVSpg+nQAgNKpzcp7vVbkSfXKrVaVuFlLWW1yqs8Sb84N4J/s6CRhw5UIqAaPln29ZTxh3ZbxxFrNba9yIadaquLR2VHNd77L9zlcxO3r1QaO1FrT26+nrFdPqFH2ueHA8QBzw3Xk/J1dFU+o1ZH6fPbXnWyVnZ2Nc+fOoU6dOu4uhYg8BHODiOzB7CAiWzE3iLyHz55Jk5+fj1OnThlfp6WlISUlBVFRUYiKisLMmTNx3333oU6dOjh79ixeeuklREdH495773Vj1a5hMAicvaLHjZIQGAwuuPpNrwcOHix93r49oHTm+TRENYe5YcpgEDh7qQS609ch9u0HunTm9k1khk9lRzXf+S7f5yDyEl6XGw4cDzA3yNf4bCfN/v370bdvX+PrqVOnAgDGjRuHxYsX48iRI/jiiy9w48YN1KlTB3379sXq1asRGhrqrpJdRqsHFqwrBHAr7tMD5m815oDiYqBz59Ln+flAsHzuT0BkC+aGKa0eWPCDBgi4G0P6JgLXsrh9E5nhU9lRzXe+y/c5iLyE1+WGA8cDzA3yNT7bSdOnTx9Udc/kTZs21WA1ROQJmBtEZA9mBxHZirlB5Lt4TxoiIiIiIiIiIhlgJw0RERERERERkQywk4aIiIiIiIiISAbYSUNEREREREREJAPspCEiIiIiIiIikgGf/XUnukmpAAa390dqaiqUipbOX4BKBcyYcfM5EXkFpQIY3FaJ6+vXA89P4/ZNRNV+57t8n4OI5MmB4wHmBvkadtIQ/JQShnRQY8PlDPgpWzl/Af7+wMyZzm+XiNzKTylhSOcgbLgaBsXgV9hJQ0TVfue7fJ+DiOTJgeMB5gb5Gl7uREREREREREQkA+ykIRiEwMVreuRpg2AQwgULMADHjpU+DAbnt09EbmEQAhezdTBk5MBwlNs3EaHa73yX73MQkTw5cDzA3CBfw8udCFodMPu7QgAdMEwHqP2dvICiIqDVP6cm5ucDwcFOXgARuYNWB8xeUwQoh2Bw10TgWha3byJfV813vsv3OYhInhw4HmBukK/hmTRERERERERERDLAThoiIiIiIiIiIhlgJw0RERERERERkQywk4aIiIiIiIiISAbYSUNEREREREREJAPspCEiIiIiIiIikgH+BDdBqQDuaKPCmTNpUCqaOX8BKhUwbdrN50TkFZQK4I6WSuT89BMw6Wlu30RU7Xe+y/c5iEieHDgeYG6Qr2EnDcFPKWF4lwBsyE6Dn7K58xfg7w+89Zbz2yUit/JTShjePQgbbgRDMXgOO2mIqNrvfJfvcxCRPDlwPMDcIF/Dy52IiIiIiIiIiGSAnTQEgxDIzjOgUKeGQQgXLMAAnD1b+jAYnN8+EbmFQQhk5+hguJQHQ9pZbt9EVO13vsv3OYhInhw4HmBukK/h5U4ErQ54dVUBgM4YqgPU/k5eQFERkJRU+jw/HwgOdvICiMgdtDrg1a+LAAzG4NaJwLUsbt9Evq6a73yX73MQkTw5cDzA3CBfwzNpiIiIiIiIiIhkgJ00REREREREREQywE4aIiIiIiIiIiIZYCcNEREREREREZEMsJOGiIiIiIiIiEgG2ElDRERERERERCQD/AlugkIB3NZChfT0dCgUTZy/AD8/4Omnbz4nIq+gUAC3NVUgf9MmiMce4fZNRNV+57t8n4OI5MmB4wHmBvka7lETVEoJo3oEYEPOaaiUTZ2/ALUa+Ogj57dLRG6lUkoYdVswNuQHQDn4HUClcndJRORu1Xznu3yfg4jkyYHjAeYG+Rpe7kREREREREREJAPspCEIIZBXZIBGr4IQwhULAK5cKX24on0icgshBPIKDRA3iiCyuH0TEar9znf5PgcRyZMDxwPMDfI1vNyJUKIDXlhRAKArBusAf38nL6CwEKhdu/R5fj4QHOzkBRCRO5TogBe+LAAwAINuSQSuZXH7JvJ11Xznu3yfg4hs9vfnKQhThzrURstnO1c9gQPHA8wN8jU8k4aIiIiIiIiISAbYSUNEREREREREJAPspCEiIiIiIiIikgF20hARERERERERyQA7aYiIiIiIiIiIZMBnO2l27NiBoUOHIj4+HpIkYd26dSbjhRCYOXMm4uPjERgYiD59+uDYsWPuKZaIZIG5QUT2YHYQka2YG0S+y2c7aQoKCtC2bVt8+OGHZscvWLAACxcuxIcffoh9+/YhLi4O/fv3R15eXg1X6noKBdC1sR8Sgi5D4Yq/CD8/YNy40ocff/WdPBdzw5RCAXRtqECbs1uBUSO4fRNZ4FPZUc13vsv3OYi8hNflhgPHA8wN8jU+u0c9aNAgDBo0yOw4IQTeffddvPzyyxg+fDgAYPny5YiNjcXKlSvx5JNP1mSpLqdSShjbJxAbNvwNlbKR8xegVgPLljm/XaIaxtwwpVJKGNsvGBuK/aAYvARQqdxdEpEs+VR2VPOd7/J9DiIv4XW54cDxAHODfI3PdtJUJS0tDZcuXcKAAQOMw9RqNXr37o1du3ZZDD6NRgONRmN8nZubCwDQarXQarWuLdpBZfXJvU7As2oFPKteudZavh6tVgutJL9tyhdzA5Dv34w5rNU1KtZqbnuVCzmuT1/MDk/++5YzZ9RaU9uvJ61XQH51Ojs3DDDAIBkcqsnV68iT/mY8sday53Kv2VPXra3YSWPGpUuXAACxsbEmw2NjY5Genm5xvrlz5+L111+vNHzr1q0ICgpybpFOJASgFwoACvzyy2ZIkvMXoPznC0GvVsNZC9i8ebNT2qkpnlSv3Got1hcbn2/atAkBygAUFha6saLKfC03gH+ywyBBWVKC39b/AEOA87ZvV5Lb33dVPLFWc9urXMgtNwAvzI5qvvNdvs/hIp64LdqjprdfT1mvcssOZ+dGRuJVBAU59h7PbNhQ9QQOHA8wN1yn/Da/ZcsWWX1nV8UT1q0jucFOmipIlXYsRKVh5b344ouYOnWq8XVubi4SExPRt29f1KpVy2V1OkqjFfj3snwAwIKH1AgJ8nfuAgoKoIqMBABor18HgoMdak6r1WLz5s3o378/VB5weYUn1SvXWgtKCoAjpc8HDhyIYP9gZGdnu7coC3wlNwDT7Pjw34lQXL7g8PbtSnL9+zbHk2s1t73KhVxzA3BedgQfT0SIf5hDtfSa3tz+mav5znf5PoeTefK2aI+a2n49ab0C8s0OZ+VGvXPRCAsIdaiWZk91qHoCB44HmBuuU36b79evHyKCI9xaT3U8ad06khvspDEjLi4OQGkvdZ06dYzDs7KyKvVYl6dWq6FWqysNV6lUsv4jMkAYn7uk1nLtqVQqp923Qu7rtSJPqldutaqE6d+Q3OoDfC83ANPsAJy7fbuSJ6zbMp5Yq7ntVS7kVEsZZ2eHZFBAMjh2Z02H1lM13/ku3+dwEV+ptaa3X09Zr3Kr0dm5oYACCuHi3HDgeIC54Tpy/s6uiifU6kh9vD+2GUlJSYiLizM5jaqkpATbt29H9+7d3VgZEckVc4OI7MHsICJbMTeIvJvPnkmTn5+PU6dOGV+npaUhJSUFUVFRqFevHqZMmYI5c+agcePGaNy4MebMmYOgoCCMHj3ajVUTkTsxN4jIHswOIrIVc4PId/lsJ83+/fvRt29f4+uy6zPHjRuHZcuW4fnnn0dRURGefvppXL9+HV26dMEvv/yC0FDHrtckIs/F3CAiezA7iMhWzA0i3+WznTR9+vSBEMLieEmSMHPmTMycObPmiiIiWWNuEJE9mB1EZCvmBpHv4j1piIiIiIiIiIhkwGfPpKGbFBJwa5IfLmVmQiGFOH8BSiVw//03nxORV1BIwK31JGh27gTuHsLtm4iq/c53+T4HEcmTA8cDzA3yNeykIaj8JPzrjkBs2HACKr9bnL+AgADgm2+c3y4RuZXKT8K/BoZgg15AMXuFR/z8NhG5WDXf+S7f5yAieXLgeIC5Qb6GlzsREREREREREckAO2mIiIiIiIiIiGSAnTQEjVbg6U/z8OOFXtBoLd9F3m4FBYAklT4KCpzfPhG5RfnsMIREcPsmomq/812+z0FE8uTA8QBzg3wNO2mIiIiIiIiIiGSAnTRERERERERERDLAThoiIiIiIiIiIhlgJw0RERERERERkQywk4aIiIiIiIiISAbYSUNEREREREREJAN+7i6A3E8hAS0TlbiSdQUKKcSqeebM3ml1+0qtBvc16QoA+G7BbuhVauO4l17pZVuxRCQbCgloWVeCds8eoP8dgFLp7pKIyN2USmDw4JvPK7Bnn4OIvEA12VAV5gb5GnbSEFR+EibeGYQNG45B5Vff6e3rVWp8PWaB09slIvdS+UmYODgEG1ACxaxvAZXK3SURkbsFBAA//WRxtKv3OYhIpqrJhqowN8jX8HInIiIiIiIiIiIZYCcNEREREREREZEMsJOGoNEKTFmah40Xu0OjFU5vX1VShGmzBmDarAFQlRQ5vX0icg+NVmDKf/Pwy5kO0MfUAQoK3F0SEblbQQEQHFz6MJMJrt7nICKZqiYbqsLcIF/De9IQAKBEBwCuu+mnv7bYZW0TkfuU6AGogyAVsQOWiP5RWFjlaFfvcxCRTFWTDVVhbpAv4Zk0REREREREREQywE4aIiIiIiIiIiIZYCcNEREREREREZEMsJOGiIiIiIiIiEgGeONgIiIvtfL1FKe0M3pGO6e0Q0REREREVWMnDUGSgMZ1lMjOzoYkhTi9fSEpkN6gnfE5EXkHSQIa1wZ0yckQPboDCm7fRD5PoQB69775vAJX73MQkUxVkw1VYW6Qr2EnDcHfT8K/hwRhw4Zt8PdLdHr7OpUaXz72vtPbJSL38veT8O97QrFBlQ/lzA2ASuXukojI3QIDgW3bLI529T4HEclUNdlQFeYG+Rr+tycRERERERERkQywk4aIiIiIiIiISAbYSUPQaAWe/18+fsnsCo1WOL19VUkRpswdiilzh0JVUuT09onIPTRagee/yMO2ky2gr98QKChwd0lE5G4FBUBMTOnDTCa4ep+DiGSqmmyoCnODfA3vSUMAgPxiAcB195MIKsxxWdtE5D75GgAhtSBlZ7u7FCKSi6tXqxzt6n0OIpKparKhKswN8iU8k4aIiIiIiIiISAbYSUNEREREREREJAPspCEiIiIiIiIikgF20hARERERERERyQA7aYiIiIiIiIiIZIC/7kSQJKBetAI5OTmQpBCnty8kBS7WbWZ8TkTeQZKAelGA4fhxiHZtAQW3byKfp1AAHTvefF6Bq/c5iEimqsmGqjA3yNewk4bg7ydh+r3B2LBhO/z94p3evk6lxrIJS5zeLhG5l7+fhOn3hWJDYDaUr24HVPxpTCKfFxgI7NtncbSr9zmISKaqyYaqMDfI1/C/PYmIiIiIiIiIZICdNEREREREREREMsBOGgtmzpwJSZJMHnFxce4uyyU0WoFXvsrHb5c6oUQnnN6+X0kxnn57BJ5+ewT8Soqd3j6RnPhcdqzMw65jt0DfvDVQWOjukog8klflRmEh0KBB6cNMJrh6n4PIV3hcblSTDVVhbpCv4T1pqtCyZUv8+uuvxtdKpdKN1bjWtXwBIADCBbknQSDixiXjcyJv51PZUQAgoi6kc+fgkgAh8hFekxtCAOnpN5+b4cp9DiJf4lG5YUU2VIW5Qb6EnTRV8PPzk3ePNBHJErODiGzF3CAiWzE3iLwTO2mqkJqaivj4eKjVanTp0gVz5szBLbfcYnF6jUYDjUZjfJ2bmwsA0Gq10Gq1Lq/XXlqtKPdcC61WqnYehcL6buzy0yoUwuS1PeulbB45r9PyPKleudZavh6tVgutJO9typbscGluKAyOzf8PS3WUzw7jdDL+XOT6922OJ9dqbnuVCzmvT2ftcwiFAcLBbd+h9aTVQmV8WjkT7NnncCdP3hYdaaPsuau2X09ar4B863RWbhhggEFycW5Ukw1Vz8rccJVK27zMa/bUdWsrdtJY0KVLF3zxxRdo0qQJLl++jNmzZ6N79+44duwYatWqZXaeuXPn4vXXX680fOvWrQgKCnJ1yXbTGRQAegAAtmzZAj8rdu6at7S+fWXxzfvQNG1+A/qAm683bNhgfUMVbN682e553cGT6pVbrcX6m38zmzZtQoAyAIUyvf+JrdnhytwIbuPQ7EYbNpwzO7x8dgCln40+IMA5C3Uhuf19V8UTazW3vcqFt+QGYDk7Clqcg3AwOzZsSLN7XmVxMYb889xcJtizzyEHnrgt2qOmt19PWa9yzA5n5kZG4lUEBTn2Hs9Us09fXTZUhbnhOuW3+S1btsjqO7sqnrBuHckNSQhe2WeNgoICNGzYEM8//zymTp1qdhpzvdOJiYnIzMy0GJZyoNEK/HtZPgBgwUNqhAT5VzvP22/ttrp9VUkRnnv9ztL5ZvwMrX+gcdxz/9fNxmpLeyU3b96M/v37Q6VSVT+Dm3lSvXKttaCkAJH/iQQAXJ92HcH+wcjOzkadOnWQk5ODsLAwN1doWXXZYSk3Pn1lK4L85fG+Hpje2uzw8tnx4b8Tobh8AQgOrsnSbCLXv29zPLlWc9urXHhLbgCWs+P7V3YixMHs6DW9uf0zFxRAFVn6+W97ZTcM/qYdRjpI+KZWXQDA/dfPQWWo/n/EHarHQZ68LdqjprZfT1qvgGdkhyO58fv8XxAWEOrS+iRNEVo93w8AcHTBFgh1oNnpmj3VodIwe45V3MmT/r7Lb/NZz2YhIjjCvQVVw5PWrSO5wTNprBQcHIzWrVsjNTXV4jRqtRpqtbrScJVKJes/IkO5m/laW6vBip0qc9MaDJLJa0fWi9zXa0WeVK/calWJm7WU1San+qpSXXZYyg0YFKUPGbC0rg0VbgSuUqkAD/hcPOnvxxNrNbe9yoWcaqmKI/sckkEBycHscGg9lZvXXC0SpArjq9+fkMPnJre/5ao4UmtNb7+esl49oUZHckMBBRTCtfscUrn2FUIBYWF55ta1PccqcuAJtcr5O7sqnlCrI/XJ4wjAA2g0Gvz111+oU6eOu0txiToRCoT4FUBywSWeAhKuxDTAlZgGEJD3NaREzub12REOxF45DdG0CVwSIEQ+yKNzQ5KAFi1KHxa+88N0WoT4FdRsXUReTva5IUkojktCcVySXfsLrjxWIZIbdtJYMG3aNGzfvh1paWnYu3cv7r//fuTm5mLcuHHuLs3p1CoJrz4QjD6xB+Hv5/zk0/kH4NNnvsCnz3wBnb9nXOdIZC+fy44RoejU7iKUB/4EZHzvLSI586rcCAoCjh0Djh2Dwb/y5Qx+ELgr5zL6xB6EH3jFPZG9PC03hH8ATk9fhdPTV0HYeDzg6mMVIrnh5U4WnD9/Hg8++CCuXr2KmJgYdO3aFXv27EH9+vXdXRoRyRizg4hsxdwgIlsxN4i8FztpLFi1apW7SyAiD8TsICJbMTeIyFbMDSLvxcudCBqtwBvfFGDb5fYo0Tn/1GO/kmL86/2x+Nf7Y+FXUlz9DETkETRagTe+zsO+lHjoO3QGZPgTpURUwwoLgZYtgZYtoSgpqjRaBwk/hcdi2+X20PE+dUQ+QyopRsN5o9Bw3ihINh4PuPpYhUhueCYNAQAybxgABMMVP8guQSDmylnjcyLyHpk5AGIaQjr5N1wSIETkWYQAjh8vfT7MfCbk+qkAnQrAjRori4jcTAgEXEozPreVK49ViOSGnTRERFQjVr6e4pR2Rs9o55R25FYPkVxsff2o3fMqSgrR24m1EBER+Rpe7kREREREREREJAPspCEiIiIiIiIikgF20hARERERERERyYDdnTSXLl1yZh1ERERERERERD7N7k6aevXq4cEHH8Qff/zhzHrITaJCJAQqiyG54NcwBSTciIjDjYg4CP7cJpFXiQoGom5cgEhMhEsChIg8jISi8HgUhccDFr7zg/U6BCpt+wleIvJwkoSSyDooiaxj1/6CK49ViOTG7l93euWVV7BkyRJ8/fXXaN26NSZPnozRo0cjMDDQmfVRDVCrJMx+MAQbNuyAv99gp7ev8w/Aoue+dnq7ROReapWE2aNDsWHDGSj/OgKoVO4uiYjczOAfiD3/3mRxvB8E7r5xCXlt0uCXlQRLHTlE5F2EfwBSZ6yza15XH6sQyY3dZ9K89tprSE9Px1dffYWwsDD861//QkJCAqZNm4bTp087s0YiIiIiIiIiIq/n0I2DlUolRowYgR07diAlJQX33XcfPv74YzRt2hRDhgzBpk2W/yeFiIiIiIiIiIhuctqvO7Vu3RqDBg1Cq1atYDAY8Ntvv2Hw4MHo2LEj/v77b2cthlygRCcwb20Bdma1Q4lOOL19P60G4z9+AuM/fgJ+Wo3T2yci9yjRCcz7Lg8pB2pB37M3UFTk7pKIyM0U2mJ0WDIKHZaMgkJb+b4zOgCbwmtjZ1Y76Gq+PCJyE6mkGLe8PR63vD0eUolt96Ry9bEKkdzYfU+aMlevXsWnn36KTz75BOfOnUO3bt2wevVqDBs2DD///DOmTZuG8ePHY9euXc6o12fNmb3TZW0bICEjqgWAULz3zl7A4Nz2JWFA/IUTxudE5FlWvp5idrgeEjJiEoG4FpBSDmH17BTo/XlfMiKfJgwIu3jM+LwyCdf8/AGtP4DcmqyMiNxJCASe+8v43JJj7/1ZaZgWEjJUDQGE4uSnyVCL6u9l1fLZzvZWWm091TFIBqA+cGLxASiEwqn1kG+wu5Nm7969+Oijj/DNN99ACIGRI0fi2WefRfv27Y3TDB06FH5+fhg2bJgzaiUiIiIiIiIi8lp2d9J069YNcXFxmD59Op566inUrl3b7HQNGjRA9+7d7S6QiIiIiIiIiMgX2N1J88UXX2DkyJFQVfOTq82bN8fWrVvtXQwRERERERERkU+wu5Pm4YcfdmYdREREREREREQ+ze5fd5o/fz4mT55sdtzkyZPxn//8x+6iiIiIiIiIiIh8jd2dNMuXL0erVq3Mjmvbti2WL19ud1FU8xQGHfwVWpe1XxgUjsKgcJe1T0TuodLrEJKfjeJAbt9EVKokKBIlQZEWx6sNepfucxCRPOmCI6ALjrBr3gDh2mMVIjmx+3Kn9PR0NGnSxOy4Ro0a4ezZs/Y2TTVMAYGk3BNo3vI6/roWCQOq/1k7W2j9A/Huiz84tU0icj8lBHreOI/gNufw03M/Aga7+/2JyEsY/IPwx/M7LI73g8Dw65nIa5MGvytJgJP3OYhInoQ6ECff3GTXvCoIPKE/gzMJl6FKjwVzg7yd3XvUKpUKWVlZZsddvnwZksSNh4iIiIiIiIjIWnZ30nTs2BGffvqp2XGffvopOnbsaHdRRERERERERES+xu7LnaZNm4a77roLffr0wdNPP426devi/Pnz+Pjjj7Fjxw5s2LDBmXV6tA/e+xP+/iHuLsMiAyRkhjTA9SsJCMcFp7fvp9Vg5Bf/BwBYPfYt6FRq47g5s3fa3J5CIdC8JfD2W7thMMjzjK2XXunl7hJcwp7PyxxvXT++Rg8Jh0NrI/LP6xj79ST8MXIh9KoAd5dFRG6k0BajzYqnAACHH14MQ4VM0AHYFhYD3ZUQ3I58qKxoc+vrR51fqJWEwgC0AXbO+wvSP5d09p1h/p6MRGSZVFKM+p/8GwCQ/uQ7EP7W7y/oIGGtMgFFV2qjHq7A34p5jr33p52VErmf3Z00d955J5YsWYLnnnsOo0aNgiRJEEIgPDwcn376KQYOHOjMOsnFiv2CUVwCl3TSSMKA+mdTjM+JyHvc8A/Cjbq3IibjECCEu8shIncTBkSm7zc+r0xClkoNlKgBFNRkZUTkTkIg+PRB43ObZgVwQQoCSoIgcMX5tRHJjN2dNADw2GOPYdSoUdi1axeuXLmCmJgYdO/eHcHBwc6qj4iIiIiIiIjIJzjUSQMAwcHB6N+/vzNqISIiIiIiIiLyWQ510gghsG/fPqSnp6OoqKjS+LFjxzrSPBERERERERGRz7C7k+bvv//G3XffjdTUVAgz1xVKksROGiIiIiIiIiIiK9ndSTNx4kQUFxdj9erVaNOmDdRqdfUzERERERERERGRWXZ30vz555/49NNPcf/99zuzHnITSRigULjul1lK+LO8RF5JYTDAT1sMnYod9URUSq8KrHK8UhgAF+5zEJE8GWz42e2K/IQBgrlBPsLuTpqQkBCEhYU5sxZyEwUEbsk5juYtr+Ov65EwQHJq+1r/QPzntV+c2iYRuZ8SAr2vZyC4zTl8/8KvgEHh7pKIyM0M/kHY8fKfFsf7QWDEtYvIa5MGv6tJgJP3OYhInoQ6EH8t2G7XvCoIPK0/hTMJl6FKjwVzg7yd3Z00jzzyCFauXIk777zTmfV4JU2JEucvhKNufD7Uan3V02qUuHAxxKppLc0HAGnpYZAE0KBBrkk7Fdsve52YkGfTssrar1MnH1ezgyrVq9EocfZsGIQExMflIzMzBCU6Bfz9DGjQIBcArHqfVa0PjUaJc+dDbV5XluTmqnAwJRbRUUVo3PiG3etfrdZjzuydxnEKhUDzlsDbb+2GwSBV+77Ke+mVXva/oXLK11OVirVWrDM3V4UjR2PQutUVhIVpnVIbmVdcosDZCyFIii9EoNpgHF6kUSDtYhAiQ0uQkhqOdo1zcD3Pv9J05lzP9cOeY5FoVj8PR06HITZKgyaJBcjMDkCdWsXIzA4w207ZMquaxpyy+cpPX6RR4ER6MACgWf0Cs+1UnK/i65Wvp1S7bLMUBiga++H1J9OQFFeMwHIn/1S3TGtrl4Oq1o+592UPk3YCdQhuA3wz7whgUKAYN39IYPXcw3h0Rje7l0O2W7kzGsM7GRAdpjMZXqhR4HB6EACgTf1CBJX7/As1Cvx9MRBBah02JkdheJdsJEaXmIxrEl9knKdsWEItDc5nq43jqpq2/DSHzgWhWFsbnQ0KBKsst1cVc8uyZby17RZqFDhypBbaaUprBYCtrx91aBll+s5oZfM8rvTTS8dxJFMADUpfb597DIEIckrbFdeVUBiANsDOeX9BstDBL7f1480Wb6yDW+v7od0t+TibFYiWiQUIDjCgoFiBY+eCLb4GgLNZ/li6pQ46NMzF7a1zjMMBGKdvULvI2C6AKtssKFZg/+lQSAA6NMwzDjt6PgRBtbNtfm/maihfo63tlH8PjrbpTsfeK+1MLxQ3v7NPfpaMEARXmtbc516m5bOdnVpPdcszSAagPnBi8QEoROXscFY97mb3f3u2atUKf/zxB+6++258+umnWLNmTaUHlSrRKJGWFg5NSfWrW1OisHpaS/NpShQ4czoCp89EVGqnYvvG1xqlTcsqaz+/QGW2Xk2JAqfPRODM6dJpTp+JwOlTN2uy9n1WNZ3GhvVqjfwCFU78VQunTldeb9Wx9XOz93OuaRXrzC9Q4fhftZBfoHJzZd6vuESBv86GoLjC30jZ8Cs3VNh/IhxXbqjMTmdOToEf9p8IR+ZVfxw4EY6jZ0KRU+CHv86GGP81107ZMquaxtr3UFyiwLG0UBw7E2qxnYrzWVoX9igqUuKvtMrLtmaZxSUKHDsTimNm5vcUzlqXzvxMyLn+/DsMNwoqf6cXlSiQnBaCg2dCUFThcysqUSDlbDDOX/XH7r9DcfmGX6Vx5ecpG3ajQGkyrqppy0+TfDoUhw7FVJqvYntVMbcsW8Zb225RiQJHj0abbcfeZchVUcnNjjxXtO1N68rb/PFXJHb/HY5reSrsOxWGwn+OCwo1yipfA0DmNTV2/hWBXSciTIaXn758u9W1WahRYm9qGPamVp6mqMj645WqarBH+Tqd1aanMPe5e9Py5MjuM2lGjx4NAEhLS8OPP/5YabwkSdDrHT+7gVxPUgA5MfH482o0gpHp9Pb9dBosOD4OBgG81vwTp7dPRO6hB3AsOBq19lzGA+uew5775sHAe9MQ+TSVoRg91jwJfz+BoyPeQcVdTb0EBPdVINA/BPrCa+4pkohqnJ++GK1XPAMAWFN/mU3z6gHoO6txXNME7XAF/s4vj0hW7O6k2bp1qzPrIHeSgJLAEGRpgCQXdNIohAHdb2wxPicibyEhOyAE2YldUOfMn5C4fRP5PEnoUSdtR+kLUfk/6wQAVV0JgD9EOu8rQeQrFMKAWqm/lz6vZ9v+goAEEavEDUMEBK64ojwiWbG7k6Z3797OrIOIiIiIiIiIyKfZ3UlTJicnB3v27MHVq1cxePBgREZGOqMuIiIiIiIiIiKf4tDdu9544w3Ex8dj0KBBGDt2LNLS0gAAt99+O+bNm+eUAt1t0aJFSEpKQkBAADp06ICdO637lRwi8m3MDiKyFXODiGzF3CDyPnZ30ixatAivv/46HnvsMfz0008QQhjHDRkyBD/99JNTCnSn1atXY8qUKXj55ZeRnJyMXr16YdCgQcjIyHB3aUQkY8wOIrIVc4OIbMXcIPJOdnfSfPjhh5g6dSref/99DBgwwGRc48aNkZqa6nBx7rZw4UI89thjePzxx9G8eXO8++67SExMxOLFi91dGhHJGLODiGzF3CAiWzE3iLyT3fekOXPmDAYOHGh2XGhoKG7cuGFv07JQUlKCAwcOYPr06SbDBwwYgF27dpmdR6PRQKPRGF/n5OQAALTafOj1edCWFKCkpKTK5WpL/K2e1tJ8AKDX5/0z3LSdiu2XvS4pEv+873ygmhuul80DADptPvR6tcXllL7/AuT+M1yvzzepsbr3aW59KBQChYWFNq1Xa+i0BhhELgyGAofWf8X5yuotKVHBYJCqnb687Oxs+95MBSUl+VZNV7HWinXqtAYIQy502nyUlBTaXY+t76ugpAAovjlvsX8xrl0r/enW8mfxyYGt2WEpN4q1+dDqc1GkzYW6RGccX6T1g1bvD40uH3pDEDS6PGj1otJ05hTrSqA35KBEnwuDIQA6QzGKdbnQ6hXGf821U7bMitMYIKGkqHTrzhUChdo86KGtNF/5NkuHBQACFmuuOJ+5duyiMKCkqKDK9VrVMo21S6a1O2s7LU+r1aKwsBDZ2dlQqVQ2zVtYkmtxnLPWpWk7JZAKC0uXa1BAI4pLf8IHQJGU55L1Yy9vyQ3AcnYYDHko1OUhv6TYZPoCrR9K9P6AAAoqfP6l4/yg0RfBIIJRrMtF/j8ZXzau/Dxlwwp1eSjRS8ZxpcPVxu/8fG0eCrQwmb9Aq0JJUQAAoFCbi/wSvcX2qmKuLlvGW9tugVYBrdYPBVodAkoMVU5rK2dvG47kBlD6d6HVq43ftwVSHvSSA5lr0rbpuhIKAwoLCyGV5EIymP8/Y2ZH1ZybG7ko0SmQX5ILjd4PeZpcqDU65Gn8oNEHWHwNAAVaAYPIRYkh12Q4AOP0+SW5KNZrjdlQrM9DnibP8jJ0QZCAcsNUN/c39HlQw/pfhitfQ/n3ZqvydQKosk0DSv++c4vzoPjnnAg5/T0DQK6m9DitSBQZt/l8TR4MZg4EzX3uZZz1vsrqqW555tatK+pxBodyQ9ipdu3a4ssvvxRCCKHT6YQkSeLAgQNCCCGWLVsmEhMT7W1aFi5cuCAAiD/++MNk+JtvvimaNGlidp4ZM2YIlO6a8sEHHzX0OH36dE1EgtVszQ7mBh981PzD03NDCGYHH3y44yGn7GBu8MGHZzzsyQ27z6S5/fbbsWDBAtxzzz0ICCj9HxFJkqDT6bB48WKLZ9l4Gkky7akVQlQaVubFF1/E1KlTja9v3LiB+vXrIyMjA+Hh4S6t01G5ublITEzEuXPnEBYW5u5yquRJtQKeVa8n1ZqTk4N69eohKirK3aWYZW12eHJuAJ71N8NaXcOTavWW3AA8Ozs86W+GtbqGJ9UKyDs7mBvy40m1Ap5VryfV6khu2N1JM2vWLHTq1AktWrTAvffeC0mS8OGHHyI5ORkZGRn4+uuv7W1aFqKjo6FUKnHp0iWT4VlZWYiNjTU7j1qthlqtrjQ8PDxc9n9EZcLCwliri3hSvZ5Uq0Lh0I/UOZ2t2eENuQF41t8Ma3UNT6rV03MD8I7s8KS/GdbqGp5UKyCv7GBuyJ8n1Qp4Vr2eVKs9uWF30jRq1Ah//PEHmjdvjkWLFkEIgS+++ALR0dHYuXMn6tWrZ2/TsuDv748OHTpg8+bNJsM3b96M7t27u6kqIpI7ZgcR2Yq5QUS2Ym4QeS+7z6QBgBYtWuDnn3+GRqNBdnY2IiMjERgY6Kza3G7q1KkYM2YMOnbsiG7dumHJkiXIyMjAhAkT3F0aEckYs4OIbMXcICJbMTeIvJNDnTRl1Go14uPjndGUrIwcORLZ2dmYNWsWMjMz0apVK2zYsAH169e3an61Wo0ZM2aYPa1Qblir63hSvazVORzJDjm/L3M8qV7W6hqs1Tm4zyFPrNU1PKlWQL71MjfkyZNqBTyrXl+pVRLCvt+SmzVrVtUNSxJeffVVe5omIiIiIiIiIvI5dnfSVHcDHEmSoNfr7SqKiIiIiIiIiMjX2H3jYIPBUOlx9epVfPbZZ2jVqhXOnj3rxDKJiIiIiIiIiLyb3WfSVGXevHnYu3cv1q5d6+ymiYiIiIiIiIi8kt1n0lSlc+fO+O2331zRNBERERERERGRV3JJJ82hQ4cQEhLiiqY91ptvvonu3bsjKCgIERER7i6nkkWLFiEpKQkBAQHo0KEDdu7c6e6SzNqxYweGDh2K+Ph4SJKEdevWubsks+bOnYtOnTohNDQUtWvXxrBhw3Dy5El3l2XR4sWL0aZNG4SFhSEsLAzdunXDxo0b3V1WtebOnQtJkjBlyhR3l+Iycs4O5obzeVJ2eGpuAN6fHcwNxzE3XIO5IV/MDccxN1zDF3PD7k6aL774otLj008/xeTJk/HKK69g6NCh9jbtlUpKSvDAAw/gqaeecncplaxevRpTpkzByy+/jOTkZPTq1QuDBg1CRkaGu0urpKCgAG3btsWHH37o7lKqtH37dkycOBF79uzB5s2bodPpMGDAABQUFLi7NLMSEhIwb9487N+/H/v370e/fv1wzz334NixY+4uzaJ9+/ZhyZIlaNOmjbtLcSm5ZgdzwzU8KTs8MTcA38gO5objmBuuwdyQL+aG45gbruGTuSHsJEmS2UdgYKD417/+JXJzc+1t2qstXbpUhIeHu7sME507dxYTJkwwGdasWTMxffp0N1VkHQBi7dq17i7DKllZWQKA2L59u7tLsVpkZKT47LPP3F2GWXl5eaJx48Zi8+bNonfv3uLZZ591d0kuJ7fsYG7UDE/LDjnnhhC+lx3MDedgbrgWc0NemBvOwdxwLW/PDbvPpElLS6v0yMzMRGFhIZYsWYLQ0FB7m6YaVFJSggMHDmDAgAEmwwcMGIBdu3a5qSrvk5OTAwCIiopycyXV0+v1WLVqFQoKCtCtWzd3l2PWxIkTcdddd+GOO+5wdyk+iblRczwlOzwhNwBmhzsxN2oOc8O5mBvuw9yoOcwN53I0N/zsXXD9+vXtnZVk5OrVq9Dr9YiNjTUZHhsbi0uXLrmpKu8ihMDUqVPRs2dPtGrVyt3lWHTkyBF069YNxcXFCAkJwdq1a9GiRQt3l1XJqlWrcPDgQezbt8/dpfgs5kbN8ITs8JTcAJgd7sbcqBnMDedibrgXc6NmMDecyxm54ZIbB/uKmTNnQpKkKh/79+93d5lWkSTJ5LUQotIwss+kSZNw+PBhfPXVV+4upUpNmzZFSkoK9uzZg6eeegrjxo3D8ePH3V2WiXPnzuHZZ5/FihUrEBAQ4O5y7OYt2cHccC1PyA5PyA3AO7KDuUHWYG44D3NDPpgbrsXccB5n5YbdZ9IoFAqrNw5JkqDT6exdlGxNmjQJo0aNqnKaBg0a1EwxdoqOjoZSqazUG52VlVWp15psN3nyZKxfvx47duxAQkKCu8upkr+/Pxo1agQA6NixI/bt24f33nsPn3zyiZsru+nAgQPIyspChw4djMP0ej127NiBDz/8EBqNBkql0o0VWsfTs4O54Xqekh2ekBuAd2QHc4Oqw9xwLuaG+zE3XI+54VzOyg27O2lee+01LFu2DPn5+Rg6dCji4uKQmZmJH3/8ESEhIXjkkUfsbdpjREdHIzo62t1lOMTf3x8dOnTA5s2bce+99xqHb968Gffcc48bK/NsQghMnjwZa9euxbZt25CUlOTukmwmhIBGo3F3GSZuv/12HDlyxGTYI488gmbNmuGFF16Q/c5SGU/PDuaG63h6dsgxNwDvyA7mBlnC3HAN5ob7MTdch7nhGs7KDbs7aUJDQxEXF4dff/0VISEhxuF5eXm44447EBQUhP/7v/+zt3mvk5GRgWvXriEjIwN6vR4pKSkAgEaNGpmsP3eYOnUqxowZg44dO6Jbt25YsmQJMjIyMGHCBLfWZU5+fj5OnTplfJ2WloaUlBRERUWhXr16bqzM1MSJE7Fy5Up8//33CA0NNf4PQHh4OAIDA91cXWUvvfQSBg0ahMTEROTl5WHVqlXYtm0bfv75Z3eXZiI0NLTStbLBwcGoVauWbK+hdZRcs4O54RqelB2ekhuA72UHc8NxzA3XYG7IF3PDccwN1/DJ3LD3Z6VuueUW8d1335kd9+2334oGDRrY27RXGjdunABQ6bF161Z3lyaEEOKjjz4S9evXF/7+/qJ9+/ay/fm1rVu3ml2P48aNc3dpJszVCEAsXbrU3aWZ9eijjxo//5iYGHH77beLX375xd1lWcXbfw5TztnB3HA+T8oOT84NIbw7O5gbjmNuuAZzQ76YG45jbriGL+aGJIQQ1nfp3BQQEICvv/4ad999d6Vx33//PUaNGoWioiJ7miYiIiIiIiIi8jl2d9LceuutCA8Px+bNm6FSqYzDS0pKcMcddyAvLw/JyclOK5SIiIiIiIiIyJvZfU+a2bNnY9iwYbjlllswfPhwxMXF4dKlS1izZg0uXbqEdevWObFMIiIiIiIiIiLvZveZNADw22+/4eWXX8b+/fthMBggSRI6d+6MN954A3fccYcz6yQiIiIiIiIi8moOddKUKSwsxPXr1xEZGYmgoCBn1EVERERERERE5FMUzmhEkiQApb9lT0REREREREREtnOok2br1q3o1q0bQkNDUb9+fRw+fBhA6e+ur1mzxikFEhERERERERH5Ars7abZs2YIBAwaguLgY06ZNg8FgMI6Ljo7GsmXLnFEfEREREREREZFPsLuT5rXXXsPgwYORnJyM2bNnm4xr27YtUlJSHK2NiIiIiIiIiMhn2P0T3MnJyfjmm28A3LwnTZmYmBhkZWU5VhkRERERERERkQ+x+0waPz8/aLVas+OysrIQGhpqd1FERERERERERL7G7k6aTp064X//+5/Zcd9++y26detmd1FERERERERERL7G7sudpk+fjoEDB+Lee+/F2LFjIUkS9u7di//+97/49ttvsXXrVmfWSURERERERETk1SQhhLB35hUrVmDKlCm4du2acVhERAQ++OADPPTQQ04pkIiIiIiIiIjIF9jVSaPX63H69GnUrl0barUau3btwuXLlxEdHY0ePXogODjYFbUSEREREREREXktuzppdDodAgIC8MMPP2DQoEGuqIuIiIiIiIiIyKfYdeNgPz8/xMXFwWAwOLseIiIiIiIiIiKfZPevO40aNQpffPGFM2shIiIiIiIiIvJZdv+6U7t27bB69Wr069cPw4cPR506dSBJksk0w4cPd7hAIiIiIiIiIiJfYPevOykUVZ+EI0kS9Hq9XUURkX3uvfdebNu2Dbfffju+/fZbd5dDRB6AuUFEtmJuEJGtmBvWs6mT5vnnn8czzzyDhIQEbN++HUDpTYT9/MyfkNO7d2/nVElEVtm6dSvy8/OxfPlyhh8RWYW5QUS2Ym4Qka2YG9az6XKnt99+G/fffz8SEhLQu3dv6PV6+Pv7Y9++fWjfvr2raiQiK/Xt2xfbtm1zdxlE5EGYG0RkK+YGEdmKuWE9m24cbO6kGzuvliJyusWLF6NNmzYICwtDWFgYunXrho0bN5pM06BBA0iSVOkxceJEi+3OnDmz0vRxcXGufjtEVMPmzp0LSZIwZcqUSuMWLVqEpKQkBAQEoEOHDti5c2e17dkzDxF5Fku5MXfuXHTq1AmhoaGoXbs2hg0bhpMnT1bZFvc3iHyDpdywNwO4v+F97L5xMJHcJCQkYN68eWjUqBEAYPny5bjnnnuQnJyMli1bAgD27dtncq+ko0ePon///njggQeqbLtly5b49ddfja+VSqUL3kH1OnToAI1GU2n4L7/8gvj4eDdUROQd9u3bhyVLlqBNmzaVxq1evRpTpkzBokWL0KNHD3zyyScYNGgQjh8/jnr16pltz555XIW5QeQaVeXG9u3bMXHiRHTq1Ak6nQ4vv/wyBgwYgOPHjyM4ONhim9zfIPJuVeUGYHsGcH/DSwkbSJIk9u7da3yt0+mEJEniwIEDtjRDXkav14s333xTNGrUSKjValG7dm3x8MMPu7ssIYQQkZGR4rPPPrM4/tlnnxUNGzYUBoPB4jQzZswQbdu2tXnZaWlpAoD47rvvRK9evURAQIBo3769SEtLE1u3bhWdOnUSgYGBok+fPiI7O1sI4Zx1uXXrVnHffffZXC9RTZJTbuTl5YnGjRuLzZs3i969e4tnn33WZHznzp3FhAkTTIY1a9ZMTJ8+3WKb9swjBHODqCqelBsVZWVlCQBi+/btFqfh/gaR83lSbtiTAdzf8E42Xe4EACdPnsTBgweNDwA4ceKEybDy48j7zZ07FytXrsSSJUtw8uRJrFmzBn369LG7vTlz5iAkJKTKR3Wn8en1eqxatQoFBQXo1q2b2WlKSkqwYsUKPProo5V+Pr6i1NRUxMfHIykpCaNGjcKZM2eqfR8pKSkASk9BnDNnDnbv3o3s7GyMGTMG8+fPx0cffYRt27bhyJEj+PzzzwE4f10SyZWccmPixIm46667cMcdd1QaV1JSggMHDmDAgAEmwwcMGIBdu3aZbc+eecowN4gs85TcMCcnJwcAEBUVVeV03N8gci5Pyw1bMoD7G97L5sudxo8fX2nYmDFjTF4LIfgT3D5k06ZNuOuuu9C3b18AQP369dGjRw+725swYQJGjBhR5TR169Y1O/zIkSPo1q0biouLERISgrVr16JFixZmp123bh1u3Lhh9m+6vC5duuCLL75AkyZNcPnyZcyePRvdu3fHsWPHUKtWLYvzHTp0CJGRkVi1ahWio6MBlN4wa8uWLSanO3fq1AmXLl0C4Pi6HDhwIA4ePIiCggIkJCRg7dq16NSpk9XzE9UUueTGqlWrcPDgQezbt8/sPFevXoVer0dsbKzJ8NjYWON264x5yjA3iCzzlNyoSAiBqVOnomfPnmjVqpXF6bi/QeR8npQbtmYA9ze8l02dNEuXLnVVHeTB7r77brzwwgtITk7G8OHDMWLECOP/FJ05cwbHjh3D0KFDAZR2jGzfvh3vvPOOxfaioqKq/Z8mS5o2bYqUlBTcuHED3333HcaNG4ft27eb7aj5/PPPMWjQoGqvkRw0aJDxeevWrdGtWzc0bNgQy5cvx9SpUy3Ol5KSgrvvvtsYfACQkZGBBx980OR69IyMDNx1110Aql6X1ti0aZPV0xK5kxxy49y5c3j22Wfxyy+/ICAgoMppK55tV/afEc6eh7lBZJmn5UaZSZMm4fDhw/j999+rnI77G0TO50m5YW8GcH/DC7n1YivyGidPnhTz588XLVq0EJGRkeLMmTNCCCE+/PBDsWDBAuN0r7/+uli6dGmVbb355psiODi4yseOHTusquv2228XTzzxRKXhZ8+eFQqFQqxbt876N1nOHXfcUen6z4qSkpLE4sWLTYZFRUWJNWvWGF8XFRUJPz8/sXPnTuMwS+uSyNu4OzfWrl0rAAilUml8ABCSJAmlUil0Op3QaDRCqVSabLdCCPHMM8+I2267zWwt9sxThrlBVDVPyI3yJk2aJBISEuzeJrm/QeQ4T8uN8qrKAO5veC9JCP6GNjmPRqNBeHg4vvvuO4SEhGDYsGGIiYlBcHAwdu3ahTFjxqBJkybYunUrLl68iI0bN1Y6y+XatWu4du1alcupW7cuAgMDq63n9ttvR2JiIpYtW2YyfObMmfjkk09w7tw5+PnZdtWfRqNBw4YN8cQTT+C1114zO01ubi4iIiKwe/dudOnSBQCQnp6OBg0aIC0tDQ0aNAAAHDhwAJ06dUJOTg5CQ0MrLadsXZb1YBN5I3flRl5eHtLT002meeSRR9CsWTO88MILxssSunTpgg4dOmDRokXG6Vq0aIF77rkHc+fONbsse+ZhbhBZT+65IYTA5MmTsXbtWmzbtg2NGze26z1yf4PIeeSeG+bqrS4DuL/hnfgT3OSQBQsWIDY2Fp06dYJSqcRnn32GyMhIdO/eHZGRkWjVqhVWrlyJxMREAMDhw4cxePBgzJkzB7Nnz8YPP/xQKfzsvdzppZdewqBBg5CYmIi8vDysWrUK27Ztw88//2wyncFgwNKlSzFu3DizHTQffvgh1q5di99++w0AMG3aNAwdOhT16tVDVlYWZs+ejdzcXIwbN85iLYcOHYJCoTD5eb2UlBREREQYg69sultuuQWhoaFVrksibyKX3AgNDa20YxQcHIxatWqZDJ86dSrGjBmDjh07olu3bliyZAkyMjIwYcIE4zQVc8OaeSpibhBZ5mm5MXHiRKxcuRLff/89QkNDjfd0CA8PNx68cX+DyLU8LTesyQDub/gGdtKQQ4qLizFnzhxkZGQgJCQEPXr0wJYtWxAZGQkAOH/+vDH4CgsLYTAY8OijjwIA/P39ER4e7rRaLl++jDFjxiAzMxPh4eFo06YNfv75Z/Tv399kul9//RUZGRnGOiq6evUqTp8+bXx9/vx5PPjgg7h69SpiYmLQtWtX7NmzB/Xr17dYy6FDh9CsWTOTXvTk5GS0bdu20nTt2rUDUP26JPIWcsoNa4wcORLZ2dmYNWsWMjMz0apVK2zYsMEkAyrmhjXzVMTcILLM03Jj8eLFAFDpl0+WLl1q/MEC7m8QuZan5YY1GcD9Dd/Ay53IZc6fP49Ro0YZb5T3559/YuHChVi1ahUAYOzYsXjiiSfQs2dPd5ZJRDLC3CAiWzE3iMhWzA2SM4W7CyDvlZaWZvLLSYcPH0br1q2Nr48cOVLlT1ESke9hbhCRrZgbRGQr5gbJGTtpyGVatWqF1NRUtG7dGidOnMCRI0eM4afT6ZCfn4+IiAj3FklEssLcICJbMTeIyFbMDZIzXu5ERERERERERCQDPJOGiIiIiIiIiP6/vfuOj6LM/wD+mZ1tqUAIJSGFLh0UlaJIRwH5iYiKIIftFBXLIVZUsIGA5+lZzyvgqYh6gg2UKk0UKaEX6UmkBBJI2WT7/P6IWTbJ7mY32dmZyX7er9e+mJ2dfea7m9kPzz47hVSAgzRERERERERERCrAQRoiIiIiIiIiIhXQK11AfeZ2u3Hy5EkkJCRAEASlyyGqVyRJQnFxMVJTU6HT1Z/xZuYGkXzqa24AzA4iOdXX7GBuEMmnLrnBQRoZnTx5Eunp6UqXQVSv5eTkIC0tTekywoa5QSS/+pYbALODKBLqW3YwN4jkV5vc4CCNjBISEgAAx44dQ1JSUt0as1iA1NTy6ZMngbi4OlZ3kc0hYdqC8wCA2RPiER9rDL08uwWpfy2v7+RjJxFnDF99VTkcDqxYsQLDhg2DwWCQbT3hoqV6tVRrQUEBWrVq5fmc1Re1yg0Z8yGQULIjkhnhj5a2b9Yqj/qaG0CQ2aFQVnirmhuC3qF4NgSipe2btcqnvmaH39xQQVZ4SrFbkP7XNpiQvA9A7b+rRJLWtm8t1aulWuuSGxykkVHFboMJCQlITEysW2OieHE6MTHsgzTGGNcfTdcu+ES7CJgrykuUfZAmNjYWiYmJqv9wAtqqV2u1Aqh3u+fWKjdkzIdAQsmOSGaEP1rbvllr+NXX3ACCzA6FssJb1dwQ9A7FsyEQrW3frFUe9TU7/OaGCrLCU4pdhGAWYIxJ/KMcbQzSaG371kq9WqsVqF1u1J+DKomIiIiIiIiINIyDNEREREREREREKsBBGq0wm4Effyy/mc1hbdogAo+OjEHv5F0wiDUvT0QqI2M+BMLsINIYhbLCG3ODSANUkBXeXLBi6YX/w2WNtjI3KCpE7TlpZs+ejcWLF+PAgQOIiYlB3759MWfOHFxyySWeZSRJwgsvvIAPPvgA58+fR69evfDOO++gc+fOkS9YFIEBA2RpWqcT0D5Vj8OmQuh09etYWy35/fffcfToURQXFUKSJEVqcLqcyNq+HYAbelG5eIiLT0BmZiZatWqlWA2+qDY3ZMyHQJgdyissLMThw4eRd+Y03G63IjWoJTeMJhNatEhDu3btVHWcuqpyQ6Gs8FYtN5T57y7qud1uHD58GDk5ObCWlUZ8/WrJDVEU0bRZc7Rt27bu548MI8VzQwVZ4U2CG6ccPyHJdJ79DQWdOnUKR48eReGF81H9XUUQBDRo2Aht2rRB8+bNZVlH1A7SrFu3Dg8++CCuuOIKOJ1OTJ8+HcOGDcO+ffsQ98fJsebOnYvXX38dCxYsQPv27fHyyy9j6NChOHjwYL07uzsp6+DBg9j66yY0TDChcVJD6HTK7OTmdunQKi0JzRoaoROV+alCkiQUFp7Bpg1HUFDQAz179lSkDl+YG6QmBQUFWL1qBUTJimZNGys2MKGG3ACAUksJdm3/GTk52Rg8eAj0enV0cZgbpDaSJGHDhg34/cQhNGvSEMkN4iJ+Qly15IbD4cCx33bh6JFDGDrsOjRo0ECxWrwxN0htDh8+jM0/b0CDeCOSGzeK6u8qbrcbZ88cx/Gjv6Hv1QNk+VFZHT0YBfzwww+V7s+fPx9NmzbFtm3bcM0110CSJLzxxhuYPn06xowZAwD48MMP0axZMyxcuBD33XdfZAt2OIAPPiifvvdeIIydcadLwrq9dhwvSYHLLUE9vz9GB5fLhV07t6N1RlNc0bOH4rUIcKFHj64QFew0AcD+A4ewa99udOzYEbGxsYrWUkG1uSFjPgTC7FDWnj17YBIdGDpogKJ7jqgpNwoKzmPlj78gJydHNXviqSo3FMoKb1VzA/xRPOLOnj2L3OwjuKpXd6S1SFWkBjXlht1ux4rVG7Bv3z706dNH0VoqKJ4bKsgKbwL06GCehBxLGvsbCpAkCTt3bEdmi8bofaWyP56qJTskScKmX7ZiR9Y2tGzZMuwD3VE7SFNVYWEhACApKQkAcOzYMZw+fRrDhg3zLGMymdC/f39s2rTJZ/jZbDbYbDbP/aKiIgDlo/QVl+CqNYsFhilTytubMCHsl+D+bJMNQFuUWR0Qa7EboffrczgccAh1fL1BrKvO72mE1FTv2bNnYbUUo1XLLnC5XJEsrRqX01npXyW1apmOrN0HkJub6/PLlhr+/qrJDRnzIZBQsiOSGVFTDWrYdmoSTK0nc7NxSesU6HQ6RbNDTbnRoEEiGiSYkZubi7S0tGqPq+FvH47cAGqZHQplhbequSHolc+GQOpbbgBATk4ODCKQ0ryZYtmhptwQRREtUprieG42HI7LfS6j9N8/4rmhgqyo4HA4IMKIqxLm4mAxav1dJZK0lBtAzfUWFBSgtKQIrS5rz+8qXlq1TEf2T1koKCjwebhkXf7+HKRB+UjY1KlTcfXVV6NLly4AgNOnTwMAmjVrVmnZZs2a4cSJEz7bmT17Nl544YVq83/88cc67wkgWq24/o/p5cuXwxXGk3g53ToAVwEA1qxZA70u9PMaWF1Wz/Ty5cthFuU/ydjKlStlX0c4+au3oKAAR347iIwWjWA2mSJclW+79+xRugQAwNGjR1BS5kaLFi2qPVZaGvlj6L2pKTfkzIdAQskOJTLCHy1lR6Bad+zIggHtYbcp+1mooJbcyMnJxq4D2SgoKKj2WH3JDaB22aFUVnirmhtO6eLfROlsCKS+5AYAHDlyBG7beezYsSMyBQWgltw4kZ2LHfuOw2j0vf0pmR1K5IYasqKCd/8BqP13FSVoKTcA//VeuHABhw7uR4tm8chVyd7tasiO4uISHDiwHxBNPgdp6pIbHKQBMGXKFOzatQsbN26s9ljVXZckSfK7O9PTTz+NqVOneu4XFRUhPT0dAwcOROPGjetWpMXimbz22mvDvifNDwtKAACDBg1CfKwx9PLsFmD3xfrijPKNuDscDqxcuRJDhw5V1ckh/amp3pMnT0KEA927dUdMjLKdU5fTid179qBrly4QVXA+h8PHT6PH5Vehffv21R7Lz89XoKKLVJUbMuZDIKFkRyQzwh8tZUcwtRZdyEfHTu3QplVmhKurTG25UWyxQWdujH79+lV7rL7kBlDL7FAoK7xVzQ1B71A8GwKpb7kBAFlZWTiVfQA9evSIXHFVqC03YuMS4NIlYMSIET4fVzI7IpEbAzr8jqSGXn3Q0ot72wztkgvE1vwjoi5NnkO6vfsPQO2/q0SSlnIDqLneM2fOQOe2oXu37oiPVzaj1ZQdhYVFOHW2BEOGDEFycnK1x+uSG8qnosIeeughfPPNN1i/fn2lXaMrztR8+vRppKSkeObn5eVVG7WuYDKZYPKxJ4TBYKj7B9Tr+QaDIazHhrq9Lq1Q21oNUuX6IhFIkVpPuPir12AwQBR1f9zUcV1BUa9XRS2iqAv4vilFdbkhYz4EEkp2KJERfmvRUHYEqlUnihB1zI1qdeh0EPX6ep0bQC2zQ6Gs8FY1NwSvnqiaP5tqrq2qmmrV6/XQ6UR1fF5Vkhs6nQhRL/p935T620cqN/SiBIPodbUer2mDKFW6749OpvfIu/8A1K/PotoE6nPrxPLMUMPnFVBHdoiiCJ2ol+W7ijKnZVYBSZIwZcoULF68GGvWrKl2zotWrVqhefPmlXb7stvtWLduHfr27RvpcolU49Dho+g3+AZ06tEPfQaMxL4Dv/ldtm3n3uhyWX/07DsMPfsOw+dfflNtmZdmvw5DQhr27DsgZ9lhwdwgqp1QcsNms+Hhx6ajY4+r0f2KQfjTPQ95Hluxai2u7Dccl191LXpcORj//eSLSJRfJ8wNotoLJjsuXCj09DN69h2GTj36wdwwEwUF5wEE1xdRG+YGUe2F0ucIpl+hxHeVqN2T5sEHH8TChQvx9ddfIyEhwXNsZ4MGDRATEwNBEPDoo49i1qxZaNeuHdq1a4dZs2YhNjYW48ePV7h6IuU88MhTuOfOCZh0+y348qvvcO8D07Bxjf8Oz6KP/4EunTr4fGz7jt3YvGU7MtKrn3NGjZgbRLUTSm48M2M2dDod9mVtgCAIOHX6DIDyLy0T75qClcs+R7cunXD8RA669ByAG/9vOBIS4iP5ckLC3CCqvWCyo2HDBti2aYXn/utvvo/1G39BUlIjz7xAfRE1Ym4Q1V6wfY5g+hVKfVeJ2kGa9957DwAwYMCASvPnz5+PO+64AwDwxBNPoKysDA888ADOnz+PXr16YcWKFUhISIhwtRStZrw0D1u370BJSSnOnctHSkoz/G/hv9CwYQNF6sk7ew5ZO/fg+68XAgDG3DASjzz2HI6fyEHLzPSQ2rLZbHh46nR89J+3MXTkLXKUG3bMDdICLeeGxVKKDz/+HMcPbPGcVyGleeVd9wsvlF+NpKi4GI2TGsJkUve5CZgbpBVazg5vH378OV58/olIlSkL5gZpRX3IDX/9CiW/q0TtII0k1XxspSAImDlzJmbOnCl/QTUxmYDvvrs4HUZ6Ebj/2hhs3boFerF3WNumutmWtRNWqw3fLf4I8fFxGHXTRPx34Rd4+IF7atXerbffi8NHj/t87KvPFyA1xf9xzACQk3sSqc2bQf/HiboEQUB6eipycn73G3x/uvshuN1uXHn5pXhl5tNo0qT8hJYzX34N48eNQauWGbV6LUpQbW7ImA+BMDvUScu5ceTYcTROaoRZc9/E6rUbEWM24/lnpmLQgKshCAI+/e/7uHnCnxEXF4vzFwrxxSf/hNGo7kEaVeWGQlnhrWpuKHsxV/IWyez48tN/1/j82vQ5ft68DfkF5zFy+JBK8/31RdRK8dww6uH+z32eaaW5YMPywnF4MvNJ6MXqJ4Un5Wi5z1FTv0LJ7yrKf+ooOHo9MHKkLE2LOgFdM/TI2XMeos7/GeEp8rZn7cayrxd6drnr1qUTCgrO4/iJHIwaMxH9ru6N5s2a4PlnHoPNZsP9Dz+FxMR4uFxuvPX6K9Xa++zjDwKuz+Wqubtc/UoC/pdd88OXyEhvAYfDgedfnIu7Jj+Kb7/8CD9v3oat23di1ovP1Lg+CoKM+RAIs0OdtJwbDocTR4+dQMcO7THrxWewc/c+XDdqHHZt+RGNGjXAnL++jS8X/QdX9bkCW7btwNjb7kbWL6sqHdZAASiUFd6q5oar5u+iFCGRzA6Xy4X8c3k11hRKnwMAFny0CLffdpPnCxrgvy9CAehFYHBnpavwkOBCjn0lks13s7+hMlruczidTr/9ioOHjir6XSVqTxxMpHYnsnNRXFKC7l07eeZt2bYDPS/tDgBITEyA1WpDy8zy0d0l33yPa67ujTfmvYRGDRvg583bqrV56+33Vjq5nvctJ/dkteU/Wvg/z+MLPvoM6WmpyD15Ck6nE0D5Lz25uSeR7uc4zYrjNw0GAx5+8B5s3PQrAGDDxp9x8LcjaNelD9p27o3c309h5OgJ+GHFmjq8Y0Sk9dzITE+DTqfD+FtvBAB079oJLVumY9+Bg9ixay9OnTqDq/pcAQC4omcPpKQ0x649++r4rhGR1rMDKD9c8ovF3+KOieMqzffXFyGiutF6bgTqVyj9XYV70miFwwF88kn59IQJYb1sptMl4effHMixNIXLLUE7F4qr37Zl7YTNZsfRYyfQpnVLfPr5EhSXWDBy+BAIgoCffvwWkiTh1tvvxTVX90Z2di6uvOJSAECrlhnIzslFn149K7UZ6uj0xPFjMXH82ErzenTrjE8WLcak22/B4q+XIjMjzeduxxZLKRwOh+eY1EVffI0e3boAAJ54bAqeeGyKZ9m2nXvjqy8WaOqkfqoiYz4EwuxQH63nRnJyEgYNuBorVq3F8GsH40R2Lo4fz0H7dm2g0+mQe/IUDv52BJe0b4PDR47h6LHjaNe2dW3equikUFZ4q5ob4I/iqhDp7PC1J01dsgMA/rfkO3Tt3BEdLmnrmReoL0IBOFzAV1vLp0dfDhiUvdSxAD3amm7GydIU9jdUROt9jooBHV/9igHXXKXodxUO0miF3Q7ceWf59M03h7Vj5XIDH62zArgETh4crhrbtu/Cg5PvxIOPPo3TZ/LQrk0rfPO/D6HTXdwBThAENG3aBMUlJUhLS8WJ7N8BACeyczBsyEBZ6nr3zTm4e/JfMOe1t5CQmID//ONvnsdG3TQRM6ZPw+WXdceZvLO45fZ74XK5IEkSWrfMxPwP3pClpqgnYz4EwuxQH63nBgC888Zs/PmBx/D087MgiiLe+/scz8mD333zVdw68V7odDpIkoS3Xp+FFqkpstRcLymUFd6q5obAnqgq1IfsmP/fRbjzT5X3omFfpJYcTuimlQ/oukf2UHyQRoQR/RPfxr4isL+hIlrPjWZNm6i2X8H/GolUalvWLjz2yGT8be6L1R5bu/4nfLTwSwBAw4aJ6Nq5I9q1aYUHHnkau/fsR5nVir69L5elrkvat/F76VzvY7xbt8rE1p+WB9Xm4b2/hKU2omin9dwAyrNj9ff/87nsuJtHY9zNo8NdHlHUqw/ZsXbF4mrLhNIXIaLQ1IfcCLZfEenvKhykIVKprB270fPSbj4fG3DNVRhwzVWV5pnN5kojxUQUfZgbRFQbzA4iChVzQz4cpCFSqTPZe5QugYg0hrlBRLXB7CCiUDE35MOrOxERERERERERqQAHaYiIiIiIiIiIVICDNEREREREREREKsBz0miFyQR8/vnF6TDSi8A9g83YnpUFvXhFWNsmogiQMR8CYXYQaYxCWeGtam7warpEKmTUw/3unZ5ppblgw+rCO/Fo5qPQi1fV/AQijVP+U0fB0euBm2+WpWlRJ+Cy1gacPnAOok6QZR1EJCMZ8yEQZgeRxiiUFd6q5oZLUrQcIvJFLwIjL1W6Cg8JLhyzf4Nm5vHsb1BU4CANEYXk0OGjuOu+vyA/vwANGibi3+//DZ06tA/4nJdmv44XZ72OrM2r0KVTh1q3Q0TaFcxn3mq1YsIdD2L/gd8QExuD5s2a4J03XkXLzHQAgM1mw+PPvIiVq9fBaDCie/fO+O+/3lLi5aiWc8fncCbE1KkN/ZV3hKcYojoIpZ/w6OPP4btlK3EiO7dSXyPUdohI+0L5zPtbtqb+iNx4ThqtcDqBL74ovzmdYW3a5Zaw/agDJ8uS4XLzJy0K7IFHnsI9d07Avh0bMO3R+3HvA9MCLr99x25s3rIdGekt6tQOBSBjPgTC7KBQBPuZv+fO8dibtR7bNq3AiOuG4P6Hn/Q89syM2dDpdNiXtQE7t6zBnJefjVT59YPTBWH1FgirtwBOZQ40Ym5QsELpJ9x0w0isXbEYmRlpdWqH/uB0AUuzym8KZYU3ASJaGf8PZ6xNmRtUo1A+84GWDdQfkRsHabTCZgNuuaX8ZrOFtWmnC/jXaiu2F3RUQw5TGNw9eSoWfPSZ5/6zM1/FnNfernO7eWfPIWvnHkwYNwYAMOaGkTh+IgfHT+T4XN5ms+HhqdPx1uuzIAhCrduhGsiYD4EwO+ofpbPDbDZj+LWDPXnR64rLcOz4CQCAxVKKDz/+HC/PeMrzeErzZnWuLao4nBCfeRfiM+8CjsgN6HpjbtQvSmdGhX5X90Zai9Q6t0N/sDuhe2A+dA/MB+zKZIU3ESYMbjAfuy90Z25olFxZUVUon/lAywbqj0QCD3ciqoe2Ze3EI1Pu8bq/C1Mfvq/acrfefi8OHz1+cYYElJWVISYmBl99sQDpaZU7PDm5J5HavBn0+vLoEAQB6empyMn53efufzNffg3jx41Bq5YZdWqHiCKjVtnhlRsQgK8+r3t2VHj7/f9g5PChAIAjx46jcVIjzJr7Jlav3YgYsxnPPzMVgwZcXcdXTUS1pZb+hj/sbxCpQ62zwstXny9AakrgH2dC+cyHsqx3fyQSOEhDVM+UlpbhRHZupWMvs3bsxqXdu1Zb9rOPP6h03+VyYceOHejRowdEUfTZvvceMQAg+dnr9OfN27B1+07MevGZOrVDRJFR2+wIJjeA0D/zr857C4cPH8O7370KAHA4nDh67AQ6dmiPWS8+g5279+G6UeOwa8uPaNKkcTAvkYjCSC39jZqwv0GkrLpkRVUuV827UoXymQ9m2ar9kUjgIA1RPZO1cw86dWjvGRU++NsRxMfHITk5qdqyof6ylZ6WityTp+B0OqHX6yFJEnJzTyK9yvlmAGDDxp9x8LcjaNelDwAg9/dTGDl6Av7x9jxcdmm3oNshosiodXYEsSdNKNkBAK+/+T6WfPs9ln/zKWJjy0+Cm5meBp1Oh/G33ggA6N61E1q2TMe+AwfRv0nfML0LRBQstfQ3AglXO0RUe3XKCi++9qT5aOH/8Mbb5QM7D91/N0ZcNzjoz3ww+eCrPxIJHKQhqme2Ze2EzW6H2+2Gy+XCrHlvonvXzj6XDfWXraZNktGjW2d8smgxJt1+CxZ/vRSZGWk+dxl+4rEpeOKxKZ77bTv3xldfLPBccSHYdogoMmqbHcH8Ih5KdvztrQ+w6H9fY/k3n6Jhwwae+cnJSRg04GqsWLUWw68djBPZuTh+PAft27Wp4ysnotpQS38jkHC1Q0S1V5esqKrqnjQTx4/FxPFjK80L9jNfUz74649EAk8cTFTPbMvahY6XtEXPvsMwYNgYtEhpjq3bd2D33v1haf/dN+fgn//5GJ169MPc19/FB+++5nls1E0TsXX7zjq3Q0SRp4bsyP39JJ545kUUFhZhyMhb0LPvMPQdeL1nuXfemI3X3ngPPXoNxphxd+G9v8/hyYOJFKKGzKjw0NTpaHnJ5cj9/RSuG3UbOnS/Kqh2iEh+cmdFVaFkh79la+qPyI170hDVM9u378Jnn3xQ6bhPf+eFqY1L2rfBxjXf+Hzs2y8/8vu8w3t/CbodIoo8tWSHozjXbxutW2Vi9ff/C1tNRFR7askMAHjr9Vfw1uuvhNwOEclP7qyoKpTs8LdsWovUgP0RuXGQRiuMRmD+/IvTYSTqgIn9zdi1cyf0Ys+wtk2RVVJiwcnTZ9ChfVulS6FIkjEfAmF21B/MjihhEOF67m7PtBKq5gavpqtNzIx6zqCH+7UJnmmluWDHuqIpuD9tMvRib6XLoRAwK2pH+U8dBcdgAO64Q5am9aKAPu0NOH84D6JOqPkJpFrx8XHI/12eXQdJxWTMh0CYHfUHsyNK6PWQrlf2kuVVc8PFK+1oEjOjnjOIwM29lK7CQ4ITh2yfIjX2BvY3NIZZUTs8Jw2RwnS68o+h282eqjdJkuB2S9UujUdE5USdDm63W+kyVMfldntylYiqEwQBbonZ4c3N3CDyq+KzEczlr6OJy+UCBMiSHUwjrXA6gaVLy29OZ1ibdrkl7M524oy1EVwcKIi4xMREQNAj7+w5pUtRlXPnCiAJIho2bKh0KeonYz4EwuxQVoOGScg7m690GaricrlQcKEYDRpE9ioMmuF0Qdi4E8LGnYBTmc42c0N5DRo0QEmJDaWlZUqXohp5Z8+hQcPqlwOOWk4XsHpv+U2hrPAmQES6cSjOWZOZGwpITEyEIBr4XaWKvLP50IkGJCQkhL1tHu6kFTYbcP0fZ5QuKQH04fvTOV3Ae8vLAHTBeOVzOOrExsYiNS0DO3bth9PpRHLjJMV+zXG5XCgpsaCwsMjvpXTlJkkSzl8oxJ79h5DYoDGSk5MVqUNTZMyHQJgdymrTth22/LIB23fsRkZaCxgUOm+AGnIDACylpTj42xFIghGZmZmK1aFqDifEx94AADjXvg/oI//3qpobAnuiEZeWlgZTbAI2bPoVnTq0Q0J8XMT3WlVLbtjtDpzIycXpc0Xoc9VlitWhOnYndHf9AwDg3j9PkazwJsKEaxsswo4Lqhgzijomkwlp6S2xe98hSBLQJDm6v6u43W7knc3Hnv2HkNGqIwwGQ9jXwf8aiVTg6qv7YdMmEVl7j0FyHwIU+pHA7XLiwMGDOJlXDJ2oUDwIAKBD0+apuOqqq3m4E5Ef7du3h91ux/59e3Do2EnmBgQkNkhC/4HXlO+hSEQ+GY1GDB4yDD9v+gmbtuwBIEU8P1SRGwAgACZzHC7t2RutW7dWrg4ilevbty9+/lnAjn38rgIB0IkGZLTqiN695TmRNQdpiFTAYDCgf//+sNlssFgsip1nwuFwAPoYDBkyRJZR4WAIgoDY2FjExMQosn4iLenSpQs6deqEwsJCxY4VV0NuAOW/9MmxyzFRfdSoUSOMGHk9LBYLysoif9iTWnJDr9cjMTGR56MhqoFer0e/fv1gt/dCSUlJVH9X0el0SEhIkHX9HKQhUhGTyQSTyaTY+h0OBxITE5GcnKxop4mIgqfT6dCoUSPF1s/cINKuuLg4xMXFRXy9zA0ibTIajUhKUu78TdGSHRw2JiIiIiIiIiJSAQ7SEBERERERERGpAA93IiJSoZI138MYFxvcwlYrKs7EUbz8a8BsBgAkjBgjT3FERERERCQLDtJohdEIvP32xekwEnXArX1N2Lt3L/Rij7C2TUQRoNfDev89nulIYXYQaYxBhGva7Z5pJVTNDV5Nl0iFDHq4XxzrmVaaC3b8VPwE7kq9E3rxCqXLIZKd8p86Co7BADz4oCxN60UB/TsbYTlxCqLuUlnWQUQy0uvhuH545FfL7CDSFr0e0s2DlS2hSm64FLqMKxEFYBCBSdcoXYWHBCf2W/+N9LihEHVXKl0Okex4ThoiIiIiIiIiIhXgnjRa4XIBGzaUT/frB4jh203Z7Zbw20knztkawO3mT1pEmuNyQdy7v3yyc8ew5kMgzA4ijXG5Iez4DQAg9WhffuxRhFXLDSHiJRBRTVxu4Ncj5dNXtlEkK7wJ0KG5oQ8KbI3Y36CowEEarbBagYEDy6dLSoC4uLA17XABbywtA9ANt7oAU9haJqKIcDgQ+/QMAEDxl59EbJCG2UGkMXYHxAfmAACca98HYiL/qa2aGwJ7okTqY3NAN+4tAIB7/zwgVtn/4UWYMbLhN9h+HpjI/gZFgag93Gn9+vUYNWoUUlNTIQgCvvrqq0qP33HHHRAEodKtd+/eyhRLRKrA3CCi2mB2EFGomBtE0StqB2ksFgu6d++OtyuumOTDddddh1OnTnluy5Yti2CFRKQ2zA0iqg1mBxGFirlBFL2idifT4cOHY/jwwFdDMZlMaN68eYQqIiK1Y24QUW0wO4goVMwNougVtYM0wVi7di2aNm2Khg0bon///njllVfQtGlTv8vbbDbYbDbP/aKiIgCAw+GAw+GoWzEOBwyeSQdQ1/YqNS15TTvgcIR+Fj/v1+dwOOAQwlefv3XV+T2NEC3Vq8Va1SZcueGSAGew58bzWs4pXbwv93sUSnZEMiNqqkGt24431ioPNdcYruxwugGH28+T3Bc7fg53+X1fJBnfp6q5IUjKZ0MgWty+WWv4qbXOsOWGS4DD5fV/uEvwnPfF4RIAV83fDXQyvUdV3/vafleJJK1u31qoV4u11gYHafwYPnw4br75ZmRmZuLYsWN47rnnMGjQIGzbtg0mk+/TVc2ePRsvvPBCtfk//vgjYmNj61SPaLXi+j+mly9fDpfZXKf2vDndOgBXAQDWrFkDvc5f784/q8vqmV6+fDnMYvjq82flypWyryOctFSvFmotLS1VuoRqwpkbm10iYp3BnQBYdIqefPjJKcJV8TyZd3sOJTuUyAh/tLB9V2Ct4aXG3ADCmx3rzzVEbKnvPod3X2J1XkP/fQkZs6Nqbjili38TpbMhEC1s3xVYa/ipMTvCmRtrD7So9F3FOytW7kkL7nvHLnlyw7v/ANT+u4oStLJ9V9BSvVqotS65IUiSFPXXMRMEAUuWLMHo0aP9LnPq1ClkZmZi0aJFGDNmjM9lfI1Op6en49SpU2jcuHHdirRYYGjUCADgOH8+rFd3sjkk/GVBCQBg7gQT4mONoZdnt6DRa+X1nZ92HnHG8NVXlcPhwMqVKzF06FAYDIaan6AwLdWrpVrz8/ORkpKCwsJCJCYmRnz9cufGkc8+QqO4IAd3rVY0GjsBAHD+f58Af3Sm4oeNCu75tRRKdkQyI/zR0vbNWuWhdG4A8mdH7op3kZQQ47vhMhtiBk0un1zj/+pO+p4TgnsxtVA1NwS9Q/FsCERL2zdrlY/S2SF3bpzcPg9JDb0GYkptMHWZVv6cPa8FdXUnXdp9wb2YEFnsFjR5rQXuaJIDoPbfVSJJa9u3lurVUq11yQ3uSROklJQUZGZm4tChQ36XMZlMPkeuDQZD3Tei2Fhg7tzy9mJjgTBulIJOwo1XmnDgwH6YTd1qVatBuvicsLzeYNYZofWEi5bq1UKtaq8PqFtuiAKgD3ZvXr0I610Tyyf1IvDH8+R+j0LJDiUywm8tGti+K7DW8FJ7fRXqkh16HWDwd1kIowjXlFsAAAaj6PfyEXoZ36equeH2qkHN25Caa6uKtYafFmqsU26IEgyi1+/2Jh3cT98AADCYdIBY82/6OpneI4NkgBsObC6ZgQkpE2A2XaaJvwegne27gpbq1UKtdamPgzRBys/PR05ODlJSUpQpwGgEHn9clqb1ooCh3Y1w/P479GJ3WdZBFI0ilhsGAxw3jZZ3HT4wO4jkIVt2GPSQJgY+EancquaGPer35yYKj7DmhlEPTB5c93bCxA0Hdpe9jZZxV0Mv9lS6HCLZRe0gTUlJCQ4fPuy5f+zYMezYsQNJSUlISkrCzJkzcdNNNyElJQXHjx/HM888g+TkZNx4440KVk1ESmJuEFFtMDuIKFTMDaLoFbWDNFu3bsXAgQM996dOnQoAmDRpEt577z3s3r0b//3vf3HhwgWkpKRg4MCB+Oyzz5CQkKBMwS4XsH17+fRllwFicCcUDYbbLeH4WRcu2OPhdvMnLSJ/VJsbLhd0R44BANxtWoU1HwJhdhAFRzXZ4XIDB4+XT1/SEhD9HRcln2q5oe6LtBApRtHccLmBPeXngEGXdEWywpsAHRrru6PQkcj+BkWFqB2kGTBgAAKdM3n58uURrCYIVitw5ZXl0yUlYT1xsMMFzP2qFMCluMkF1HxqMKLopNrccDgQ95cnAQDFX34SsUEaZgdRcFSTHXYH9He+BABwrvV/4mA5Vc0NIWp7okSBKZobNgd0//dXAIB7/7ygThwsJxFmjG60ClvygfHsb1AUUHZYlIiIiIiIiIiIAHCQhoiIiIiIiIhIFThIQ0RERERERESkAjwSOALOfLkBtpj4OrWROqZPmKohIiIiIiIiIjXinjRERERERERERCrAQRoiIiIiIiIiIhXg4U5aYTAAM2ZcnA4jUQeMuMyIQ4cOQdR1DmvbRBQBogjb+Fs80xFbLbODSFv0Itz33OCZVkLV3HArUgURBaQXIT16nWdaaW44sN0yBzc1HQtR113pcohkx0EarTAagZkzZWlaLwq4vqcJy85kQy92kWUdRCQjgwH2CbdGfLXMDiKNMejh/vNoRUuomht2SdFyiMgXox7SX0YoXYWHGw5sL52LJxIug17soXQ5RLLj4U5ERERERERERCrAPWm0wu0G9u8vn+7YEdCFb3zNLUk4WeBCsSMWbok/aRFpjtsNXU5u+WR6WljzIeBqmR1E2uJ2A8dPlU+3TIlYVlQqgblBpH5uN3D4TPl022aKZEVlAhqK7VHiiGNuUFTgII1WlJUBXf44nKCkBIiLC1vTDifw8pelAHpitBMwGcPWNBFFgt2OuAf+AgAo/vITwGyOyGqZHUQaY3NAf9uzAADn2veBGFPES6iaGwJ7okTqY3VAN3Q2AMC9fx4QG/ms8KZHDMYmbcIv+cCt7G9QFFB6WJSIiIiIiIiIiMBBGiIiIiIiIiIiVeAgDRERERERERGRCnCQhoiIiIiIiIhIBThIQ0RERERERESkAhykISIiIiIiIiJSAV74UCsMBmDatIvTYSTqgCHdDDh69BhEXYewtk1EESCKsI/5P890xFbL7CDSFr0I94TrPNNKqJobbkWqIKKA9CKkewd5ppXmhgO7St/CqORREHVdlC6HSHYcpNEKoxGYN0+WpvWigDG9zFiWfwx6saMs6yAiGRkMsN09KeKrZXYQaYxBD/fDtypaQtXcsEuKlkNEvhj1kKaPVroKDzcc+NUyE1Nbd4Be7Kp0OUSy4+FOREREREREREQqwD1ptMLtBrKzy6czMgBd+MbX3JKE/GI3Sp0muCX+pEWkOW43hLPnAABSk+Sw5kPA1TI7iLTF7QZOF5RPN0+KWFZUKoG5QaR+bjfw+/ny6RaNFMmKygTE69JQ5jQzNygqcJBGK8rKgFatyqdLSoC4uLA17XACzy2yALgSo5yAyRi2pokoEux2xN91PwCg+MtPALM5IqtldhBpjM0B/Y2PAwCca98HYkwRL6FqbgjsiRKpj9UB3dUvAADc++cBsZHPCm96xGBc4x346Rwwlv0NigJKD4sSERERERERERE4SENEREREREREpAocpCEiIiIiIiIiUgEO0hARERERERERqQAHaYiIiIiIiIiIVICDNEREREREREREKsALH2qFXg888MDF6TDS6YBrOhlw4sQJ6HTtw9o2EUWAKMI+8jrPdKQwO4g0RtTBfdMgz7QSquaGpEgVRBSQqIM08WrPtNLccGJf2b8xrPEw6HQdlS6HSHYcpNEKkwl45x1ZmjaIAsZdZcaywiMwiJfIsg4ikpHBANsDf478apkdRNpiNMD9xERFS6iaG3aO0hCpj8kA6eVblK7Cww07NpU8gYdbZcAgdlK6HCLZKT80SkRERERERERE3JNGMyQJOHeufDo5GRCEMDYtobjMDZvLAEniT1pEmiNJEIqKyicTE8OaD4FXy+wg0hRJAi4Ul083TIhYVlQugblBpHqSBBSUlE8nxSuSFVWZhcawu5kbFB04SKMVpaVA06bl0yUlQFxc2Jq2O4EnP7YA6I0RTsBoDFvTRBQJNhvix98FACj+8hPAbI7IapkdRBpjtUN/3SMAAOfa94EYU8RLqJobAnuiROpTZofusukAAPf+eUBs5LPCmx6xuD35N6zPA25kf4OiAA93IiIiIiIiIiJSAQ7SEBERERERERGpAAdpiIiIiIiIiIhUgIM0REREREREREQqwEEaIiIiIiIiIiIViNpBmvXr12PUqFFITU2FIAj46quvKj0uSRJmzpyJ1NRUxMTEYMCAAdi7d68yxRKRKjA3iKg2mB1EFCrmBlH0itpBGovFgu7du+Ptt9/2+fjcuXPx+uuv4+2338aWLVvQvHlzDB06FMXFxRGu9A96PTBpUvlNH97rVep0QO92eqTFnoEuarcIopqpNjdEEY7BA+AYPAAQRXnX5YXZQRQc1WSHqIN75FVwj7wKEJX50DI3iIKjaG6IOkhjr4Q09krFssKbG078Zv0UKeaTzA2KCuH9tq8hw4cPx/Dhw30+JkkS3njjDUyfPh1jxowBAHz44Ydo1qwZFi5ciPvuuy+SpZYzmYAFC2Rp2iAK+NOAGCxb9hsMYltZ1kFUH6g2NwwGWKc+JF/7/lbL7CAKimqyw2iA+/l7wtdeLVTNDbukaDlEqqVobpgMkP56e93aCCM37FhfPAUPtFwEg3iJ0uUQyS5qB2kCOXbsGE6fPo1hw4Z55plMJvTv3x+bNm3yG3w2mw02m81zv6ioCADgggQX6tYLcTgcdXp+sO3Xdj3ez3M4HHAI8tVb11ojTUv1arFWtQh7bkiAs45fXiLxHgW7zUQyI2qqQW3bji+sVR5qrDHc2eF0Aw533WqSItjncEjKZ0MgWty+WWv4qa3OsOeGS4DDJdSpJp1M71HV915tfwtftLp9a6FeLdZaGxyk8eH06dMAgGbNmlWa36xZM5w4ccLv82bPno0XXnih2vw9CVbExtZx37ylSyH+EaoukwkQ6hak3iQJcEk6ADqsWLGyVk1bXVbP9PLly2EWzWGrz5+VK1fKvo5w0lK9Wqi1tLRU6RIqCXdubHaJiHUGeeiSJPnOh2XLgnt+LYWSHUpkhD9a2L4rsNbwUltuAOHPjvXnGiK2NNb3k/xlRVUyZkfV3LC51ZMNgWhh+67AWsNPbdkR7txYe6AFYmO9ciPYrPC2S57cqOg/6BELl7v231WUoJXtu4KW6tVCrXXJDQ7SBCBUSQBJkqrN8/b0009j6tSpnvtFRUVIT09Hl2IzGjr9dJiC1HzUFTA0agQAcJw/D8TF1ak9bzaHhL8sKAEAzJ1gQnysMeQ2LHYLsLt8+tprr0WcMXz1VeVwOLBy5UoMHToUBoNBtvWEi5bq1VKt+fn5SpfgU7hyo5foQiO9K7iVWq1oNG4CAOD8/z4BzOVfcuKHjQqx+tCEkh2RzAh/tLR9s1Z5qDU3gPBlxzXJF5CUYPP9pDIbYgZNLp9c8z4QY/K5mL7nhBCrD17V3BD0DsWzIRAtbd+sVT5qzY5w5caADr8jqaHXAGmpDaYu0wAAtj2vAbG+s8KbLk2ew7otdgv0u2NxR5Mc/JhX++8qkaS17VtL9Wqp1rrkBgdpfGjevDmA8lHqlJQUz/y8vLxqI9beTCYTTKbqISZCgIi6Dfl6b4QGgwEI40bp9joUy2Aw1GqDN0iV64vEhyZS6wkXLdWrhVrVVl/Yc0MA9MHGhtdyeuHifbnfo1CyQ4mM8FuLBrbvCqw1vNRYX7izQ68DDP523vWab9DB7+Uj9DK+T1VzQ/Dqiap5G1JzbVWx1vBTW41hzw1RgkH0Osbaa9ogSpXu+6OT6T3y7j8A2tlmAG3VCmirXi3UWpf6eH5sH1q1aoXmzZtX2o3Kbrdj3bp16Nu3r4KVEZFaMTeIqDaYHUQUKuYGUf0WtXvSlJSU4PDhw577x44dw44dO5CUlISMjAw8+uijmDVrFtq1a4d27dph1qxZiI2Nxfjx4xWsmoiUxNwgotpgdhBRqJgbRNEragdptm7dioEDB3ruVxyfOWnSJCxYsABPPPEEysrK8MADD+D8+fPo1asXVqxYgYSEBKVKJiKFMTeIqDaYHUQUKuYGUfSK2kGaAQMGQJL8H18pCAJmzpyJmTNnRq4oIlI15gYR1Qazg4hCxdwgil48Jw0RERERERERkQpE7Z40miOKwNixF6fDSCcAl7bS4/SpU9AJ8WFtm4giQKeD46o+numIrZbZQaQtOh3cgy73TCtSQpXcqPmaMUQUcTodpBE9PNNKk+DCUdvX6J3Ym/0NigocpNEKsxn44gtZmjboBfx5SAyWLTsAg761LOsgIhkZjbA+My3iq2V2EGmMyQD37AcVLaFqbtg5SkOkPmYDpPfuUroKDxdsWFN0F+7NXASDvq3S5RDJTvmhUSIiIiIiIiIi4iANEREREREREZEacJBGKywWQBDKbxZLWJu2OSQ88M9ifPd7P9gc3O+YSHOsViSMvAkJI28CrNaIrZbZQaQxZTboe90Jfa87gTKbIiUwN4g0oNQGXebD0GU+DJQqkxXe9IjFPU3yser0UOYGRQUO0hARERERERERqQAHaYiIiIiIiIiIVICDNEREREREREREKsBBGiIiIiIiIiIiFeAgDRERERERERGRCnCQhoiIiIiIiIhIBfRKF0BBEkVgxIiL02GkE4DO6SLO5p2FTogPa9tEFAE6HZyXX+aZjthqmR1E2qLTwd23m2dakRKq5AYvpkukQjodpIGdPNNKk+BCtm0FLk28lP0NigocpNEKsxlYulSWpg16AQ9eF4tly/bCoM+UZR1EJCOjEWUvTI/4apkdRBpjMsD9t78oWkLV3LBzlIZIfcwGSAsmK12Fhws2rCi6DXdlLoJB31rpcohkp/zQKBERERERERERcZCGiIiIiIiIiEgNOEijFRYLEBdXfrNYwtq0zSHh0fnF+P5kX9gc3O+YSHOsVsSPGY/4MeMBqzViq2V2EGlMmQ1i//sg9r8PKLMpUgJzg0gDSm0QOkyD0GEaUKpMVnjTIxaTkrOx5swg5gZFBZ6TRktKS2Vr2u4EgPCekJiIIkewKdOJYnYQaYtgtStdAnODSAOEsvKsUMuQiEGIg1stxRDJjHvSEBERERERERGpAAdpiIiIiIiIiIhUgIM0REREREREREQqwEEaIiIiIiIiIiIV4ImDNeLUp2uQ4jUtmWJq1U7qxCHhK4qIiIiIiIiIwoaDNBohCTrYOnTzTIeTIADtUkTk5+dDEOLD2jYRRYAgwNm1s2c6gqtldhBpiSBAuuwSz7RCJTA3iNROJ0Dq3dYzrTQJbpyyb0THuE7MDYoKHKTRCqMJ+c/8VZ6m9QL+cn0sli1bC6M+XZZ1EJGMTCaUvfpixFfL7CDSGLMRrveeUrSEqrlh5yV1idTHbIT02cNKV+HhghVLC2/AxIxFMOozlS6HSHY8Jw0RERERERERkQpwkIaIiIiIiIiISAU4SKMRgq0MzR4ci2YPjoVgKwtr2zaHhCc+KsGKU71hc3C/YyLNsVoRd9udiLvtTsBqjdhqmR1EGlNmg3jtQxCvfQgosylSAnODSANKbRAufRrCpU8DpcpkhTc9YjGh8UGsO9OfuUFRgeek0RCxuFC2tkusEgCDbO0Tkbx0RUWKrJfZQaQtwoUSpUtgbhBpgFBgAQCoZUgkRpcMjs9QtOCeNEREREREREREKsBBGiIiIiIiIiIiFeAgDRERERERERGRCnCQhoiIiIiIiIhIBThIQ0RERERERESkAry6k0ZIgg72Vu090+EkCEBGsg6FhYUQhPiwtk1EESAIcLVr45mO4GqZHURaIgiQOrb0TCtUAnODSO10AqRuGZ5ppUlw46wjC21iWjM3KCpwkEYrjCace+EdeZrWC3jqxjgsW7YORn2qLOsgIhmZTCh9Y27EV8vsINIYsxGuBTMULaFqbth5SV0i9TEbIX07TekqPFyw4usLQ7AofRGM+jFKl0MkOx7uRERERERERESkAhyk8WPmzJkQBKHSrXnz5kqXRUQqx+wgolAxN4goVMwNovqLhzsF0LlzZ6xatcpzXxRFxWoRbFY0efoeAMDZ2f+CZDKHrW2bQ8Lzn5agrOwKDHFKMBjC1jRRVIp4dlhtiLv/EQCA5b03AbNJ3vX9gdlBFD4RyQ2rDeK46QAA16JXIpYV3qrmBpTrWhFpnmy5UWaHMGQWAEBa9QwQYwxPu7UkIgZjkzZhY14TXM/+BkUBDtIEoNfrVTQiLUF/7oxnOtwKSiQAZkg8NpyoziKfHRJ0eWc905HE7CAKj4jkhgQIp/I900rxzg3lT0lKpF2y5YYkQcgt+GNS+f/gBQhIEDNgdYP9DYoKHKQJ4NChQ0hNTYXJZEKvXr0wa9YstG7d2u/yNpsNNpvNc7+oqAgA4IIEVx17Q4LX812QINWyPYfD4WOeVOlxhyP0LpN3uw6HAw6h+nrCpWJdvl6LGmmpXi3WqkahZIff3JAAZ7Afc6/lnNLF+3K/R6FkRyQzoqYa1LztVGCt8lBzjeHqczjdgMPt50nuix0/h7v8vi+SjO9T1dwQJOWzIRAtbt+sNfzUWmfYcsMlwOHy+j/cJaBiPzuHSwBcNX830Mn0HlV972v7XSWStLp9a6FeLdZaGxyk8aNXr17473//i/bt2+PMmTN4+eWX0bdvX+zduxeNGzf2+ZzZs2fjhRdeqDZ/T4IVsbF1O/2PaLUi7Y/pHQllcJlrOeizbFm1WU63DsBVAIA1a9ZAr/PXu/PP6rJ6ppcvXw6zGL7DsfxZuXKl7OsIJy3Vq4VaS0tLlS7Bp1Czw19ubHaJiHUGt9uy6BRx/R/TPzlFuCqe5+PzHk6hZIcSGeGPFrbvCqw1vOpLbgD+s2P9uYaILY31+RzRavVkxeq8hnCZ/XwOZcyOqrnhlC7+TZTOhkC0sH1XYK3hp8bsCGdurD3QArGxF3PDOytW7knznxXedsmTG979B6D231WUoJXtu4KW6tVCrXXJDUFSwz5sGmCxWNCmTRs88cQTmDp1qs9lfI1Op6enY9c/FqNhTHyd1i/YypD25xsAALn//BqSKaZW7TQfN6DaPJtDwl8WlAAA5k4wIT429ONOLXYLGr3WCABwftp5xBnjalVfMBwOB1auXImhQ4fCoIGDUrVUr5Zqzc/PR0pKCgoLC5GYmKh0OX7VlB3+cuPIZx+hUZzvL1rVWK1oNHYCAOD8/z4BgulMhSB+2Cif80PJjkhmhD9a2r5ZqzzqS24A/rMjd8W7SErw00cosyFm0OTyyTXvAzHynpNG33NCtXlVc0PQOxTPhkC0tH2zVvloITvqkhsnt89DUkOvvkOpDaYu5Zfgtu15DYitOSt0affV7QX4YbFb0OS1FrijSQ6A2n9XiSStbd9aqldLtdYlN7gnTZDi4uLQtWtXHDp0yO8yJpMJJlP1EBMhQKzjUdeC1/NFCJBq2Z6vjdntdayEwWCo1QZvkC4+p7ZthLzOCK0nXLRUrxZqVXt9FWrKDr+5IQD6YD/mXsvpBYT9JA/+3utQskOJjPBbiwa27wqsNbzUXl+FuvQ59DrA4G/nXa/5Bh1kv8anPog+h+DVE1XzNqTm2qpireGnhRrrlBuiBIPo9bu917RBlCrd90cn03vk3X8AtLPNANqqFdBWvVqotS718RLcQbLZbNi/fz9SUlKULoWINITZQUShYm4QUaiYG0T1Bwdp/Jg2bRrWrVuHY8eOYfPmzRg7diyKioowadIkhSoS4GiRCUeLTMhxLYSUhjrE6y0Q1H0eLiLVUyY7BLgy0uDKSEOkr5XC7CCqu4jlhgBIrVIhtUpV9LJKzA2iupM1NwQBUrvmkNo1hxo+qBIknHceQJy+RA3lEMmOhzv5kZubi9tuuw3nzp1DkyZN0Lt3b/zyyy/IzMxUpB7JZMbZ2f+SpW2TQcBzN8dh2bJ1MOpHyLIOomihSHaYTSh970352veD2UEUHhHLDbMJrkWvhLfNEFXNDTvPjEhUK7LmRowR0qpn6t5OmLhQhi/PX4VFXRfBqB+jdDlEsuMgjR+LFi1SugQi0iBmBxGFirlBRKFibhDVXzzciYiIiIiIiIhIBThIoxGCzYomT9+DJk/fA8FmDWvbNoeEl76wYO2Zy2B3cr9jIs2x2hB7/yOIvf8RwGqrefkwYXYQaYzVBnHcdIjjpkc0K7wxN4g0oMwOYcgsCENmAWV2pauBiBjc1Ogn/HyuD3ODogIPd9IMCYbfT3imw+3UBTeAOEjMPSINkiBm53qmI4nZQaQhEiAcO+mZVop3bvAcoEQqJEkQDp3+Y1L5/+AFCGik7wCLE+xvUFTgIA0RERERERHVmjv7rbC0o8t4KCztEGkZD3ciIiIiIiIiIlIBDtIQEREREREREakAB2mIiIiIiIiIiFSAgzRERERERERERCrAEwdrhgBncjPPdLglxQsoKyuDIMSHvW0ikpsAd9MmnulIYnYQaYgASCmNPdNKYW4QqZwgQEpL8kwrTYKEYlc2mhiaMDcoKnCQRiMkkxl5r38sS9smg4CXb4vHsmXrYdSPkGUdRCQjswmW+e9HfLXMDiKNMZvg+uo1RUuomht2Xk6XSH1ijJB+mql0FR4ulOGzgkuxqOsiGPVjlC6HSHY83ImIiIiIiIiISAU4SENEREREREREpAI83Ekr7DYkvzIVAHBu+uuA0RS+pp0S5iyxoLCwB4Y4JRgMNT/n5EerKt0vdZd5pk99ugaxupig1p06cUhItRKRDzYbYp98DgBQOuclwBS+fACA4mWLfc63u3V4+3QPFEs90OeHpYgR3X7bsLisYa2JiGrBaoc4eTYAwPX+04DZGPESqvY5IEa8BCKqidUO4ea/AwCkLx5WJCu8iTDj+obf4ddzrXF9kN9ViLSMgzQaIUhuGI/95pkO5yHckgRkn3MDSIDEY8OJtEeSIB464pmO2GoB5NoTPdNEpHKSBGH/cc+0QiVU6nMof0pSIqrGLUHYlQ0AkNzK/w8vQIcmhktR5FQsuogiioc7ERERERERERGpAAdpiIiIiIiIiIhUgIM0REREREREREQqwEEaIiIiIiIiIiIV4CANEREREREREZEK8OpOGuJKaCBb2/FmAXa7Xbb2iUhe7sRERdYbp7PDweuzEGmG1DBe6RLY5yDSACkpTukSKilzn0OiqExfhyjSOEijEZIpBmfe+Z8sbZsMAuZOjMeyZctgMoyQZR1EJCOzGZZP50d8tSadGzPSN2G9U4RR5474+okoRDEmuJa/pWgJVfscdl5Ol0h9Yk2QsmYrXYWHE6X4JP8SLOq6CCbDGKXLIZIdD3ciIiIiIiIiIlIB7klDRERERGHn/HWB7/luAGgE57ZP4HTbLs7f+jGcelO15fVX3iFLfUSkPu7synv7uR22yvdz/wG3WPMueLqMh8JaF1EkcU8arbDb0HjWY2g86zHAbqt5+VCadkr423el2HS2K+xO7ndMpDk2G2Keeh4xTz0P2MKbD4HY3Tq8f7oHNp3tCoeb/50QqZ7VDvH+VyHe/ypgVeacMHa3Dn//rW95n4O5QaROVjuEW/8O4da/K5YV3kSYMbLB19ia3xN2l6h0OUSy4540GiFIbpgO7PJMh3MoRZKAQ6dcABpC4hgNkfZIEvS793qmI7ZaAEdtDT3TRKRykgRh+0HPtDIlCDhckuyZFnjecSL1cUsQfjkMAJDcyv8PL0CHFOPVuOBQLLqIIoo/YRARERERERERqQAHaYiIiIiIiIiIVICDNEREREREREREKsBBGiIiIiIiIiIiFeAgDRERERERERGRCvDqThriNppla9uoB1wul2ztE5G8JJNJkfUaBBfciqyZiGpDMhuVLgFGnRMuiZd1IlIzKUb5rPDmkCww6eT7LkSkJhyk0QjJFIPT//pWlrZNBgFv3JmAZcuWwWQYIcs6iEhGZjNKFi+M+GpNOjdeydiA9U4RRh2HaohUL8YE17p/KFqCSXThtR7LsOJMI5hEF+yMDiL1iTVBOvCa0lV4OFGKD89lYFHXRTDp+aMy1X8cpImANxa3xMRBFpy5YEa3lkWIjykPl9Pnjfh2czMM6n6u0mOnzxvxv43N0byRDY3ineicWYyjp+M8j5eUidh1PBGtm1s88wF45u09kQAA6HXJBc+6SspEbD7YEI0bA/36AQkJdX9dFXV0a1kEncn/YxU1+Hq89d/XV3ptwXBBAhKB04vWQkT5L3GpE4fU+fUAwMmPVgV8vKbXVSFS9QTiXWv7eweGpR6KnKf+0QkDuzuRlOhA3875SIh1AgAO5cbi/W/aYvL/HUa7tFIAQHGpHqu3N8XRk3G4bXA2UhrbUFyqx47DDdGj7QXPcwPNa55UihVbUzCmXy7iY1zVlgukrEyPjccaoWe78uV9raek7OJ/N8XLv4ZbDPxrmK82KiSMGBPkuxgZxcsWB6y3NpwSAIgoWfEt9ELg96Mqtb0/FFn/XtwKvboAl3U4BwDYuKMZSq0iYs0uXN3jjM95CXHl29TJs2Z8sao1bh5yFKlNrD7bL7bosf1AcrX2AVRrz9dzqj5WablSEXGJ1ec7f10Qclu+6K+8I6Tl/fGuJxj+ag5XPUR19cysK3B1LytOnknAxJsOICHOgQ2/pgIA+l15EgCwYn069hxojC4d8jHsmhwkxDtQXGLAtt1N0bNrHhLiHdXarXi8fevz+O1oI/TsmodiiwGff9sOt4w6hNRmpSHVuXdvEga3u4CkBnafj1eqJ/st3/N91BmILuOhkJYnCgeekyYC1u5ORm6+GT/vbwSLTfTMP1dkxA/bmlZ77FyREcu3N8W6PY2xcV8SzhUZKz1usYn4eX+jSvO9523cl4SN+5IqrctiE7FxXxJWrwZKSsLzuirW6b2eYB7z9xq0oKbXpSZaqpWq27izOdZkNcO6nU1hsV4c4Mg5G4cffk1Bztk4zzyLVY8fdzTF0s2pOFto9szbsLtJpecGmpdzNg7f/Vz+fF/LBVJWJmKj1/L+1hOKUGtQmtz1au39IOX8urcZ1m1vjpIyA0rKDFizNQWrt6RizdYUv/Mq5J2PwTfrMpB3PsZv+yVlBp/t+2rP13MCsdTweChtqYkWa6bosn5LOlZuyMA3K1sj71wMSiwGrNmUhjU/paHEYkCJxYBVGzLw7eqWWLUhAyWW8m25xGLAul9aeO5XVfF43rkYz3J552Lw9Yry9YRq377GKCn1/znyV09NdRKpDXt7GqF32dD6/SdhMriR96eXw9q2wynhnR9KcfZcZwx1SjAwv4g0RbDb8cjWu1FcqofgmBqx9TrcOsw/2xmnbSIEwRax9RJRLdntSH7lb/jzyXi8fflbACI/iO9w6/D+4StwzmbAwCabIr5+IgqCzYF7fni4fHrS7YBJ2S8HIkwYnLgA8Z2bwunmPgZU/3GQRiN0kgsN9v0CABDc4T2A2y0Be3NcAJLglsLaNBFFgtuN7mfXAgB+dj8SudUCOFDWGADQSDgTsfUSUe0IbjditmahE8r7FUoM0rglAfuKmnmmBZ4/mEh1BLcbnXJ+AgCcdI+H0l8PBIjIMA0DTOW5QVTfcSiSiIiIiIiIiEgFOEhDRERERERERKQCHKSpwbvvvotWrVrBbDajZ8+e2LBhg9IlEZEGMDuIKFTMDSIKFXODqP7hIE0An332GR599FFMnz4dWVlZ6NevH4YPH47s7GylSyMiFWN2EFGomBtEFCrmBlH9xEGaAF5//XXcfffduOeee9CxY0e88cYbSE9Px3vvvad0aUSkYswOIgoVc4OIQsXcIKqfeHUnP+x2O7Zt24annnqq0vxhw4Zh0ybfl4y02Wyw2S5ehrawsBAA4HIXw2IrRplDRGFZCUwmOwCg2Ao4XIXVHiu2Ak53IRxOK2xOO4qtJShzSCiqaNdagjJH0R/zzSgsKwEAzzybs3xJ73UVlhlhcxZBV3oeBQVuGI1edTsk2P9oIz/fBluZ14N+XCgrQWGZEWWOIhSWlcBtsADWP+ors6C4TPQ8VlGDt4rner8GX8v54oKEUr0VF8rcEFF+hndTfn5Qzw3mdQXi/ZoD1etdj8PhQGlpKfLz82EI8frmNdUTbK35Qb4/dak10goKCgAAkqT0NQcqCzU7AuWGzeGA1e7AhdJSGE3lH7CSMgtc7iKUlFlQYCkFAFwogycfispKUWCx40KpG2X2kkrPDTSvpMwCh6sYRaUWGI32asv54nDrYC8rX3OZ4+LyvtcDT0act5TCJga+Sp2vNjzvcS0/73Jt3yWW0oD11oZLAkpdIs6LLohC4Pejqtq+P7XF3Ki7cPY5bPYSlNoEFJSU50OZvQRWux460YmCkjIk/rG81V4Cp92IgpKL21ShxQS7qxiFllLkF5f5XG9BiYRSW0m19gH8sY7q26j3cyS9w5Mb54vLAKHsYjaUlCE/NvDfxrutUD9r+lp8Nnxt304/740//mquTT2h1qpWWqoVUGd2hPu7it3ugMOpx4WSMhjdVsT/sUxBsRWSU4LVXgKXMwZWewkKiq0wmqwoKNahtMziuV9VxeMXSso8y10oARzOElwoKUP+hZo/wxanHZJV8uRGYZHV7/P81VNTnYHo4sKTG2qmpXq1VGudckMin37//XcJgPTTTz9Vmv/KK69I7du39/mcGTNmSAB44423CN6OHDkSiUgIWqjZwdzgjbfI37SeG5LE7OCNNyVuasoO5gZvvGnjVpvc4J40NRAEodJ9SZKqzavw9NNPY+rUqZ77Fy5cQGZmJrKzs9GgQQNZ66yroqIipKenIycnB4mJiTU/QUFaqhXQVr1aqrWwsBAZGRlISkpSuhSfgs0OLecGoK1thrXKQ0u11pfcALSdHVraZlirPLRUK6Du7GBuqI+WagW0Va+Waq1LbnCQxo/k5GSIoojTp09Xmp+Xl4dmzZr5fI7JZILJZKo2v0GDBqrfiCokJiayVploqV4t1arTqevUWqFmR33IDUBb2wxrlYeWatV6bgD1Izu0tM2wVnloqVZAXdnB3FA/LdUKaKteLdVam9xQT9KojNFoRM+ePbFy5cpK81euXIm+ffsqVBURqR2zg4hCxdwgolAxN4jqL+5JE8DUqVMxceJEXH755ejTpw8++OADZGdnY/LkyUqXRkQqxuwgolAxN4goVMwNovqJgzQB3HrrrcjPz8eLL76IU6dOoUuXLli2bBkyMzODer7JZMKMGTN87laoNqxVPlqql7WGR12yQ82vyxct1cta5cFaw4N9DnVirfLQUq2AeutlbqiTlmoFtFVvtNQqSJKKriVHRERERERERBSleE4aIiIiIiIiIiIV4CANEREREREREZEKcJCGiIiIiIiIiEgFOEhDRERERERERKQCHKSJkFdeeQV9+/ZFbGwsGjZsqHQ51bz77rto1aoVzGYzevbsiQ0bNihdkk/r16/HqFGjkJqaCkEQ8NVXXyldkk+zZ8/GFVdcgYSEBDRt2hSjR4/GwYMHlS7Lr/feew/dunVDYmIiEhMT0adPH3z//fdKl1Wj2bNnQxAEPProo0qXIhs1ZwdzI/y0lB1azQ2g/mcHc6PumBvyYG6oF3Oj7pgb8ojG3OAgTYTY7XbcfPPNuP/++5UupZrPPvsMjz76KKZPn46srCz069cPw4cPR3Z2ttKlVWOxWNC9e3e8/fbbSpcS0Lp16/Dggw/il19+wcqVK+F0OjFs2DBYLBalS/MpLS0Nr776KrZu3YqtW7di0KBBuOGGG7B3716lS/Nry5Yt+OCDD9CtWzelS5GVWrODuSEPLWWHFnMDiI7sYG7UHXNDHswN9WJu1B1zQx5RmRsSRdT8+fOlBg0aKF1GJVdeeaU0efLkSvM6dOggPfXUUwpVFBwA0pIlS5QuIyh5eXkSAGndunVKlxK0Ro0aSf/617+ULsOn4uJiqV27dtLKlSul/v37S4888ojSJclObdnB3IgMrWWHmnNDkqIvO5gb4cHckBdzQ12YG+HB3JBXfc8N7kkT5ex2O7Zt24Zhw4ZVmj9s2DBs2rRJoarqn8LCQgBAUlKSwpXUzOVyYdGiRbBYLOjTp4/S5fj04IMPYuTIkRgyZIjSpUQl5kbkaCU7tJAbALNDScyNyGFuhBdzQznMjchhboRXXXNDH+Z6SGPOnTsHl8uFZs2aVZrfrFkznD59WqGq6hdJkjB16lRcffXV6NKli9Ll+LV792706dMHVqsV8fHxWLJkCTp16qR0WdUsWrQI27dvx5YtW5QuJWoxNyJDC9mhldwAmB1KY25EBnMjvJgbymJuRAZzI7zCkRvck6YOZs6cCUEQAt62bt2qdJlBEQSh0n1JkqrNo9qZMmUKdu3ahU8//VTpUgK65JJLsGPHDvzyyy+4//77MWnSJOzbt0/psirJycnBI488go8//hhms1npcmqtvmQHc0NeWsgOLeQGUD+yg7lBwWBuhA9zQz2YG/JiboRPuHKDe9LUwZQpUzBu3LiAy7Rs2TIyxdRScnIyRFGsNhqdl5dXbdSaQvfQQw/hm2++wfr165GWlqZ0OQEZjUa0bdsWAHD55Zdjy5YtePPNN/GPf/xD4cou2rZtG/Ly8tCzZ0/PPJfLhfXr1+Ptt9+GzWaDKIoKVhgcrWcHc0N+WskOLeQGUD+yg7lBNWFuhBdzQ3nMDfkxN8IrXLnBQZo6SE5ORnJystJl1InRaETPnj2xcuVK3HjjjZ75K1euxA033KBgZdomSRIeeughLFmyBGvXrkWrVq2ULilkkiTBZrMpXUYlgwcPxu7duyvNu/POO9GhQwc8+eSTqu8sVdB6djA35KP17FBjbgD1IzuYG+QPc0MezA3lMTfkw9yQR7hyg4M0EZKdnY2CggJkZ2fD5XJhx44dAIC2bdsiPj5e0dqmTp2KiRMn4vLLL0efPn3wwQcfIDs7G5MnT1a0Ll9KSkpw+PBhz/1jx45hx44dSEpKQkZGhoKVVfbggw9i4cKF+Prrr5GQkOD5BaBBgwaIiYlRuLrqnnnmGQwfPhzp6ekoLi7GokWLsHbtWvzwww9Kl1ZJQkJCtWNl4+Li0LhxY9UeQ1tXas0O5oY8tJQdWskNIPqyg7lRd8wNeTA31Iu5UXfMDXlEZW6E5yJTVJNJkyZJAKrdfvzxR6VLkyRJkt555x0pMzNTMhqN0mWXXabay6/9+OOPPt/HSZMmKV1aJb5qBCDNnz9f6dJ8uuuuuzx//yZNmkiDBw+WVqxYoXRZQanvl8NUc3YwN8JPS9mh5dyQpPqdHcyNumNuyIO5oV7MjbpjbsgjGnNDkCRJCn5Ih4iIiIiIiIiI5MCrOxERERERERERqQAHaYiIiIiIiIiIVICDNEREREREREREKsBBGiIiIiIiIiIiFeAgDRERERERERGRCnCQhoiIiIiIiIhIBThIQ0RERERERESkAhykISIiIiIiIiJSAQ7SEBEREZFqCYKAt956CxkZGWjevDnmzZundEkhqw+vgYiIIoODNERERESkat999x327NmDtWvX4vXXX8eaNWsqPb5q1SrMnDkz7OsNZ7s1vYZQ17d27Vo89dRTYamNiIjUg4M0RERERKRqTz/9NBITE9GhQwfcddddWLRokdIlhaw+vAYiIpKfXukCiIiIiIgCSU9P90xnZGRg165dcDgcuOWWW2CxWJCenl5pmQpr167FrFmzYDAYkJ+fj4ceegjz58+HKIr4/vvvIUkSJk2ahJycHDRo0AAff/wxYmJiamx38ODB+Omnn3zW+vjjj+Oll14K6jUACOp1uFyuanUCwN69ezFy5EgUFBTg008/RWFhISZPngyj0YhBgwZhxowZNbyzRESkNtyThoiIqB5bsGABBEGA2WzGiRMnqj0+YMAAdOnSRYHK6q7itR0/fjzgvEiYOXMmBEGI6Dr9CeU9iETd4fib5OTkVJpOSUnBkiVL0KNHD6xYsQKZmZl+n6vX67F06VLccMMN2LRpE1atWoWWLVti69atWLJkCVq2bIl169bhhhtuwD//+c+g2l29ejWsVqvPm68BGn+vAUBQ6/NVJwBYLBYsXboUc+bMwbx587Bq1So89thjWLduHZ577rnAbyoREakSB2mIiIiigM1mw7PPPqt0GbIbOXIkfv75Z88X4GhUH9+DOXPmoKioCAcPHsR//vMf3HLLLTh69CguvfRSAEDPnj39Prdr164AgJSUFM+AZEpKCs6fP4/Dhw/jiiuuAAD06tULhw8fDrrdcLwGAEGtz1edANCjRw/P844cOYI777wTGzZswO23347vv/8+bLUTEVHkcJCGiIgoClx33XVYuHAhdu7cKds6SktLZWs7WE2aNEHv3r1hMpmULiVo4X7ftPge1GTEiBHo0qULrrnmGjz88MMYMmQIWrdujR07dgAAsrKyPMvm5uZWeq73nkLe05IkoW3bttiyZQsAYPPmzWjTpo3fduV4DQCCeh2+6gTg+TxnZWWhTZs2iImJwZtvvon58+dHxaAsEVF9xEEaIiKiKPDEE0+gcePGePLJJ2tcduPGjRg8eDASEhIQGxuLvn37YunSpZWWqThMZvv27Rg7diwaNWrk+eJY8diuXbtw8803o0GDBkhKSsLUqVPhdDpx8OBBXHfddUhISEDLli0xd+7cSm0fPnwYd955J9q1a4fY2Fi0aNECo0aNwu7du2us3dehNWfPnsW9996L9PR0mEwmNGnSBFdddRVWrVrlWebQoUMYP348mjZtCpPJhI4dO+Kdd97xuY6lS5eiR48eMJlMaNWqFV577bUa6wrmfQu2hppej7/Di4Kt+4477kDLli391l6hLn+nUN14443Izs7GmTNnPFc0Gj16NLKysjB06FAcPXoUAOB0OjFx4sSg2x09ejSOHj2Ka665BkuWLMGf//xnn+3K9RqCfR2+6gSAmJgYDB8+HI8//jimTZuGhQsXYuDAgejTp09I7wMREakHTxxMREQUBRISEvDss8/ikUcewZo1azBo0CCfy61btw5Dhw5Ft27d8O9//xsmkwnvvvsuRo0ahU8//RS33nprpeXHjBmDcePGYfLkybBYLJUeu+WWW3D77bfjvvvuw8qVKzF37lw4HA6sWrUKDzzwgOdL5ZNPPom2bdtizJgxAICTJ0+icePGePXVV9GkSRMUFBTgww8/RK9evZCVlYVLLrkkpNc+ceJEbN++Ha+88grat2+PCxcuYPv27cjPzwcA7Nu3D3379kVGRgb++te/onnz5li+fDkefvhhnDt3rtLJV1evXo0bbrgBffr0waJFi+ByuTB37lycOXMmpJqqvm+h1FDT6/ElXHV7C/ffKVRGoxFLliypNO/XX3/FhAkTPPcHDBiAAQMGACgffKrgfZnrhQsXVmu7artyCuZ16PX6anV6v7YKd999N+6++27ZaiUiogiQiIiIqN6aP3++BEDasmWLZLPZpNatW0uXX3655Ha7JUmSpP79+0udO3f2LN+7d2+padOmUnFxsWee0+mUunTpIqWlpXmeN2PGDAmA9Pzzz1dbZ8Vjf/3rXyvN79GjhwRAWrx4sWeew+GQmjRpIo0ZM8bva3A6nZLdbpfatWsn/eUvf6n22o4dOxZwXnx8vPToo4/6bf/aa6+V0tLSpMLCwkrzp0yZIpnNZqmgoMAzr1evXlJqaqpUVlbmmVdUVCQlJSVJwXSr/L1vodRQ0+vx9R6EUvekSZOkzMxMv7X7E8rfKRQApJycnFo9Vy3qw2sgIqLI4OFOREREUcJoNOLll1/G1q1b8fnnn1d73GKxYPPmzRg7dizi4+M980VRxMSJE5Gbm4uDBw9Wes5NN93kd33XX399pfsdO3aEIAgYPny4Z55er0fbtm0rXXnK6XRi1qxZ6NSpE4xGI/R6PYxGIw4dOoT9+/eH/LqvvPJKLFiwAC+//DJ++eUXOBwOz2NWqxWrV6/GjTfeiNjYWDidTs9txIgRsFqt+OWXXzzvz5YtWzBmzBiYzWZPGwkJCRg1alRINXm/b6HUUNPr8SWcdXsL99/JH0mSkJaWFrb2lFAfXgMREUUGB2mIiIiiyLhx43DZZZdh+vTp1b7cnz9/HpIk+bwqUGpqKgBUO6Qm0BWEkpKSKt03Go2IjY2tNFBQMd9qtXruT506Fc899xxGjx6Nb7/9Fps3b8aWLVvQvXt3lJWVBfdCvXz22WeYNGkS/vWvf6FPnz5ISkrCn/70J5w+fRr5+flwOp146623YDAYKt1GjBgBADh37hyA8vfH7XajefPm1dbha14g3u9bKDXU9Hp8CWfd3sL9dyIiIiKek4aIiCiqCIKAOXPmYOjQofjggw8qPdaoUSPodDqcOnWq2vNOnjwJAEhOTq7WXrh9/PHH+NOf/oRZs2ZVmn/u3Dk0bNgw5PaSk5Pxxhtv4I033kB2dja++eYbPPXUU8jLy8PixYs9ewo9+OCDPp/fqlUrAOXvjyAIPgdD/A2Q+OP9vjVq1CjoGmp6PT/88EO154Zat9lshs1mqzbfe6AICP/fiYiIiDhIQ0REFHWGDBmCoUOH4sUXX0R6erpnflxcHHr16oXFixfjtddeQ0xMDADA7Xbj448/RlpaGtq3by97fYIgVLt89NKlS/H777+jbdu2dWo7IyMDU6ZMwerVq/HTTz8hNjYWAwcORFZWFrp16waj0ej3uXFxcbjyyiuxePFizJs3z7NHUHFxMb799tta1xRKDTW9nnDU3bJlS+Tl5eHMmTNo1qwZAMBut2P58uWVlpPz7+S9DgoPSZKULoGIiILAQRoiIqIoNGfOHPTs2RN5eXno3LmzZ/7s2bMxdOhQDBw4ENOmTYPRaMS7776LPXv24NNPP43Il+brr78eCxYsQIcOHdCtWzds27YN8+bNq9U5PQoLCzFw4ECMHz8eHTp0QEJCArZs2YIffvjBczWpN998E1dffTX69euH+++/Hy1btkRxcTEOHz6Mb7/9FmvWrPG099JLL+G6667D0KFD8dhjj8HlcmHOnDmIi4tDQUFBrV9zsDUE83p8CaXuW2+9Fc8//zzGjRuHxx9/HFarFX//+9/hcrkqLVfXv5MgCOjfvz/Wrl3rd5lIDSwIgoC///3vmDdvHux2Ox577DE8/vjjEVk3ERGRNw7SEBERRaFLL70Ut912W7XL+vbv3x9r1qzBjBkzcMcdd8DtdqN79+745ptvqp0IWC5vvvkmDAYDZs+ejZKSElx22WVYvHgxnn322ZDbMpvN6NWrFz766CMcP34cDocDGRkZePLJJ/HEE08AADp16oTt27fjpZdewrPPPou8vDw0bNgQ7dq185wTpsLQoUPx1Vdf4dlnn8Wtt96K5s2b44EHHkBZWRleeOGFWr/mYGsI5vX4EkrdrVq1wtdff41nnnkGY8eORUpKCqZOnYqzZ89WWrYuf6eSkhIAgc9pFGnfffcd9uzZg5MnT2LgwIHo2bOn30vVExERyUWQuO8jEREREUXQsmXLcP3112Pnzp3o2rWr0uVAEAT8+OOPGDBgAABg+vTpOHv2bKXzNq1atQobN27EzJkza2xv7dq1+OGHH/Dqq6/KVDEREdVXvLoTEREREUXUjz/+iHHjxqligKaC9/mZMjIyfJ5Am4iISG483ImIiIiIImrevHlKl1BNTk4O2rRp45lOSUmBw+HALbfcAovFgvT09EoDORVcLhcmTZqEnJwcNGjQAB9//DEAYO/evRg5ciQKCgrw6aefomXLlti5cycmT54Mo9GIQYMGYcaMGRF9jUREpH7ck4aIiIiIot6cOXNQVFSEgwcP4j//+Q9uueUWLFmyBD169MCKFSuQmZnp83lLlixBy5YtsW7dOtxwww345z//CQCwWCxYunQp5syZ4xmUWrVqFR577DGsW7cOzz33XMReGxERaQcHaYiIiIgo6o0YMQJdunTBNddcg4cffhhDhgzB0aNHcemllwIAevbs6fN5hw8fxhVXXAEA6NWrFw4fPgwA6NGjh+d5R44cAQDceeed2LBhA26//XZ8//33Mr8iIiLSIg7SEBEREVHUu/HGG5GdnY0zZ87gqaeeAgC0bt0aO3bsAABkZWV5ls3NzfVMt23bFlu2bAEAbN682XPI1M6dOz3Pq5gXExODN998E/Pnz6/V1cqIiKj+4yANEREREZEPo0ePRlZWFoYOHYqjR48CAJxOJyZOnFhpmaNHj+Kaa67BkiVL8Oc//xlA+YDM8OHD8fjjj2PatGkAgIULF2LgwIHo06dPpTaIiIgq8BLcRERERBTVBEFATk4O0tLSalz2119/xa5du3DPPfdEoDIiIoo2HKQhIiIiIiIiIlIBHu5ERERERERERKQCHKQhIiIiIiIiIlIBDtIQEREREREREakAB2mIiIiIiIiIiFSAgzRERERERERERCrAQRoiIiIiIiIiIhXgIA0RERERERERkQpwkIaIiIiIiIiISAU4SENEREREREREpAIcpCEiIiIiIiIiUgEO0hARERERERERqQAHaYiIiIiIiIiIVICDNEREREREREREKvD/L72o7tICjMkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# plot residual distributions by threshold\n", - "plot_residual_distribution_by_threshold(\n", - " measure=\"error_norm\",\n", - " x_label=r\"Normalised residual, $\\mathrm{\\frac{p_{d,mod} - p_{d,obs}}{p_{d,obs}}}$\",\n", - " x_min=-1,\n", - " x_max=4,\n", - " bin_width=2/5,\n", - " target=0\n", - ")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/validation/undesa_pd_2022_hh-size-composition.xlsx b/validation/undesa_pd_2022_hh-size-composition.xlsx deleted file mode 100644 index cc983ecffcd040ecb9b6ab4f47e090a45703eedb..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 342176 zcmeFZWo#u~lO}i#WoBk}nVH#TW-c=`Gcz;0%*@Qp%*@PonVEV0em$-2QE#tyG}8X* zNhxleh&(?sPsEc?oXFIblLP@p0e}G@0000XKv@D0x(^5d(0~L0kO2_D8iF>~jz-pw zI!bP~Mh;rEu2z-=d7!}LIRN1A`TytmZ@dB%Nz$_W^a#OMVsH3FIx11n?E(-ihk$cC zbja8iERQwShh%O=)31*;>ry~a5@q5}JpB4yR}9%BdwxU^%ObMS!WPSU3tk;m#=S(l zS^wqLC(M*;5J?8o5SQr+Qmj^_4^Gr&5>SoAEFAU{Qjo)xe3R~vC0<`i9%TH=oO`Td zZU_!!#T~N#U5ex_M0PB>CEfj5RH=atIj2ssNvimrqKY=nsBvZ3dDh`0=PgXc-ko*? zME_X@xioAa`%~Oy-ASe55k@c#+-noyuO7mu4kLG~n&`LWc+5usQxTz8Dodgx=>BZ4 z3?6sB^5zIfxz|x4NjdE)t1-1GLVvjx;8+%?)@5bWr@qd?ZWs}5>tS%P(L1U>5Bm&H zM+%Bh_qpSxgOyFX+HBn2X0(u) zDz->yDpu_|c2(f?jwMeyw~(Z_#(V4}bnK1D00fUr{UiJM%3@YQL4-6Y4J7mL%Q^dx zhK>SZ2V|d(R1wc3`VL0;VpVIp(Yz;yS{{Qbm1#Dlsja%#?^XEEkkQ?gQ0WE%0K~u9 z68?LJt0kR_jlG4wjg7@WOj)2TZ?nga;LUgP8Ibt2ATCBOR7gb-rCwT5mSpjiMVWx1 zzgX+gql%6IuF9X9?2fbnrS3NZoSOw`p zLB;y#I1~X|B-7oJFK5ZbUV36|I5m4<=M8a#{Pjiu^ivLGTY~P%aY?+9gn28o2_QUHcK_p(FbL)Lw9Tkm1J*Ym1*)-y-BKM^DTNxZ@INMlD+ zn;Nq?hQ=5 zEJYc=aw9ALmyvL6zS$r!LuQp6g_J?2BBn78M5QIH?K%|;PUY}W)B>nEfDy1(KNbzi z^eo7m%uSZWNG-`%h>VzVLJZ-XRq)zT3>#3Gf?aVCS3UywHc4|&2>313IRNhO`ko!g zGN0=wV&IWkHD795@5))L9y9Ew9w%l?fElB7JUP#kN3U$Cz{9>&{2GeJklI8XGH_>f zlCj}@<+HYC{rkr|{?_CE+Na=rLv3j?|JlyQxurSRk(daV|x%6$gkTc_( zu)`vN{gXcg^Tw2xViRSL0bl4;WzBD09&8S9Jkm;03Qx^-9M`}nP4hDLmZf_!<}t}* zB-gnbge}abiFK4GoC1B1*tSvZLR?G2;2dzZau{u@E04ZT9zW@!&#W_x0zWm_RmM)n`Q{5ItJ0bN1jKX>^~x030lXI-hAMO$L-QIl z4|)7ATC!Q)y@y~w>>}^e;LjNcvIOsA5%IN%sSiVU)WRgG$3#pU>b={9L|fnV%|9tv zWq~vZlk81aZJC?WwCiCPJh-8>U9y(s>ziLj&j9nId!haN8=?M_;J}({}J*3&Xz#m1@iaY|K3MOqO?UnJxuUbz(>f=+aAe98+_V*4a2e1nXbw{ zIX-i3K%w<`clHROTCOWspeAtqO?ik)UEQWvv-CA2oP~t~Vn`fBk7@dHk<{SZ?%`i; zP_eOtvRW{OS&(ooXRk)DAQ42JzOqYtUDSZmlF&9$3VD?oN*F8fU|Fa$bzz(~1!oET z-;j)9c~OqtEJDsjnCEv&EnZU(@Lt1-UrSBG@)oX5uM7UU(4+;*QQl=rR;o&^NaUyn zl!gj~bb=Ls1E1?ILs0?J2nJAxwsp6?8dFQ^&cQzu|I?tWp05Qoi zS@&sQLP)pFwCK1iEw)>@sjVhgDBK>&M!mli=Rap)jxFq%#&`Dp!UF&>zGwUows9~u zGIDgF`FrZMkqsW6J0926E^t^m@` zh4)12VF5R;T|Qu6Sv;A)1*3H<7OZ3h`Eo$jb0t@;9bP}y*U}aAacv~Gj?wJhfh4p4 z;`2?&tesoJ?m!@^r_ZmodJUzZvXEPQb%vl3C$fffy)$bVKY_Wfl9dKW`Rh)gB-7wR zq`C#>mPoTgLPLDs} zb7m(ZxwM>xW0cspLDUn4k*80)gM7r=*4YdV+)S#N^0V{D#l}x%V^_Lt_MvA$A(*}W zz>S9{i>V1L`epB5)Z7h*ijxo8Zq|XT^RU!e%!jQYFbE&@mM5FdZ*39MSBq~@ovBuL zTL(-vQ%HXKlnA{^0Fo^S8i0K&RQcgAPD=AuECqOHM!K6#*5|fUSrFLlEXKY zK>qm5x;ZD|>N+#K2n8>Ivi7pNdbo*P&B%%#zT5xo*tXKv@ut&mmR_fp;d`1Udp+r8 ziQuzZ!N=?R^y1Ef8$P;gYVE$8v~~!cla+6`@-#)ehbMbIYu@}YerZ~#hQAL1>xh;h zMvcL0JlHCiUq36cd{-l(BDHff(9y$bY{-y_I_*^@aknP4kxEzS*efA5=*)nN6lN@G zeQ+~K^RBg9@V|kI6wZqZ>0q#u_?LbT%*|DlaMW_>Yu`qSP=kv$3C}X(8$yPOjF@wzIlK5IJ~Ig?x#ajUFe{!uGtnWE=JEVEP-E zLo{YMv1l7PSTl`xN1f-G4IAEu6>(2FZi%&&?_xyo zNwkE{HDbfKu;3Wnh(dOUI`#$peqD;4j5<_~zoswuF8rB}4p|j!KppG_=c*G*zIvp) zf&Pyz^0fLAZ!W#P(95aAg5#hNaS|Bv?a`;UYo1bp9o8)3hgK~NCEs)--t7vuqz=x! zs*ymH-`m3c9bQd{9kJ`_l+qR-ivkeRJVwQ%wNBU@X)y{s~K+Rk-qy~+=Lw2MzGo+?4P8bS_SHELwC9uN3c9#xNmB!Io>%l zb-X<}yuZ*e`KzvgeMNzGsu5bzsL&+?!c%X zeV5W*qb?1MD5#PkG}@`$)JRqb!a87374@-eAt z-&)CA=$^bH2`KRwQqq@JdTkMNeF<~KP?L&+*raS7;QizE)#KzNbR%?=f}*6Ae`=Zk zOh^naGd2$2+n@UH-r;{iNR0nZNb3au5Yhz~!KGECtWyPhxoN%pQ&m~h1xqix2*VKc zK|$Ho76Zq*#EEc2{Ecq@S32f%DleW=h;yH6=^NBMeV^F9=5n2m%Jb0~BRPFt^aIP8 zBORqD3L4)OUYFF(VC|)*1VQWZkx`=)4jAyyfl?(zg=ieOf^|4-U)9~#8#R!#a#}XYzHZ0#j9)`h4YIL4y=ooId>-74*oO<2xUkAm?3_c zJ{j(?s`6_^sA%sysTAN?%`p5U^w&A;=k{NXrYlVjeD|N}v1d!YR^o!XZs30&>5tldVJXw>^szV$epk4=q#3%*=hTzCGYkuf)TgXix;ovfqBMd1=u0z0$tIH zZnOke9RC>^tEC*7{Tcq66!RSXH!k{DZg~FDunwR{5N`JG0G#h$j1aICC^Y+#o4?K$ zgqy`*cI~hAJ^Jo|8&374-ux(>o@dSub~|3Uconmz0ZBT(+ReK;m8&~|9HhtF@{vuz zD<0oqjQd-mnEy)$CPH%%sUz3!Wot2fn`=-s1P50EJd|3$Xj`}L$L?|Ch*9kZrjEw` zT2(=*nOaz}utL(n9OF!&lrS|evEYykw%K0`=@G+lhcy-!Bhzp)n>7T*aehO>uoEy4 zfq|LwAj)2LYZdl=eL?L|6q9-?o3T)C2!cnn@bh2Kou9J5uX1de_z%|odIE#ZSo};0 z5{bBN&-Y`ps&#DUk3tCPZQ3hSLaNjWb9vN58wBhZZ3K8#XE)>%nt+WG_L!ZGq*o=9 zyo1n)>PXZ(1NK_qEY;L5zc76MwQB!A0d-BpZPzIt6mU6*`CkE*>ED6+e^-v+>w%MC zD0S*AT26)94Zq=+qcQzaBTFwblpZ!+d~uW|3PmD%SXb^om>#Fk^=!=RejGJg*;5k9 zKr)Y^wW%H64?h*p{z1YwR2*4jjhzQ^eWmyLvTmxkzM%5ukDYnWP$q1^G|>L7TM%Oj z4LkK`2@~^ru`3M8@atuti|! zF_yQPjDydKr?M&cZWZNT&csRn2rn&YHp!n!lg5g%&}{rQ>^7-GXe3V zxx&UX>kFnb2T+faUryeHNbNK@%LdV(PXsJec-_%lxXx(qJiKAN4_lvmVnBr(3%lu? zUcjAYz@K8`fv24ub$c~{>X}M%{0CJd3qxJW$jeVo=JbuH4;l2_F|&z$5=6-C0hd1| zQSeLeSjIxhOB_fnuOn4+``j@_^P`<9TVG_iBxyT480lLW;Y%1wcH^{l{>A$~5p`W# z-&N$lmysD>S`Jk0aR)kf8Bc|SbYW@NPD1tRC=}k3B*Lc`L%73JysjO)XE&GcZ=-0l z(uP0bA=G4{2-NuV<$m+$LOsu4ecdE?zvsU`;CFw%$ohP(f4%i@`@GD4+=Og@T~&X* zaDBctTl-w^!+&*iJwG)2yghwYecry=_`FQ}yx;EU&VSt;@qH)g4H7A9pQd1utlUP!& ztBtQrJg+#Il-Q~?v>^qj;!qzANzAA?uq4e^R$%t*s;jZBLYrFZdr@aMfIhO^t)R(h z4q|Gyy+oVZ>U+^(4}dZ|s_gU(tSRwIZQxyeu@nMNll?Q_o#>$M%@hVhms-trf%F1<3 z@llDEm4+syHp;iwq#jfps-v?KycGwAq$X4^4e@!`L`UZGoMZnVuFNpG{*#8|jMtG1 zq5Nu8O&Zdkl?Ztm6&am>S_RpJG%-=C!qA+QPMNVjzBRE!eY8&^Nx7~rzA@3V!q9@0 zi^{D&-i2yaW3*QyTKQIwl#Gf)W3)ICB?vvLv*e!W$YM8=CZj&6zR7kAZEB;hRfF9F z`p9M%hBl)=sJ_J(58ZE67T$QT2IBygWZM%==}w z8;h5QyfJ6af3$E%(#EsWusGSDtR%#gblrf#2Qo){{r+Fk!@}zRG`Fj-@m>@*4IPw*fhRefiflKgro^*_{hQo(&PQIYZ=>TXX-9;CfPEdP%p? zWqAe1rF@&7^W zXfQ)c5fTGaza{Kj+`h#OArUl5l+8z3F#R(5!CtHT>mzmm5^M&P33R1QeJ$= zTnQ-!D-lC>cxb-%#?g`+7yCaBCHKwDxM`w_3vU{jvyz79=UmmXWd9ePm664XHw}zg z%0u&GuIiYwRQqN|-2aPCM}6*03|X?FdGQHF`}`i@bu47(i@N#*mcPd@I@eVTuY&_PgW{aV&(VwrtR`)A-S;lN zI(1)HD1@ox2pd|2#fEI$poxiF+JfR3G{L1hq|V2|yd45$bW|pr=@~=YBd^@YkMG_p zn+m4ieErx;aF6}YRpHofjxfLu&?o6d$T< zA+42d6NMs@q&yJk@|HBrZrE=&bS}W{CT$?Ta3yZM(T#RQ+dx{6oASSiLc~9zHU(u< zMw;e?_CFBuC?hDA7mpn)AsNwCLL#B1guF#f1T_nn@IMzK{iRSvx=(=iecrExMC!SO zWa9E$AC{1$q<-tUZ+qlhcYo`~Z(Z@N^S<@>xrvx>9b7_U%S#Dq87&c6Y_NZ_;>yXI z6&>{-hyOdd^6#nkzmqHfo@$&7Su&Bu$onTGe<`f&@VZe$fgBsw(9T%B-@_*m>UHL9 z@CusB)~jW6&r+g$1y!uB4ivV1o`JcYvIbaX=^i?(PeWu>%5?Tli>LUdE~u+6qd5g% z@;E*^wlQI|^7&r=sGOb(nvh7Q|6o}<8Ot-qR54&$O?280_x@Zsfyd9|d#Q1P@xJ69 zbFnIETgM#JHMhwpr#$a}mjXfPh;{kh^6yPbXbB+H1BZRfRZtSWE&QBNyJsMP4I`SUr4X{g`3HXFgOz*!I4@X~q=#*A(PUTCL{dl^RpO)G`oh@OCrD)8%{PhtgS6%v|U z<$dV{#;DPx#CIHNXz8L9GmHFcW5;7`pwjk4yLp93R>#( z$}Z7wxa==BB@W!8Gjj{i7hcTwcyEKV%eD{W%}pPiM`3U&+J|51@SI-iFTBv%Md*(8 zV)9SdlA4>?X+W8?)0^B=Cr`Th6Zy+c^>MxPEN6Ly@jcW`^yM%UoFMgKe5bV*iZ+rD z(?u)Jb|3RSkI*)DUftR)Lk@~clUz~sX!m_PUYhU$<#0P7i%&HXEokBGKn?k=Nsu={1W3I-ZP5(4wwt)P9tb z#KCm}g?DztkKnyxVl~D0X&qx(RKAZP6rWA+@@G*mCpRg9kDaAQUH8(CV{ZAo{Y@ODTcy?0O=Fw$s(j9E4UutKxDYV3 zk{@xW3^k{Ax$ejAm@CMO{nufPJc>Myo$i_`S8WkAP_LcU9K)L1Dn0_@0jq8^EEaHWMqw8$Y%No5D_8u@FU2f4S%!d}( zOBUDB7xx|Itfw%d2Tn%mWxCu~+6)Mch=S$;E!T)d)maW@SId%3e;7@e`!0em9Dp5j zrwck&E^VWBNDutU`LiWI;!m@8PDyBfPFA+`)6<>)BIAemP|U3%?18P`P67zJ<~|2F zPXJj~8!f&J(dbg1m1Xkf;Vpp1JWc>VGX#l(gYnmoA>d;IXf591K(0qC-dzDQ+ynG} z0+$s$OGaPC6Ofy%1o;hU3qxLTntX7!UtwT7qvIV1U z3qms%k)Fc~T9+*Kq5w54hFV9yc`<|h!^!&oIaU0dlrs_6d^|A2zToNSup*l>y0TBi zdJXBYP=YSOIv7<@j~Pe_{~!dooN^@NARQAbA7Z^sBu~vq&@!~&J2}H+nGsJMAAfZ#B|5*c!sgE5U2*S7IT$D ziKRXNI?fC&_ zp@|WFFq8D!tOqV2fo9jjz&8zyMrmkOM_yVy;>VTqWpclQ7k5&LEJ7HFylt$J_jF!Z zcjE`~D@3lur>B29;n-auw6S}>;;I?Q2!0e=QNOr;5Feupz}rGmccdWh1QTURdIT7H zR0D0g`qe})=WFIY>7KolF7oO7n{B}QAOYJPBrLs(pT2L=0}!cY!;D^&*84?5qEQN6 zxI{dj2eE;I*@gcAxgTvsabm@HlJTPt)74FILX3+L+tZKO;-=!bQ{%qs@-P3L2?LsO z#!ARXVdmXY{5cqllQ@0JsPA7DXujHU$z+REMm4KIzT)48W_6kz#~4uOLVCK zFNw$XVKfEr1v@<#ev!dxp{m{s8S#=ltv{XjYG@Y%=d|YEYMT!S-*CuWfkEJ0lenl$ z4c3BAfH)W8;kx%13_^AWmL!5oA7b?)2b(HMrNv4dm0J|soR#Du2w|I^#FLvy3X{0| zz=D)8lZxW1z=90i$qA+WrGhqJ8~|!`ZqEVhYphaQ>`14y9dwrLDPt@_`vIA2HM0>f zEV2L=+BuI5dTI02`-ld8QUmryQ|i6I6fzPHV1HHq-S}75dqA06IcshoHWwd}gwmG= zD9g5tDBN@yAUCr^0Nlfm46Q`fdH1CEK!Ce;_vGd|?FWR1?`jC>OElEF?*#|}%tH}C zME+)QGxZQ#@nY(>i(1m|wW@}M#X>64$VuutYEw&`O2XyO8)i1QTt*sqO#*9rqXDE1 zV>eZL^Fj^4+2HK3ue)qPLv83Gw&Z=7FXbYD@Id@Kg<)Kexy_NOBk4`s6awsYk=hn| zt^I+Febnt>j-VgBiT@T@r>hc#=yuelks?`Jjk_Ae1wx;4cCUghJcW7og8{r@zs^%( zTPmI!yGb8`W~Vp6G-+8N*TcM3jwTB}KUiQ;9-U&LLes&Xg+umZe;d99ot`NwtNBep z0CY+grc1kYs#%fs=&Lt8R6!re=|b_)j{2@h7m4rhM6)`a2h@4gg>ED%6)T|N08gBLEkGc%hx7obFCWB=e zYMgJURI!_dQ<@VlmKMvTsHy)(yeL43MS(5{*D}4 ztpiw(!I;3S`-MKGenVkA6y_vQr9J-{&P;HZCFoJ;1z@iidlzNo`)Ycsww(bCfcf9D zZriQ!p=CwH@`^VLcuR2;5g_u&BDkdroUgsz%y*7^_%4ol-<4w;*^T%^8}ghP{GiPI zQoMp~axFlq*jrp1<=Tb}2vy#`j ziBo1k8V)cIyKAodb8tLEIFrB=kCf%qq~7=2o5MsdP4K$WQy@FDIYZT*05P8IBW9k`8FVV+pclA&OeKA3uN)?Dh~vGj1&G7z*X&rlm-==v5?% zE%cmXFl2ZTe(Rl;>tq+gt`ejD7)J`WN^a^!GT!yPej3>KJ!bomNumQ?QM*Qy#Lx`s z>N;Xw*l9v?R@=&lg)Y>uZ9_dC@DK6|eK}LDtFh^ROjvZyj9MzW0n+?^BFf+^V|F9y zUu|*oY*IBy2We*&8&}jM(}vEUj`28=B{NGg53tFT5+>}BW6^XkOE3oYWm9jia{wcF z;=I_--RjRSkns3*zjIqdKF@A&jR{AT>Ol2VE+n@ONfQ}>Em5`g{k3Ti`sxNF0FNfF z0~Z8ApB!bYCBjyGEsox+z^dYD!#@)nuLMtpb_J1sUe<=8cxIh{}eYZcgKO&kqrV4OYR2_9#(p10RmP5AZo(a{(7AVU?M&oq7Tm-FMAr#qq z-=TJCVIPF|-lrwflly%|<7qXm0e^R>$vfKU_0F{XnA|Y%lf9%m z`AhnHrOGdOB7BjE88rWn=T3;SBfGLr3qbcS@4HY;K>8+zG9DzpL7;aBv(tnIavdir z>1-e6Ks&vPsZwZ^3J&WDvc4~69`B_f#G6rG0c*cc{-2@wwH#uh^ zG#!jhB#o1rtA#a)wqT2!xS7$48;E+O>3E`WX$k9U4G@JmOEW|3VU`5*r&!PgsP}!6 zsN_sy52>7U@{KyE2ZuH#qpL5GB)@Uso=WvwYjf!IK3MRfR~9%&8cptMh#3H!Z1+>o z;)y*54pP6(FCFp6@u4*(m)X=sFClUE{TNU1?r${O&_Es0x`J24yqpX6Bn7tJo5sfW zgRHWP?|_Gb%LQ~80hl{mkM@7s2Cp+caYwaZxo?+3p4%z$KXJq1J{aPc;He9N?v^MD zK7HbY_7sxm1e-i7}&!yxS$XyAduy?%U;^OT?N$ZQ@T$p^O$U11&+u#AG^$;X`41P3*kSq6 z2D|bIuZ z6>UI>y8~#8DBah+8TixzY;|VXn3gErZM-+v#v9Ux^J}nQL{42WHiegD9Np5;l>tNN z$H82?Ojz))bEZUis#f6RxTGmHdoc;#S5)3pFD!#TH+3z0#o4WUG4aaWr0cf{vs3{BpPX3?U8R@=Mvha$n3GBkP*lb~eqI-0upQB#XRKU7C zIqt@j0BX)dDpt@EI>%VQH6%cUhttO;hOZ)%)5Nt{-|xa`%u5pIUs$rTfNqAH9(+A; zO3^aWCa91nNf+MdfOGrl1i5*+y!w0Ps9~~2L4?Ia`D<5K&}~)n6>(z<6shvx0=--3 zDa^h*sdkY5z%lho7R6yf^GrGj6(y8eg)pDl2Ml0a64B`cymNbGhwbl$s9-w^Jfyt> zA^V;mWy;6iMN=Fs%gc1Gz8s%0&*2m0(+VLTUDhQISRdJV)sK6Y8*ir>33k$%I`^gJ z4r4>8unJyIgif1YfQB{Aj4AOIc$U;eB6HVJeNNAr%r3#FHkr(fuW zzgUkTp}CRxLyL!WHG+m3Sx{dZP$*t(^-6=UP{%4Oc*8hQ=b`VG1OFS&3?aDV1d!K( zuM9_y1Kcqac;M4Xdd0X>%?>;CZ{u97-VTS~f`U}4z|@EeDhB=31FQLRTFwmIl4nu# zmHvl~U0;*Y`t@BkaclSJ+N5l5PJ+r2L<6?2rK1*w?1uYWExDYM(X|KDsq{}Ismq^s zLl<5Ky^zhu)U=PYQ9nK=mOnFW&tmew10L8IdbeqN+AD+1Qx1C|0P)klbmBzNEW-9B z{UYZPA%$*yS>@y=Q_%0n14OV;zFkQdE6LnGDv-OkSgkPtCJbgQ82ksO1d{UT!-(2a zjRdgnat{8Dh%ax`BFf*=T8<69Y4R-xkD+`JmzDFcxZwpfL;PD0*j)C}tB0C*>W_q* zca$WJP>)}LjKAx8m4LR6L3!6vkW+L8<+U7Zg`coFEYRW%0cr#kt#)(IeTu*?J%xE| zy2L`~_Z_(HK^Q>AkZ&WNSN#6b8W#!4TeT@mE(FISdK3ZNJ0?if*7bg0mO6-S%WJSc zb#d52=6QHQHb!FS3{#ocJd8S)6nh;TZ%O|1_LB;M7OsXuW7?cF%~jD=#@Fq;zyx{} zdoT@a3Mt9tU>j>Ha#MsIVijaZx!`*H{v#4huzxr-hjEIlVzd!>GQdOe)D(F1trwIl zA$&;~H#e&w0WQTa5vD>lu<^26NI=}xxxA~mK)P5B&^8;QINy&mwt2EMXeD@`1jn6#?%B&`b_VQojK9>~%VK%5di6p3sNB`(hNT$LJ5?Mz8){rsRe@QB zM>1GFi#V$9Jo7yZ^03c+o;T>oIrrlFHXU7kL@L`wL?$KGw-kQ?`h1F&*8+fzsC=qmOhx{rlCnGYWJGMe`M-Za zBa5AsUT8{wunPtCeRmve{UwLp>kQQp+hPzTqh=4_`|PSp@17%UKdpYHaT|Nzd_)6z zzf56+oZ{LM(O+irjrRX~1TA5@4$H{ApL<%>5*5t@QzQm??#*OVbkz60apV|}dGNhc zBnvQ~@CVE=b)ClW!MlqjYK4z?E8zA(6=-YFFiT#|P#gd>gkIi%h?IOj^GUw@**e%y(eS-&gW1EtM| zsv+=vNc01mB>0unO!a8^r2ff?m#l59ImRRTT&+{LMd)R**f{Rl$?6?1xeAmF2!Us0 z5Q!DmH)2fG*O$X(PlKP{zP4y5{bWzG{R_}Q&*d$^*93TJ z7v6XpcKAGSU5G7@>c;c6)OMks3d8TvjeY=Ahu@PBe*9`$jdc@xk`-x9ajg+62B?Kq z89%1Gv2BuTXY@`gh6+&IvfT{&R6|JCuy3+{IwtY=Dug_wYq7ND!xMr`kG*S%H}J^h zu^4%a=Q$b4h&MQoVUx{nMXtt?tkHHSQUSA7a=Cd80OK%j!yG~j7=>|9g!c95tfe3W zy5O7wy21GO`TNoY*HjT8E36Kwl9awcfq_*Kb9A~16XXIdE^BRK*=PvdfHxvFfg8qi z|LY!&j4#tO@UjftcZ=q?T8Vgod3}Qt+V1A`$$})>DP?o%{!01v&#R?T^Bc;+6Of$@ zn+_<)aAm3yyP`5a!c@{Jc8IBy6&^oh4~3&7BNK;F=qzK|K5tPe%Td0&fE`J1jZlJ4 zyF>Mlx3feGx$QchEHHlTkLuoYI?$GzslG@6Jz-mPCex2+Vk4e=%FKI+i63#-?Rd#b z@W{79M+$YW>WEm6LLj`$8wM3Sfm+zW3(f6mA$&4gp7)kFxbi(TVQtFZ`+5)ayDpzl zK7k(76_qaB4a-M^Z+^26QTZ_Jw>i(S82D1X@Hw(lK*d;$>(f%bS5I$$+;pdJ(4>0z zCx(G*JS*wKA}(h-o+{9N5_FK6%m9^oH7?+4V6`hQ*?fgpdxemjOEn1kxs%gT7DSW=$J`v+51f`(tu^SWKS^W*UbvD~1;#K6d}TGA#_5G1-F{pg&Bxju@pXq- z_4YLNXhY{g1f+VqPuUwoK?v`FQdwUq8i(TJ*v1zJ^)4%59ep~tvcRM3x2zV0cTew! zVL=8@y}AeWlcIQpwjj22C8%KyLbILtfw3#*XtyiEBMNL31R->u@|WkCs0{+8ahxX$ z^j#S!`?lq&r&@YRKYCvWn=afq{|GclLGYYeKHdV^uWntx4Q7p(k_gPvMI5 z`CWPyS{KUIKpRs6?@-OFjYR3PiuC-bMwsoen|STB@<(jrG&!ljw=60x8;Tl4=J?~h zL9l;t1$?J@AKIu-L1HP|3w$bTiEkIZgg}_oy<3lbm>DS z*&T`!2nVdw6i^KznRUCo>Rpnm!w% z=S<~(9_?aPZx}F_goHv9*^MI%sQJmdg7BkJQ(ZDF6#Y!KBeT=V-1mTWTKwd|HGVS?~aAr*4O33Tv_NkRpgUko+W#ZKYsV?BVB`n8Uy;0Xu zPAS_*4T39TEJ2@SveeKjjlQ26!{43`y-h=w)=7a)Wb-WvPb!Yq>3$21un0UCDgnNF zgWxoC#s~s{KjzKAwi)34J;e{uxR`kO5eaCC6i~X%fZRb*1CecwIgMAFxjLzB-2S|N z(($G){e+asK6umGSjSF=uyd&$Q^ZFCLI^EqSkVB6v2&zDafZ33BHU_$e6}?j*?OV6 zmNPyb+~v8$SeCQ^MFK%^E*6D>>G98odo^P8p~r$>8}U9IFgRx$%}xbI3uyA$5jC0= zRigjV{cKDPko2Yek&|45g6b2bL&RqW2tx+T+kLu3rJFE=-y>K36nV8(=)Dbz$fa?T z5*27Bq4rzxSw}6P4#30Iu1I6`wlC-*4ocTNXDonyKmvDh)&n2c`jBfSk*(S2jdDwr zR6gI9Ah~oPs-<`wM{n1U@%hV3G)8<0%ba1Y(2RwTe+D$p3{a0Gy%raEZ?W@a{XOqk54bUo_CNB&aWR6XPDub4EzNN|MWETX~=>Y;M8cEme zJ?N|Q3Y}s2!2&$zuz_?b9mnsdaLahk-X}e9pAK#&{bpAPBN*8kdjjnEFaWYGj>kd( z95iy|DJh`*qL%?sU&dMx;G!Ld4};vDWIpI0k|LGQR0BGuM?F#O+FpX3^*h+{DEjS% z(WFRh)~UhY9n!mz=$KMO62h}wbK)SY>(aB=mUOl{`yJRk_&Al!bKVkVa-X6X3I>d{ zZJ7o&a=YIRkEw?Ul1k(JCcg@(KveH6^lfo%d=rOkz8>EAJ|CC=?K_rTNdIJ_mkCL} zgRa>*ExHLz9r?xplalD3TQpP`Vy!eRZTnboc<)^y0wx$bQFWoa1~W2lUXU}|`qLo9 z0M6#j#2G2mmSN8+hz#)vxo+*Z)D>jfDnq0aBQ*2GAa#>mR<#lmt2Mm}0%(+W83p?BL-~O$9x}wM!pd zC4=^yA;khr3Olq;;=M?X*hmSI=~0NK4!Ut<3)L*@ze4^Whn&NgD{zHwNsHZVm_wRN{BMr)8 z_1WphY3MWOHG4sbEor|L9gGF~^D&Mhd*FojwOZ4i0OqHf&b{}Zg>8laYcBVkKcMxxpVRa?H-J+WIHn_RYZrBx5OTAIRmzCFx=@uRKS;XSZGW1T@_~K6*2*+MO z#qttHQQZ0)_TUF_(b3G;AslN?AlRCt_J3B_TH&2nN!1h1F`xNNA_Q6Xa|M?OZ?X!p zg|-m3`L12eL>WBznl=dR#I8d=vp)R=BPS4e@?hH6Z|C!hO1Kk20-%X+zX>V^L@a`YmvWCq8Y$tIpqy6T zcC6Gk6NLQVjUsic7Z!vR-hZ^({n94sV*&j;_Qb2Uy*+ZJLviK_dFAD+G3NAq8>6@uXy{0B3w3PXSDjCO$o7EY)jclZ6au9tl@D`~7+x`a{0Oh-Xhq4kLzl zRbCCcDpWo5lc=wGi9z0>Ne?O}Nud4k*Im@SjOcHnC+V|AEWRX_TP=KEQ@;mu`=s3kPuxnF=?jxX zYdS%u-__h3@tMf|3^Y*Ahm-$w3NYieaQI))Yw|jkOJeKkg@mRb^1jF^hpys_ElQ7Z z3d`pZK}f>8YLc7FZGWrF9cEi^V1a5V#Jf`4jF^EJsIQafrtPZCo&DObRu8Y12r;X8 z98lgRw&=$XCOW+f+@E%ROfB>aWo|uw@0q-O5Nqk5`sv*q_ngj2xz?0FL*;qz(`47m z@bFO61^H`%t3vYcKZT2kU}Ntwh6;L&-Gj{!#@GJYlZXjXYG4EQH*kk&lph~ujNpQE zT-}7QLMAo7aiFeW=~%%frdDIiLbU?$K|@1t&up<;5PKv}Hkg@$5nEw>|Ca)6fK6fS z@^Lxxj1)+jjWx`(i7{5!>r4Us;~Ni;Y8oj2$Xkhxmb4ZbH|(`8c}*lD%a;IPK=QaT ziK)nUL_xmL0eGj2isyC*PjLBk5EDAjx1YJwJLB~1{@2{kG|7>VUj*fjrjt6LF?9e| zm>!T~q8}R8c~kVpqgxCBx_5IT4v_b#7#D+#OJodP?16v<3-b~Am7-=u&yg#qy^IpP z7|~IJtivZx8s5YctOXr}ogt%AgIwL@z+{2m%h?jp90NJ#xg~P9 zkr~wS6goPnBnHi=3XLq4mv}BZi<*H&S-V2o@9lG+qzApzBEUQEKK(T3ewRXS-YK!Q zV9tgsUg_0EuHwEsk&!p&kDbbEGHK@p__2xemfW%kdUOm5J*2PlQF(M0SdZ}d{wkwW zPB#J|+I#b18p5}{?6>9-s4v_yHNqwF5~KU##`i}G7PLFY81Tm6dyRVs~>`|6rv}p4f z(rBtK#u-~Dr&22YtxRhH+aA{)s%%0U<$BdNmUU~BNPBx(DD{ia%Hhwx(-lT693l@F zl>(f?9YtxZ*y#LymIJL#Ddp}!Cz7T__tWq$CZIigqRpocz^(_E79}>;f;Sp8=t4lo zf+9BJ4~?q`?R7-_Uc-5Est)*i6a!BUdcHOoO)&hPVHe=01y?CmY?ln4Hl@0UF4j02 zkY=8A++y7XZn{b8$~W>Qu&yWMRz46cJP_QFEFQV{8eU%utwdBe0`3M^QcHOl_&gg9 zLW!?#X)$sqre&hWa{yY2%V2~)-GNO1-kJ{ar1@7ftq5NttdYTbP(k3GzrdT(Eb&;k z(F}u%$tq~nO(}mk8L6A`uCyEM-|BgUF%orgxdWP7#;n|BXJKsIW#dF@ot~Am+&;$S z$Ko7cytfr+rWZow7nSCh{E#LQ$0_r;U{U&tfTQtw^nL>Bz*$Q5L;$Mb4|P+JfU_Jk z?A)#{!}FsX=ZGW;;D!mH%IAdKqDiNPf{~wTYu73-cQWf4UFY`vHXC{w4q_qO4khP7 zuviQBBZT(1`1P?ZmePmtF@povkiXN#XO-{QR0L$k77YmdAO=CEzc=& z<$j6Cq^Irxt*aPEU1e1I!6K8bLIp@>Jt`x56WO2%JFPHlLIfX>S%)os%1-Am@tXRU zN1K`wg+G2reVRQiI-j;n59_PTYAazx26wAmpXEIr3as6R8>!D1^W1wB`1pS@@>M}` z23xl?xWnKc+}$05y9d_$PC%9{H3l`k{a{j9Oa3B6t_ob`)d+Yu6 zwzb!4MkV9c{##oDPhmv09%0Q4$IrKXC0acZq6A3B)wJ6pJHGI>jlXc?Zlt)OQvs(x z=>Ava7v?#>H}z{~@KeHM^>R_tacP~E5~1d@UJKn<+t1bfl$QpnudGo$YbnAw3XC0U zu5?)oE7FQ{u1@h%w&}rNODi2tRI>dmJh)E0?0zODQx6XEl)K&UrJaTpB^RH10d_u@Qy`{l_?3d+!Dgul8l*?9G zXqt&ollNRHp&M)jGa(I=!0(51+Z3wpUFJPK8)h5qJyRW<2w;U^?!AL7`mGYpH7l>b zvDOiR^X2hEKcHRT=R;qN&S{cz6mE6BXd})Nk89;srF0O0g83xKu(wTL;XzX>#wFOv zfPXZna?mZ#rr#B4I~|78`Uk%p&pw9`>s9N%>Y3%H=$0^n2IM3UeLQul)zdb3_fQ7E zkUGqLeXU+uvwlT)k$*S7GB$Xhn_Am+kt0?-d`BkBeU~`i-Z#2=%IjSwvjv}!N%s?4 z;jcsi3}I%Ap;``tLUv^wYLRa5h18Ua6N<>88}i<^roSc;M*WObZfM_DDQKVVI$K@; ztGe<5*SFlafQ?%2vn9-@h#TfgCD7u(p&e4fyNm*}oW*kZ$?O<+2+(XHq&H5u=^V&k z%yVf_kFz~S(zXW`v=X)1m4BsX;u_cM8T`*#%JGXmHzUr4uM@80b=9N#&$yU*STnk_ zcvzEGOS=*-w|)Rai%^s4x?|$o3t2qC6XoTGx6UfZImT=1;qlpU^Mky>e1fZAgIxMq zv4YGS9N51Cyye=0(=?EM{CZ!x%kv{s6ldeOvgE*8{7H-a5G6FLU(kO(j`2h6oFC$Y zb{GdO@E0udL#&v1njiiq9Xf!0B#rSxZ6DGl$=xrLEKwf6`ZO~=5KXAvtK^{bBO}w? zXYWg#1~bpB_mpk&T(!AYcikQVQOfj=aAd*B{%mqQvCqILiAJsQtcRt`SPny zgyGSWFkN$DVFvi9x{jI%urgkjJz!IU78;QMd9z)QS5}?Rw})af1mjqlXtBo*Yw+Ok zdp}jBtyykF_RgT`JN0)3xWb=kg{VG%@}KXTV0s9~u{yJ9V!BB3L9DEk*}PCaOC?}8 zQd_EFIV>-zHH0(~HUMH|-+8_=g3s@>KzcGR<(FjIBCuh3SWi0r7UN#6NY(w=8&uD-<5_FM!#8A`D8JC}J?{AfEIC2jsALn1x3AI|s-d1 z60x<|g(g}h6M+=|7qm((`E!CO;;-7KN~p_UWF7LCO}rUxy?S(4>qbB2Kb`!b_=9t@Ff&dJ)+OelzX$&b5KLDZNSq0j#}9^{88m3FogzNroyF zvTJ&ETc7^SBs@8ukcz(|aqHN^k)^A#c2WZ-*SH=X$94}{1OMTJW$MgJKHTqNY)@kE zeC?Zi)4#aDArhnU`M?TziqLkKo9V4#fB|vEk_TH4{MG<~ihQhYrvlrB!H1*A9XtW+ zQ*XGehHUUs(JZW~c~$a+UD$+!m6x z5~Jr@ zw}MNRr+DO%v=^FH4z$1?IEEh*OFT^v?=lJW`3sJqK<1tl zPu4AAK<2hq{oMGN?7~#aHt4D^vpTKalp@-yTT}5TFn#cgW}`VFV}3wUSp^GvVf6Ox&|J}0$B zPX|luK#tS27q0oxJwiX=c`yJPT{Im8a3d@4|2nDE6G*`b(LSPFWSt#@jR&Vg?sY!7 zbkoKO~KbBPebO5i>atX(z(W3#w;Wa7$ zx!Uf*49O8qb-uHz71_UhsR*~N+!m1(GkTO65v+l)q*4+TU@oRe*dyhai@M;*1lB1$ zgjJoFeD$tn=pi6CaZG|iCRx)@$)12d-}Fdsz40ZdCGcF}Ny%G?FdUv9VjOWj(ZJ39 z{s9CA5F8-(JD6K79S%2|MTmC5*hh%IrDxG1sDTPbw9)+@ofe)rEQ^5Cd%Gu5?zvA- ztrnnY0-z&Y*~vXW@Io`b%j9;{XQ0w(c0l}T`SiN5@Yo{a+A;U`R=yP{v7c1a;mQOs zxqLfG3l+5mmqO4=-NVV!m`vk}0_NF@b>B7p-EYyi>~@w+qjk6mJMiDK&Z)6{_{WBGnubaui@|CT1rG zkS_Xi1jlSJBAYAo555iDe2}50^^khFEU5wO{K%!_S^h8?)#<5*s`PbJ0 zhtYAJqK~jZ%31EKNq(yiXK)K66O`sLNLrfJk^E8ZF~C8sB6Kx zpI?#42(>nU{T=f<^%vpiV4GN;HQCCD0wN|`z9n~8;ZLzrFUQCyw+@9&yVR`(M%@KW z?M4Sl=0`SPG?a|u@c`c)r@}V%*kVzr*;fCYP{$$rdS2+H2~h&Z?P4?YDbAgxpDAIg z*Ixgivr>M9o4eV?gtFSOrG?)SfEK4+{+}9i88c~yf3w2jYhpMP-t1c?bj+=`M4=tI z%+JzW5QSa}6@I(DQq72ZRfS@dW*1i&3ONkj%Df3j;an~!iKz9H=YEjii(fd7-nakh zr~EodrrIpLzYaaWbEEM5yxOLlK&_j??BTYf$olN^`$lnKd{sppO3sW1HCa!;C;|{x z26gPYb-z7oGDM)v$rED#fWv~7jRT>0mIB}&F8}y?(p#6Xl%FE5e9OKOFwI&F+&_?h zzy$Y55y95yczqjt-?b>jY%_1x8nVUNE;?vxgB3~GUv)NGhsv?uhtMW3l-tkPXnIza z=ki!u)!uZ|N+f+-@qyjyd|iX6&L^soZjuAPRT+%Owu> zBxUzEv9w!DPi+S;yuJ)UcZBq%l8B~)j&EH)Pm!6$q;AWC71^3@#a`AA`;? zEvo4g%bk){-TFd?dm;IMW6_O%HdH5=Z(fCMOK@K*6KvJIBb)rj?$Ex)i|rNf>`Dj2 z&z`1(wIxLl-PGC_V!b^gnXEs|z?1{)C<8lOJ+JUg;TRbu`a?e**45Bf5B6FqwaZhU z(K*)kF}+5TIJ_t?z4cOrJ1x@&<41=Ql{3C|H3@Ku;hFR1ha%o{I7GAm(Je`-tSJ%6D`fJZ z$sMYot;#H>4+mydJk!8EPRB1LVFkBabwBv1zF(nsr3d^TI!h0L|Me*iD#9zm^({X7 zBs%R8$1i>JOc!vdVMIT$+JW$r?N&-iWCVN0Z^#U3yh-~6_P`R?4QAmy5I$4!WX3q- z@FQhvXv=evFO7roi|6?%>6;}7C@!zR= z48uK#-#Oh41J;{yv7>A(WfZ1w9k=x)dH;^|`_T7seY35%^=X+e9Mzue#kIdOUAnWi zWWQN>=>8^eIBIv(-k2bRKE`n#BKWBeTQgV!pPKVLXeSRq@H@#>1Q<}5*>>FS3K@mf z4hCEPl{AHf1BF$5^?uG{0wz3f_#P$!v44zzg7rAGU>d@~A{3DCFgFCiQwm5m!l5A4 z9~rSwghN^=n+%L&{vc1pTqB7Rwa7BOq9fe~i~Q^$qZMb{=tU;Ua`QFL6+n}q;B## z9<&KtJ{g1Mp@ zn&O5j?cxi-&bkgSM$i33L~Fw~jbB*4()3L71DGMRFXEzsF&x{@YQ@U@MsFYq9^D~6 zspoZug0$2mTkEj(c~2GkGx?$&|^Rd%(NQmA6_119tv=5le<&zDEi#oHTtnzULIP&7;;fYk6ACbFs;b^Y!2 z=(v%VsV)jYhgy3AH+Ag9P1=~LgK1pO-6z>j$C$d(pp;1oc?YmDI;xx`nwS;oRYMxJ z$zHa#t-#PM*qQ12=K`o%WR7T!8U!~Kj?SbVNIen}dSWMr)6uY5s%VJT4h%Kvf*^G> zBlA2qjHH3J@G8XxEVH>Qn**C^JdW}rZ&vONroDRIDRaTRDrPgsL- zT*-6@m7&x{aN_o=Vw#Y_Q(^xE&pMe)y-{vxGn$q~3a{d4#t<%8;}2j5lN0vr-dg z$Th`SYvv02=;CqL4C9vMouZMr7>PEzEb8^{3QRC>UW`V!qKWbph|y{zI#`trP)|Fn zKi)lF{s5qD5)e!K9G_kQ_$!x2%QacJGRzlwD1`frNBt-=pXhz*uJcbj(L23F4@UaP zi9n>RE87X~#rL9^N}j3^;Xox^OyD6>HX8&0l^oZ4ek72biry<{iqB3)zmbmuvUdxr zO@At6nDHseV8n4|Rm}wjFkc$roJmi6@X%n16n$AB)MxW(; zGsb~%l$zJEjJR#V82j35K2O^Y1Z~7eaFsZkiv(_J%k+A~xpk3->WiG9ot7D=O~h6C zNii&U4Aj*aFVGX!}b!^1FC;4nse=}mnTamq6wVBi0z;A=+K17_B@x+?{BXB z?b#G3BS(Z7#gxlfI|BX+*%-k((wte%_pQ#_S-t?qGoZ~E(}>{nZcO%B@kSymcO9ny z?Qsn+Iy3M|N>OgZ92}x~RpEp>DW~|pbAU`l6t_h4kQpY&wB`Vz@pv{ReIE9DDq^44 zJM&yWHHHfbVI2I}&|r~bs7Qd9k|uJgU-9g>Bw*)!YAnYjSnIevDr?%Am}#L%kXlS2 zVwlJRMmGCP{ay~ujHlcBl@Kkak)-G6sYC*qyTJs@@cv4at1S4V;1(?y_Zx-54B+xB z#VwDJtd-(S*r$$pmf~h1WY)!tk@^drk}M?+xW_`|!ban+bSUg>?+Iazi_v8GqOG5% ze)wBoXo-M2>>-x0X+p(zHc9aU-^xu}T7T-Zoa~5HPNLMWfbmiuQA&+)8K$B_usSys z(`MGb!Et)?qpNrYSls*g{xyU^#H)=^x8TWVP0Hn3ReV+38tK6V<~nF(iP4 z2^h{!WAC#~>@)|+dlJ*`q`vScI+kyWZ}=Brg6cvgLY=#;r9W7>AP!xgw=pkac4PeSU;Pr(V$S%gc@;)zGe*JZgZ@AEqACKAq+R&)FF9`;g79&N-_cCvrKR@#!z$#89NX;3F2q7bsKx%^7Kt3<;MzVd z#@1r)ai1G$0GTNu<}f#;z)A|p&;M3{1k74Bn=?1Cv0Ff>6%lR;#iR8!dARr$#KV(_ zlYh{b69(w=HLj2q*S3>~J&D0a>RM4S8|RG4gfTgW)ow?JO&{wB97-`{OT{s_=A&IaDP`iAC5sFV?oE!|(IdCt-G1Ie=uhHQBS^6ab(W$yl@n z^0I~6BCV`mW&@b-ObAG|mgrdU-+lLpbDSCx@V;V<>WM*21D-0py^C3LcVhTmC+J}B zWoH+oO*Gp4g3m4T#}ciB=b}I&%rg+F=q6pr2@V)+>p*}-HuLxb7RyKTZTKU2ZuP zG3W^t;JJU2+vvLJKccmuaiN47Xg8y~XOd2Mz05<|4?4p_Qmos(y!h__ZV6YsOV)6^39aP59>+856|9u98a z)th$Sb14n99g&cf;a@2}Z=+i1D_|6-zpg8L^(>(71CA zZW+(9`x##EMi=>~Ezn7EwF!?zBA)F_k2hRlDOK7O8NR28S#Q-*|2uPa|F_AX=GB30 zXU?%tQZMML?7!4#5<1bEp`-umOP>5JNi`#G&L0&)2)Y@|PGj3aJ5ba;rKg-E5VpLM zUj;b4V%zW(W-CsVV2d+Ll-y(3;D}dBlqezGg2cZ|luTjR;EDSLt8S9div$S-sfvYm*k<8OHmUOKW}D?8%IvkI2#ZLHv0tX-3tO*3GX)+e|oAjf~f8p!%T0UkZ&r2PR$67Y1ioE_Z41c%$ zcqzA~B=O#b^7e}i!SuSwjVkvfnD~K8@VmIm`F1bXEk8A&Py2S6?c38vPy&3Ib_wY( zEZA-(ro%@{;-}+%njU650nK>vqL)eNkWw80BdismH)At&oP%IG1lUqDPblTh_7vr8 zKW4QyxwmyO0zk%I8G*+-x{-<%9=+2awjCYL&i0y^3VhjQQmiAYz?PH%+cG9B3n9af z*-&x znNdDhg*ofKGl{MD*1{u$q90FwM`>EScYM%w6*5J+h76-DS!^uUB|S-W1&qN@82Bb? zlnx(4*$4W-sqg?%e5;&K;C@=;6RWyaI;7oe{vQ^G0b z*o3XYyMQ@%^5nZ8#}+H|LHC>k73;$eNGD;vd0Ja^#^|kDI{CvAQbP9;+*RMrpyUA* zMr{*iBrj6*B~~5_-0DZ%Hoz>b-ccW<_Fj`6+SebMr4(`eG1kOJ0-YbgKRpElw0?|j zC!B@rw~#>Km?lF#apuwpo%bp|3Vm@V5ehR>`@loqX zpUFiuXL}R{wCM3Y`K`l^-dGy`1 z7g1Z{yoxGug;7!Em+_?N*T}GS15zTVVDN*78W3{Dy;1a4Q*RCQD=-)(+$2+Wh&k(V zTj{PJ<2iB+BQrB$p!I^@4)92a$^7%3l;D*3cD+t`r>_enye5Gfs6nQ1_<8==5y~Owq>bh09vRoe9J+^<2kFENBEKTzb_s)_U5;KaIYZClm3=7ddwU~#xdhPK*tOCf<-k}!0Tf2nqVe@E7(W3`3RCpd}jUa}`Eb&VpwPGpUkb6lVHCqha8W`8^Bc4-E_9)Fmn z8OVAoN)E7x9*xz2>Y2=c_L2rH>zGA2yyBNP`-|1jOWl_t75;xE>Avq|vp&3+=43$f zAWzg>y_8@Xh^zN0L9;Jq7)rP0HeqFU?1|CNFwsG7Awn&ui}YSJiA0WdAO;2Qj`c&> z3G}YMzlDl+eZi*@_-fj9OCeG%nj79zr2CALJJKEU??0e!NWY4-MRWRBD87UVlZ%a7 z%;|kV&apZg_?91R+xWRteP1JoYtHi$O(g~Xh1#J|g=`Ku$yevo01UF$9eU5<69JAV zC77Gu{8Z>o9`T(-S@*ps7V$kssHYh49cY>y>M0xyk@~~xiGp~;@Endui9{7(LvWMH zPd_J6EJjiNkH3lLrZ`vbu0vm&EZ!-YuSGX#XyMxNyTLhgr85#0#|s9sg#WyCEtH&x z{rls+9}V!WS!&7pdRe!!Sw#OIbNe|y%c^*l_=}Rjf3IKufSMNp>iyI z2HQqN+92sK)H5g=o-wi!Hb(DJ(-KrAuE`cijwMkj{Gu2M%!Cu>9c*WPL zA#Oe4`$g69KBGBg-zcF15jDLc+#UTEHVO^F->nt4ETf6OdqURr-uqQk7LPkz*5N)L zN}7=tC>s}?&@%Z+JckE=F|Ya zS$9bNF?FVZ%YG+gHU$e~9^Dd%;TOVTpv-x+M>B{aM-ui^mWK^q?j;V;M@H-!;SdA( zDk-Lln>lZr%Qi*M!Ah<IChRi7Ux?Sm7FkI3C_bV<<% z6j^A(oWcP8LmEz=-X@6&2>CWI$oB<|Vk$kQ=4goe^&=|~pEXWzWXhT#c&Gs(yw9aVU;msG zY9>}2&4|hnW$NBqk8a45C$Yq4#T+X%K^!&zS>BF2zNOe(Rh$?hjshSviymD;zh99c znhu7Xm$C;{oLus-<1*|L_9xMJIE?vlj_2L9bJBy>LhT;Em+Y`0bdA)!qa@g?TDgS= z;3;Qa^`9bQ>(>Lzs_M7gdCcbh&w2Y_E7C6BZ6t zP-yD=JXE~%9!h(-z(EM*ZXEwtmrmy>0xx%qT~WN3!8%q?jHTcR1?JJvcO*&2Vv+O> z6B;!pBy1i@IN${pAhUdf-H+f?!$pDUXBuqTN=e)lM^? z`khp=2vus{dXg(HuIggbE{&6)pv$SyyU44w9KP5Uv{PE$lf3M=zoB;=(FCZ$$%fKL zjh%_T=$IcdH&0|?uBt&X2ZNBHSBo(gz&lKg{m8j{zx_hn{#QvFrCpI(#%}UPk&NY# zf3J%sf;AnmCxWw<+`lfE|C(7t0Z>2xIaiH%v6W%d4~VwfhwW3EcaCR9R*(8DJciN*mYtPlXNg<33)W>cTh$;14pnzbw#q% zSmEi&CdW-0tCM=IICwn0B}Zq!&^4_)sJkh)-VHaiTpQX#nhN|YIJOmZ;46sACaC^R zauE*CTtL*RsNQPFQb+{%ySBZ@_Pg$v$eR{t=rtkXqZ#ug;Nu>;XygFX{y`R^jE^c7 z6eJ~?re1{r%vqInOaGITMBW|c!_6`|>`R*i{@wGVue3okA3kCcVvMlpUWGXgO!wiw zgd~NGQyPH)XvgqBtdLu|^G#c;3G8^Hlv5+rMOR-T1_mX@1V>s2W!9f^P%g^C zzNf0IGH&r|fW7l{fR7zs&jNquG)AnCU(q#ch!9<%PGwU|!b!X$W3@jADVu<)rN%HO zZ;)+T8+hN-7~K`Ia|>E~vo@)%jNR``LmqJ_1?@#okpk+&D)&sr2KgzGZqdq^6Vf7Q z+$Q9=*guK3`G-8>589ON`#3d1%xp9%nw!RjjkVW->%}Fxo+6~uwJfc4jZfhkg5gwsnhQUsY$I1&CTdbdgSz-&E0xpF{LcliLkM~U?b(P35a{lJFe~Y&>c6nFYVQTLc>p6O=N0X)ietHy%uDSRSlrG!liTFedR zaF5$CI}d~p&rkT<%MO4N=X=utdhV>Qa7j)19*LKJe)>hfylqwuGk@!-3RR~ls@PLu zI}Nj++GDOexKR(N$UH;_k_BmEc8}uQw*JOv5>cGj#Ri{39?`xe-fV2J?V`@xALFzBHsC+#b=RySA&y9i8SY5^ zqpw3xm2T&>ZJFze`o#mX9-1#SXL!ZJSeuz=rwaV9T5_zVz|VKT0?I&Heb+1q%@eoojQu zviapTq!>d{ksC7yw!kDI+|wkftT)a#psZv+R_4&wlg(aExUm?7a#(R$^MaBkt|FfJ z_BCR-kY45m8`u^4rb@QaFR)XqCDZa5L_bjCYOk!xr>(r8BUFCk7BqP1-i-iQfNw6KuRY2BgFSC*jkF*hbC~=>zLe_6QE`2F&OeYtO@*;_HjB`lfCmJGH+FM z>?8vDU?Tv_>^;vIK1Yn2VZMy83t?V{$F^5GqhaW6XL=I%p(6z4JU7H7qMAh_$iVBH zE(F-fTn`+i?xv4dRgv{lY?VYO)%nhw!yAr_qSwpZ;4B0h44RpM8;bV4mPHaRQ9*y2 zg_iW*Z!bbyJ`qxihnD%Ur$d{9=FfYW5csPjAm4iDbUzgV%IiiI)1KN(0=}_yke0v> z+99AFrly!bOFfRMWOm!t3Ey)#t{A;dT}@#wi19gj-DU&Ja~*teo;#5C!hnZw8nY3ZSoMYxv?v6XcpX-e-7fTtOY+x- z8P%$OvS5$Bu@4%op=^|aV#WDal%k;+HgC~ig?#gQy?M+aSUSj$ZeMEZXx#jWMqeS$ ze|W0;ojE2<3zUwjBG8{)7bI23vD#~B+Sti^#T|L0+a+L-r1UbdGC=c3Wn}=mYxBy_ z9`|e6m9WfFVWF<s8@e)?ojeLM?}#o3OFEs~;ouq`O7Y(#!?t6}Da`Ozv!-1jj1z+O?1`U) z0r+7&C8+@=cBYSP0S8{UB{AJ_ABcM<^bw}@)Ot7h9P5;+{p&Hoau3?~fZJbJeNY6r zMW{-2lkpn>U#Ysx)&u((%F-?^Ywr=a(Rr8%)PetrdRV;FlFI56Olt9Al(Ozlb@#0} znGq-pE{Z%V)U>4mA_H!i9<2qoXUkm3{?xCJn(TDiJqovVElN)e?XCAtT}?P8HEk+2 zr})H#eoFI&9a=nFH}78*LZ93~W4oqW1JiO_P~|?6vq?msChDl-;oxsV3vsjf((e3k zeVO!t^RC;8?P}`;h$+v&XxeJ==e0u`+=qu5h<;D?S7^p`1~sEOj=mT@Sidx zFPobejM%eAf%2dXkmUcei=#!-hRM(o1Lgru%fK{5gGDGIhA=n(PjjM#B`zGQ%1SU%riZc-GYM-d<2UqkdPyZJ zbewnTwq!@yFmxjHO^OW4ROG+Xj~QsJuMD8UBYx^?5aw)Q>8jF}hUl9^BulxADwIvj z+qRTrzpKPY#J_ca`ylH+*VvWT@f}IOEPo zY!$mEMMPG<*F%w_TUc9aJ!@NdfgD(bsp_5HE_U~k+c`_eXdc`aXgdqddc7^UN#A72 zCFBEinUhVQs6jD>&r&M`e#a{V?k{81{%@9p)R-&cZK8+DAHUO0q2^&4<*=Zg(3=JZ z?4pgzX%09ZTxR|}8(!X+^D!_#3a%^v`ym7r5WgYLGeVYP_L!_`j4<%B1e`5%6yg9) zFx7v}d|dKq8k9CufRG+X2)dD0K_}w5okyH%ILELG?BUtUB|cO8RU{(V$2@8i28`aU z*I`k;*C00kd01}3DSl0~LyVMPe#(?oefx$9rb9kcb^4e2H3N3bM*ECydaWB)+HVi0 z>V^(xi{IFGm2+Qx2YgcNW;)$yI-MZNmSb_1IX&ugX`i-f*^r-i)+*8{HD)N-pWKMk zPbHwUGSg`j`6WmQ$CD1B?be&q8G(miV8`Af>-^s5>-{bt@K%i9rVN4RSLf@ejao+p zg-hx-V2gK)o}>O97wrk!kG3NlcnhaQ0QfSo=_oy=kr5g;z)R{_Wcy`>P3^m^)#Pn14cLQIi>rVQjaaHmtz&jBx#(9>%b25l**wE zWS%WfPadMNkImO2l@ycDp4GaSVepxtao4bGcGMB?&<3@tjn(c1^EauHUOzg1o%6FP z_e`_5Kt4y~Lx(dgzWv55Vx(sDdzLGDLHrbak+_kAPsPo*D=|h#PU3)@Sm(iX0|{6El3sB2*BnzJGimVnegFQ*kl3HIA^F32I*?@6%} zkWDFKeEmBWModn84$u5A6$_~DqI_8BzgIZN6tkK4|HBE=6A_;KSyY(35PaafE3bB@ zV78LK?0D(C{@D?R@fkLdM<7N^%YlNcKgIHd^WS4rl_14ts4jk6KL_uIhw!@=7kmfyi-fW4a_&>|S_?~3L5(#hfu`!{!Sh3)-RNWAPF9&yF-h87O z7%_L|r|yZl5+ax}`}marx?yUCD3%l+zS2>E7E1M_<&Zv2L=KQB7K%rftKd;ELUliv z4D7(_nZ;-;UO15@3;*$7e%Flxox=YmJ*DKg`^evDzg;cd22OSqb=9CDAE-BgK*8kHfi)I6C`b=wTe-Yu)Z+olI%{5ANV z#`&$`9^dOk#^>g&XN;-1*h40dqf!c{Aqu=f3Hbuk@L$upkZx(Cm1`&A7jE%#%bm6(Msdc038k>CcovYyx8KtTea4gn;zH3EO9ISV%y@-z z@3}!1+RVjV)~F~x+ua`C^Yp(i_Sjq732Xe-^0&m^;rFs8AvIx$a@BNq}Zq z!XhoiA2b>4{L3i=zn)Tnr-NhAVt*z33^|ZJ(P&#s3aQb1*CWnh#PEX`arHr4z``rD z6k8}E3dd>8zoTEIiW-Oh`5X!yxvg>lND3e99!CgRl$8%V@?vc0KnDIYg3Hd>^B z{hZ2yXyl*U$=g>8(SKaG^_;(ZZ>zy6yMG>N6%vcsDclXeBVs&tU}(vt=%R@zk45}V z4p`79sYK;mC+X|G6(2GP#i~hB2yrj2xC)?^t=VmYPQTCbd$+8^cs)g%$$GzkIy--V zSbcx-tA4*Tet&58qc|n_3a{<2(K|rdp%ScRdXbs^sT!4I3-2+%@MF+C<2uvvVOX*; zwa7z4iltwUQTpE6%wJj@`v5KuGhyMSwg}AT zRjS_!VHpt|{z{qYcpLtH)17s;{ z*bv+`L`*Nt`-X|Xpf(JwaWfJ!Xkq7end7oGl_?0eGR(2a*Z-T*U-Rt4BCws8d33@k zpFui}SWMYYXkGK#Qd?(rvb1~MRdg(-l8FmiLY#-grIpkDVkc$uXbam`^U=LWSXeQ0 z{*$2aH&LGeCz?_UXzh~MfWpI0G3@#=+2*YiL5E9_Bh~YOiv~`+{wrp_w{rJE7A6qi zyRE*MowzvUM-&3+5SZ}~LJC1Yc$E_|XDPjbtU;Nv_z5EcBE(!n8^_~Ib$kV|KZY~E zzU&EM1AUq~7v>?jVGy^80KKiOJhhZ*Bow|m=!1b2%LXX)4_SDFxb)rt-$4T$d_zJ6 zZ8=S+Dg|8G3~yhIQeOB(4E8m%|V}LLbpm6scS)Zk`*Z=SGhE!sXJA< zBFWjJ^?720Fy#d^8l@|pNIaFjNJbC}3aDspi4VS2 zk85qsdmYoONVH>jAcjxwxo-SX)8~8i)#2muMwnvUv0M|FajCMdT$n4dI&;**7&E0H zXs65@9)YH*o0~)yWTD-+c?R|OJhP8mHR?$k_f)Ju3!Z0v=OepKuga{gT~baTeO&-w z_wVVO?k1;Cs4m;&^-bniRk7I*H}#nY)#cBKDF&ehbxo`G2K&hDO3RiFa*n7fZHS+x zI(&{KF}ED{A%sW!M2OGG+PksPVJ$6G5To0{PJTbuyk+kgjBNdm^$13lb;KU>Vo1D) zMWYsTcJyLP0{Cb=*ap2rVB}#8xQ+$l*wZ0kG>DtKJ+BME2etj=Gdu?3yusWofxNi0 z8w5Hm=sqk64YE*o(+_tKBdwFb?E;{zxT1Ff#P&0Maq(WERn`xvxuC!#`BH<#DvrFY z8bt6q$I};;%{cEezDyWpCkKHEif5`dXqkDc`1meCFt@J%2a+j3%RP<2RpIZO-IrNY zVr?B<0P`s)#o-*BGA=?|J?G3)*mJtb+y7;Bc4&vUL8M zfBl6BAc{|r`xJd$gHE5n@S3w6DlRd|eP^2bZrIvo%GnfTqb5s^&0`M6MWY2`yME*U zoTSl~F94S(UCXJ!=Sj1c-O7SNthe-vLJgJbCaff;fdPd>W2QQdeS=%luU9VVP9o3u z;!M#8;gttO1?36l@}vcjw)|(+S{azgh3P3f6M@fY)ZPhQqyxo)%x>8>XH>Kf(Eg2p4wGBh=^3L-Fw%AY%>5wA2k$>?E8YtOI;dC?~+ldkF(Vx>z& zt>q6H}@k8C%iOXwX09oh>Y`v))P-l#^__revT zXc!cmr!D^qm`2K9P6={!rgNo2<)SB0YA~Tt<$&rDVcJYcii*OP51~PR4j_)IeWuda zV&-U>O$rN53Q*5zdXd-Y0~v5*2uL9)j(6@gc()vcr6UlAghWfSbPpyWU?Z95m$Z*t zt4b`gdhRx6Swalcg19r{KIfN4uGQvh9!Bl7{G(KqNRQ1V^Gz5@I{30>WGvnW>N69B(rk4ByCIyGXx7K7|t>IznS={m7!Y*x%wF_L5u9l&;9=)y3a zP8tVmk;6lNt=1q~ugNYYIhkP1%1*FFG3!9ZapwBE*?p$)Z$RO|9PNNGnSGzP4}aC6 z*rK1oM#xl=AE5LOzv`_;M)Y?iSYd1lo<82TpxPmR@|S+PSQ6%@aYpw*lo>A@CvL{b zNac@r1m@yVw5CK^*k9%GXMoUBF>;IDR1cA8a>)&*(K*c!<8=+(EzoVnu;i09sjMeZ@w~Ea_EOP(Qnz=l1$C!y0^4VHwuKH4-O{TN0u0rGyI# z+L33O51%-<=tr=eZ&lx%dORjw_Fp0=+(uEykAc>vRTzK%^?sWGNNypZ+I3ZF_B0Nx?>CSl9O1&;>4v+DNg24M zVnOvbH44Js86bvEP7A_vL7@^IC`?sDOeu@}g>JIHtM$dR?~-e9!6JtRNJH>E=P6lG zxR{AJlK}Bz^BkchV(@IR(Y0VSGNi=@!Srma{WWM*<{mChDltShMB4y3>K>|!9mC(D zotSL!h)H5{u!V@n+#(g+hW9KDfoO81FoNLa#)@l4nzO+)$*YK|mqMJSG z!ZZY>7&)CH19=!Yo0`6d9bGC`ZVE^Y-mUou8UGxXU5!qADjbNC&O8ir0@me79m4X6 zBlo2qKMTWqhiDNNb3D|*GWO}d#3e`afI+7Q@B01$X{e zGs|uYn2fL1uqg3 zpu7Y@3mOUULJC8;?c#7MEVn9TwAiFmZh8iq4ZSBmJbbr&qFG75T4HvL=JlfvN$}lF z0D7!M+s#N$FHDKz#Y%3chPUb5-nk<;p>Igjwcb1hf5-Mt?_uORZ+scK<{_6&U7qrL zl(&VnZD=Qz_}({W|IkwEy}`vL^0olmoNjQ^#+6uCP)h6Ihk++kl}prtYm-38#~z%* zq2EnkU)-7)^joS5IgjksM`TY%mU-BZ0Ya{YzT z{moZL)MsUpA}lWnj`DsxAX3CyZEufCJ?{N{myHCYD0(V8z)^d|9FAu?PEO>f-E*q( z1$K$<&b}Lu#wZ^3))3;XO+nv#U8q^WlLX#VMSG==Uz6|AHH(~Ws;0AlReh6~qJ(2% zG*$ndvzweI5#VvAlBVbXDTI$U8}OPqSOMn;()d==ipcphK3WD`D-13pQ*$;r@gNRT z!G)0;q~rWATEC8sArl7SPbaOSw#(3vAwm1dj57ZcPpPz%oCbj3vIr$B5B>0y$NW=5>1uJ z)|ni5(Y||XhxTh7y`Ut|&U=A}>DNLW`YL&KuIa;Sx1j#Y=Kj33184d|uHUTk#u}eD zo{r%zg)=?)AZ#|f2HLITPlhL`{nB4(HE2sfgN>o!cd1@DMt_43Kw-zYjuIoT{ry2~ zFzsX%5T{0Wpr1ZuY85_5pOG&IUKrtG;vdtAgYDp6|EJVj7g_yV8Kst&zYzaNY%wI0 zp)Ajr;6sr#(}F9nwz>9k4M~7l7`aS0ITMEKjaPdf{sEnE+^7l?-;UZO3UwqvlHIE6 zwQxNuXR3h^k}w=&rjr1K7a&!ZY8i+HCQ&S;Fh^u!CTTdK=%9T0%-8c$XHt1BdNgGG z)NcXHm)_ySoVI3jYoZ$1~mM=TdpIz80g!Ph`~vl@T5fk_NDFsJuT? z5$0?GUp2mJ6Wp+*FuBkZa<;ihWZcs*vVfdNq@zY^u7Y}8<7xGjR6L0a{=8Ew^j0Qr zgO#D17-R2v2E}-2ee_Q4^)Ha}Msf6BEBbHcu|=OHdevR#b7kEXcfh!OL^-!V&Z+cw zZC>Ur9t_kLH5@tK*5Pk*U|QMfp6X@0!temysyB@^`wQzZd0wd7!6an`uU}YF#e>EviRzx9l_a6wkne-Y)YqS zgeac6=vgG4*!(C@E->`0M9ezrgKK#a{2wnb8JY>hFN`)D-!-&wuevcOnHA6R7m}*{ z5sr+^y->ku+oqn1s~p-MVEeC;LO#Cdv>Q#EvtHzEYoxDb;F8Ru$@KO={h__b*K(Ss}e?!RD ze}a~R>Zxm;rPY9~gZ1Rn1^TRf_0W!bb9IF~sULq|*>tNpX2H-n95fjJ?%fAUC-;03 ze{=&TF}(XA03aVyRn3OG`Cn%Zn-|I2Al;9|fe$qu6AUaUSHfkw?KNE13-719QwxQ9 z5;>Pp2fvcI5QpsC7s!dP7_N~vGBGBGvW4XQCZ-m=46As#e9gF6`*HZOrxOtbXYmSl z1m3u`69T#fSJKXXT0^CIl2$bh512Dy6B>uuSKUT(acqZk(&Z(j3T|wuU(M0(^O;e9 z&vzBcx|b=l9YjSR{2bMNr8-i;d>HaoGdOks#O-fVQpP}v@p}?!maL4e3d~8D_vMnI z$Ey5#g{KD&$-11LqFx0mkX{cW!`>O=p6#q#2bnVhD8UjiXC!k4o2BsBgsCYyIlv=u z1f{KvS1n==oxR|(0DH_N_Z-D2h9}-O8<;)NY?Fp$(X{gYnSpv?NP@{^wzvNws8T^B z%_Id~EDms{5Wb5hb{cFK_9r{xg~&s`?Q_JT(^O%A&Gg9L2%1E6`MtA;aRSgF|HD$SU$Z%rmcru^C*fUqufAvR;H!P_7IhEBFQ%5Fp*HGXuzkankbeEz zUvP*`=FPyN(yy6s5sgYBK@@g0UFA!A$=wpj4+nARf|c4Q7H?Ox0PU^jbuo(Sj)uxA zS2C*$RlxzRE)3X=NT)|N8Jq(eO`ip%_=yhj**|UfS7Nots;>SNe;x+E-O-{Nu6X6_ z|8RI*9o0jBj~l;c!oU&wna`3(;zdJidMz=8<3XJ*sd0$W@l8fJpb?#LrWS33Mk+4M ziQVFCoV^==93;HIC(7Jhf|g@9VQv*8hzF_D(&&ryEIyfUe0vttCSjpCQ12W=kc=)( z2jyo%p-p#|!HBfSd@S)&(RL zcs!T>^Jg_X;=Ef}m2a7Lk)vEMy_aPX-jTkt!!@stF27+Uc~LkRk zVKe|NpgzNj1+;!@iuv%fSdcWfR4U7p*+_GXJ=lvAxVtcR^GJzw!R)^x;@m zBKQwV2xy30&*g=7(@%tu$ycYBnHg4=!(WBx{S4%?CshKq%Q7aDB0Zy32qydSz<&Lf zbftMWo2y)WlalnSP)i1E zJsHLcfh3ullj%}PnS`n91PdkI;grDPa)IF2`MmjW=`m`V+)G&Aex&`Z%cj$P`)-_F z;a{mE%&yAO)uS9t8P0l?lj>=*`lp7NuMgYe^$AKk=Q$+>+KYEc?R2ZUNw1fDnPrh1 z;Y%CK^?Jb)OR>RsXCobxq^Z3*Y6SJBY1WU}a}$MTY0%^Gso`X~aXU9!Dw*LGc3bRr zTld3BPzjaqHT$O4&D)F@QSuLOW1MOoAY#Fre2XHiOTxdW$A0Oqh_QCzm;;U!II7H` z_y6z-wmQw0pk&P1d#|T(#^{vrpa$GA@-m%2C6gv5d+?T`3?PUr9ZfRt?E1XbxLk6t zgqa9BJFjl5P%7;GK_Bwm|7v(x-^w1ON>tMv9uF#~yj zVe|A#sLR9M({xf5iQQqSu!F>9k!S?6uwjfR&e}X34?H;!N9H4j_6|zz;L(}UEPPX$RTd>TF228Wfo(c{0%(*AA$H2c~N(@#Q+BYzKE(;DOYtFb-E zdMKOMoX6os(V`n=Z;(0s*Bv?h(|iC@@a7VWJb@NV{aF6Xjp&&b@NP30-grNg4R_W( z=FBUh*@~`|GF94L`nw#Em_9jWNTTvzu6|v9A!3M}3HohRaVy?@-DQs?&kfikES{wD z{G8Kfg^3K&dLE@0iI4@zec1|DHr4muDm6{%uH5pMV98(&cSJ)oP^5C5Ig%yk)exTo zN8tsa?OOf(0g=%trgH6m4>%1fUxD{G;~3_!S@yxv!P;ga#%8(L|&f^ z;MebcW>F`_sJBxkOXWTbE#k0G+TOQ8sigo9N95Qzy}P9{Q{&9J`ke`v_Nzag#z^k4 z{QWIchr(hVP5k<=ZHJ^gQ1TvBcLm_#jWHCmz8oJvR^eZ{=>-wQ1{yO45mkJ(iXxDw z+at6>@jcW!-rZKhI`74$a=b!DZFN5ox+v8fdVhtQS8|X4VGxC0HPD_6oAk_SUutfE z7%DfQB|5WvF`}Mbyo|1lshD3%9a4m^@1&{8&T@d%Xx5cDIR_jJC!t^*<*&MV73U^O zD!k=^0_R_#0C2r2zq_F_jKV@S!rdk8`bv`J}RPZ%=*44#eIV|P8Y9DC| zCch-j>oD4RwZ1p*v|7WgUx0^98M|g0}TGkkE;=^+2+AO=SJ6&-bG$VN>u_$Geh%JPrQ)d=KfE49L-o=|y z9S|9TO9<&(X%MH-2PZGr{xP9*$p6e+d2oioqtiuqb5&_^4K)ktMIF`Fh01PFt#%3BTZ%uuNVs9wHg7fFx%>2>~)Nh_5TF~I!F5n&=N~qjnG#xhI4q~ zX@qxOoRbU70Vekxox|I{DK)X9--<|NX|hZdi~*fPC7Diog+F*m)hkca`iC7TUS8Ak zYXUEyBix}Aav{}lL+{L)!e!Y4rw#jYTOS$Q{~FzSA1a9H2X#c76!8Q}bI8f)dENJh zUV(x{cC>3gdZMgHU%hdvry9%4tvd$Bh{*rlBpgHa9j5hR^yXD~+6)$Hq#nu^8F&(F zUCZ~Q*|LglYj;z~3R54Z)iN9

d;wAok+p@_ijQSc2-;l8yyqU)58 z1>YnA*ZMz+HZ9<1m{$T`5JBnaV?i^mVFGJULt__=gLk-;B~(`qBYpQ38blN5UxpPI zjw4k=%MWRFuACS79*!5i{9hhf3Z)8HeSY}RnF!%SVM+juLl*~IxC0`?LH1YJ{uZOM zG+sC>Nb!;|O#5@jMS}nCHur<|GUXbkI7HT(H{VxntU5AQdE#`f-S?X7rwv7tr0mg} zxzmIy*{D*R*b`IaM^UPFoH5Vz6Qd%?O~LgURt9QEVS2l#gnjWdw+h@Otfno+QXz|~ z^%+%jpdi|nIXp&{?LXHS46t#H?eU}mmv&aO$_40Fge#$->#hJEU2u zpu(3GE#b^Y91+3NLDxns5dqp^mstW`Bd3>rYOjb0bG!Si9_yy@sWUb9;N-vI9bf+> z-W~im5Gp%Gb#C9?2TCP7;-ZJ}%_i-1|_Z7O%sk-_qFK8WTK zrfmGtHYZ3Iz`iPfHVzU6G0-`f6T;;jpg6LUm}&Y;hf>CQ;U3hCS%v2(w?X_{Yj}#X zp_ul!AD11Iw@Q^P;b|l#4)LLWv(ZJ%9KWWBvn6Nvhv#Qsy13#<9R~33gmP3af;NpaJtaV2>41I-^`sR6wDZLNCm_m}g`_iPwcL)@1A zK?FODRHoA7>}XPp6c`II`X1#R|By~1S)?_YbRCK5!33{#e4sTsD(aBpa8)Fl6rH`z z@`kJq)#vTTPw14eViF(axktPWMGg)@E68R^&ED^@FYg))0#J2wOce;wbx>SL_{>s$ zXA_5a{azdgcg*w+p(r{Q!2^saaJi*@`(PAXLBTc*V1lkg#m#w*ut);B$}fI_0@?;G zBA#+)y*>OJ`_%p6>74^5Pzu*p;D@@=wk+$Nxf7W+5xBR_E?F13Ez+!?dy2r||QAx1TV zZ}fP`@;OLY(^Kbt)%rcs@snImM^l-1x=xmq12G^d$-w`Y_D?w`P@V_A4boBYz8WGK zujmA?&fPrQ6|2U!cS3XQaW5I2(LUIGw%ZGQ*Y-KNE>MPr23lGe*pp|6L?&b5nb;%2 zX;^qw`GE)<>X$Jxfd~ug(oLh!W>weAhiX%aSks^B@m7zk{q)oS8;mljBKjEVQf1cP zqhD>Y$FX4lTR*N;l&gU9E`_NqwmvFEmOJXAE+;$AOkw|DXf&f zzD+(vK-zy+kGtn2i3pQH7hE4z@9UFrrVK#l^Dk2d7xF1r=Yxk9F3_e2p1(a>t?vT| ze8Pv@@YNC&_j#%HU(85X6@OO~9#}N{=IM|6Vx!^qk<2h(3@>ruboW}2h?FsXi&cj9 zPqZs-mAPM>GhCcARh%p9t;79$MHqT*7y~Toqdjf7O{5^1Bx6RbD72kJLth$+>a9^qR=WDJN$*UlYj)+-Z%@ zWh&D4B0o`!K{=u|3CzzOw$8%el_sSTD1cg^UuDNe z#B$su23ws-h%N#m^+w8(Lp>D~A&x`R3^dSp@+J;8(>>gTBHYowo5JQn#?%)7d!DZU z=du2u@IGF}4}US%^GsO*&^8sAJ@;d6xtHTd{gvPk%JZcdd&2JvmoGu-q4h@Id+#m8 z`FCD_m%es0<+XrN@zqR@AE`?xWE{sfSz-+)oUcVHWFysgNo&gA^z6Dd;JBL>l~m7& zbV+RNy{41gJhrQa;*d!DGQwqx+*5`EDbjHQ^t3gL{HczG6`2gTJra=#SBzfx0E4<-~jFhj>2ADTyM&2&(JrsL83 zhdkm;n5tD|365X5{u@Hj{|$uh2~KGq1v0PcqyZ|}q1e-b(yzsi%dn?``ma430(v>< zUUsl5+7!1!={I!meibTV*(v>?yw)Wy=4;OJBPO=t99Oi_kzIrFcHs{%B!J$x%?@_n z;9zEObdJ5Q`RmcB`jD`=DwY<|_%S@&iq`-q@mo=LR_jhg`i%cnW$&Cu@-%>cOq#1m zO(+h=nEnarkSKytsZ<;&!$#fZ~20KoJ`&@UxkO4;}r;n?LM}Lj`SdWXBdm>r1-Z zIkAz_-cN?O)7svVSmC=~zHb|GhI0|>S(1@6ep+=okBqwQUQ!J2*@%Z9b~fS&U5I8V z)RSvQy3(iQ0Vf0bDO#H7+BxpgX6Ka!l+&bz2 zVHI|?PPu_}GU{6v1bBYE1JcHbGuK_}FyEr}Z104=#!dD7bCb}^)KOnme}gaqwQfOs zgD`2+gs)8#2u-S*JPU=0pIXYPgMeucFj}&1&V!s1eBB}A{8bU18uUil3jXiF;40ps zH^T@LKjp?O`W-X$;baTHZB(OV8s_l47kBu5yLq+7a=;+Q=nKR0XL#Fbr z`oZs#r8V?Y5ZdM#=wA+eiuJYW9S@!BEU2;m5+8kz_?@Sf@4*e)%3Z0O+627(hN4^% z3{}wfom|lbVror_9}=%b^V+iyoK#B|ruvaib7&#rb*3-uwP>emS?kw>xqAqqvqqHS zuwl`r??KS*@rij$imQDjw#AC_>0e)KL`P4KpvwGJO{#S_gB24~L72*l%a)#)_mP1+ z^=BpvJLO{xSHq*}>sRJk#N~qOOpCvhTU=|;#0{I@cYpGd7cIy-$680fP1J3?^4jy6 zF;(*=CUZO`!(1Ja{6*N#)p}sdNdONjqDXamGoky<)7mn=hU6PR%h1QjuzbBf()JH; zS0_~&+-sFm5@=Xnim}3M=PB5g$$?XYt1EcPTCbwksL=~T&XZY9Og-rl;F8zs73_!y z4c|fy1$cb&24SzW#Bq@iCU+lW_%R5_X`$q*ov@9Ow|Pv372hEoCl&wUIzBYQxdi1W zHx;oK&&N}W=Xej&hfE-vX5SbgPjHo4Gb35xz`X^Y(NJIQ?=$--pY&}3ZJHTP_*UVa z+Iq#`9CD*{%8Fjs`ShRA`;LOAJ!j>zXvg8P7>KCWdDaJ7o7e><*I-HJd&B=KT-4=} z4!uWZ`O-jM50hpoGIxM=fqH;X4Irqadn&6RYObTZ2E%o&-4jzb-flFX`+%+l!5 zTWw)bXm7h=VSujyoN~^QUJWwIVzS4TNKZ0uL+Dbub*~n1rnp%)U`rQ6EhOxprZ^Q; ze=B1#&r=tx%sw@0O}Fbo+$9jp5h+OkQh!C0{Z5153+Gb&~KuzS)aTkoAe2GZ_REz!uFQ2s6%ZUW|;nDkG_`5EvX7XONSG{a;A)Szo zn+kWKzOfG)R7oErAwlwAfBy`a2pD^P4KgNk1^+CU@g3&57+qEj8wI21CdXu=Zk^cC z*qGvt)3P@4=InXa9}_Z+jwPt|{2dtwtS+m9PF6#y_(8nl>?XQH>pC{G)*Y>wI2ReEIwVxmX9u z!O2)H<)tz;!Bm1xKwl~jBgG6EGdJ_?6cUuaQ4Ti znD~%qUQ4nnbP>`*n~GYdHx(8RfA>AaESANpE2B}GP|V0YraN_jOanW!bP$VU$>@tt zNx9=~X8QPDItYdy57v`j7;5>g=BP&`_-2r)ew_os!J9hI_J};A_$kkXsxL30_5;#U ziK8_G;Zp8|QTB2PauHovFUWuIq!zC#dmaa*gKmB>9xS)9zq#$*xP2u!EG3JKxvv6j zM*nL%G;bt-R0JkfUJeGHtsb(*hR1i6NWQ>7T7UPgIAKp?3v<25?bKPCd}ga@g|>36@lLrTHqE~NqKSiLpO!7BXl~&jm{C{-P@ed zq8X@mX6^f)5dV=2KC8O|#_%46dL!$Ncj-J&6};i^ZgC-25K_|hdjTf&X8^`$dZk8D zw=G~}MlS;-s5DIBwGM{kM3NIVh84$p7`)ySqe_D7Zc=KqNEl%Ro zBwaIyk5&ca#KP0LIsa6!K} z+ZKLenzhWTdVbo!mGmlpH#8wOCWbl-@3qscyA{o5wpL+iU1>kNQrX3s0`Et0aUBH$ zeQ%wR!dkI}c#A{QC1S;Sa$IgEoUZ6ir*xOjo^Un5sVgxS?s7mh>hv&(xoWiQa zYp0gzC?P{w9(|mJ!l;8Hl;k4`HH1!6;}W-u7la@-RP|9c0>qgwu<}r(yHo`AK^lOh ziTaLTzBr(lWNhn*Jih)z`i3}d13hqkFc4z&h4dgUm{>K`iEiN`D!-bj;u6ml5O{pS zw5*Hy^CX1~L&?5FJDB!J`xVZRG|)vkkO@pW8k955eiJWCz3Pln7O%Ml9bQPUEbPsH z({I^nlfJE|0zBlXpn6|?me9sboXyY8BU{w&KJ)eKx7df_v|ircaUZwP>FUlO*^)Tt z52M`6bUcnyv3%Qf6dFHTzh31hrS<>Bv7A|3g;93ln=g<=rhZHz^vFpIbRXejEm3$m zzp+J9!f5Wm*3e(-_a*rK`{DQG@;Cv`K|=O2WN-`xkzo?D?z{q4={( z35z3Aqa6$H$^og-B`Td*^2n0+1<@r@ofdqr+lPID@|XT7SET>K*sN3*u-J)t6t5u1 zLT#mq%51tQil)E7_cHP{GIB^3Tq+}{u}0Dlcm=6C1)wAs8*Pp`@%lQ#Ok=9&tOwgY zGkJ123k_g?_{6$HeXg1Ky2m)KiKz_>bVW=}-!M6@TfCtJlM|QHq%UMd%U)q2ajtH* zo2>H2XzWV)Adhd>qPcRSx74pKP&|NZ*s|O!Ga>BJRfgUOxCiw1Ji`GmwKBSUFcs9r zhv^lmS)$1{`%)^Xd`xy z=Fdno>+5IGK@nKEDsl(vho_)J)tu^5&8mu4lWR2u5J1xJZ0rLj2A~{riD%+tVL8 z-Q=RV!u324mX^J;vmg;$?G zxl&blfeJ29u(VJ*m_sTBo#pYa($dKunp03tvd%VnXvF`7Cy}lgYId|op9zFTqQ5j% zpKQn5P#wPc;w%G?c4$h(!Z3GWF>HFeJ8&CH*QOWM#dVe4cF-V`C`Td6UXgou1D6|^ zHMqe{;B?lkL$6tg*bwK}IF_Y`3L^t84xNzio@t=am;D?2r38x%?CG~dfx=K^HQb&VBaJK{y9i+mZwYN5_`?XL|1peiuZ@K1Sx}Lb7cWB@Xfq z#D8PHPyRjwY6VMkwBIv+@Qjs?{|Gb>;G(kO=*{6#ecELnVnndIoK%LM?NF?{b#WQ~ zHW0pY+mx3mBH&TKpBRe-?+<)ZTv)_`(2V58@lN=V*hGg+z}eCX*0DJ&P@n^LL{Fr+ z$2mo@(_hIXK%RTY`GMzhA1{(2*Owv~IcY5U!Gf6U8{I;@P|q0~-1&v-55KU-bx{7w zGJT>fMqBvw)d8brfyq~ephgEn*^-Mw4G6q(@x;n4#i3zQ)%q8U@{0{22ik0v@FkGF zEv7vx#ZjwaMRiIao*7&KDxf(M^o==d@i@8O7%>8OA;EFcM);q zRM+=#Y$QRHuM+~<9F2CNFN>eQR{anmCne7RaZmBz*bT=6{TPyZ?`J}K!HSmcXYMkH z6B6BAP$~}2Ap}pKlz!R`Ceo?qgdH0<9*yJEy)IXt95MVed>7izn5WCp+GEp!8U#Lth|<1rCuOc= z1lo=+hC&xAS(mtOrEB}c< zx7}c!PWHxMYG%DH)4KNra#K-D zToXI-Rd#;_%Xzl{10cBU?DbIPdc|wi0YCxDDOM;-$7jk$nLkvrFSLnL1~c<}L9tQZ z#xNjJER8S$Z7C>?>9;3fQWDL1p zS2%p(Hw>QxK^NlGx`81bkCT$Fah`lkhRDE01d}g^)&hZYYpUpML&EZ-iDk>L0HFY3 z*2{rXjo`OqnIk>GGF+1dY=s5cHV$-JO`w&c?Q0o1t1QacczsJ$E_L5v9`-CR^)@WH z90}Y8#u4UIWO!MuTHgxC6$bHLGjpHjSs zF`FLS#$jXa5h@qRZ2fv$?D^UIZ;F$)6xA2D&av8~`M@meS@lzi!i&Z7;EeqpmD_#n zE$G4DHzKB#0fmW*p{rpvrfmu}YMxjKWa1k3eFGt=_HSK@(`PU!c)0aoT%tqw7F!%w z7kR2`5}MknFGn8sghYufmbiW_V2n5SeoTrX{kI6(*}p~WxOwO=?y1T8fqRaM)9<6U z>huah%59|nMF`_AOB1g|Jy0eH6C{1c?TQgE>IvcPrYiaH~*F-LTa!4_M}5S zm_$dp&_#ngk95GuomcQvU;khAPc?&0Q0etWzU(kxL7Vsrh~`TpjN$I|LDz3-)wmRy z0uajG&wi#GxVMQo*J3|d3IaXU}ug%WEBzzt!3# z-X=jD$!EADgS9-AJybK%M4{Rnqu!6SEHf5rRr)fR92O6iq^N&|Rx|agJUe|JXzqD&NKFRuL1i zoT|!-eQ8m$zRh++hUzd;HTF zeR}@$qFZsXn)K;ede-|qZNPC3){*h_^k~vRxLKpuKuIZ%A@yRp96m?DQ18XVJ^fg~gknOP zQX{kwEPP+v&w!Q?*BfcA9tg8C@xt$|;`t<17zC5Ua^jL8@QJ)r)(Ax@CJF_ITQ16O z5G3*ZWz*phXP4DV`u4+vi|RFF)eQApg_mY|dAEw}A^aeh{%MgIcUHo49Y0O}@}lnY zPXXziO+u>11U}i5(_|Ud#HT!^n-&Kgxxrz?| zlYgZ*^iXNCIFTzuoIa29lJ-aaA+wW;!Rw--#JHV$THspD;Z}Uw?R#2a2gXH4u>OK5 zPzd$qTUaR24r)9D_%)B-x>#R*>S55T9T|DQ6itt3ff1vF^&YxiSjsgDk;934_xXmj z>)^zeDTKLj$b&ZSdpkkkKBg+v9L^6d=vn_nnJgIwu7whh#Q#d@Z`TMV$jqeG6CgVa zYX@<$21;QBrYuDDqXIGhBbsl22Iau_g~7a|z&4$jz_&XIUSf>&;b7NOqRb)fb6-qB z&ES2P7+E&BoCV2a9*&rV8}VlSVveGgoj+JK&U)K3ZXLo(O$Xp*h(aeNb`Cu zN3_y&9pJO>$`xos0i6c(H?)zV<8BSYm;tc+=#jt7oFchv+$z5zP&#BgPS>HYEy|xv6M1eZ`(jFh9+oG$WV|S!w%=K z50p`&f$F@-ToOVvn!!NMBn?H*uU7$#)bCKUtnOm*2th!q9}4IkXh8YUQd3L8*Yyr{ z80h&o^<7n@N9h?&d0&fXrTx^2(yg*FboBWTG3kBKKl1+@?)oN-)Z5>m$cq;kpJ8pG zb};9(pZmy&pN|epFX%Njm!A790ZJIQ88sA3<|Ox0aR^gf7u(>3FF@BTgw>l3=Y1WY zF$A5(nAgRsEME0V9>`%9uPVx`g+H>W&Ab#z@UylseD#y}L=XE}2#DO?%skVnUQ=FJ zxv)GgA;CRxU*IPo-j`Ob|HDXpoN7AXR&*hbjO(~5z6&@z(oEfP41ayW=jwplmbe)@@E+EQWoQ7Z<$QVz52=-u^E<3C4ZS`wB=?XK$$R!?I_< zh2nfKZ{hjoLgTebeEMH>8*vw7)&2r<1`;pr7k{0+{Wjs_iy4E#C*d|&>WGVV(2RYd z18kICiE*J-XWkliL^w`MDz-WfG=Kd(LNqx57YZYfW7DrBh#4P925yYCy~9Ck$gAT z(@Vjt;=1_f?Plo;%FHrTpFuVu7uysW9*L~x zO?1QLj(EM{c|fCw6)}QWXNVx19Pd9CTt=JxX-qFlZ75HZfL^1oMB+J)C*>!_zxq=U za$lrjkY+)yymEd{5(AO<+aLs?`YHi^Qf`7FJ87g8mK-|b-ivEKa=3q%0TdLLi=?Ew z^*#Czw08L@idnpG|EC;Zr{qYY+J+Mda$K`%z^Se`2nxvRtMJlwU2pXi43iGGm>!gl)i-ckX=-`?5# zSts@wq<$c(j=-sRkJN~GOpkn%Nv31rG|Nx)3W%bT*~l0Th#bDCS2KR`{`lyAl>-9H z1C&6(Ca)gmb53yp&tD19zrxKuC7AUfgGgr$hoI%aO*~9)Cg$r0skg2MH@^ee*?M82?GnPp z5JlFTI$@n!h`hGI@)0tDH}>=JgtW9XxAk^_l2u{W+@hm7Np4h&Tr-3>t?h*T{A_W_ z0`&_HVwzL7ivba?=5`iFII|ad%1Cm4k4Y&DNOwiI9Fl$1dSlwYNt|-fverwg8KM6( z|4a_Vpz_M6o6aRm4{qwhH{h~f_Ge(6x@CImVo*W2FqXL-Yxh^Zn43N(Vj_+7DheP6 z7kBPNR2ON-roS5AYdvWF<-#)~)FNxLOIm{d95JpTA{J3ES*JsueXwd#Jc4!1D|DeG z->^xDf%>?W)V9z;__TsQeENs$py<(cE6LG1jz)H+v(1xT*t?nW=RNRWM`@l;%$Cf; zGMunz#(l?24lNDr`P8T;gQpdP-$H{1PfpO`~D(|)iVWXr23H$9Pz1gwemnfMCc{}x=?tu(||C5rb ztf}nU_kH5O-kb|E^fGvJ?B7UF&eSd0(Y(IG9^9S7+A_utg2mVoZ9Jv`)5;n>pm+PD z8Gg!Um5mPYNI3u3kbRoMe~KA&?TV_T1!xnTNk=3eKybJy=$*WUQqDIa*Lp|S4wKwa z?;X3hBV$+T!UUv=)#_B5v^0VxKBg;{Jan0`Q?eW%70kjFl8as|C4{6 zRnkqrl6Z~NG^8lpHuh*r$03kI#ZG}Ua+=`8XV^%!x0Pk%9j_EDFs8h?r2ezSik7N+ z$M*=alWd%bKbd%Z(LUBBb4M0%^u1trasD?6N z)IJDNnY{3DQ!6VYPQgbAlXy)x%K1PsjXzwqZ18PpRdmIjX!LJ~=h*dv*x&|70c(6c zxGUDt_h=eRcWjn(Gnp;Qp-P?tiV~5WUH=i=6X&lVrj&U`Cdb9?!P$SY8iK#rd2X$a z+Wt%ARE*6%ZsRtmaJN6tF6LC!*%$74w}#(e{I;Rw*gS?=K6`_Z`DObf@e#NSX5LBj zLS4Vmt8Q-opH)+QGwcysl5FStzG85oY|O4~M$uK(j)NhR{l)oB39rQAB^IAXgRcU9 zx56(k0QJs5%}Fdga(kp%A{O3i1!>y=nMPEX$cI6Z>fxWz0K=W~ zB*!1Tgq{N(t%DC6RKTxKMH^HJ3H^6x(L-QEvsTPsUkTJ(5VoqJrz)FN3BYk;tY119 zc#im@IiYC2sJ)XKu=@2No6n$x++K1g1wib7a}U{xdes)q9Pet@$SS^`;khsI{64b4 zlMpNZq3cjAp|V#zzxKd6;JZtEbc_65+MgmqIT`IbOcRcEn`n0}bAdbgQtN0-sC2xr zGwNY!c~1iU9onqpxDbi{i?%4YDv)&P$M+0le%WO938WFeWfL%+|rgjzr9 z5%y1Ks*d$K^pv}52ez0KoPBU)#yQE*$m~tH7G8k1nV66a9miJsMTQ&w_pUHY%eY{* zGT6|FEMOu+H4Agn3dYLocy#&aq8A)`7HY<=2nV#(WHVzxAPa(D$z{NZp_l(o`0zXT zp3t|dNNrBXd}ZL%rCCzs#=8+>WhANgYgXD@IcvEGz^$Bo2BE1ssRU8U_jeoN2095@ zIxST@^2#NQ3@rw1OGn1`dKpSLIx)*D`HRT(S6+8631w8Q;SmK|`=j#0WdgA-#`)wV z1Y-eB{_h&a-z2r?`U=G+N_-n5NWLC$DpHb&WACC_K)X%kygoX^HF}|@JSUa3E-qZR zzcv01e)-YY{FYNg@|!oa>2f{sZc_f>u~P5}E+S>zM5(v<=)f{x%>;Wim>|DB>s6xK!2SP#Q&{%La0x(@z+n)OTTOC zP(nHU-%p?S#G)eyX%tBDe@qo#E?|*R0=$Sd{uq&?SS~J^(bW@_KD18_j!3&*^JDDRZUQ zSjbo`1`nmfVaJl}*K%g5p)gVif;uqTO&`MuPr|B6AJ?|DqfZk^6x=ovz1Kq$`ITQn zXEruTz}4;pZG!RVjKfV>AsJCdDO0*alXZm)>S*}q1N`V#e!iLJOHWUNd#!@Fiu6N= zln|E$sv~CL2!Y#FYw(9<$@o=k$`5oD?XBNNrV~tS{FYSNB*o}8Qdj{k2HljFI;X2$ zlwE1jHEI6plm*YOu1od0z!NvmQ|NZgbTOd|Nhqr@GEA#CGTkP!Vusz-?8E;@*IP!l z6}H{FIKdNK3WQL+IK?eE6bTe~Uo5 z{r<@eD?bv($Xa>UJ?Fe0Ehq_gZg@X4c=N)F#pP)ZL4yE5j4xEHV?`Yh&l5ck7WI(Y&ZJpCnlZA|AZ*30B+%Z>!f z0C*1gCSd~rjc;^e9`vg%ec^IBkO~wdoHFAd#CJi%_+L*KeIsezz7= zPO0xcA&F{CoX)O^sOq`B22K&vbv7^#YfX@oNw6S()&Y>RkfCGt9=426%@a<9kCR|g zSa(wbGxSyoV>!yL`SCWc9AA<*L{5wg-WEl2$ud!YA#yTy$1h1F~HP~T*1 zkV36fKei0ye296ao@YSV&jRm3#?GHBPN9`*=!r< z4gBI4d6Pok{tJs+ZJ6liw4J$QO?pvbvUQkQ8IFcM0vy)K%rYD4_!fG)r=M=o5Yk06 zNqvnFsUJ+wDJTh3(W~~B1w0NdfIi9nS z@g}+1iyC}TB<7^~dq>k}k znZ_=;W!d;nozY*cR0NLMY!}k49Mw-ukvy1IO-u^KHr&`b1KRA{&i)pUr0u?ni0;_^ z`;JcdJ%7WGs$npo>i1Js>{citQZH{)g3f&}?z0O(Tu$-#_On@t;MupREbOCF%A}GlzxqU8f1e8 zpzmNW(L=rh)?uH+zjh5)v?a=8%QZe$(i4B)csL*XQI46i^kgX7u_q3!ZF|$zOeZr{ zAKd4Q^yg@kF|`WFTcvB~tlYjb4dgZ2V<*=7Qr4YSJFd^#hNy^BCKx-gjFwX?=6EUO z(R>~XX-OGp{)Q|Z1~aiIR+59v$fT0pVojM7tXKrtt%RSbebGJ#Z~GScu5gmSmwQ(VhLTGM|@7OvriI^Zy8ab5+3I;U+`tu4Vy?ZQI)6NqAQa z=YHUjbSg9Z#K`Rr$&T6d9)~Fd?_%aE!y5`yv7(q(SL+Qnd#bCS-Yjo}N&Q_WfTo9p z|H>oiYNC(&>AVz8YZwRf+msJIFV#?%mq9bIu8cJ>%wz#%&;#y^B<+C7xM$26s+ZT_jmf5MggdLPb4`J<6%uk#~u zcm;#T5sm1~zs2R6j25>^_BS0t9|L*)(hC!%#FYKhS(tg>UhhP@3oGQh7xf7HQsq@r z@T;(i=K(NgFZ#Vyl*hcJs_+MsEj|imLa7phDAUQp#23SR1jp`ORg@#+TKR_dLiI0nVF;Vn6O?B0Y1@l^H#Lgp*BO&X{*nW(4|L*Gjr%9J28PDn5lEDA#%t*F3k zx7X(CubS9TGYfuZnC3fXUa*s5Ktq!>+EOY3nSO8v-}(DglB92HB& z@1>QnywznTk~1gz8`AZs@Ph(Vtx}0UUP#{PrHA_J5q?f2SCm|?hj*jgh3mTVIuf8e zWs_#2dAi(^w)NHzc#SRH0R3GiPjX3P|Lv4;tJ(0Koax!jGdAOLhT@?mfJHL%Pgy`u zYKW_D78?_4(VG=t_2R>R@Lyb#4+W@|Ss(7|I5$4N=L3UW#Ji#CzBdtg^j;uxX~eu^ z;$qpG&_##z>V4z9PXhMK;A3TlA^ZNyFsFB7YKFP0f11&!p)}+UH}xe&X<;lw zDKjl^edl+k_BrSrZfSsFu^@X|F=nvoBHwnJcCQ!aH#FX7R_gHT(@#hKTX8;%W}2e5 z6-APtV8Kgmv3|)*hR9Penn;F=Ps%7m zlOW4e^XpSQ1r$BFjYA%iun59LCGZVUw+1p?H2)&WU6A-L12q75M@_|1;`M)z!~ai$ z?B$|guBd9BY(|{`Da0p@mR>eZ^^}69y^-9gF-RV&BeGzCEJ0;Gwz(W&8p?0@Z&Mnh zCTiAsljpoSljnj=UV0X0X@_}Z?xOJ~TU9)B?4atGQNkt&Xnhd)81XHam*@v$?i!7f zk;ni`=JKNYysqQh*0|wUo7k>eLQ+#rML4%i#%lBRkd{<`8qOd;>-k%2bZU*lj5mcR z8a~>i_!|trtr^or`KOTDsLI^yY$CkSN(@!O#a9X%;*mz1yleR{X#TR&V^fH>e%KmT zM33@c)DEgyr_f3KGlww*1SWz{3r>Loi5$welwQLMcg=XjIv~?ntbYgqDbafgtZO7d z<}B!wuF+P39zdB~sN7PCHfpvw*y!}i&nUj?9TPF!X zi9wBF?|EbaFW=8NnscOyX>*$l_njz7ROZ@5U@JZUY4c06Ni3au)cM=#4Q|$Qs!>fJ z$RBrVbvSTXSzJ2#5_KxjYxq;NIHh!#CMw!zgw7CUjVRt={K1PF=4~LpwBcGa{{8O< zNFoOI+xnQur=^-miKr@LKD?Lm+bf+b*-FTeUgBo6Q=ng#r#t!xU&rFCj}*@v1N1v? z=Wq7e>MWUa_2FdzO`=PzN{oZe-ARxmD?+q05NMrMH2+=KP4gthZjL+!v?~G&MC29p zE>f}QLF_LmOmvJxZn?rStjp_q12LS)f99d%!$8vN?0FcjFaMc8ptusY4vA}`4L`+2a#<(o?umlNAwo(3>IS=<5n1X(c?Y8=o@=g?`uzxDzt5=gHF5DlOK)|*rkEx zV+hhZ(SGk4%rIK3Tx}3i-$=PA!ewuP{dqD|Fb~VypbuFBg2^e$n$UEVqiLG1F+y>% z6Pmu;n<#eZz?>+&Zzcz$C3RECg`mxhSkpF@EIwo$W7dFhRDmSqKwB z%57z)Qxfh+q$F=ZpqQ>i!6?QaOu?PABh98WMVJ=S_e>9GGOvc6FZ^?B#}!HSGUzXD zJf+A3_Duc(rAX|Q&GW*mjq<_d752>_n`jTda7`~E1ur^4-V?{kci^G8ur0~>bku<>B(rdZE--1B1G zx}`=GM!;W;DX!|^!>5}%rfT{h+>s%+i+vN4yvqE=a;Yx}zkkh()Y%>5bXttP#Dm|o zbL}dT+00`VNcsm|jvxy%C>N4$M}={bImwlKFLUUkcjp?LnYXCd>WnZxxd^wI@hIX%j$GZP27|^Y;o-mK-u?~#KOQ^nl zKY3vreg)I<`}8d7I8~q3tFuPmug5^W=ZUxJXawti%o;u>8*6#JUy2*2_W55e^Q7&s zE}Hv2S*HiB+Yd4c%Pc3oisgU_(9>77Ji`&X2mew)U)-U{f#?YFMRF&jE?^94^fwM4 z{AH&-GFKf-qy5?@K)inPXHbF3>q6otaw=em>41=H~UKNWC<|?2~z={Mlfl zsWOelIz9Ed9L5dB^k`@D+Uxn5q5Cn(FT%YgXY5=0r(Obq>p6jtH`m26L{gP#rynoF zI$(j|W&Jb;IdlsCwzUB_II+9a6A^q*j|t7`z2X_C`Pw3gripXwB|PgOTM~~H{dBa@S6y$#6GM(DiWm!yZhjF>NH-$I zb^QV-KC&ud=nYzyf~#Iu(y;dKU$+LWaPUB%F{S4xzP~bkDqqsp^1`K8*{U;8$qW7K z?<PF<)DctAVg*JPZc zpTi@E=Q5zgk%(h%Fs`Bk5AhDTMj(ok9)K|y6?tG;a$K}@6@+@AtfW2?KWt*Dva4ES z_>KyT8f55R?|n@>Ins;zQEfixwa-VuACu87ae#_Uv@b`sv$^X8h+XhBul8qau&X!G zV`Qcixn1)T24yVXD^8-2&lwhE9O5h+8R%?KYZANUMo12$B^zRntKYU}LtEW_&e4AE zdpyyjZKLTr-P}cPm_JL z^`Ff@fj3_A)@v;_43r=*55I6l^}I7$FmcjmcJhB7ixv37)ioQb7{;|hD-_;*;gBtI z^gUPzZZ(*g#{M3wl>0Pxkoz?qKaw*Mt1BW?8)T>hV{ldqg`wxX^oE1;XKtTL#TYm$ zLBs;@1}5$r+kif>ut|OQH$vOi@_TGNz(F3XTQQi=6Q^xXB{N9|hQ(wq4VSdCt>DP; z%1$R;5N)Whrz_Sui}K0!PqNr}Gfm^zD!8i~_+J~7W+Ebbk-pY1-~sb5Wi4DcE-@`f z8Z}wjnf-zU`D@0AKX!sq;YcNdll9uHnwjuy)r`FiecuWcd>BH9y ztRh34kT}legkhBiT*^l9cHWLuFbocMk<`r8Q^Kjw!=_Ol=mTST17-v=i4l1aMDTZ3 zECxQ1rt5iN(?1MQv_JH5YbRcKm*|6w)RFJDaWl@Oo zku$_6Q1U$`7B__?f!{!Cc|3@uaWK};P%+Q^F>P*3xPK}MMcaVcz(^^Acm&0SdEGW% z2nf7(xx@PVdJ-oXiu>YP;A$tKhUXdN&#(}ufb#@~QGB(a{b>)fqTQ+tx6AnGw*GiT z$1Fh14Oh2TLn!0x!c+Ef$5$JHkZ(Nv%ucwEG!71Vj#6dE$dZj04v5LL#aELPw^v?(i;c8`c)&w<5vrhT42X zvFc%pyD1VRwpmG)Y=WA^c5FF8T`^0igz)%$ov-^ZtQPU0cc9Sp{RcG5fbmm8nBVqq zXW@}83gt!HWRex3RJ@+IB*&N`pd{aKG#Nk$|-Z(z`{8*hx!-0O#eoO%OS&%GC%k`|Q( z?Vv)_?WG!N(5~qdM;3bTpBPeo3VMKawL@`sus~(?UMrcrX{J&c{JW+xr#&S;{{V;B zK%QBF@s#apA2PQ+m^zTkl21|j)mO{?rBeI!-hk@vaUPBBb-S@>Z~vpPmW5&msz$1^ z4R6J5LTEg1mdP+SG;fkwr8f9WR9iQWn7a}IR98&c&VFsH8`i(oja=R8W?#8jAB2+o zEXw9P5|JlQ%R&i=$mdZ)LPSoE0%4$d7`iB-LcKO48zZWN>rpqRsa*0!D6Q}c2CxeM zA(?fG=#N4LwBv{?4bNlx4`UlGzi~PI&wbho*Yd)^($#mt8&L33$C1WI5g!_gkDk*} z9itW82;_yS+@Z91CgUF)4+h33nLoQ1+sbCYXBLUv?&-S>tUU`U5`S*e5LKZ;)J>5g zAJnj!sP=b9g27?0YT2(s?5yYGvhcs}k^ZP86{I0XWhxTz-z7)L>0^c5u^S9qE2wQ0 zu^sB;#Z(4rofHdzSpdZ44WcNgRl8C%S#0e*?law%L0F(KRLh;(w?&RzP#K!%o^@)NIDwiDUN-UY3?2G z*RYsKCBczA$5dz4y_ZLf@1mj-NfyvHQM-P49qgEF!!aOsXwf4r9Yz zD%WADnZL7|U-{9?*i&;l5+ZY>c7zvza#9}ZC?4Lsab4oo7q1_OiE@>__nDF5{{CB! z@;V9Q^_%ULRWv`9APxtf8Bci|>m`JyHGxph~4D@CL}$e85RPQ^(dD?wzXk3jg)+v&Z_Ryf-^yaVsFB@|~PG!lWJ ztu+70FIEi1qQh{v`{l>o=rEvR7? zrMpq#W^r@2VEnp$yS*Yg4|o;bPc5jJX0ETrR-U5T*FsH!zCfp!RpJED^TubuHF!)q-FnI9K=-AMTFtc zAW-BX(2U}dL#r&{HJ0L0*T&Nl@ENHRYmz?(vFz5fx4?6EFMLjj(XN&O>y*;Jv69pb zgYD&R)Q=2zCe}YIjO{9f@*#3tDJMV-tZClexH6&EP=j&NW}RQ7^`L~8)BzS8SKljq zO6;JqQQmBP_%5STIk2976Z)w;yTtng{46`5_UpcIiR3`D&7Qa4_OVv!@GW2~{;RKn zH*+`*C)Nd&8iFTB5lS(fzNStAZ*i>QA3y?5B=B;BcxfzaYI67#{@LVM5cV!Lujev! zPJkj?m^9(%O>|PpkkPd))Gv6dS}KuSbH5Etw6$85>PBVVDlbXgN!(E({_yiS#2U}; zS=^hvX{EA=iRQR-C3#}b71>@!BJwsAkC2{-{P&FPznakd&d_^Q;Yy2k`~M9|BB7l0 z)bq1Jy}b0)&*y@&SvzwhWr_wryx_st@UN5*vz?!6OuE=0-eToI2Zcu%&>?`NN~C8KByqAYJC4zxds zY-bU8{y!(m!E7?*XpQ4~DTpF8XR=Dt>D3&~fA8>ET7;Hc~ z(uCo)%c11So=<+87;T?JbkBCxYdig!Sf~af-3L2NL0vQ!M7x1ByhR~Oa#fQY>0!d9 zd=VY57K8dB6ws#r`T|n%GFNfMW#8WC0wSN$=O_$|Aj{cGd1{KTJ^5~+mO?e^Vh4s& z0q%41=3Z)n@!@f10ULyBN;Xr05jHu~TyCeTML2z3?%R_0L>|*xNfaQ8^sh3&{JgXhFZNeudXd@AHqeVM>ATML zdslz%hoMN`+_Q(TRlf^s&tg*;?q*w;$12#kIv+mN&$>{AeKRS`?ZCtvZDyKGk=Cm9 z9LRY#_-Cj51$JjrCz}dq*eowJ)FQt^QD>^!&>9Lb>W7|EB zXYxnn>9{_x+2p!|ck^dTpV?HRHliEj`V5g;3*#Bp6(n#AtkPm?1&?z5)-&vkp|`;N zN4+wshbFq)?A7pSfOkG3V2(wjD_Zr->HdOMH%DS2J_xl1xMm5^Z5co_j62St79Yf^ zH}Yl8S%1g@MlgKT4iBd(AX3;Zh?dr0i%A$C(>}> zXH8_E{IcwP*K!XmKOm}u!h1&WdqbBe$ z?xNL{WMjPdxb#m{kW}Dj^y5hFH*}wWf@4gV&&lv&6n&Dqb`9I4x>Z45FIh2fWo;v| z)fHt)gi{z^g@DvUN};lNa4;n#l<-CcAh$7KcG8IuD2p6Oz$9d9pj!G!=m`axwrl=E zeYajS5?W|oe8LMuHH?}}gsueXY+ilw6P^54S->`^gBrNzA4{$*%11R-Us=DMjod^@ zO@j|}j&Apqz19I#wBhX{Gn;k8+Yfd>w_~&+Ubrr3W|u>zB~qJ2e|AGen%@jc1^&J} z>g7oOAaAVI#N6PZ{4Azd$_vj$f?W@|&Y{D=Zykn>4w>nkYKf}f*yI>zUb=e`cNA*!f=E$fOJG1V_?85cy7>ccoAMU_odCA7I6DqrlM?EA_| zF;KPWl0S-XdMt7{N6o${nha96%p_@vU3`B%E$2-l9-)v#k`ljCHI0yD9>HfQ17H*z zjd25rX(V|F<8*0ww`;A8l$c!mY#u{55;)`GScJG5XAAj5(!x(nHy zvZ_AUnSWKDNcQalHR;!AMT_^jK?^F@&BMGGs=)*h2~|C))8VV}CB-jS(|FDAaYb zHQ_2}|0qA2#Lubb1*W_SBNm1sQN*8ZAs8RZSNv}h>?U3tRp!wa+gQ{qnjPLJD&eHn z+GbI>o!rU%b@`I$=um}A-!Irld^RtKnDFSZC$elE5re|wY#SC|&F8Gdef-lTRG6cE z=Y@NX#v2^nB3`q|ec@H-D`;*z_xzxQX{`bkrIdC5F zNl6R=x?7?b3A)J!0S4_;_u6xsuDC}5fIZze?|--3NxZ>kjEJPbj)*}KTuYL+nYv{X zJMxPJU<=b@6~gVadCstB6I=?Fm1;@?39AR>otCJ04zI2Jj_Xg| zQ#;>@4yQXAgMr9TZ;)nhk?U`ePtCBWclrJ<`H%Mbk52iIj`^sKogW?YfBy8T4Y)Qp zyD>MrHZRp+tW0A4yQe=Py{seg6n@jcM7b>m;#+c#~}| z`PV~x(g45tP}kv{i&ZJXLv?bWn|dY!yX>i@0O{tLdz(})x=|YgvYs}zferU#3OntXZdOte_(yfCZ*L)Wr76tdA+{Yq9jx>Ymo-l&* ztdk9av&} zm2pP0KRq6lM{??;ap2?tM~RhjRHrA_$%#;T25XWZs5MAisc)2*;`I3(f!%Z)XK*2X zXYOzmJH;cO$Xb-O6KqFwId58mM%a7Jl*-B_7SnN!BtWH#kJolPPy(wLzWpib@yJvF z%LajP@oLrXIpH|xIBE8; z>X8&DOtu-@&N!u9?9eXXklpp_X79y?_HWqC!y=m)N_HB{J%qiu?{G%Q&8j9u&66#E z_M-QsKC4Y#&=QsP7uyW1Vs+P|^}XAmM8|bPBw?Ny|CHv4G^|j!z{*sjhK`1~5qBEu zfV9#Ka|#SODspf0yak-vuG-|`r+Q4Hc_oHOQ|#zWrZgkpl3<8*ypFn3H8I+|6~X?eG!E)$A-ct%z48^v_bAaYHI*o z2tbAj@@;7B8+W6c5ws+vS;7!+l6^x_HRYu}@@vG>qHyL<6i z<-U@b#(!Ad^)|_;TRkT)A3l+mk_?Rme?V;wo+-@2RIgYehm5Xcd1xFA#x5w0NQb;_ zNn;dL62K`aTv?!9Kdk;h>|Uz9xUV{{Y8$fPuz(860ZIaM^$l=|44_R_PIfU&O5Qv4 zgsAou&=>t*2-6YocFxr|63*puf|qNfqEppeykipSGpgLP*DMq%$$jRlR?8xmnU;gd zu46@J>;$}CWD%jSvGY5}C{4$pa>k_m1d8(v-Eg_lcG&v+v%Vn(d>cW=KtEMQ*VOqC z2CQDt{=4FEcUr7Thnf2NpFe}zeVmT542C6O4UWDTEqy;{+XuP8zRR){5T**#O?;>| z>oa2}K#Lp|CsGd0J@HbXD-2=!g1PN^ZWgiCSe4Xx{++!k_9u3Tj~J9ba+)E{jcvrC z!H&C=ZZj{IQy{aB2-UMkGSl{@<^Oc#5{eZnR}p^QC7x^R>k)Tb_^#p2s=MN1+RCp3 z`x6O2!L<{0amh%(N{Q5>-B{)i=@6cFgr-Re%;{G_jMc$f$M)!UxVDxzt_7MI>5wU# z3=`p>-GSm|dZ6N-s^d{}&c1r^_x3y|xU7|6#&fc;s+IOy?J~fd z>Xw;?mmsWs;iRB-u;9=hd!eeptlN{B$VDLEo_oeFv9UlHSHc&!N{#U!(>3xcVmdh-sL07fy zP{QkcnsfRA7$}%}oRM$tnHy^yLHhgp$iH#{t9vwWGGIaDQ?8kUEzfhgCp@!6PU1bY z@zVt}Y-F@7UkR{y@9&;7tK(+>9hW?8{A?mL@savvtS1otoCS2Ua83q6F}A#jQQbWL z_V_Bwt5J-^ecA~>l82R0uDOqKTa&LA(XoAK49fvJ@BX!5bdu3DR*zaa(cIXpI{sA= z&Bv#Cud#6I#ENRe}19_&c$}RDwRj z6G}-0PENkYo`L&^rfrNGL0c+-EPVarO3T;Y+kI@q@;lH-8hAM%gE`7&w{;E{0T_?^ z<|=>{q?M)_28PFkB{5ym@@xWB%A!Sy1Eq9_zFlWGi_$~}bhv44M#!`b`2Hf{DTCC# zG|SygjP#oPKK>I-_D{C@w!aDqXf_zr64fbjKV=xt6(HsR$mT`y!)m;bUn&WGY~HR9 zp_yTTxlT`u)h0y8d!8|F-#+tz6)d1H@dYDqHGCKEKd@2qDsIU8O;Y^x*7b%4JR@SJbZ3A z1JsNl%shXMgT(6Pv|Pll8IEG{-3r&m8nhR7L=Nl?i8S3Y!G|-CEJ&ch{5RN1`J_P~ zo2?n?zbc@-KvG@E$E5TOSj4F7mw;e3-LTtT#&EhwgoLbS`LIq>x0Di}v( zA_92OCj)nBoM0$>F?mIp4T>A?g5pu|JI47{3HuHduw~T}crRToKXnUYC_}pXGNnkd zBbw9W13M;KMoWE4{LiiTR6W~|D`=RbeflM+QN9D{rhS4f8U-q|z@l)fz(m%f=$FqU;kE|Ea4^u>7|5(BWXa_y#KP;&IXK z1oNW5w0!n>rvbUKq|t)|%cDEc2;|~hnZleM(U<@joa5W?p=$@%=uBy{w=PUrPz9vh z9c3hf9Tbv>5ETpqTKjvCUIMXvV4q(gOA|~Fdkt(FUX^hAh-O#zG85{SK8y;@?MvifuHrff_%a4Zq<5$y(MokQne z0k~(go1A-$*T4aoHFhgwK=OJj+R%)AZ8%P>Y3YZA_7m|$7eTSjxThd~_AlAiJwS1|T zK_j#o6RkjBD8sCsv)DJ|c}x^=*y~K&1R6t5pZujK=}8@^H%pafqWojS5JEDt^mn#& zyq-zZcBJHadvwy9&*k}F3Z1WY)YZrrZlq9D0B4~(RQUTLsNa(eVLDp7Ni&59w^LB@ z=+o)RGAak8u_TrLX1eQkd%=T<^L`$JvsenOy?^1mAbJH8^~SwXK`Mr65VCcU(0k-8 z$a4tzdhywYOsgtd!$7PcP^Fw(Jrknt>IzOkwOLKKqs`bi(&k-%9#$44j?wisOqQH+ z>AaUda=2aj1k)AKBxxTmvlFc0+$sg~RnNG3yH4GJJ5RFZrZqW;-Md*xJT5O{+g!w< zxG|xTVudMHj_66z$l;~Hs&*GZbhc4p#~ox2g(ky>W4)&M#U2A#fOH%W+Kh6YZl;0n zGGsRsE66(XM|DU$qXm@y{iIK3iaxOoiai~>4iPxw71SLhsfoUL*qqrWJ+TxX7@;;b z4uPmS*xj`p8!W zv-=?-vc;H#yK!hKU}>Gd&H(lT>D^GycF{VRLQ#h-zCdANz1m9#GkMd{d3Rqx5%{C# z*pui3CD#6hFkL(xvGE4vYhX;Ukn;(|EFA`T&h%oGS3Qr{5*C6O-lfukg}5Y!$>$@6 zDf?364`U43l*wb`C$o}_%P_mSEt76SY*EoYG11-^zc!VQIsCK>xN_d@l#E!UO7Neo zySHt145=rbf3UWPV(I~)&Sgo6aMSnKCOXTzCaS$wuWI2M20~W?R=X+^86SJ`%L!Pl zdJHX+|NiL3?@5gvXb)W_xlSe1hxOXtxc2FP@j}h%BVY;~##uN>&aHG{yM}ZTc(-ud zcJkgXO2W}T?stJjBP@Jk^;v{2BxE_UQydi~y~OVei&-@?veQ2}R8ih+?nvjEKQN~l zp5S7zQ^Nj_)yIm9x=Ir(cC6!vSTy|FmjH%!P_HwW^ZXtJFF%jw4A!B`lmf_iL3#t9 z6aK*%4^z*nk^+VSK1cS5NGmFCJWJP+rKXTA2|gQSBJ@`2xCIj`-my}3!DNk7@XdxF z0xm4FWj?(*6n`u_dsKbzL>eQ&9l>3j&OL*aJY6(ksdJa37B=zD%Wt^I$o87hFH3bj zYFj;OC$A&fE&|BRKMP_@PgE~qThKT2(y_C|!Jp_d7_(_CfqRSyL0*{0h=u> z|1J$!H3|@8imn=Rt?9W_Npdq8fDIAVy~c4sw_SpTeJKr2;HsUR@sNgM13*1HxhVbh(3_L)#gs;(YbXu%NB%5%*c3>_(Q%sayXcu|A?17Xvw0PM0uDG@p{=Y@->rI zKA!3(WFaS-Y@w|K?~8>JCjaQ?#+5%3vg(gk z(?=r?Gtkb95pXJS6J{sZW=LGhD1=j>tKL_GekHj9`!rU8SX`Pu)D#!VQl75-J0|sz zXFqGF4(#5Xhjnn5#Wq(2ikxsvzBmsX2J?Qi?xBMOUvgxALiAg=EXqHF^gH)@n0*v| z78$okJdJ=97=VQ!>)^AeAW_|+i5o^-f0r<-66LZ`#PeTMRxfR{$te{kc?Ov7U$$nA zG>X1$m7}`UP$^#0Sw#-ctz-;%jLRNU9*w`p$uRkL@M!TGv7M#3E}ra`+yzLBt4%Ij zkMfE&3b%;Vj>U`-P;%I$Pe$*6g-KDxNFDY5ikX>5&FpND=7KPGE3P0(j{cYURr7M1 zGOJLIVx^QTjRrS&9iY(#z(#jq1M@q5K@tjm(IbTi5HTDR^Q(y_9jyTJzQj<%E5=U| zdhxbfTMh~%cV5T;g4*r~*YVk07aA>laG$pbmM;Z#Ls?ccHEFxvuM7 zASZ!=QegS0*C?F#PA>ODL*m~am(ToSIxokp%QDYHC6nD7RQq0s0tr37jyoku6)LZ5 zewS>6qo~$`8nkN4CT%oq7bXGY3!>{Ws=sPJ3>6i0OhqT9nXH}I;fN(3`>BmXc6A30 z&2|6$=*8H={If_WC3)14gpC4)yvT#UUkS!;b{x1pZt(1R42`Jzeu+-tbzy^(kCjmN z$^MO^q>huL7Ie-!uh8lHPi(ykIq3mu0>z5JDH>ztnIh37?4@xWN>ma`{UkWg4#S*c z^phFT3e(hT(c6dH^~P|vWsp5}IjN%$v9EZpTEYZh0?J{Z%l_g|{|(zTa>A5Cb{I@t zk6aO?>__1n=kxOA$&yG+JXgoeiX_u0`iH z-#zOJ>GI9`+t%x29j%e6>GJck91zRHI*{i=hZ+@DZCBfo+^2W)#D;ziJF@Mh;bDv& zkgoheWz~Mzjv=^_Fq>@S-KFl;JRw?xBm=*-Vvf{)>4mF}X4Xcayy8Ksh$_yo>(=r! zmVea~$x*l{+Q+)NfXQ==?f_@qv0f%~>PBL_XUmZgZ7A1Ihk=ntQ``77!jr+J@B)M$ zpwS|i?qy}*ly`$zq#f_^w(JEbMz-2|KE{E>@j&0H0F%G4<~F;h0`R60;C_+<-Hb2Pf*)YwgKBw(sO2vb3UVY3gNA|ZT- zxkeRq+8(QC21-)e5sqCc?;cye4Rm;g;*g5PVd@Hsz@yY0$Zqr0p4TbAGVmJ|d220p z8=AtMHK}N=mCm7)(%upEXX1sR#GmLw#IJP5uk4Y#4}_?t`Yw;~`ei?E0eh0|p>2kH za8xtnIWz@h>;Bnp@VCE5jkuo&aUTLI=7^=I&G!CW+kp4!*GYI8#-1|1WTak3RGb0# zmn1Ab8D^VM-0QmBz6si~$Y{2|@bz@G8;ILZUVl+VB^_$cV*TZgGnkqj7*TUy9wO`R z_Gpv~1rCy#D57DxGJ6%d3R9Dw0NCUa z_4x!GvQOrv*_ft#hs{O33fbW|FZ}psc-~9>$F5SJr&&WqvRG+t5T1OX^J2EfrC6;r zB+98$cq_Iuq%g%O?ceA{G1|uDERc{KNa`Lv8)q{8vzKp9VS|w)ed1jyN%?JjHp3<{`H;Q$>skXvO5e8@Nf|MQ;Kq=nmz^wY|}>vC~5D| zKVWv8$9WT@5@nI6OwK|E{^=UPZ%(iZmUNq*{si7cL-@x*jgiENMwPu-4><4#xjyj*r*LR9PL$T_%394sxFgDz@2 z?l*Bf>zN6bA%7Q72&N`O4c%dG2k50Ih(deo_aV>G5GtCJ|2BG0lGTl6l=&rCzVeg& z+2tsT^Fr@bO0D0ix2r7M-Ovf)pn{wubmj~iSCFPhuo z6qq^v(NapPTl6QW(Jq7U#C?bq%8kBRc4WSlT@9y74K#H|T#c_M`N9U?glCG7=7&?r zLYfUE^22qApLJIMUSHuRVoBDnkM)h?X{?nFZjhY&qOxcJX{?5LA(YR+1kmZ@ zZztGQ6$mZkJDVsWd^W)NBJdz1nq0hYPGeZE#JG*k_ye1pigl3}Jn`J|74|sO`3#;O z)rYh~NPQMgb#3cNJKFU`KlTs_2(yzTNL-OAh|JAiT+<(tZDa2!MP@oBSb(tT+?H%3?jP2suKbGs97c2MKOt?wRPG`qP@4Csa3c( z(hFAt&8)uPG+5dK7Zq@zZ;l*MR8IPa3PmaX7P9&ci`4xzBa2&n_k~W|;794Sa?tCA zR9y?joUXUZm^Q=nDQSdh1*7K2@#;)x$s&pcZUThQNZ$5a;6vlL($%#=Lj2=@trdsH zR94H!!tfNH%6p(vhgP~F4Rl!+NypCgLQGb%8XPaQ(XESDcKS&LzG`=<43uMB>bzEw zW2ubNGAE?3XJpxe4Zl^Enn&o3Gum<_a1OnmkQ>p@ny1bv(5QZr0G`#u z#~Jr1sNA50m)Vzcd2aU>HH@m(wrS(}vrj4HF|0~NJM=;*h6&0ffrD30%pI_qiVB|*0mc2d%O=raKTQFo)e(0sABiTVdp}X<9HL5v?pC9tQ z`9%we0tK4(FTxU2DRcHH3Vvo?WUOz4y7%z}Q<`$LEy?El6Or?vs*{SS1|_OUX@F`_ zDq&*36N14|MM^8wK_$$WErpoD0^)pLg_z9G7J_=g5+@z0{qKUpbKMYa)`^xtqYNIP z`jP}kT%$!oA{CKq>FamnrFiR-O9$h!{Cj%mY~14aC1x5vxBL&Mo0W17oi0-Y-!_Nt z{bG!iIJW7>A^SpIY|5UV|I+!QP#CK~r~@1BC3P10sT4sK+u!~niwUzD2(|^& zN+1WKN5z`RJg|yygNXcJ&MlTR^*|HrBBN3ChGCWMReKf1uwKR2p!~!s>ZU@NDmL)v zYxH;oyPB?3ALFIsmZc?9{@cMi<|2$9@tp!pm>%A-^4rp7=?cF&sS6@c#>pJnWC8fY z@YR?WY5C2ptdD>&AK#lZw(0K+=Sb>`nkZPP$_VjoFejE=XpC~R=10lDXk1yURdAa1RMC!3n{FyGwAFWbgOgt^L)$ zRr^;LH8n-moO{pd)7{VWG2BAsF5GEev5V*H@QT)V3Y^nB}yT zU@yx^b+J)|!X#0*ZE3J^(+RXWzSY?hqs?k2R(|mol9H}WYA1b>o_0%?TqPR_ey(zR z*I+ZIBp1KbA_E8X +iFFS|X7RuC1( zi*;^^H(P|!F+me8v-2$$oUDVC={5iPqk`9v7&|1IMP4Ucn*QQdW1)ylNz^_YO7hV1 z>i1GqBkreaV4;(lE3+hgWFP_{M zY|v{q`wBk?B6Cv}$^=UGb(ALhq`%rq;KD`vv%W4=MUGFC3TTb{tDak6$o5kO@%Hg{ zW%y8ce(c5*#+&%+C&CVV&|5}D97^d$ADlH`;`)^q14bYanEM<*@TvEgSk*My#FqQ# zSG;m;?@}1c)-Jfs*KkroAG{dwXvy{K>MytZCGjs_Mun-8^fc)|#;fg1cAd113&pd^ zt!z-*)Th5(rH@4*aSoSI2?J;I&r;D!WVDrnAg%DP%F?eBrADx!Nv4jE>NAaSs#M2G zHOaA)NCMFJ?O~UFL|ocZoTvkOcv|slt3Faqxm#cV*JbO*0)q$ztY3 z2$G4V9)_+CrjGX=si+PuIHlbg6+?H(#`=I?tz62C)&3$VVo2G*0$V#4(-<7Wf)ijo zF9pdXS|CF;&cg8#*_q&j9&!c$J=6g7P!WVh2{9JfZ(pi#MWVFlh5N(-SHvAN4|2IG zz0a0ZW63`9L`tQ<2!txRy`;=Mclee{iGHB6aYg>j9?)l`B)Km3_beo3`Av1uXqR`4 z_WEl` z@0ZHTUwHI#bY$>SEz_nKcD)w3kG{s49S^czg>;RwZ7v^WbB_Vv2a^8 z2v1p92g0&*fjK?QJ+qedrEZ_QJAIyoqmL=pSP)5iyf0An2K%QHwrHJ_GSOK4z|4Kx zDt&B>?4KOLb#Dma6yGm}Aw9}L^pccjHF0W|LzS@LwI>poWu+M%-w#k7ndr*WPA(k< zq6r+6ztl#TTcByQ@3mnwOUcAJpZxfV+zDybIWl3{*BFSo<6{x5=xzncZ1{^)y?cqW za3F73sP?+}^A(fLynktwI4w9N$Y0K~_T&l05*!j6_vbAwPN5i`4Y$0ko-t=&^TaOj=mjT>6!p`$7^`0bb2 z(yFM&U<_mabEyxD#arul&gnp`-E<#(4Y~p!WgDt5-BC&L*X&9# zJ^adL_jKs*KX+?9ceTG!#_MT|Bta~n;h8N|5V~HB=z+wxU?7u3amK;bB~%|P|Gf%*PO3z#3IN7iAY0ED5m=d&(!I!iY5Ga zZ>%;o2e7Ek6bjyr(nH>A9ER!0fD)QCG)h;oo_3~7Q8XZFSNFC|%w=iYF?wcxaWv^4 zzI)r?{*zfR%{)|=;zEgP`*p5nqu?IQc?Bo%$i?s2mw6C__;5oDq>+o~zjEp0N9~h|)IvT@1&&v-`%6En znr5+DySTt(UxX&Y?hG#i=>x}Eq8Qqn4Kw7EdzLrm&$byi@j>Q~?OpA{D6>lt5nh`$ zc$TCRePbS(M>+VAlW}iJ&+fqY1L7@A63gCBW>}(7@b1jZ2%5~nQlVGa6Ha-;hH!-S zthD&&7X3uuYaxvkwqav^R1?A`dib4$hRml?^@vLp8-$963S^iPsAw=gjWbD9G$tVX zltz7p*C|pL>+bXJ+t<2HA!<5eH)c(d(njWok#$fV;LxXf)@KMzfjuoin2~+uh<#BW7?4XLr^6%`Z-F(%5|RC?R#p|fY)??yuKXe z7G*n1`&o=8eMK8}!~GY6MWdkmq@As;fBLsO(}+EvqGEC@rWc|-#?F)KoC3|V)Ynzu zhjRZ`ia%9g6MRld`#EhWy``Tu0VUHb6{`D4V05Gc`H!kb7uH?>c&r@O8#7r^yEYRd zbx6A+LF^d11C>AIA}B3iG4ZWXO5VSiq7E$1T|bnjA)!j1MwUH?Ip*tzS&6S8g@0z$ zTR3y$aXm-3ZwZF#jv^xm^W{F{S4A;xGV*IRsX`1j@Un;E5?bG^=-F)m_UKJ(f{iJ) zDoulsr06j-zKCFX8Bjr;ej+waz)%krJoxd0Dy{_{`KQ8w9~-Isd~DA9O}oB8(i&})=ds8rYAJ* zCs$u1Hcum(sqQ?g*N(cGoZdh0tk6f*r&Dp%guR=G>=~Vw@$BcOae6??cn7u2k-c<$ z9;Fumo6wQx(UOw{@2=kH5c{GhiYqJZkP}Le7tAxY!BQCH%vnXjQpC2s21Jc;1Y9lv zn(sLTsKVx$Y%K8Ia|SExYB%?Y{D>|N3Z)JRaC*P(^e=7+Ebm5_oX9C*MN+m#Ffx2uhs@*GM^ycKDM*nCik``;4L= zEp1sxSbA|jXsj7P!6UZAL(IE<6E;zddPI6M)cZ%FE$ignhuHI)Rb>7H(dPMclborM zt+xytsGTLSzn!x`vm4&~aCYVW8d;L~nR15jTXSmOu4uvQH5C&X-X#hN$ctsggNt^G z+j4sE$_%nyI;C^-6W=ff>B{&V{>#NpqvQJg?5Zf4{6b_}V3)a87NE1cy-|6daPk$kwDfypKQjpa6d%J+ycsGo7&!Cu7 z8}%&__?m-p9@l}!@E`Yq`w^X#Fj?_Y0aOavv4VfrFQRx<+QGT}iC$BLG7vhIgVh*P zTHO=1En>RBiFiS(hBoL`fAl4tX-dQ0fOFEDq0+5ySYHgqTb2_aIy;Ha!GYhFPj7QR z6VrC(vELdOZ&1aw2KdCvZ}Imt5Ls4)bSk>jkvF^1fqF0%2H+q`(Y`b!)5eNLu@ArMLh0}8801g$SPEm_+ZcEIT*A(V?^ z3HekFjm)~MjxPzh?egh@y9;ez3`_YLvc%KKt!&|fH0k(nsl4ThZ#(Y7Xy|{Z4yrs| z5NP=Y`dxYY@wrLofi~VY{1Sh;Ngv9ibP3`X-YXNQ;c55^eQ04TkX^9Jqp-VAKz~~a zpXZZPkVN9E@|r-mt%TDc3pl2!4h+j#ds{`UV&=Wis%Ld%igF+PvkAt75#85fb#k2Q12<`?QA zEbPK{MPo>?44pCy+wsaK{AHtok)K=u-ks!Uu8}%U{>PfzI%UC*$e};py!oK|aWw}x z^xoDbcb1q3Xt2H)_=S45DV|j$jsN&|{baIE_Dk28%BS-^@6O`{gZvkUwAGEoBaELf3{o!|Li1?-Ln+g=Su7eEQFe$(n<$M<&j+dOLldb|Pci;!Oi3T+_>wW}%&hi& zop4i=#(VeDW8hneONr)i1O;D1aERx&gG|7W_#w~A2#q0m9XN~odVU0nA5ek^zV?3t zSv#U}eU*S6+c;#N!>7QPjCbi!ww-)rq0BTk_G^JrT)_2=)ds5p_a!UEOm=dCe_~?| zAn{(WtT(NCGBRlgNZ$4Me+|1r&nL>c+k=BXa^Bl_2?q9x1M@EO_LbfyY0jc9QKQ@j zQ;9RpyWU)H%G0W~L~R0))3j~s03(cdU&?B!`EUo((Vq9~2Hn#*HupdMPJM?DZ)!j> z8z{<{a{=e2ajUaPbMLS>rbA{tXe0OlghHmGRNd>XByxI|Uc5|Xb0)%yPqxPXcU z=o;Ys{eJ?ml0t*qC`>nLk>&L()bV@`&=LtM!3h(})|4*RyW?Ex+UwtU>Pu$R&h@7- zV?aXDvtA%fyNnGeabo>XZ9}fAQX)7~=L7cwuE*X(ei`LJf0awO2Y>v?iMd~{@-KLUD=m=+x<`o!*8>ftjF`~$k0tVO(%fBTY|6mBX!AYT!GlM?|_YMORk!*CV1^_Xi`@e!? zk}AfHT}5@Pnmkz?&?y3>OQ&e*{K5^Wc$%(ic!Qe-95~b9u!7hO8(SYyicm!_!c#Gp=I2g_*ePf0mN~JK=F4P4559wtlmnbP`}MwRLuK9+(wzi>B$buK<;P;e zoPgG$n+00Zg<(Gyaij0ErZon3K*>6F&#~Dnwev(>kp~z#J#o%r{ybE~51*JVjo_mS z(JR<8VJ28Akp77huEnq6{O&MI?z{|5dlGmNi8NQm7JG_AaJkTy72J{~^-{5rUX99I;-e`8zm0o2@_S&c zX0Owpt>hOSe(5`WqN}!_>`OdQXq&$V@)%q5b8BG$46`oBjZnEjk3sIdvTjkj&!z@i zlIPYf9^9j+P=8^rr)jM6a#@zd?7Jk#Q1F{ zRS#^j(Je!-b3gsjb2`?qHo^p&m^t^z=1`oVAWzrJB9#w9nB(oZ+giN;u88LJ|3r-{ zW;;%2-ilbTPH*HWp7LI&!wVXwH|H4XSRMXVL>>RU|BC9y&f}TjbI|9dv38I(V2f56 zyY%lvFelYBelAwk93ESz>+pSX_`{@Gu$*-Z!P892Wn&PPxYb=5!|wmrjTOrSs=eMi zHytPb2lJr{+KFt8=0`8BMMMwHi2q*I2}Tox77w z{|VIb#%mOKdr56e-Y4#2`q5G>Nfr%6DqCR`123EHJHD-n%!=H^#FHyT75Qe>_wx^4 zkc5m?u_Y3XUsxon3gdW_<1v1lG)zWK`_kpDUlCM%TIe~MVIMrjY>o2536v}aWN#;n zWHGq0pRwVtpm4Q>NH!gkbf=1w7faQZ zCQEqYcJ&3utJTWC=Ht}C7Tegiv;XcMzt?!mALCq71elS?DTUFoBt|G%p75@yIgwdR z#Se|5>$eKPBx^N-IIldVj}f2H=Ptjl=dy%>ILR@L43Vk7p$INw9mVztLNlPCw;DqG+y_>r7V|`EuhF6|OY!uDo>@JE?vcUOj6(mNX zsAaAIIeRFe{~GBmD*8;ao0g^bF;0RSmPDC@;mO=9GNu8yj@qAXFkD&q$2yxTmkbZp zGEZ#mBX|_N`RL?x!qc~9!L$@KY~9*S``8AyqHmi&&m=eg1j-v|VV9y;4`^R=j<+Lq z2Q2FN52OYzI19ybGEUBg?YEBm_h#7=K7_hA#%5DIca^NwFXWMQvR@%eE+fLJ{Lbl} zze!x*JUkCenFnRh)m-)+DvFA356?!->yNdgQg~O&cA3;VR)UY(b6)VC)OyxnpkK!o#iH2)~%@uitSPCKAydn?$_T|HCfP)(ldm+)`RMrVr8~U^mtQeRAO(73Qoh zA?t>7N*B=&MRdb!8&7|fvt5+frrLF*3>7fC`n24mZ50WUx4-WtFfZhG=oliXMYMXn z<-`W44UI8&Z?|OWZ?_&4JG0kOm1tnZ*_F11yqk1($;T_AVjg5W?n{=-M^18zM>_v( zh(s5i-?wH~DcckAYUOy@YDn*;+7$T-4M}uD1?Yq%a~wSWyz`RgT9V0MZF@R%Ad*>? zK=019shgWuA1eCmF@8F`j8Y#@u!ZM(-Z;4iSaErskr|wv;xc4gGl3WXVRmy|psE-Wkt@L`y zC&z;h*x(;kSSUCoVafUjIGGaAf@i@yDQN2IIe)?%H#F&Eo*S;W z%R!cMLIqpjK9knDCjBo=h#6c|$7;lMXynz#cg9Ycbqy(vC;RdHkMaGTnGu&X$ zHjD3lT&b}vSB%M`Ec$19|9OP@D(8TWg8XW>+J9CIf9#eE*JNF2N2;25wsz{jAKEdyrN(6if@DDr#RQgHli zYw!)IxlI=SQ>1@z9IdG3BksK!*6f_cGN|D%AXi8z)=WtP(bDpKB zS#^KGWAf&0zvaMC^e&pE@?U1EcFSSF$?M{F>S8zraPnHZb=8e~%nACpdGZ>tMfv$^ z?V9p+)pZjE(sqeCvW~+YRj#Z#L^J&3sxH!C#)(#m1CLt5`BN1pFcPSR9;1g`b>EUv z@&+D^byv4M-f#?uY*Pc|H?sXVg%bnqDAmqpCN?99hADnoa@Wtu+cOCCr?M-r`rf#Ceei}#$1UwP4Yk*PDS6*ZB$7J8`niB z0SmmELJ0z0s3KKLijFxFEdoI$Gj++C(u&|F48R{yO5}n21QmVftJSJg0=)G{L1kw> zKe@p3zt3YJymI`W&mN?1-3fy5PWK^;h@l$qUgT?TgJcoerhF~J?tiIh>=}=&S0Ca~*L%Ri zX}$de$cXt9bi8s*<=Yc4M0lIk-7w7}(-$>=)4RLJ>>W>aVyi}5FIQ=b$G?IHLL=z% zqH#Xq-wtX&P8Nt`)!s54+e}Y+>_UV9>)l#TccPHr z(cl{8Izd7sCh*T5)q`K(V*F?m-^_w=p9uw@E=|t)FPRbT(ppr`G;0xiM|0sg+pwq* z*_%WpgZ30`8=}U>4^T;s*V92dgMrE6*nwG$C>)Uf*-<2KtEgjk>x8o~6&wEc0A5X6 ztVAW3Pe#$bncPvpknSFjn)OP4INzYVkxqE&p70?7ONd=~?Hv5ajeqI8L1I=T;tI0C z8_T+gj`IB4tmn{zs}Bl%;3pVM%0W?ob~3U`bQ(mz9_?l0}iQ|w%; zxDT&gEO6I4pC<`4c z$D!y<1aHRpk2}>sHxn#*p^vVnDk?w~?s4+bl!)41rY;sf!yCVxF+EaC%*wZGQ>TXU zoA;`Ro6_O)msGLuZ#1WPuO)?m!MnKkrBx?W7R5i--`%L)dpo)5vzuWa+_zjD0U0ep zP!MaEnpBE8Bkh;(wtmk+&dN51bNTkcb zgGfT?#EsvsgLT6U7}vqsbycY$FhJ*M#K`Buvw3J@AX!L&p$Is4el|@FVds^@D|~ON z;uQA|nOFXV>_!(gNE&_AU+1^fUFnbP3?wQAq09Q5N$wvs=jNJ%l6COxW_8H0<7 zWR7L|jA!XzDB+v0H1^Fs=3X+}BH6bgykRfenK}nhQck|yvmT01u?|U#qy18GGx`hl6ZNHQS zX%oJj!yJ8urk3>CCS%I3z#e3y^?<`vj)Q-Y%Hd7(`!gd%S{get^H(q|)b#7GH;N*v znev?KWkyr)T9k=87yv`3IkhsQ&6t%Mv*!6D3Og?zrCXOG!gXbRt62PTlW1VVc=D<} z9ddH7%Xw>-7vA6!g`L~~ZALS^HH#_@puNhI|Ho~WlJ;JA_KU}$%`lQsJX`XC>;vCgu0%#QwT3)q38g0H+i!1LL=t8Qrg(Ya&#;!;C2k` zKp{W?uFQLgU@~U__9{e4(hdYM%6W&GHvL|Xl?hLp!i3TS)70i!z@^sN>XhB#N4q|@ zFZTtk%HRRZr~a&Rdpdiqpcr4kj(vQ{o``c*LaaM;yHVF;V(9bV3l844g0Cziut(=8 z?8mHop(gMnov%LG@EFP3xwbNe9I8}yJdd= zi-L_g%ie;2mF`ATN~EpEYz)n}u|%UuEq|LA8Jo)r>CW%a%RkZZ7!p=jMG>oAIajPx zksfHz4E2fdXdND_qUX_p-zgfC94vjQID@2_BWF)t(0fQ2C8i|9W8qgs4xhx-H|K{AEQ?mI zYf^lbT58N}Qx8sUzI&fh`hEsX471nniw7TwQrWY|cn*9iXSwSl0n*V(?5obqzB1lB znW>sR^W0YiOYu@v00u9{T9nJ`W{C7DV264F;dh1}g49VLRXq|Q2LYUgBqG5#p_*Q< ztR5y;i7U`YMPk-sRrU%dw7Sy!$_RuX%FqeXe*TP6f|9mjw=Rt%6GE;s&`{>IiD)*P zuo|$;cmlr%D*^tA+z%ySv>{$*HLg>PvdSp?cj5Eezl0<;5*vh(rT?+y(Xsz4ISazM|8f2#`q^BSDYDNy}ID*8H?Sel9KY)1p)Cjb&B3}&iR-ZRN}mKPU_HEm-_0>=KpA7&sTjqXc6PtWp+bqm?b%uAVQ!PzIym zJ9{68nvD?lT}rTe|7tDV{Ix5T@}l7#F}ha+ilESil3-IETrSc`+qvo2?r>$}WDjb+ zAal4h88csfaIX`Pp(LSWkpVPm04^v6Bq|JK%&kBs1JI@w%7V$DadVo1#@BmQV zo?s4W5B58(9BZgwtyT@nP|T9yYIzuiT>`tz<$O#`!EY9gz}9vW69~RL6m{g~PThfu z6#oUJrGy_xM+*b1XQ3EalAqZM&5dnme2_LPhQ#}{Wm^7un>HICvqz_2y9p|@ z!?G?EU{&%q#4jPlMNk%fM0(6LRNbb?ri2`Y;|n-ppzOtJZm23`beV*&<#i0 zG#B8cnXPBPVMXmAKn@`WB{UY6k?@q?jcEi&6=4Qw1qUL%chdWyje`HV;bQbO)XCsp z7Gz=_`B3!~6BSCV_d(Xre;lkax@{j7n!Z-Bxh2Scy2;jR8J})$E?^LoZZ0Rq7}8O@ zuzJk58qZntk#tz~p%q!EhdkFJc}_3 zMa5fH!dI)st!h$s$ziWKjAcw8%w1UjP@T_MNB`ce_1#^JIZe+kE*n z%Ja{y!D=RkRicVJh|1|7hqZLwjkw~oL{pWP;IP2aG;?qwN=cN(yog(Nlwr5P1Hlj% z?!6vzofJP;ntL}^C)#7%IMMmn@?kr|`7r;ZUn_{d%r4cv`Z)bR=tvtB+s@iC|& zctH9?%fi`*TFu_-TG%yJ*COfy%Hr75r>NtI+kmLE#d~oRnN=;OJ{iow%7^IJ^tCPb zGf=a}r|j_$a_C}-k*#sl%=ktMxuGw%Z577dJ?@pDpqC}CYjgZWH&SYpL9Y}Zen3Kv z(0_kr3lOlDkz`sKQMK_pdQhXzA(J)OOsc<>B15Tmz83OtBW^D`!skEoyb2xnx=xHI zmb0~3WAH=n+z$6WYTC)JAw ztdvD^^q}gK2^(>zB2|-tRcJ|XUJY8+@x%`x+rS$S4R*e zp;srMETqqYzaJhzBOUSTf3Fg$GW{BUj}pg@h%L&HO4ZU`W%kl>wP(IgX*is?%KJ2Z za#L0)q3_3O=YJdpe;8YIjeuQQw8-=3yx|;OglAx}ps`vNnOYe!?q)lp=8f>wyE4@p%=Vf*)kmg^uofik_f=;rQI4ks_ z%j#*F8HW<`9n$^zvS3x?k}s)9a-WR|gKHEg*{=UqDz_9P2VV{ek`MrAlbT)f$1noD z;95jkQ23IYB{-P(ZSrKPwmM!otp(UWl5H&l@aWh|Qm}!6U^}CgCbT#KHmfcbQRUcu z;t)U%&Ce*<*BS5XK!d9}I#w9Q$71!)K7TlhLn1dm!>l>AK#g(BQJ@F4>+Al{Z8Bb? z&hOL+3DOJ4t&u@Nxr^G0_k>KH(y;8WNq{=9QxOllH_0`HQ5Y;8R=0Y0pP0=ZspKD1 z>N#}6N|s(1o>~tvxYXwl2-juGqm}w8#NSI|>nQ+1Ka2gm&h!Ks(2U3r(+m>&61J7u zJa|9YKH(yt7j}N4O67`7#CKi}rm#2i&&7%{Kz4>QUeSW}J}mu}q=s!oel1_Q*?T{> zWf!kYERt3igGf?lN5!oQ3bM6!X$eJ%0e#QUK9ryg$<((YjbO1EJFt|7-ROOg9OmTrUFBGw$E<(^`){GjD_(GyRKj#D;i5h`x&WPr zh#xCUijT{9yN4(yDm7gI(LOb60zB>4-nfyy1Ie@zsP*oB+c)q=g$y?H#xeSDLTn@B z^HT?DKYp({r|kL~-hQHHJcaQ{+ia2Gwv4^NlzG=N@Z-hWHT8|Y5PkyO5XO=eZBL%5 zT3|BX9*$OT6R_d&Wa-7_c<)k#x~?oNh=oYSJLI(Ys)NB!!Y6MjR*tly{?*a`qzd{F z`0@K}uM82-Gseqf`YKY)YIul`d8#Mfmk)7`M9dNc(U0pr+G(n>I?uG_Mu3h?#pyD- zB04HlgD~U0q+6$>TtdZgp!=q)+|LG1@Qs28qO=}l#MIZqIYgSG66EvUb|I5n+rM0? zyTX+-{iWb3(!vcO)C~(UdfD8d8YTcw^8# zr+g>bBKzbA2>ga47^_3_s7f#p=)FXs%U#UXzlM45}I z)RbL$-HEJqJeAz|D()3hpd!A!q1Ti&Fn=l1?%W(IA|l!)jIy!>VG>z(n0xz3!n~;| z@J)fnE?`QcI1!h~2yoJizM$%_dveA!ok7tz4%d`?C$ zuP@C>&aBfI9HKb)#J zhnsgSlrYrTFNQh^haQpM3Z@?_u)gT5aAA(<bNRhMOPSxe#WdU!)H9qdWLOv5uJoz8mkrhvz0sT$F&>{uC&gKz+({U2C<8K_ zn+(*0>NMI@m|S=Jwz);CsM_!(a<#^Q#WBz|NfQqR@71VTG}{9ry-Hp~hfk-lR#vi>o%p&|?c|4i;z6d2`;7 z?0;1Jqor1mHecUjYc6N4pgvKh@~3ufP8;`6=IORz_lk-!t(pX-V;c(12E~zCJD0U(@Y@}1|pf0{awu1}5BEq-j= zys0denps+yr(6Lm+;uye4%2QDmtgbD+1Te0PnClA!uxUzq6?ox9duroG*i(dz_m-H ztI_by1i^CI&L7Rj_v<79pIkeOGb!tdoj<=$c))poKX2SNtkq1fv{(P3(GUgwL=(^a zhnQm6pnBzNE9Q-#S(8@3p(6r~43uJRa+GxbbK=P_DbN~rH?tNt3;Lh6?Y^og?qif% znqQjY+on;jb`y8UMp_jJIetrb>Ux(>a%d1FB+|5aNPR0^*(U!LYsOVNFH-Njk-rvM zg#jxIZ(ahU(u&>cXyl15s99!oU}L|yo41SjRhn;Bld2qkbKvjP)=8-^ab*cZ2~#xq z&|sD&Dck^X2zqgZ1g`B3k2(^2Rg^on)66j@P3ri$<}vmiEp{L+>dx{nJ?*<*vmc>_ z8ewsCYOzINXwM|#;8hik=gDAhQiuW#>i909UU`(W0UqnV@9h(%f+QoWw(DwD?I*qa zFLQQb3>X5vjddTzww3lerkQWc-x)0wg1@PDOR3X>KBjNm8H^S|pYuEHhbn1(j{mvLXBkaIGCW zKPaLDpgj6d0WNIsnEUdC$>8*y=yJG6+UV(7pGqRMSYuKx>>_^~vR6|Rm3YE>%4EpS z6|JCxq82PM1H*OSq6}h8RA~C)gckP|t*rqEOdZcAxuY3EcSERW`rqy}~6GiI8&?qzDeet?sUX7Pw zm2~?t8OCuaXlAfto3HXc=@i*imi8N7Zq13iO<5}MH;5tGFR>R)rHkPe8z#kZ!VjZbOh$-3~9|>-eix;l&LfP!c!DX{BkndN{aHP)w23$ zYL7cll?#6^;h{*J^QvqX8I!bGwiF*7X&z3t!QrnoA`4t-&--IVa+qXEX+gQ{BMVI7 zt0o~hy1e_?tOj0EjC8LroT}L=tRS;1ymTxHFWG9OYT=Mhyx`&cu%5V85jB)^y*Xw3 z?VD&?fP9Dlg`3dfki(~4I_^gX)V{gPX&Zck=-{l$sbOZG^l@i-j#{dghgJ@~Cyv-- z*A@{P3gp@f|3O3D{Fp(-ssZPR1Zf%k-x3Vp#b6}@FGyz-1?s?O46)8-`@Apy!$J?~ zh5MUKK3}AWHqa_r6TAxKtJllhb%9VNTP;3D4FXO9=O5Rs93!Z(Lbmk2gf{d$cAh)_9Z??}Y9fqRm&657Dw7XyTWNii1g#y*;xcS<0+5*!ow zN1X7DWH20c7tmSI{~)?Jf1*Hh)C@Gi!EI)?+AU<>JYZ=)zUwHZ&HD;uZScldlu#c@ z$Ws*S>#`^ zLL`?GN`|0A_DgS^ghup`buLJebSpn%SSbusg^>7a>Ws#XNKo<}H5oI;=rfe)D#g4p zeSXYiXR*4Yt(1iwLIkB_av+kTsT?g>IzTA-K!#(0ZQrWZ^z-uN$H@C{E z-f75O?d{x+6ny(sI&C&#An!HG6T0(pdLnwv>RTGa_tTtlHQ@jWeDCdkoji#mfW&uc zLQr>=TgTH%XBiPgYtNJ_J=Atphi~osYTmdiCmBy4k&xRx7&+Tf7%C{!u^|2!m-~ev zup=q&o)R&2hQ0}uP7|uj1LY`yV*JzcT=n+3MFMf5FQ2<~Q|yTEQ;Q*ur-r^wn%1GR z(C?oT{<0ACTS7fAEt_t-PwM-naXA)|#PoBbm;~W3X^oUS>T6$mEKK}g|Fa|^7p%5BKhio1``=k!ED9Fau0H8QQX~=>B?n)Kd<@fY+RfkZ8;YPp8 z(-je5cw)b(FSW;$PNcZ6vl%eN>eg!!haaQ^%GPEMg=EoJK#1HxfO%;3$J{Fcnc zIDEA^eUV9u)R}P3#Wo2rk28fsqZPOqF8H7(m!wYQE7J|;*=NoCD~VrWJ29$OkR%)K zDQ~l@tBdr9>#b}!s|{X>Znqo1jn)^}b|00py8v9ndls-K^D5#dR7j;{ue@NOopmlJHUQ1))ro|YO(;qU0QvCSKuSE0{OD$ER z)X(S8Y=}lsO$q%=RF8Fp#Gp;X1p%Xu3S<{elKOf=C&YwxIf*;fGHFkfXE!;ts1V~J zNnTDB6)!xni^hImdY8ZV|03+I!rJQEXi+3U@BqPz2X~4)1c&0qDelE7#WiSgcL@%~ zr9g|jyF-gZ(V~SG>(2L|i?i?c)y%VIZf3Hkjdw^iC{pFJivz5M?BmtyLwH<=gyNFz z$9^Hw(W{)!ap5_TuSwo`5Q%Qxy_fW1HUv@}j`V7kz@NZ~X}RfgLV8}7V$NxfK7l}g z%$weEyt|2JB$q(_*O=t_B|MZCi%)i3-i&Fi^&@Q!Ji)wii{OImjyJSKdwIoyPmZLl zJ#>KM^?i2o4S7&{9j(Yj@t@-f(2i+Q=*y$_nc`*%C_+F z)4V%m8|k_5BFc>v@GzKVNW-U~ce#o6??g z)d42sPnCc2h-HQaWE+oy4d=QOn&pj>Y8-OASWZ|qp~hX^xVX(S2ttXsM})*vBd9kiN&QYoB- zL@;%@B=@(^L6&^?ne42}t_ntvaf9xIwlx(9%6H>H=FD@lKG)34?%)Lm>(@1*z5G() z?B5BG9~j^lv5jlj`|~)>HYntG1r@B^59(tpbmUAiJ3UKdkSjC)VjH9<&|m6Ll)+og z>0hn-hMk91g*d!>CWBt5o69w?xd+~g*{BY)lrU1F9XrlriL?6t4s z*}w>XHpdrwb%m=GsxtM6c4dLy%5zKiy9$W+_FD8M{-XoX*Ov z=)ultI7DhPDx(0?wnM4aaJ>Brqy6n3?8V$r%MK)enbsj)AU zfVE?VFXd~rQ!=}|TzvgG?C(o?R9;;E=kK|i8=|I!z*-2~{k#EfQ{QP!Vp#gEU8ZA@p5n=D>hZ8)iUxbEJ6JQo1k4FLWZ?A zhJW4>?Q$8PO+1MWMz4|>x(6F=Xy!#puZfZ+J6B$oPwO0cYB94!H&z58RIbBHZKW42YB9u&BNxCF zn_#MuoA}LVySQ0n^v#vxIBvI>LJ7l%j*1VN-^*&lAHNn}g@Ezq*FJ+2De?=RR7m+h z$i7?GJ|2-KDqAPDn`~vaFJ7EV0XlXld1`>bhq8R z^<7l*&YvbR`?zEt3sOS*Eu)a4vN}2Ngb1>|suxn!a%tlqKza;Yu%0#ecgbJOG`XA^ z)L*rvaWzJNejR47a5n9tXebE{d;Ka#G`bj-ouuPr64}DD^!H>&lJ^^<88@k~23$MG zL-}+=UWlZwK7>+hPh>L7dJ$8PiToA1*vrkor=R~`?t>q%xBl&Iy+jo4c|LD-j0FGv z8T_yC-^ESv^Gxu|>A&57ecp0%o3EbXTmE0^dN|~)s!>&f`Zq0EgCt`UH1_vvwZu*w zs&#{X3g)JnjvRVKg^K$xr(Y^LL$hR8Ds-=K);a$uy8LcsB$*-^HK_}-{~}YI0F1~; zeoL53TGRnb>?|3%&YD9F)Kw0bIkk2(1v8t$$W~|-jz{E2WuRJnZ|6}WUwNBrYGa^t ze>6{ei-9it(cDLviVVCI3e}+^qt?KP+*k-r9#|SMQO%8;9WwH6ycEFWa*W5v+nBPc zrs=R99=IWpXX+9(DsHb;9M&=rJpiZ5ep#l-Ll5pLAYiFstY3dQdDA|%uqdXoX~C0i zLPFm|oi4t!*`DL25%MoboW4P8-Y1M55HO}GW}#YH^>RIp%Eof0XZ*GOyO$#6+>KJO zv{2b_##`bW?b*o~pJG&XbW7F9d;E~FmXwv)o!L>`Ug?#(SvtFOECEfHk~mi5hvFDq z5tb62!Ib54@kkQE!T&^E-|6vlzscf?G^nSiu5|SZ;l7?#Lq*#_gi;}z6@E=kHB^DD z@@W(yfesA7h$jI08bK9m_&DK58l?=H-W;U*lPZSQ%soYP-W*Zu zhar-il;Ys{`2O^^Q?i^B`7Me3xMqK4|0K}dR7@V8oQmo*~k@;)p&_KWP-U{-|6 zh@EB~-KTzxWwyNH2P*E*whtyO&5jQHARPa&hLdM(sL4##Wr3b0h4l17xU3ET-{}7T zMqpKeneIKmd2RyjDk5gfS(InhHp;{%H=*6KOMkVT9=8?2S#UHZVs~0dM&Ix>A1bJC zP;(55HLM@}?d0Du^*|Npte|y(>(sntF8Kk^NNHr*yv0}Sr{C2_JhZxmpZg8YsXdPZ z8i~Ici<>Dd&$*-p6dR8$RpwUz7eh3=f(QkZh?2r%WR18&WD9z-TA{Q^kv>4tP zr`e;0B_MP&YL9;5mGpIX-|1x*lb87}lC@`(mz%E$=nxeMy`YE$F9-en!s)mE%aTX- zoKr{kVEs*LMTAS5uIT#B0kbE=hn?gAesBL?wgYq7JXVZ?DIoC@Olz0_1e%xW)N<$liUr&p+Ry3=hr=IWGw*&=M>(VP3bZV!=xBk~ za0!+hxpyL_coG8CEcLT%nW8&uNXx5$9{HKsiJA$R0U0jQ+2OR8H8n7AK(gW|w}i3F zws2SL@}_hyowo#X;>-?+Qj!iIupFYaa`nPk5kbAOrv5FMiWl?+NJ1=T(ihWcdgYOj zTyH+Bg5kCPOP3p=H#9=%4VT3T@x2@nCeG*qLleh1b*tC!a^}Wa_BuoLT0hTJw=|{i z&va4(^1fv-{-qK6D^?xw#G`DDK(HWF?4*bHsl4nprKq{-QLeUq+t4+-x? ziPh0tyoF?G&|Y_R=trq#cCeHrYrPGo@|{J2C-s)2+Y$iItnout0nlpMJ*@yz=xm1Y zslD9WCPVxu3*KuLQ-qzDCFu*uc_PoC6HFeZaWopJM=)0fdPoXY=qXG-@1$>)U{L${ zy;UKrM+Iur99T*Ve^Ne(3;f37AoNJ_<#&c7j>gfcTq|-x6pp|}2f3+Y#B3)AUk-Z+ zz<@iplWbeip+xTK-&-#xvDW>`ZA{c&Tvx08}S*j9aqjJ6n>=njr$QC1xg`4 zrmzY@(#n>-KJ)g4qubDzep^_rW3=q#*{@35-=73JQd1a;klw$mFABkZ34U3@MB_IQ z8&SscA#y81;%n0I{)>Sor+bhf%+ebRm)s%!j_M=mvS>ecrwDcsPU$L%RI$ z${hdCmf!q8JF(qu1`WON)Y8rDc~WmVoa9VbX<0~EDk}F6e!vgN83=vpyY(6U)M*Hu znv?f#019qGvFF{FV4anxsIt2aaK+zoPS>96VS`!K+FQ5+jY`%fF>8s)^BmVoWqEit z2|=A$3+OqYK7(Q>Ngw+SQ2}HM+jGwV4+134o=*8Vx~9xmrIx$_3phnU*fi><(ByAg ztjisO>@IsM)G(G1s@u|{pX@r?S3c{e{J_{s55M*OQ;XQH%zcxb^=d=<71h5Vws9X- zd>Qp7&6PsA<*+D5E>)i*`a53x?*qgVP^Tcx7mL+~40WIMCrvp#KB!%ab*fdY?N^@1 z2D+t*Q4&S)EKj77VYgh*vKyFJGfCKlPO+0UhRpsBL2Je6G+Pf2Zl>dUHg$r^T$D!s z5#-93y#PRk%q}!tfq5rx3UUBl=5o)Z5WL&hB>HJ}Saj?rG_c{N9wEHT0t-R)gm-6Z zv%ZvjI|rsbnACFAgg*hEx95MUD?4<<~)v|{Dw?H@==mJw)1XXSx)t%C9B zfqBc1vHsguORipVT7u~6D?zJfVX-w!W5q&L6j&Gqn(EmikD#!mqo360j!`( zAN6hYCwN#4Me%l2!jU46LwG#RXYd`hyNeC?jPmFD45t-qmYRqlN`MqFJY)3*KA@LK zVlh{>$rQoIAC>jxFt8?`=0vHI&6Awe@%$+%6RS%GbS=>=Z~1`?AQSd#hDRuNXqD@& zBhK7s^?Gxl+H_Nu0=YkOH}}^{lV_V&6#vJ^GUC;NF7A&kKlEt*MOv;Yx2YPpybm4# zdg0%1YH4O$AJV)Gi&=@*nGQC;OO{c{ zvitK3J6R7$?&^lthECoVm{8Dd1aS`}dS5z(2<-ds^P)J88qf3gZ3L4;9yejDsq2HA! z>YQm#&u}Wqj&Qsh=e^fMs5DN`b2MNP@zi>e81gl}@J}L>?Zr!)rhUY{Zy>H7Lwdi1 zgtlWICV=i+TTWl{6nE3=cPsZJg)94oOzo}fp@GIQf{~?6 zt?1(wQv|+Gg)#5H;TxF#>K0xVq!dcSw%_DO&fP*d$c})a(n#;dKR!|)**+hHkm@v$ z^CBv!D%8g<-J#O#jt4FZq$g%;%l=ZfI*7=i-1)Z@bJEb+P8IN$0T3;X?nc#YclIk= za$pxOMSOJ#>8rox>~!22jN8z0Q(IcvuT`=>q-E{TdkS2rhcT9V$<6Jtojd#fH5 z+6Lz)VePjKyw&;rVWxF=VpPL_g1zAPmcy}S{11oikUqok-&<-!touB<3f+mu`P z0HN906O?)c#rQ4OD)vMw3c?R#_~OO3S|hJa(mDFg-RZ5L2>*wAAE&Pdc}=5|L;C28 zE&XF^H?6I&M-}8FH4EDkMYxO+H`qUWW=k| z-X5*tl*c8?nhpLt<4%t$5?;Q|@Iwz>EwX+jPg9LtXYjKHr7!2J&Gks^z#8B|`eXMj-b`gC`z|cOHMD zQrjmU7hpAW=`6gjP2eNh3XRm4132K5w`&sIQ1S0WP;T;2Otor1<=(=<@_FyNvD;WS zu?YOHIexSHaO?6Mu;Vs4uo;Dg`u>fdQsgAL14HteZR?mb<6PO~Su#&Y{NiM??2fldir%R=8vWwb zKt8v)y~WH&GCB4WZj1_Tw$*9E*)O$B?q4WfNA4+Wlsusq?@b)p6JPTwp0lBNUBcON zNub+F6KpwSn%8*Z3sm%;4Jv~xE%IR88l?9(^HjyZUo{5m&7kt&^)zmiYd^Llf(>1z{>PtNR$!;!i6uM3DC!7+{I~S$Ky-yq6c>wYP z0r>4=0n|~n!t6~I2pCsr&6z|-Qw~tOrK%-5`G|}O*0f35+pi`E)6zd54XtDka6Kjy z`wFWQxk(et%q`H?Z~}{?!x~!S!c+XBvIJ~V2G}uBbb%Ze)#ce{#^5LCNhIIg%Bh6KGUKZ zo{~ki$JwU_@5G>__y^}`Y)<>jv0Gx3nvbdW)wL?KFmTJE1kWr?r^Qyi=IN_RSE*4X z$#@oK&f~}Jqau>z2dsD!l~DVRTCKu<1vyiOyZG+@18!ew1ij9Me^%kd zFV4*Ttz>0fQgZ9wkn$lxjrnD}#~=tt?8e+i)7Oz+l~!X+(2^%~bd+BqtJnI^7bC>y z=yrcG4{f=;KLdc6=vWgASPYq6$GB3I>MX&?RC{-z;HlN)6GP#gzBZpiPVz%gRYbGR zyYnVHN38`AuchohH#wS#YEh+p~yEjxl zKl>k4o+40$Wj*e1-^gz>`J^4Q%O)ut#KB9Lg3kRTU3JhCLIWpVi7#b9<2XBF{=|g5 zQ`_BbQP#fw_%Yk7qu$|C>%zc?^|wL1a+`vGn&bI}40~3UHpY2a?;n=7<=hV=K0N#1 zhLfNO-VFr_g_bs~THZ&|A?W-UR~2-?eTv=sq@C}7+or(Ae;n2}s`v7*&7|&+)5WnCA2H^HV6VgVe6Li$b`=_4BWTc=HyWxn6$H%>e`HZ-=ocOEb0HKe;yJq zyjYq9WAxwi0=^v#jS63nWEHIw-upGq)7PB`#bvX45=R8sR)l|PZj1^(ZYm~|Xjvcl z=)FVYQ-nbw@oJS@0&&0&Hd zhIs%l5&WeZNtmS{h(-I$m4?OxM8HwQgzAxmFO3}er{%8894oY0tu6hP2MACE%FWrr zNiM^=3?1Db3b#n11gKNc`M(+M1AMbX5&=S#u{=QXlPTOsa7fc+&s-=({5e$RJ+$G| ztuC?Tth@Mocdub$FL7qtX0K4vuY3lLtG@6DvI87FCvWOX(-gfkum2i!_cJ01e4Y9! z*VjL@g|n;=s)m|I=Hs-D&NqqEPy$p~yF?B`v`@Gd)0&70yj1*x?rtPmY-B0_HU+IC zRoHV@x!TNXvQ7t-2Q}B-wfaf(=sg}eT(daHi5FMqd2fAxPa3IKCVm6M`vPd#u)~UT{b0f@%5;49Xze z`<}euZADqP7|8+TD8sv6IdsFESS_3FsCAY}t_x$@Rzxyzt_9)Twc96hTWqp*KKz02 zBsHon_L2y9!cpnrDl{2Grwom===_yEYectm{Rz>`|(n$BSb11xts<>#vq6)pCd_`1>jq zL3kMfQ`I4Mz=ch!AtHio*6>ZtUAhETT138W;OdM89hxt3!oXtQ6(^uq8W$NC2>Vc6 zS@TxzE(3zSc+XZnnsEY@t2xKeQbWM6Jo=Jb1Qf>1QzzT856Aa znRo*_W33;iH(p7hxXPzB!Ir#7@Rn5^t%`*)eLN$eMf)=crv8TP?05`q_6iut36`$@ zP^UxuWd$YJLUovq#hO^DF8!1PhpsS8R_BW%5Mi?H-#q|=ZTqjqBAU@K5%oeqUsZYF z2eN+aKM82>YzrS|4jhsit)-Z|dDX4?L|d^0 zN{;m;JBE^J{c_YB7hw6uc>Q}Z?ykU5%NAWx)fjzjC$L-;6Xn&Yr~V@efelYd;AkX} zQ>W;LoU@M0_OXs)j*-$uP7X5Z;@}YYPy2kif{5*PNo=Bh#>CZ#{FgX!qrY3k`^W(* z)Ll&e($v2*>91E$K+L~EZ4{RCD^>KZ=dyaw#ZlU4N*rQiC6LOhn-aEBS&(p{?UzeL z#8)-V(<9tZ7sz1Cjv1qm%x$CcxEz65 zav*YwC>6kKwzcJ|NlBW9sPX81-9Ivt80ohQVVrpRV46Uvd1Atm1ang%%^95$VVA~~ z>T$x!#^5kWS3&TmI4X)Z8hR*_I@LfwsX}uphVfHXl+Jxk7QiI6VoAU{#LLUu*uH?C;E?ZTu0_u2?z_Rg_%VrK%|Au-UO~|xAbi@M)87AF%DAC)w&m^|Yez*1 z{Gwv11dgeD6IIzq&kdwC!Sq|>W^uPBUbDx=jT$5>N7Zp3^7lJtKXaZQoGqklmR~`u zw>n_>A!dKJH&edO_L)M@=ZHP)UwDmuTBK;I)bWMFav`F{3&j1>BtDi|1Yixn5)Zn+W_TqRh@uQ@2 zj8QWB$l@H4^R3)&EYw?@2`qdG)uV2;UEn;F$h1vcU_-8l=j8}`|D^Ct`;uwze+5XR z$MlxeLZk$ytbQo^RS-}TqwW&j?L*YqJf=WjmOylGp7ANs%gCm3>pb2=CEwbVKgPr8 z*nU&HXrTP1f2M0znUm_b9)_Db8Yty%iYCT@037oNQ!Iw%BE^Q5Cw3G*y2MY6n?`Qs zXlE)m&I~ld$-!BbE07^?q3ql^#578_AbM%8$1BqTJZfzW^)c}>seiDIS1%&YKD+#8 z4o(*WMppxj=ivlYjZr1$Al+zT6PUQQQB(e4E~}|Zi(zlzhmP$1IbX`I+xSz9H2<5W zOG~_xGXmT?jr{d@R=DJU;JFHo6RCOYCiBYb=U8#IJ6JVYCzydX2+-X>&>GO^_9Wjd%eHMXK z=_pEs6SkQ5M~)FvAj-xSgnKXTsqOF-JA@mgAZ4?7R@OPi_zi(Kw>X~S@oOW`P&#D~ zl_Y7~sUYhqj34NtJKO6543!TF`yjk#%KMcCwAV~L26E`*wNvC&nW455=+UwTmL{K@ z>Wpc~g<_;Bb*WiV1pk4eBsFKcoiK+50-NKmH}6 z?P6r@$MXP#?>?!2RNT?i`wI~F-`r1slya^7<8Hk(e}b>0CO)A2SzxjNsjrAcYyR1) z6WyWjWV6)NzHFR`?j2%&fw*7&tawRNB9g%I>d_WBCooE0ai0EGxD3wCUl^xzP-lPB zFc3LoZ=-DVdTVVp26x86Cip1Zzlp!y^6Lj9k>v7`ciy#eZa*X(E?H|m?=7X-5&MtP z+6npNg;c<0hOPZ^q_F)EE*4dKioQ%kt6NbqF*H!ERa&3C6C3;Bs$D`!*^(pmaNaCXmbP&*{>5rMLh($%phU*bOH`8E=)~} zrF0c3CzC~tsOCmyVRPSH;KkbiSlgDn(@l1hl-xPKYA~Tj4Pv?BhN!rN1i~8To`e%IL=d@flLUiT>@kD`YXm#`+Xfi{#mp^n3XfGCPm! z-VnyAT3Jb4Y#R!vbz>LT#1%1Mb@K>YUi6DYiCDB~jiEYVX)hWdeNm{iKod`eyFg~8 zef8B*I?H8|YMJf)2(FpP0@FU7$`+U7vL$JONSa(xh{-ICexPx$W{Jb_xsSeo4MP)P z>E){_LjOBRAPak?1Iv`$6{!TcMxh9-(w@r^%|MaoBvD*u?W{xFd+b^7EM7?AcxLvspbHpOs?QdpbKwdyOaqB6b9T#IVrjeH1LhWG&gK*5y75Y>({(HfAc8b}J|jpeY0#KVX`NLu8jd$Y8Pr=suGC>b}~ zV@+n366Y4g;|?ENiP<3f44Pd%d^I-v$STr#P5Xpg*M6X(2&>L8c=GWa^_(hg*t=WnhXHW`Q1VPbDA`U6xZ&>1NxUn4+{o1IqFc7g}8m zY3W*yItl?cXUQd6$g;&;qPv}IR@3_xmJ^{mF~6&`F~swbR#&pgg>PK}H*hLI$+h@2T3@C3eJ34Ry7?JW z&uTP=1!3S|h?!H;4ObpQ)If;wWLbYu0y7gWzIkI{W(EG6XSlY2H|#ZvSyIz$o<_WC z(O7|Dg?Qhu3V6n2T4E0hzOl0JB09+8c%#TmS{?@3$QIMkBe!s~dY^U=ZE0ykiG6C)PfKhM^K`Zfs)*BDcp|o?<_H>i9}*VX5ubCVMY7+^s*5*bN$zY0 zLT%=N)25+;YY=a|5s4;f66G^h?2_T=NvS^UiXBFqNlZpPiG`DM+^}HPNbEior18gA z-strK5x%YbdJeP=@z7zY)Xpl*HRG_&;O-MfGjID_RH1H%g9QCcHQjVA^py_AUmkZk zCc5i|+$OreTmmNI{fzGYOz`F-2UZjPI=N@dPa=c5L zP!g>KR~5HH$Hk5Hv=-UuT~rigPq!Q*kJ>6q@~(FqtivzZw-dN7T3Jex#4L-GE~iki zKE9Lg6G8y$cF1Ty5yxFy#GqzSuyzsCSR8Q(Mm)XZfWNvz{5gfhWM|DNVS#$)QP8lU z5t-b~=Gb+trQ+OT^4DKkel5>8YlY+Zm68rf?Bt}AvNHvE7_~yCCbRe7&kTjweuHny zN1!;2)EM&rpv;u~QKd#P)B+o0XF>OIcR16XUFv%HG0m+x^Du!tL_%BCu$q`lj;Y<6N#aQd4)7Z2@ra2R~f1@i10;IxRPh7XIh>KI7CJ7lW!Yti#9Sh z_Z$JLL>e?S%Z3G>hEf4o`%bLmQItdy|4zCn37bX978z{}@i%6pff<@ZVAdp>Ns}m8 zDTopC{;zXM$rkO-ww=A}TSh6A7cm{JMQbkJELc*EMSmuYxjk5@`SyeB)XvLg*|W-v zb*N6m-u7TAMy(LRGvepF@G?vLd1|8i?FI*fpL)oM?_`*dJxo-<@qj$z+|j4J4|`@6 z+X5T%`$gdO~?WdOh$#+tcxHAWXp2iJ+Vb<7wQi$D22dh3(Vhp zgeMh@i!*O3%`!B5xQc>|WuCjkAFMEc|0F!AXI$KR!(wkIA0=#P40Bd^UcPW_%?bL( zbl!0JYh!j-G-I6qLKPFV7ijNnR+IgdnR&&(zyLgrpNt8dQMPl)i77%f$~ojd>coWZd$EtRu)~_}*1a!^6N8q`{A^JCs$gok znxnNf&8e@-yj!Uhsmk)QN~%UJNdRUOVaxUU0bN(DYy@ry?<$oTj$D1OZOkc$3W)$cxn z8TS1veE5i(bq-AmTP$S=*VQY zeO-}C;TH#8sXGAjR6FNw+fn)^esmR0OzNtE4jux@M>iM(R+JJZhCmYM4DZ=tk^yOxUj-9{KimDd*b`2u*(G%6>vEEVUT2;{HN)1ZA1d#8zlvFwE4`Z| zh~oUkncOAW+9;iG%~ccsYsxmx_t=3xl+D_0-s|=78z<$-Uh?U{oH+I6@=#%zc(;vGxe}`-;dpdtla9okM_D^>a9&8fvXbs`ckt0hq zrxVH7=yrckwC0PYRv~w*4!Er0g1TKF*+%T@k|$b!Tj!139h2U8p!DsBgroNsFmnX| zoHo2@4_{xh@S)fDoZehSgIg0{^^-Yq&Ax_e>Vx9R1G5UCNT@pGX(i?Qv=_;wm`#V+ zFhAW~PLe=hL-9OATL2|3N@%XMa4$eoncnYln+JyJITS{q3eSW|WAbWgNh~I0v7!9< zy^t<++M$U8+*%CUR$#USLe1{ObkcFT z2EIh${gLiQwwYWP0omj24>wDYy6un-~InicjPaV+UN=c<0NTYFHmV{S*{#(GnC&+Sz+vO{XAhg+4 z2$nLyeMCg2WpQ5LLYBbS-~p`ney+nhQS^kAjcF=iRusCA7SW(6pVWNbH){r-BS|^x zspP%1x~8m>j8Jd7I|N1I(9ev};t(Yt&~xp%>v>{YWJ!Ay(czG%5jpO~Vr}QNI+Prd znK?XRiWBJ4P@ZU&5!<5e7yMtxmzd&wW)X>UR8$ zk{lmPhCRPiSdBhygN(xg{j=n^km5u2qlu22EnykkBm_|R8C7w#tu(f(ho{9{<-7y# z^;w6`V0x%Ej>IT?m$(HfKn1%iFHjo$cV^gIMq($dxL?i(X&B6Z>QE6ddLwt(AuCD< zQ2>3^u5uq2RbVO+TXBAkb&@gqc*=fcc%3d?o>e#oooj!;ef2AZxr-cMCq7ONQ$4J2 z1Cm%U_Vyafb#Zc}2vvRzAboDovP=jtbV_WZXgfxjmUb2NoAs7dMn5*ZrNkmYHnFvb z$~APa3WXD@MiLO2hJCu^qgIlZ1AT0?kVb(FRJ*;x)Inn4iKb!cca5xw*0hGB8OqrY zkb$c%qMg??Cf-kUcb+S@bqCt6kpjBn(dq01bK4cs{+U#8Oa~YovBPS-&4#D`2%`cK zN$cHMI|1X_vuBCcWWm|7&%XzRY^Q)jI1NAS`GGW}*v%O}?>3w?{S?+@wmxIj8ytmd zkUp4NN*WxUaw|UmtBq^C_;*oao%AJ0_RO(MAN5Yk)mr_GN9dn6Y3w~IvpmY^M(S)! zjQPa{Hb)LqnA3{Oy0GRKHfv99oqsPWtUr$oONJaHcOl(alY9cK0!^Ta-${Cy)4R_7`0< zTL@00^BtN6#)OW}s<2rA8o%t|7u}hqt0==?Vu4cJuS@prS(aUv|B0S#@hLF`N=3vDYev374-lYa!LXH9|f0J?G$ z)8o>xPJ;qsC_V($Zpd019}-3+B`b~3wD;G=gC6sp1&V|@u70$1`$C3cdw=(8Z6mvB z$Y```)i5zJvc9z=f#RR{_%u4?dkZvFBcr%S(a*PbE?)7}`v)3zYwxYKuG+ZCNd;x6 z_6PL&bl%w=g9%JJw__hP)gzrUUA!Jgxu)$_I5H`J*jom?{^7k4Z|$Kh@$gzd&MVIjkg_0XI&gqxwbEJg!B4SZnpI0# z&(>}6UJe|AnzBO5c{^)_34PTazxbj$$oHP(Jv08!;P(t&@HyEL!yfrZW0pg?JrYfp zA1GMU2GT_V*eqV`*ep73$Y{=pb1(;q<}3pC#X_74>9JW>t&q{eIN;{VXkgW*koTTV zDE@qF>5vXa2OkP{e2F;UdM}`{b7>O6eIj&Ql z`eF5tod?EPPQFl^^?|Mi=MSZdrE3$YXm3U7!f6LaDdKi3TC^U6W%pN=V%MC??AP4e zDzqt1PBtTgyc`_D8~`*woIo;$Rf7)6*%YmXp5EE8wsiT@cE5st?SX0DBn=&P}yVq)<;Qe^sjpTQMjCo`oVI}QyRSfrR19L_#Mz$^S`A7 zsq5H#T`tK95FQP6+{%FKiCfA4j?Cs#-z9w;Uij)h*QMiS=idBHINHj!8L#<^E&sjw zmwbD%R2lQ#&eHLIunqps8GR={1T~vG#h*Hiq3;DviTux~X-#+xZDy5LXyR8~+`pYR1uH7cIt@tdileo4v**Bznjj~G zGy3AtYw+~Pb917DW_Mu}k1F82ns_>iB>{OmnIN8$yd?h;Uu&c^3(Oo9q^uExNZ-rf zc6*iu-QBg@ z5=SGhV`Qx?bJUh$<_j9$V%Ls5Oe__|a^S6vF-|g>N0?;}#rwwWx^*(E^Vd8KO@yZ( z1xqhU>n9hcoI*f~A32CAbk6%P2I2emUfQL1aM3WJy5tbh`cU z{LOZ3x&@SoN>IupiVXqaks<)R;hUu4l$L>F-&=RCxVAd8HsUA=?a&?1Xvm`mY-3xG1d@l`5+ixtf-;@@Gow zv{7^91MEM8Kc1Ha2n!T?1fkWr%|we8A|s_AZU09AmAQBzbilke{T+X{~ZAY zgy@-{5$l_SX0dQkP8v*;11y`)M;$XCy-X!5Z+V(smMVh^Y`o&za?tz{u{br4X#sk+ zsMm&}Uq6m8=AXyCDgW}(X2NG|eqcK<{dK-kySsYzQwQurh=zzA_pSPLRS%_zpfTod zoTuO*RMaoGYJu#5^NvOw4YW6uo5AC!V2%G~d%=V9^5^uY|Apao32zdiD&r1K<$HUG;Rz9F^l7|3v{Ol-#f&YVavRek=8iuw9 zMGcdP($(#!*k=Bop(eZC<;jk(!Z+SL-y9fY(p}aK*;5fN%@2wHp4x(+pSE6}&Hj=5 z?O0#*xYE4*rTO>x?`5Xq-!;v@KbikV{?X$}o4=g*OMpA|MVDvXeh%r||3%(tWg+(= zA0_|(VdFsDW#23KWM?p$qtPj9ZkL;zm$Qd3J98TXsn{Znyl(e9e~!SgZt*Vt6? zMWX^0)oJ`kEeCSZ+FWs;aN|;|nNt^HX^EKnPL{?|d#bi#flm^VZ{_!_J@re)zxWjh z`w@-uDIRE*RcaT|K!P!3=647k8h2!rMcJK9`N;M_^)}(j;C{h@*4|mI$^_^7ZAe7J z(y~Kn)VpYfDW@YIL;yO>{YdF2kl9Rh=+CF8Ar~PEGS9V+RVQvTY+|_T4^PpK!#*X! zCW@-fPt-8d#~)bfGd0b=Qtu7s0^ku&@AedbCC+$w3cFJb8lFSr-Fzp%V>EyhBK5w z0IL$IItb9<yM0DM>$=KC@i@1RBbS@=EWomG+6i;E#=TZlM4up4Q^{>W!`nGa(QfzeeC6{&aLuz^g`lYnJ6(KQ!$v7P$Rm43~nZ-lG zk*=eIdpyTyaQoWGiGuIHIk?3)c16!P7^`)QLEO+Fe#hAr!btODb7{pfZEt-&5wj8L zK!8y17US(CH?K)2)237M9;sAqMT6XCX6lXcTJRqW`Z!Gtb((JzPh@m0x5fBj1J)9!RmPZEWcj{!7`y*-KgG9zcNk<1!Sf(wF~P{tA$M zKTzx=I-9Y<&swQ~`-OTH+rc6Vt9Q@sMH-X6_=h!o8HolMGQ1WkjlmAHB>4xcgwrZf z@#V@M1CX~=q!L&{R!B!En#Uqhtygbvnk)v8VZENJ?3bd}cj8erSPfNI^QbJ+j6S>+ zl;#lLpVcVWdX_BG4Azy@c$%D_y!M=ibs{T@_z5-1yKVcC1#zT$rD_`NfNd}*e5)*~ zdHw#vJ+CZV1#B=CR#jXWz=Hf7j@D}tD~2go*JMl+HEKBGvOse2p|QtX8J^gZiuAXC zI@UI1(aMhXle+TVx&SJJ@vV$~>q#5$5WC*9UxJ8e;ChGeL1SuOh#x%=>{6ZiJ@Z-d zoMk)-;B|$vrpf27@Wo6_^wLWBiGkNv9MT9sSb;9ig<2GKGauSeeZ zNOL=y1mNC%7c*;Xv)6ilzBl|f%YMnB8U*HOo9<$9 zT$eUrlvtxdQRvZxe0o81n@8!Y(4w)~O{hE3h()G<)u{Qx`wZnC5i_GHUc=j(u&>T1 zQ|hl}GVQ%YJLP11ln%#pvgbD#9>TMW=C4<>uPv)CJY@bcDALy)8CzzoPsijrt)+ho z`oSEW?F;j%|9LLUZrceX4$%kP0+gv8#4@*q-5<$NoS|TU1bTb*u+;z@0rV5|DIIl~39~VWv~t$hg-i)N(S|W8B^QL?wMF~cRF2g2GThvDQG^KAfVKiU@X1dET zJo*@3yyovFVJ+Xh#C6IVz_{;F$uSuUC~4`(jKRlV2Zf?JVN~T`{n6)!=i;t{q|Iy- zJg2=xc|S1F!v9GG-)a0>es|U^hCP|02&6^NE`$E`itZ~PEAiuW(xjW`H2x7Wa*8!W z5ukwc^qkM~<;g>n`j24J8@167n~f_37(%PJLDL_dU6Z3qF2B3dArgpu+Fz2maiJ>% zaCF~s6EQ?mXDD9UFxLM8BSGB0zSw-DkI9p!ZxzrQ<=WQpJ9}F;Omb`=3A#Etd0X8N zDiCULyZKQO9Q|uWovpb)8QiS>XPfG5OZtnwB6}p`j$aMIiL*`9Z;Bw&9z7CuVp_eg ze$PMbAy}j#{xrl>+;;SrAqZ&bL;g0vpf|eeT~w@nZ1b62UO#a}c1G8^h*%YYf*sKd z0qJVvQp^sAOd!vp1~=LVnjzkDXqh>+B851UhR3rJiOrzGBb;tV3QI&c7cc3^T_u$r4NI1H?vJHjtSN?8>%PMy@F_*~3i9+F zXoYPXpATb6w{Lw&`Xg4g_tFO6;JVR^|g;QZyQ4Q zv<%o6B{Wa!WLdUM-_bk~0SoCBVjf3OIB^79MTGP70^1CE>?CL~I z&;h3kvsxNr$IT*Uwh&I-O>x-m?pQ=AwwWzEKX1uQMWD@Mcx)HLeeZZl=Mcj1)CLO6 z^(pK(oTklMdEvpOto|k53pGEs3c)KV;w0r2aqoE%^_N-n_co5Bebvq2qP>ndoQU~7 zW9Xt3+HzE6_KWsa1pdIlrx3)bsiDfqTPjh#O~y`cScMG)-IJk)$AIQl06v8WG0;2_ z(e5=4mJkFxo@9x6wdh;&Gs?Gsf*}@Au*3oirdU8h5DO?+VgUs?ETHf%7ErLn0t%*B zK*1IZC}I;!FnD7{8otL03%xs@X<4B&05(B#{|I;qCkTT zVKY%&{$ph_UT772SMUPxDKGSz?*T8=UycG7Tj}7W=9`kcRuOR=OnC^DtxBzRrK-$x zrBFUW(5u-NWOPpunN`O|MG#n)DGHjWBhA|+QN1dJv+#&x3jkv96L)mY-qvn73zwt9 zIoPx_7WA$HS|`Okm=Z+XOo`G}Kx=_wiw?XXgU%~ca4=+?xQfbF9@SPj%Zbe-Bq0J> zDr~{Q!w^JvV}%z4f!Rh>TM-;4*i+yIli^+=yda3ERcy|LOy4Map(3KcAiSU=;<8kD z!G_@rG=4)z^y8qaX>`&HN;Vs01)G<(K?J5#gKJ&|!fC~OxlNQSU&RE#r%cfA z^Byok{pBD&p@MChLie^xzJmt*3=+-jwSL>_7h8K%J!qgJT71Hug65eFTgcG63ZOj=C6$H@-Q+0H(B4|?MC%9-`MG(R8 zZ8t<92-1}#Xp%8(nQgL8?bTrg88(?@8N(I?kcK=r<`R^kGTe`C5s8lIl#o`} zC_ywUn($C2ts}`wQOX{CQoY!O9I*^3C_&%H^BrEzG)XKS+}>x?cBhBnp0;!` z&UXnyrjUR{oW_}P-nN7ENjGMy;!MG!w9ZVGUEgKg<|(v#xhp&c;8T8hw=kOG@NydG zfhu%yE8Odz!ril<%b<%J;y6LFwE{(y+DKwHW_Ku}RDZ@Po+6ycqaF5wYKgAQTa+4g^sVsmT;a=t%R#<}k{=93qXb5rjR*Jp!{! zc5aa$YnDlnIu>^`O%9l%VC}HYBS`H>P-dF6viKlN@!<4Gr#TATAc%^{D;4MzPrqN6*#A$=`_eYAW-KTN{~_K)$2qU z?7h6J2s9uF7A<=UG$07Fwd{N0HJA(oKm;bj%hMnNK~Pm;+6xf~BKOu1fy@`(LWH4x z9f1~9ViaFN3o0=RFQ5gL5s1Ss_nL?_yG9FD%HZt9Efb^3q6i%d=buh4W}KWQ#p&5$ zo;xiB{g`#O8rQ*DlFr+s8lNAOnYF?T9?F3iy2K-{;MJimm&xqKYp0sGV2T(iVDLhP zkUw+Tu^KP5s=F(A0eImB+XthJy%q6|b-h3d>n}$E=dJv&r^`N)->>TgD!3sIYVa?H z0!j%Xv3(mK3Rn>jl)@N-ZHW|^Qnq6%iuzRq@n!>{d@|5moYM3cWTcTn4>wf63x3N@ z-3Dj&t5nwJnI)>>@>(;nAaI))h{4p#KPSu}2qKi?R@pp469R{Y?UB$#MKDRe2tpI8 zK_h=b5t5yJbJd^dWS=*4-6TunF9cIIfuK5nJi533z7iK4}YnC)~) z6fHXr9(KBs1T^9Ufh4L73K3itTY{^7DR(HK1rb6I&1uKQi=}Q$DIIL0SlVp0_5bv* z1xd))%A1W_YLb4?;$9d@wDP(uNCNnjB({2LjuQ0Cqk{F9Ba+za{5nZ|c=VhNG;l*4 zB;iXG`X}XtEMiF#6~SfKzKurvr24ZJs7x9op^6orF-J5}Mh#>5p*N~nW#mnNC}IUX zKgUH$D5BI_=0&uqo*+on$>_7pO}gahogj!lM@_XLxVPJvKS)C6m&Eef70GxI0w;gV z9tmSq#7kHd4us5Jl!M?uh}vW(3pAn6@b`u#L_|iXAqEvu4td`aiQ$F07PL5nJY;mE zp2--+o>fM$4^(jSl*15rDo8tP4ueSHv-si(6^J(B4h%d7fkeZVMg^iD*|_d7z?}*_ zXQc%iY^>2q#4K=7VQ^UB?G|*k<*%I^^@sGOpR|^l_uZU@Ix0$h<71jV;w?p)3Ot}% zb=hnv4Ln^}J>B3l8sP75jc=0%wiDr5j{EeDGn~a zPy{#K=8by&Dg9PHmP=#duS`a4LcaEaW)0pqDkIV_zSY0CLx0;Wey0e0T|cY(UJ*2w zavA@hvNOq!Bv+Q~R_go(a^(QXB?@sY0MF zezGxWRv<@Q+i-t2I2l~hmDTk87h9)nh45=2JW=I0dn6(Ah%LzXqO(TW4Fbpv`9E!~ zC)LyT2>TR&>i}3`+DFAUw|^9l)5;d^-w+O2=1aUvANxi}nKY~mCFK{ZJFth&_N^nLl8}YIzjQ4< zu0t@bg)GvYbnbHRk;VCtP8L_XR6-WIo}B+Y!^+f_5&hGerm|hVS0wk;$`to)h6Z1f zMenRPA&dIUERuVh$KZ;m7e^q9M?vM_3i}esq12nwRl&3xF|3G(R($Lc2SK!KVUIWn zAd`@gI-Mpt1vUm^SEqs3ATpB#&=Nn_UL~Cq-W*#RcteU&Nw11DrGZ$K?jU#PI13cA zw}FBwHc+s|2I}`M)E`?YxMSmqe{G?lk&Urnj|~(QvVp>|*n&YHJEOrNJFqYJU_*sZ zHc1t2Y$BpM$%QpFCRFUnBKVzDgED>to9w*VQ0Hp}a$BRpCOZ%1AXwLcn0w?IT{OD0 z3cYx;Y17uz_LLeg)Roc925GfepxPlnDWYjSn!He zTXII09xV~p?oT{s+(^b~2;r;)LNa~=MmQ@1ma!oaOPzGw69CE7A+k3bvRDC-%(7)3 zGAUEyNNlWyNXl#BCJ3*TBFH;38bTK3DcN8LF%(4WLA5vq!ZH>9kYyM!j1B1A2)oD_ zagc;q^m94?!YLKduCNl{vS}{lVxQkm5b%nQ=O-N~MW^geF4#oHW0DCg2#n^mKy(NP zKpqv4HVm|3fQ(d}h+ZUjMfn_J}u}&Ru}pZeRdnj)U|cjx0Nt;MI=37TqP@n8Rf4^14PE ztq$)7(g41+MUEGr#4n!eFDEyqw*Oyl3!0L~ff%IW9(V*%>LtnQkNAZkAc~A%=oqb{ zGR%>6;VObRCb~GX!xrZ_3lt)^fkN);oE{(+dvlm#V;t;Yc{k}U-}`m!jDz@XJPo3d zS@X0Ac<+n@S?Cve(9GR*Wo=9j{@6f48yhINV*>?&Y@lF~4OFv9>Y7ZcWM>=*Wd{bW z?7*-_I*jP*qWMM92#WabuDjfsXinJ<4M8gI|QYT7LvYAM*O`XRq<;n27@VLYtui8ht#=n0o%mts0dnp`xrwNht*-tWzCK$db!$(p^5Xs zE7(xcmg2e~CwM~Ev=zX*Jyf*w3Pj1)L+i5lB1w; z#SsT$SS6l?fow{7D|=YFuPOqo#Pj|*!N?eyzRTgo%4|(C5zH~swN-MCv$je$P)MV^ zS0(`GHbFhZ5x0uHpam!(Jzv>*6j=fRct&AzSuxv zhissrjtvz2v4LuKh^>MLb8$593{9JV7At`sP+|-*_qr`1vipuC4@JS4DdoSc2q@-`;FjUC5z1SP$b!5h~Vzbmg#fJ;GbzWOI3S4st8imQ;SMZl*?lwN7;1 zmJKi6(H35rWyZo!x;=Cj&y(|3}`;yP4Q_>XzR7@5OcFEEt*DoO1uM^W=DW>8%O zIytzR#=)~A4x{psxacI7zcZ&j4Q~;d^=QUTtw!+%ZmRa)M>jAK-J>S`-f!GSTE$YF z#PW|~$zE1+fA2MENa%s+dXdA zNTN)XN|NlHE)$`2$WH#qUwz8Ur${P?W~2a>n1)*XNS+K4atE&nAj7FhoFL+|31m$G zc^^GgB1_&f5xn+XUnCpJLLu_1nVAfI=(~E27|da-<>Ccv=n(FjgD_->yrB`Ys0d>!7?`wH^H(L>YTc;PLxKf4J+3Hp?9KMh^$Y>=wd_WwG_ zB)!(OjUG)=@5uJAiyr$YyMIMcTw#8#p>1cGd3ee=)5+^H4>t{6-ST#*i@LoVaPJT4 z`#kkh6GxX#Bnt*Z#wN+XB8H`Tk8SL&uJDG9z1pXh?DH}NU5iZY*ysg;4%w2j(aS`+ z#dwuThw&hAcKwKi2!O`vHfuJ0d9O*mpg+TNVA%9^?R@iK)0bIf?HilE4v}}Rsx(H? zf3pkf5ZMsnm0e#EaRnZ`enn7@?>R;6`Z`8jzB3fD@A@rgNUAV=NYl$?f4UUPLnnDK zEuFW{i@0TGU{wGVFo}ietKGdU`?Z)}e&h_7EvQVmqI-#HCdQ4Q>o1zw^LX*_PR{-^ z^}HgdC1IHiy5pyv`2|v=!^R4&%J2qO0A5^Crh$lMuOgqYLjC0|CVrGVE~>~GyTrt! zXA#1u6{X(X64{f&OuRkzl@UD|f?h$k3qb=?*qTND(16SnL)cTj5I3n?^|}*Sp#HzH zfGsq#CL`qKtjJnL9c@=h4dkV*W zK|l?*@v!q(1ZDQNUL5yjh`idIonKzXGho^HZG=hSTUXqik2Yt{{<1PrlHX`R5pk8n zo4(bHy_^*+)FsZu&<9(@7m*9c0oc@S=a0nvK;}l&um_=9TxnwT<6Y zC76$mUm!Kd+v>&}e6{iO|2OM0H-7o$WaEFE$fyN;xObo6SN9!p@$;Ar|K~*X zDh$#mR>zdD6%O0`A^RIeaPO`setc_>q^?go7~3ZIoxKA+&;8i`y^aX6*oN_g0$wsO z@S_buspu+N@?V2zi;kZZfu-O%WIx-aSSiz$UkrgZnJw|FeGfLNXh+yZU^E8s?j*n4 zyX4Ixf7m=G9H9?My8BCq@D3>MMflt1lx5EU7@}2EOZJvh<-fL2T(z+5TJ-ApXr}bJ zBPNXsWmU4xGW}}>(Ngd1z&2HWjAvd0fwGO3X>c8SJ9O?>UyvX>?-A?F%l^Pm*P6aEVL%giGv&%c;t^q*XBP z8xhaImt4}z$|qb>f0=!3+rXDfj>iw#-Mk|%R1$f$9nnh=y%jdxAr-6HF9^A-2-5vt z#Q2OFbAeCpK7>1t0sExy$kH;|MDXe}(|d*3RRGstxN(ZuNf{~yeNpnK2#n+?`4a?m z;qiQ=PUgW;J{(JmpnT4BAG(lFKr|)k!ro=+dV)Kw0@r<6a7RV7;LEB*`=2%--g28E zOd^lW7Wj~dAn3(mD+PH7g4Db)F?6M7CWay0?TM$!5OMbZ!UR5>w!#qd#lro{6&NRC zm>9PELJ4(@4EAAR2!il}UrUK=$-ZOMz`+6{ptJ7gy6jmYXxccrkC_gIG6+XGck7!z zVx7AU!tt$7_0p5jM}Y|H>$HPxh8XnYOj@UNgwyX=^uvgt)&AW;1T{84i7`C)U3fwS z^_LSOIBF0(k38MG4;Fbl5Emk_4htSbt*(nMhkhRIS4e)>evmkHXC+>;%BU&h?(6W;vS#0*$p~|+l7r4I^x*jt|?)&8|si* zMA}F~5J-VOL5v5sI%(eT_d_)!z;L0eopl^qTMqf7D;joKi>m zVJDF1k6x07XdZ|`AkNRoVy%NE)MI-ZqF4d+_w#csl2{R#5}qpqWe6ghgCTn|QM_HA z>4NapLGp4LM6Uw46vL~~5Iq@!U~iOxDiqO}pmLq$x()IJaQm<(MU?xpAyYsxsek|cr2w@$Anr+))U<4^x#lvB?3L;n$n@vakDGOGh1UHWGLgP z+V+{4E|QuU&3{cB(GzV$;}5;)=DYOJr`_oxl($6~>YLr;E?)NMHBIFd>Z}Gi=x2U6 zXUnLf)#u$n6~Hf4@o23(kk?+Y?Y>mxwEl8tG8~11XG`3Bx8RV=1JT)nD<`5}p(D2*xe(A z$=_uXaHwOnE1PU*MhYw9nWMGsl*paT1NT()@lXUwj=I@mB-9~Vr*>1Q-(u0-jDQpD zvv@TDoFFgD?Ua$jq+@V0w0S@aG6uwA2xvj(f%_wAK@geR0xbw4^V;DBSuy-gc2IuP zvrFRAp$l-AI*0B zR?c?Ajt_jfSnStNIXHu9)<(7~ z4a?;2FYvUu5IsSVvJrI*f@pT|>ZAh~$mc+LqL4umBvqxuNXBSa%!Y*^h%7CG3v3K; zCIT1O818k#L=XhY4rwA(M0(grV%6o#y#y}MF=kGpifFf{Ez1zF7-ZggqbbbL5xqJq zY_w)0*tFc2|XYI1R zJ7<&n%Zc0QsK^`PXTL2L@jDQM82tQ<^jS5fy4Et5AVq+ADGf9swT5}cBZfgmaFeJX zV-P->Him&oFf38Wpn}*Yis)4Uc7f9_l4le3vl5bLFT1>f8zGcOPU8xK$h;*)P!Jj4 zz)Gly*5xglH|dMzEy`F4^6KpB$qe%9q=KcDU}N~c4>JfNE3jb(c^CL6W6m~)pKP!a zWQ>fW!VHRVgQtZL6cIMSp^3vv!1Li-DqJ8l&29@r8Hc~|gd2C_xY{ zja|PwjwAW%ge6zW7{nH2Ksd%$8-5T3X=pYn_`$}wH&MiLurX{1=s^H+uX!^ZWc4C| z(dfYteny2J6cK4k(1XsyKXXe$>WI@+@TZtw!t1`@nP#?L!G7T8d{!qC)vb*IDj-j1 z%{HiriSx&F@sWg*Nt%%^$SgBe9}~A#KmoF3LB7$BhKpPXT46?gz@Whz)>sfkNidvEf#NMe5(k0 z6#60YJDWDUzcbnQI>_we2YE4kLB5OpXfw?O*#FwwX6)@JMZB=@>bCo{0gzrJ!(R-M z{P3$HTAfWK5y{K8FpbI5@Ak4tf{pQqy=;2@|FkiPEqLaTOoNm?cij9PL%0**A4B9F z(Er+UL`oH>dzlB`vJ4R$B62Ce&@m<_;xBEcX=M!cyRM!s7w2UMkC3I)6ZNeU^nMmS+ z7!?I>JRo|t3=a>!`+wyBRBrhQ?EF&5_Yx`g2%bEHLw)#vbe?SsiCD1=g3Bkeg9Jc9 zK}G>|rkp{;<)d#)RM5T&k|wpB1hs9&5HvwRVy0QhnIP;<+4p5ZDGxA5$8U;gAH_aA z`@W1pwpF-z{8im4$G$IPz%Dk^zib{5rOktl-^TDX0XF`MAWOhAq1gCkjEuap@mB;B zb!W-vj_}QneP4%&^pv4(XAjT^4H)~LG<5G$L16x9(>-c+-0#h{FSE)35aq`L!AA5! zO#LREhuG=sV{r1Mn_m#PaASjIr`OLkX=Z1Si8NbIUVV&SoJV4mPsKD4Cy%FzQ%j~Y zg&%0;O~&o-^7G!t-%8YO*!Y1jH~zB}IXC|L%XIj>9Hnx7-+y@YIx%GLKn#bEFC(&7 z%k4k7D%C#B2o{LEKm{c{2y6DIu9xUOpp;e83Q3rB9N*{G*`A9TVPnhK0#&) zDIyx&U<}9*={$oJWKMXUlN4+W-;p2%8^c`)kb;bn+W@2>h|KVS6yzzH9tkNZV&V%j zM6}9=6?7ht+7ZZ|%R@6q`e>A5nQD^s=7(x%!M=1PT$(;&$2cXLK2EHqp^v8l;0GC; zK{63+`UoLI3%bbRPQw7`h<6Qu{{N9XI=S6IpF;hb>{iZ+FodmO`1FZn< z237!GSiv?ygz{L1r_3GYKP8uSVh$XYaA%6pqi?VX-+}0~K;X}$0@E5M+AfsTfmj=k(|5-ivnZBIps8f=YrQPTDL7ByYHL($b0tSIap zW}MOL(r(}k;7iUpijilWQGYpeAsq#BoikpZopq4b12JL=ZX6<~waAVWp`BNd&?w$#%rq^B`fti~ zJ=q$etB6k=%xptN-ULBOUt|d>BE!>=Lmh+M5O?lC4)P+{{OLjx1c3pYDdZq;dnH#L zrmz7si_{1Fw92@GHta3E_z~K$x4hS4diBV_Au?c|X5kP;M5|3Wq$2Pjx&s3aQG_J; ze~8Q%7)75MJrjnGcB3Lyu!R`pTV% z9+d>9sO=QGYNXbfqrQEXmcBw79nmWfa34=RPx9f&FwGQG6*xSznODQ0Fgx}md{QDx`H1a{ z2wz1Ij`9!>!Y30YOg)J(Yc1o1Br2daE=muR%#?}-qcfyU-j);zGXvoXc?zVNA!b3K zCbp&=Nh;z~mRi9R@>y6@-4US)TXa9;VM7Q4V<#gG^0HZ*1~bSQ*%BNZ!p3m#GGt(5 z_-BC(Y>ccgFe!EVZy{z`u&h&N|5rq0DYE}p1hGmF9kAo;7}2Mb9ls;GPb5PgrgFq) zGlNtYgt*)!s%&#zHlu0ggU&pfY!4M2B?XV#1k-{f9NOxL?d0eCGHf6pHYBj^{}nOq zVy6pAE=81Nn@&E^2vb&L;$)J=AZYKYQl_HPN6pBfRkYne2EdnOa14@?YmryaINr6Up|_5(B4!Ll<%xA-D?qPeU0$5 z!4kR@Ug|;Ffz2vXeoPsk5FTR=)5d8*vOEP^@U#F9YJH~NEI^7U$w%_O7(ElSKwg;a zl?fBrr+qj3sFkSQzy!bx6WALfm1jY+tsl}@e>r1&8R5ct8^yxsBqGR>=ob&l_fuVLKX6k zQKtw~=m<^&5QUE5%Lq@%TSp_sW!5|Y3`^Hcnxr=wgM->IKNVGVs| zTXB)LfkHljpSkLtV&sTkWrDz$#Eb=H(W+cywa zDfi2BKXNLFj7>;&BLmnY5KWmgm0WJZaGcQsNI%vikQIP!F-dHad2ncdsyk}tx>k6L zRoKRXG*$$}l1WYiAfF(^*cI`N3(CGHriRR#2y^B&$wcum83HO11cim^gOYiKM-KLo zA=0-CeaHuhfC=h@JB`9%CN=h+ZyEmyL-PQb(Z#!kx}7E!Gt2UK)h>$pZeU_(h8>Ba&86cLR|C zUm7T9S#%Of{pHL+ISTt$vF!sfxWt=QBd4`EkYj8bC{jJh0nHAsNU0$3^{e@TSW2O1 z2Hp@$nde75Hb#2LrB+mCcWnW1)29bEkVAP_PWVO$$e|#ZX;MZ-KpEbi0wELxPUo~m zD&o00pBDZ2AP`@^3}VQ%^Kv%`q$03>GSn@zj>ZD;hdhHKC3`LSLtZNa|L}(m;b$ZG zLx;#5C>bF$vV-HHI)3v2NY}IRX8=K>Q}kDEbh+)PrM8@Pi`AxtC7sQAQ!~c9q(S#J}@b z$YcKZ`VxdBZ1ej;0aQD9gSa0RLGFmVK>uqim4)~}DdLef(zcdAE8>Z>m(BDSLy*uK zkqueCc29+k@te(*$onb@>34;v3-b?~Qz+k`_Q1Ru<1a-(nKtLYZ3x!iMEM^d!fQkR zwIQ-0#jAbfaJ14qNo6w(Ve)5n`F+#PNVts{wGcx`d%&ahk8}r^scGwGWwC;>-Pm#k;UaMdamQu!jtRpU>n8_Rt|buL1UuA;|j_SB&o;aEUBa z?m}>hju*} z?(xM+hMgUbkVL73#3>!QQ~pFx#y}8t(ydEK)qmSY5zG3_G|myq3ZRPHQ#BDvE8z4x z3fQC~kR~4kk*tUZPWlnx5Cq+g(^;hmY-?LSIHNx09ul&rz!~x`X#hYI7144aS7%8` zqrx-X4{6BSMC(B~qXM}0-ga;}Lq=c&OU|eW{EbGHaE3}jWXi%4@{qjx5|&Uzw9$hl zWO4J#QCPyB;yd6_%G1UOrNbrV>k(`OEtnuoF8%RQqURE{prUXk=rMHjY+Di@C(}lp zQj;!D_Nn5!IMc^zN56B7VOB&$$21a>@CX?}3|%5VMW#~eLRW`|(LyVUynz;g7rVmb z8CmRCLwkxCGFX2(>FC$~KkSN+kDngw4ml+7K#WL*Wlcv6yyK6rjzc?Y@&v#~&$xvm zxCbqXK?-U!#|Pn)X@BIvY+noMtAlWSwWq)Z6+pd(`yG)zDGqKuDdaEAj0z|4?WbA9 zup*wJA30{&D z!2!@j9R%-VMlN)w?8X`Q)|q58KuDrKhGV~e0)Obx(~~3~)mP<~hbb-j;aQWRb0m0d zE;rNKY1sQ5qj!TsDZCX*QPp+E)R@k?i2Dl6=%bYb-asF~m-NwZl%CK>{pBQzag-%? zuhzr8@3FAQff#K7*Y%P}X)Scbdz4WPsjJOS378dvAV!yg3@K}EeFN)05%t~r4)lNb z031@ORi2&!0hP#mkt=DFLMUb0S-_21A%(Qmh?_Pck`?hx1D_0J2!b%6gnW$5VGo%$ z)!eE}kcTWK1n6aa`dWB+Y*T?d=Y4wkYEq_0C7~Ja>J+LA&8-*-N;C-Yeq(W z414OjuPhdaOq?J1PHuXdO~{CQ%OI0HEZ9TW=fhR@kk!H?Dc2wR%9z@=w$S>3WR^Pq z+!pDGo}`L(>MUz&jPEQU9Q;K3$V}8@xlPOzc{`!%Q!699foFg(d8S`SJ>i-9%L&iu zz_zO)z(={`uu=3%dp{>4&9yv|qTefdx&p_PaKjH-t^>9#sVD^z1Yth6dXQy(iA)5A zX0+VYw?5=mUW_DvqX=k5W{L@72PkMp9)jALS|Fblfsx|9Mi5Uy-~n5iF-WJtTM}pR zj1;sIfV5K`MvA;x6qLg=@?LB>wxvTYf*=%YZw|G{LxS#L78xSjGr}x3Pp>M5S!9en zd%`R#2hmI%YLTbJg0_gcBBGZm)FNx1jXR(go5#d3>4;;yyQXT5XzGwxuZ@6cj=%8iXzwV6?dAU(nek`N3c2z1)`0R|BSK1JhS7(@`nH*BGx5J8a6kZvwPAZM#YJorT5(6zo7 zbfOXx{W_o%S-tFY0i7rUS91OH%@1->e56-FE{eF*P1(IVLxG1ClL?VExGTAg2r7<>XRfRXO3GgMG^aAt=o77)U%#owIag=v>PzqT*5En98 z-gtsw);d{^rps@KluB7Ger`L;BBT|8o7BDO$fzLjaF~Q}$kCU;R>*LA9fXrrCh*FO z-A7mrZjpB(;*kc4JS2-K5W|X~*3aJ-auGyJ@Tf;TV+$lw;8TOdK7l)L;1fac3G6BG ziM&``IS8Ey0GlR#U4r0HlD;lMkh*LLED}LnxpEacu>qax;S-gLh?Bx6vNoB}51%L^ zBGxd7BBI|N45IT0#L&~h8CNzAi+8tp}Q-=&Z~M5mC<@NX0%pAqRZ-<9buPPk=tF?VX{yH(4} z=%f`H-ase7mvquydJ{USznsv?QS5lRMb$nRVtOD3op^d0a#;%|^PX!2Q7UPXA=~be zLn-6rkgp#CDYPNnbAjCHJR`dYxsyUrQodFZT4b=o+nsv0c_D%_sc`#XnaC5f${Pu+ zh$nm$88xX0OcQVLi_8fEhu12uf;D1GIdNwRf;gvr4%kCp?21~zB?2dUZUTU5A_#K5 zR++TeDFV-nL?IR%knEE3muXuzpq~UF7L^|NJGPLDEL+~o39%@`Bhv7S0-|ICUQxuP zN#cn(zyL-`87r*<2JWNY`)l7AXCtlvh=%SSv-ar??mvqsq%O`YE ze>tHG9oW7xWO0;24zlo$ABbKpmL$L1wiaZq0x;`LNsu%F(AX-;LJBgu#L0vNLDP8> zg|$~f(&`|z;1WMaG^|GKDxTzBpB7>#)8af9DOwfKE}vROqY=Og$E$TMU#r52oMbyJ z8IUVVKFFSF+X6&lU&;^Tm?84UY}2Lz5Q)5U-uef32tsb8`M>|?|NZa(z#W3%0AimT zx)4O(%?w@0Ofy{>)5FH_?+Zf+A{|vQgggb4Ranm5B=CjcZ8L-|bhwDn!xoB&yXS_+ zb}J+mvav-S1o!HMAM86vskLb>mPQ=^LTJUeo>Y`GdQMzB&;jEz5lq|2YxISEfeKruVf1xNXTd_-__+M43&GS2+XX4+g77RE3HY0Wl|KNP`cZp-m!ESN`~{)z>20s7kztvYZK zG59A24C}zwW^!ArBJx_<*EglRG(98(z>kZE@|ASmaEgEF^N6ObL;XgpTwk2m&_As< zi-5nW|5aVW{KTr7G`TvX`G-*J@u9M}s@OejJc@HvjSeQPJTd z`uda21n;VIyJ;kzrRP=Ox>wUrT;`VrGA3wMiQA^a!w29?CO8vptvCZ=tiPNw!BHN0 zmYv_ZpdpF}VlaVk21sJ9^`rrq-ac$}i6Ba8D2EwIv2(AJ!m;2ybrz|V=W`;qvjS2n z@6axg@j!*mDohPXqCSNtRbGjVOv;O;JV6qI$jUTiQl5eY85JRtg5YgEC)W^UYucJZ z5_JqN6mY`|l8~9Us@X-|%I^X97#@saukN|YP=+m^%^JqAA#7#sotq_L5IXT#N z_OGo|oC{uG6_L@aMi})eAlw6S=x8AfKe@vf^0~5!_fXQo7i%4C?4h%Y-O<#PGrH$8 zyuueEirLoBR5N=LybjeIZ4Dz)%BIR^3U87^=(8Qh!a%&s7yVT_Uu1z&;|uu=l&<(= zOgUQzB&QT8LOKLF#12t=E!$ORNShz4e10girx=z4Ztr zgdjs;I=VB-5XiRe4hUTx;~9xct3l=wJ>-!%0dSnR<%JI_qTMfI2>3u=g`59uy`TU= zw8Tu611O*(GJOgLkRh0;y(<(Th%Cv318kyq5@+#{g2A&p7#tvLlY0vspa|dKp#TL$ z=ME^KA|MI3D&PQ{hWVL>5{}!ue zEH8sHRU|b&?^)7mq455gi!#2;0DT%K1K0waCXz7|p#&4A)}GDFEJ746gP4KPsw8jN z{edrc|6cz++5PJ;BbM;+;i%R;Gnr5(eI?}XK#XXDy)#m$b){}UAaxbMUL2RODuUX3 z-@y>NI!5b#oHl^W^CJgm<7VVc%V^jAEg^skr~2DZNXVSL8HJ?wNGt+*BpFnOKJWe+vLq4$kcqbJZG8#^AQQb(PXrqXJX6L8Lnj zIuHc*RGI`fZ6{c)02{-5eZT-J7Lkbx1IY5>FI%^+4ZH^p9FWPcj)*Kl@^{7l@OA0o<& znV|T%3kfqp5gALqItH}R$2j)1RJ=wD^)XaIL@Zemtr=3}8rk~fb&@TdAmT_DG@(uR zt_)p0eMQkt*Ho2b;KWs=&y3DqrmJ&WkR^OXoqdH&Teo`1}VoRlxhg5!D=TxCIB@U zBI>ObL1^b?)zKB%I|e+b-M+=5CkT?Lm9JOwSQSo-T0cc0mR83)u_fe@*Lu|IfV3=k zvkL*O19HEy=kY-(717d_>>LK6$h2uykd}oY(yt_MMfrzUW!u_Cb9N|0h9IZQbB`3! z;@PqjnO?#lGT>vhNQFO4hP~hf{!jt&tg9AVP(&C3Foq(cYaNUsi+e4Z2{)5H(@(1K zM@Jm|K@w?HEI=S4IFqL4ifAoYrFhTdy{6AJMvDVKY$8*q*2uThp~QngoV84C+wH=> zvvb<3&%w_*aW!?syRIf#!bj*c5?5`3(phKPNvt6%{!BedvwD|4T9w`n^a1=rA1>O6 zWv{|^FC5}ne>saa9OZ%seSCa;^pq{c??4Rth~(81(LXYNx{N^AqQnRChP^sY$H2by zO$TYKW3(PptFsG|C)4I@`GvlSUL6s&vS}lD@<=i`Ou*p?DHCnoXe@ix7KdpVf`f}J zPF7SPcop#oS7iiR5ESIut`058Q}Em*ElA~P_IAd!s0cQqv@9xs=%cAS#2_Q&1*O;$ z6_MU0`8^bBdjUKkzemzm_rO64Dg(az!U^)k&wO`!)4fZ6QW~1ChYpT#GotNhWJo|C z5@+P0g=g2YIWo=t!lN<|`(U)#J8!-}9sM@A!b)_8L= z8llB>omE&{-xIEJmjrhSF2#$xTOm07aF?RRwGb@07I!IWf#TBQ?i6<~#ofIp|8uU- zO;*U*vTuq|0u#StMw$xC&tykd7B{cbO|3*IgxUr8L! zmPe5Pz$d0sko9x(p~z-o`2)6VauQh>X}bnr0@S__R}^Bb1P)K6^VnmR=&^%c;MhqM zKS{f>Vuz@e4$tWMT5Oe-WYv}Q z5Xn!T7c}tlMCHKx1@UlR^=FN*L*~G03vifTAwDVjHCL0+anBV`<6vX|Nx`FLYB)fk zG)3Ro7dc_h;8D1aBLML>LeT~&t{OQ^qY(1Pr#utKkP0fpz#IyN&3S2GYz2=IUrP6c z8w@OyT|j840b}0Y>`32c%U(GB<*+DTp-`fQe>&1%NnKXnk_7aHN$L!C=%9R#!u|Sa zz;xad@yLUbE=<4=Ry4G4?xSkK4c)(z5i#|Z1dP9qFAJ#B*+jJZBD_s;|5fO|h#pTZ ztPVOf0?WQ_+dQgrXvRY6d=N6jy;p zRu=lr^pNmeeuVU5(;(SZo=O)3-Y1q_EbEi*SSK^f`21;$cxuDxd5-ux{uKo+nHq9y z`___X12Sug99~6^^0qMEP;T5LGdT&%_$RfNRp3l%ncJ5ecv527+DuoX?XEIu!xu$_ zx98GBWp9Hs9#Mu(RAcuNlgH!OB6qXVAJ#*01dL@ILQBST zlKuB2@}ZGl^x>4OWbl5XkIqH45`y3*T1r-B8)Vcp=OP|B7iRC`5FLXS`TYKqJAjOK1;eidWeh6g5#A2D^UU8L_$O2m@O8PYb)f}Pp zA$9)lrw>PvWOLj}%lGx)Us4KW@7g{iYLYzmA<`^A&f0B9ZJSGm-pf9$?qYl{?QcKH ze~Tes6})uAh=>k`-}hQDgU{sT`zqv6)mj<;`!C4|m{=C?nXJjIS zA}FtA(1gGj;Xw&&;vuUP=!sL@slj4CUy-$()hT{0N%xRbvcjy8QO)5IA#6jO+VO2< zg977d$$w*N>0|St$jZvIcDip9CJC-tk41XEFYB*%3Kxf)_ny|r#ewXv|9L%O_1p+` z?5(fltQCY<`c$`7D>oZ4F<=RKC9Pbr`?YuHC+dHT#>*F9O4@*Fxmf z%Wb~Y^XH-vu+Nv}={a*N3YXucJ$S89>)$yk$unLdIt{NBurKujb zVYc7@3R-73_=p=RI(NqZ+NAc*>majHg^TYB{7oc8Nx$n)kRH=x^-WBH;iM?uv@|Eu zqD?uAro6-D<2fqtu1SDXqI3kr*&Rrsq3wYz+H7N?8`a-6lfnL|qC2cz3V3_dD^#jim3uRw74g5uCjT{+V9|nOs-VZ)#kPki<;88prv%}iT&f5I#SW)xK$kTXzqUTs{XL|udJM<`gD|CIL7x?yL zaGaAleO~^Esh&GSo<52{@-_l@gmoLQ)tcHu2N~{2bywcNR+7^=jr*hfIq|6Sao9nG zTzx99&``mDgsSiSqqfTNGEdb0C}328{-e!iW!FNn=MWkBYOih=Y|lb~qVtuAi2#lT zo+4Ri130Fq8gunEda_s0kcY20W0EUf7XM)Qi9^y6?PMdJ6SzdCTufL0gE}@vXh<~n z#Ui-wgcYk}xY84;DZ7^&vK77}L+Z*~e8GUy4zdQ{Q87V9(Zt#dz7`Ww_IA{QW3YOo zz3ua6*Ne}3r8Uo_y+sSwfy4&!swJ<`d=NTqqRmnyEu-Oitr%5gPCoTnfy6Vu zia3Bp493Y2*`zO^b^++cDiZqn83QIWYNHa}B7sj%graFgOi2gfv(3xf=tm$=KU#17 zMnw;2e4qSD0*nG~{Awq#>C<^jG*Jjx;}*~MjMqkE5k~#y;+1ZTK?gfltAe|9g~%HG z9o=uq_mDFEd}}x$)H6C17efaFa-*eVkR=OnC`mxn!2kun8qx|Xl2ksE70lr2!F2t! zZ1{z39+^p7L_t63Ayi)Rt(5p7VEL02ISzCw`9=5HaZcfM`$j&7O}Y=fI^C2ab20Ev z9B0^0_7CEGX?4PLOu?!E^R67L=2M&bUtJyw`5@!4wsJ0~m7lU)TOn;5l>=f&tnQIQ z(2)11&No{HQj@NtnKNCz2gQ2y8`AjjI?UAZEXxh}bG8fMJke=*67ODfxu%RE>J+g4 zL$oOR%9|L2;InRkS8{bW_RG~ zPK`_k@YAguFnu~5=eCX&WRS};Y=*sE0*O@42tis#!+x?!vA;Bdox zlVWJAGO^qa7SfO8^Aum}K4QTra!RlQ`VF0uj~9gfh|KxV3axW5H6KUNYe~b#!a%y< zSS3ZuL12K7kdWg6%jB{7hmR^x@u)%_1C1BoayIsWl?tLZ63do5Zw3dlBCOaqH(mBnQUcAcc${>`;-0~PUDvJr$^}ZqkGy= z>(UMUXmeRr;mk()?HHhl+Gv${^Ii`{DOSCW0Kr$aYL|36O~w4UFq&>*TW1u|ht=K6 zgDZz+ixU5QBR&G?`2@8<6=#sJT37Tnjcl;1M<=72P9K`xQjKMbA1NY!wEM<4728oq z+APfhDe|rPfb}0xo+O}`5z^XAI2GHCxk*_H--MR*N!iNTZ2wYGJNXX~Q)RX^^zM%V z&>-MamLv9l9aCScdmQNy+A!^UPO~y0S)@LhG!h07dd6LU!P5u z)ClUM^h0@=IXRd=B&30BT%pG##!ec3vI~<=SP+J>y($e9mb#$2m(z)N;Hg z?54hh3kPg#^zNhECq!5OjKtDt)KVEm{*i7h563g{$06X)o6hU4H~F}9tfBRZ;Gu6N zBRrlz8nynEA_igyQb;c{g<<(0?d^SM{+dg^Mvs9tUOxZ^^gF1dnL)p+%~i_M@MZen z5bYL2FXdti2phR0&LKh4@$|MpUfh@7ky}xq0z(Qt$c7!jt&yU zOE(v$uSwJ&`LpfvVIR4Z0srl7#;ahLzH2<|3#MSxW9qS?d5+u<=$DH2H$Tv1@|OyR zPVMg2r_}{``xZ)|Uhbk48)Pl7M(A^MSfaMe@&c;oIH_3F2kmj1$7;#cqAyCzT{V})E_FiFvQUJb*p&IJPm9RA2mNd&2PLv z$NV>8!=s&>*p-6=G8Hxd%n$s=_E`vcN0p1QsErExJZ7)l+`eCm6r6bkN76D5hC$hWjCO zGKC!?aw-?S@rfZsTO4r!Bw$l`M3!P4zfz;ZJ2 z9j}Af3T*ff9dFlaN6iQ=;j%K6r_HR6$dNhl85|18ks8yhYgpgeMUNk(5=TJE3r}P#=`xB5=8{RrM$G@2cKFEB@^DqU?x|!|LX4l zw@~2B`J)=bkdKW-N0K*Q?&9;Q0zSI?POJ+%3Xpb&r8!CMfyAzOFfDsjW=67?fgwi9 zG3jzo%;-C@PL33_X;u!W%R(ZaOj?;72u=h+Q?=T}VQB~X7Y^U(Ff5ikQ9-GeT@}47 zi55ikKf`3-9qT|p`bVH8R6*~v$z{n=Q#z_)#p+~%hrvBxx<%^7&?A}k!x$8}2eebr zr_WRFgBdueGZH184}j3MrT&w_ zzskPaV);akR1Dm{16xNL}?`Cl=Ps zre%RrAL4G0*)uK~B;v4-JLo|rK9J#Oaj+Qq!LteHbQ^nwoApcdf?hWiJRs8k#07|n zM5ha553igP|ACCDi*onWMADW1vnhl4;+tPI(P_LGZOA`S}rKx9Ob8fw?#5(dM~GGmrEW&wat-# zesIMzYl8}%vFF!7YRgCp10Lx>%|v$Wat#a=y*jhJXXq$V=j;mbP29FL`JT&EADY$4 zaN`%cgr*QK-rSEq-;>olN}Y)>Vl1+qC`XwIz=knj6f%sr z-IFG80}N0@hP`o{(hjK&$QDA)1&-Ln`RQvR>P(pGX^0$4#=kncu^`F|k;Lps=-dRW z?2uA0UmQKY<=qT90A(^em?sZWW{Y7(#{yL^cHk$ysHMNB&}8W7#V(=%ohMC$4Erje z?yVbHXRt25yf~$uguXC@bm*!V*_+O$2H9#5TK>pqKd5Y3Jv(F@Um*mTV77~^oL!%w zAZ;1U5#buM^PZ99OqAfIw7FfT9kL=($>9Fc5Q%XlFjg=NwGcq=48sU@i`kkFIfdUh zBc+NU6H`+irH+?YVeOgLphRxTpfb}2ssPpwnC{HdN(_Z6y2FnJSn+W8Q|Z2Jbb{}e z?a)E7pm$DvX~gY$p<=dzI|K*WlLv(oPMZ8{w{!3lfHEZfd`D7V$v4=v-TXyL++u^>WAM`cn0B#nnnTT~dv4l_OXojB=H3<3xqzuexVFA`Hb5{WL>g zYji(Os@6qUvVi_snr6pTO1C>F0#;)C*8r&Xadfl>Ixzo%#pr3V*RzvjnEL}mpa<)kw`LH!w^<=2 zEkBM)sgax+MktQtK=PPuoChSCA?31uPeDc<;8ujV1s`72#QO}_EM<_{;Z>i>v zEL8JkWmYTM1B`2_CRqjs;#kXI5yMdcg%y!l`u)-E1XQ?H7^4n_1D189;q<$K$@nRe zeVi1(l3Q%>3%42k)shSqW}7vzlsuOjd#JCJTl*w=*65QW>iDx5`L+_hDCN-zKVr1X z0esp@XpeUWJZm4dI0(``=bd*@5T8bL(f7lRY<>1k zrHh*a&Zhr;rHkpqLoCBOW)LD!1A=a6X&3ttOUEv;;8(-j6{?z;k;@6?nfx>zN~lOaL3M9f6*@djt8o#rCYis^`vm zoAnyLh2u_1Cc%_UdXSUu**5uO&UkMP;a(sF$nhOI?@wCw!rXt2Y!_^ULRweC9=`I~ zd~sr9cxbROXTYP*mN{u(#|)QvqU*PJped%Wo?#Mvf{V$a7>r)|KT#e_fVg(o+@Pyu4P|L&?l=v4M1_;{IkF$2JEeYT2JqP< zSnIZBLaIwETNs#!i!th9*=!wFTAWTkIhh3m|f_>0{3Gmnk(jM&dYnJF;l2KlD zK*O8?xs{|1U;mDY8NVJMs>ea*LlKSjbtYwz_TX>D>G-r52AaqYf1XE7P&B5!N(UpV8mmzDh!V_%Pc2S_U(#dbrU(Z;w_#sW$m9_) z%hW#l+V7(WVjW^ti1BOq#K(D>=^bWgbCp(K$>dD>OQ~ui#Z_% z@SFogEXqp5q3Tri51;P1;Rrvfh5b#+fl6pfMy){@9Xn(;Ji!`1h;}Ph9RE*|4}@;Z zhVRV^nYv=$CD9T>XLD!xR*I&w88`Y#P8x8vR~6K}AOqk#S%SRTfnWx+H8?WEFAOpy ze_DBa(ewW*zwtK5BbyG3$)2f@@}&i>pI+gcvP#OSqd`sCUo4Wm$S?Zj$KxIJlX~%= zT-rI~0BLl}*^2t}RYZ`Bl&tJTta?*6WH!6pi-8!mr#sGFvo0I`xMxbl3Z219XZmX; zm1y|btZ!SQc%m^cymrmC3MM30K5DU-P4azz4nhKvjS)8M2b^upY875>7nl<~;GUZ+ zhmGlSU#&=EoLGbBho!#dX5@}E#V$Rq?{qND>%V}eNkx^&!L3^ z<<0cZ{zyaL>?S}|MNrnb$8d(cg6K30%}c!tzJW0nsC>(^m7psQ0W67J1Hw*Ja~=2d4EmLwqK6-(y1K0_HW#??f~`x>F;Xm&fMkmH@Gmgh@+&q!}V zYt6TX^4eJ5+AR*9_Pj^aKnxsz5?|~2R7FV#E|4O^^#Jp z;_uM4sA32l85!;>^MQ_n)mD z?+cQlLP24%tDyqG$POdrLF|9m3g$i%>{dAh|1iKBz0OakPyF)E$=i5efI|Vj)Uke3 z>FK^XrfA~XjHhW45zz7fl6x3$i+}H?26s6Nj(=VC?;ZE?-cJ@sP1;b%nodO9iTnqS zR$c2}r{G_;)jASM=3uB3F4IF3)7VMt80jtKdB3sYCHp5lc;7%SO_8JY;~8!vQji)) z!@B?(I0L@2dv3Z@2-%o%XS@hJj_koZ7LK;*awwYFQYJf=$RgH|582=kdoQ) zr#2RA{Nao8uv}{~Fnf5jL&w}jhJl^8d2I@+YT{*1*~@CNouVFNkLyy#J#I5Z&YOYC zlN&s_K>3Ts#)JX0*%q_mzbm6>(H~<`HH4xhXR+hdKR!0=FYPMWJ=^uy)W@ptqhl5N z;C>I+JAxUW?L2`R4pYdQ9;0=2-exFU!VP! zL~mt5x2ng9bU93(Ywj0EN29I|^$;~D(Z__8k}&9SndaVrPPmK|m~5xQ^_{Q#HI$6` zToS_cjy9Fd`q2_(N3-hpkoV;QtxI3;4~oXu^OfH{8E)4mW6RT`ru;AOoXnpQ{KB6yKhkEMjfED0Ur>Q1{_FzVBm}8ar2W$EcirG zt`iI8L?5RoEI`-V3MK2k|C>oXc`(0I%hW2{rGhhm0{<*G%;S8Y62Uje`~-t)Av*GL zt%`}Awts~FG3F+3v+j#SJ+lzvXZ+D9LjP(PkG|e%!s=+vz1K>pH|~zk(cBtE&J-Wj zDFjBkc*oSf;`(a%`Eeujefs4A=bBb;SSuC&x`{s>#za*|Y$={)3!==2a_%n&F)plN zox{HVE8MUg)j-BTZQ~9t9e+&LUit$^;#4CSfkvbY@gVf*Pou&Z$@0EYAn4t9?UFP- zl+_%~Hl63G39Nt0xhY1hPHY%C<~~Tj9?&_Bc$#vPM%XX83Kn)FmC{S-oC=U@3NP;0}C$5>->g<*A zJ$m*Y0h}jJh|I|ZImXjqlKQTP3ffeYiuRcf!XrtnNdH*g_1SPB?SHxQ;S#<;9fGqYXoBwzl_ul*CWjjEf^-A`k|TwQ z5&y&B>ZrG$m%GG?cT^qN(A6h%!>nBrqZiR9PCb4$Muzo z8j!La?sJOcW4ENo#Q(_w7?iU{K9RF_M(r1ADV)mON}>?eAt~0cHNS(IDY)Zog}W>6 ziKA!;PCXF4OJBAQ%&>*?O4K@r{V_nAeuG^wj2$hrn$XYm4CU)nNTlE>b&Vz7cr8Sm zhYv_^k&}vL!n!FZ`|#c&JH}C4nv!*32msS;=h%{DN%pb_wKft2`V1!oz`@$haIbVy znmTt{`;P8(kh7qO22#31s1BSEm^fH6pedEu7F9Y>0|MJf2n{n4P)&V{+ihPy?%UyU zZ!pBOx-)1qI;jj9q#DFAsx$A%WUcx0^={~$598?HdBfj%!o^rRd8;q1dg2|`5<%U* zx;>lbhi_@-Uq2Q@IwlXsDl$FZ?*Gjs8hm&;ba>dNGtWn||A#4(VoLGyG18O$C1c`W z*@cH#ONO@}Q${EC?he&mf+}O=4-kBy^=AkwLpYZXBv-7EG%$#w7~!cWJB0>!?O;A+aGJRgXPR@p#9rQ4>b)GU2Nsgw zoJyO7L^6PdTn=w>*;e!s$6X3IU>N%Tn*P`pc`KGssa0Xef7jlWE|q^QG6@EBo|vgZ zEq%i3Ri536wvGz_if?DWc`m%NZ^;q0m)ar~edlDaKtUw+(@yzf_7v0L5&Ok#BiyS) z0?y3^kwt|77yQZhOD=!!_gXtwovhTInDq8?m5yHr7%l1D2l-oAk^)2AJ8OhEuVa&P zSq%4xfkTz`;~bz=M9%B0u&M!0q{mF4h9>B@B3WE#NR4p!!gw+v+IoVO+t*D2o7w{d z`Hg4Ut`^NC?j^gZ-KiG=k$M6_DUZGL34r-Ei3aB4B^__2U0i8De-iq1%Lw+*!5lXV zPtRzV3EB^#Zid%kZi_Dll%0ier5F!_ap$YJm}oa(OgD0aqE~qu&)CL^5c*YRli6FS z8C>E>97bvZ0ykojT~ZQ;m5c~G4&M713RGkD%=36E{bmp4P?fL=FBlP)G;X|RLlWXY z%JJ%SSet4}f8Qk;5hArYTWkZd@a?LEMI)4L6M-7sFc60Wr@g7m8)C`IlVlL}(2QSC zWsIC}|EBbNNc<>6Fllh;0rwxg-c6;BU6>-o)Ad1dB=<)tdhr>GCPx5q4yp7zp$x*( zozoqjid=2&B`O|XmE_F!gf=Dr(LDA4kU&;Ol9_Gi8Fg;ZBK+tHT!iHmCxR3FvFyH$ zePn_&LDN4c8c5m){nGFs5%I1CMRquu^x7}PKGS{+;$H*~1pgi8wT4dPKA=Ux6wKlX z(F)C6{_SxKxf=0AVBFafe-Qsg;>IQ8WuV?KqqWvkT1W^<4pC=+U_8rq*4i$ko{>nF zRE2dnH`GSPlQ&K4t z%1-CYpLiVtTV!NN`JDfYEy2t#@0xue$5JJH65t{AFQi^xsbFA~W?gLNH1xxga5- zEE2*4LS1&{nseMX@LCAUwilAoT=bsIMW1!;vPnb?JEZTkl~xq(83ymF33I6?`K8N$AH6SAhH2Mmp`HF=E3putP3qbqPpwG z1?RtjMv6&lu!>GN{!XiEKoVQksPI8~vR8nz zTpXSh-@wQ7uOba6NBg8b6(FEiBMdW8UZeC-JgaDk*BRIeF?=W>vR^hXsbsOzaX`-% z03X;QqoxReA82srxZe?#%_K)2PfPc3;S%A@N&~Z;ii&d3oP-&vm*Rl5Ev6?}9Qbj} zdt-Kfv!Dxw^Wv#VDoWz_lpX`azC6Me*Wdf`MQg40+oH_|I}1~+{)jma%=q#=z^<`` z_&0yM{azaJYbgj=TuX>kgd?O|F&;AFCTT8rOW=7LDfMZzeaf7YTeX}KK1$`&-fB^0 zQxdPnjiO4qQ7WPRj5QFYF2!LKKu)CklQK%*ES&la0+nfnZB4Vayu>lT0W}2@UBf9q zR6`$F>NP2h>P>{QKW^7}EPrBD5hjaE$!b^;2Jxo&|1K0&vtd1=)MWo}S+X5Ap#PCc zNKDz;CzQY6BScLWG#h4`5uE8JIa*I&KD{{2&7WAvOK(vNSSE6mpznh(CxZRMEq;8K5~G0n;4 z`@$8@OzHMfTvx}|#tl={2+>chKvkaFh0KgKo*4^ty>{YXCYSl$)EEscB?D+#*_>x| z*Vt>SL7dn1FEw9-5KqO&=bSfj7>2vC=OL)>E$d0OYvN~o3l(=ng-k0g?MMB0wE0b@ zsRp-lm{HMZ9Yk*Wy6&Wwp=~e-B(_W5}=%6|^Dq_mZm6 zJM;pendxdCrnk8!9kIPu(YEZbCD0iS5F*ZYSm-|H#B{Rg9u8-> z9+G>A}@J zFDU#o{JjF%qg+co4$8N%rw;m+?NEaNYAoQ5q+;LkFj>&^ME&{`Rxa52q*Z!Qj1yqO z?Zh|L&K?e}NTBFQi{3pfJ;?Ve@0D)mEb)a5D>^s+n3js&c@JhaM@AJ900ZQaQMuuv z4lldnOiRlU;u6`wL!AtlsBu~vSE>v-Tw0XJ5Wc91^1LKt=6=BR?{wqc5ld9w4;v`( zor$I1#0>JL`H%BSW2=&(n(UrhX*Xwu`iK2K!^J%LnyH%54|10Xx2>Eb9SP1<9(ytW zPYHh3{!Cl5)4y98a*;h!68KRAz9&>Rf3aI-koZ=$k{$64qjiu29XuAhg^;X1JH}I- zDg0ekzMD%?sy0rXVKjb9%JHpzRvT#+Bac9ul7PYxX!31~C7>t>Qe-~e$rE4zWH@%K z!few;`4LUJ*2l@Gt*yQixQ(6y>t=<9n(oH!J496pDe( zMyySLvAfE!E~Rq)31}y;t4>TydvSgM6g2jSafn*_f_V7B2ph2;4I_u%MMoj3Sw>6> z$Q}`)*?)Vvc^hn4Ye?=Bxq5_n5HG41Jp^M}2;oJ<_QXm9W-aq;D=s zKebDpXB2XLIqLON-qaHHM?vPN^0)PP?Fk=i8BqBG2KbM)Y~!C|5BAf9ioF>to7o`{ z$wK{`4>{5za($iHD?Xq*qa-w}@{dJZ;b>SI4n-G&6s!;M)EbR~wH3Yq;O~LrFbD+& zY}>`l!jF=gY;7t`20*=J+h!x-V{Fy@iP~cz;{QH!4-rxP4)rJ3vr-0JuETDNbi5P0 zz30bM@@IDuQO%BzXGfpJyQ(LGy0NF1uwDYsWD8vO2J1ePeP-JfGfm74GiiZSe3G-c z+RZzaizaP;QOSQLz8E5Or%60iyEj0y@W|}@>GJ2Isn=*I`2L^M)#nVrX#O#pkCYO-U z^^X&)e?tj1^I zM|Do_$Uo73_Vn|yY}2l9C`D{i~VoEA1}9=ar_?9yQ{Z5v?N1i zn*B{z&%`UNc};(v*nVY;uh=Jaha9ti?DCqknqo%&o3^*0uJZ3u{=}3);DV@e8NWCJ zmne2gx;P$}hze|ep;OQjDu@N~o@U0hC6YJ6LqZ=G-+v$H9vW2Xg+q@hV{=H!2lJj+Cq?V-_IQhMRqQtNq!9+z9=9OE*gdN>eO%tD%nN?h7qH{7ET z4p7pBf1nyp>pBiGxd5iwW!&#_ba0;hhg%=9{rjpgMmjM6GaBO6=xg#QO1`oZ@LgRi zii0RCVf=tWll=F%uvq^Lm*cJzqJ%Xm8y)0<7`~T#m5u*;v`CI@$1X^qr^6;kZ~1l3 z)e115k8ks)g4;mJzc2Z)|oR%8|AW& zn09$UQ-u38*d`ONZQ#Q07fp{w30H!p-{?D5D8AB`C@zTJ6?lpO={vJhznNeam#ScQ zq8bn#;yqYPocsXRzFKan)yMAfWs0P`b>{atqGB>B!z{rBBzBm;LaUeE+7I7um9?0z z)+Lu}P6NP`HqsrOjQLe_)@Dm`xXm3wE>8vq73Tve0?309zx`-r!c?qP3TP2bw?HCA zWO_z1yTZi9fM6~#QBWlR9Jy|}WMW66xbOy2faR$y@$gwe`u={>L)*dSc`|+=4I1b} z4EdjRe%W!s!lC@SK?}RQ$7Q9UZ;5%~<;}jwU|o&}akr?|Y_Dc$zAbSzrhnHKRJ6)= z|EC6P*rBlAI8J)0@y=LwWFi637kNUyE`IT8tWe2!hcXNCA%lGK?aC(VX^fbk$|W_8 zoM!V`tT+LEXOBZZX+SN5EoHTxgnVLn3E1Rp> zMNg4LvX=H60<2r84;hJb=XEj!^JWIw zP{xjZO`C54LYH-F>}ps%8Y)Dx5e6!0#n7MfkWW9V@8kFl7?7!jNbXHz$Bz>fHc&=# zm?#VjAN6GQI`eA!l5u>d#&B)52aS`6Q1O^8Rq^7NlGl|!W*KyZKi>QADAOc}wug)A zI=%ckhP!N9wqJw|5cx-@aZBzAHbX4%dL1?^1$aJb36uVN`uukN`QK32ze}mN#jbzY zW0J)K|DN9t&EIajUX%Xa4|KimcfGCt+x^G;tt`V_Lqb8po|LYOlhg7TEg+!BY*O;R zZ)~}pbC>h!iaFkq{1Z)qRAB6093fxe#Ge}+FK@|X2ZZf@Rw-{3TVjk6*hv?7ST4P^ zqzV)f*VA!G;UYoza(yM~Oz$JqS<(g~D3o>G4cLDba;Sd^9c=k+GvrK*)v-XTX&y?J z-l<- zJvzoO*_pr+nI8QT1m!YCqZ!WnsAsaaP9T_;8j)JJn zZAdOb+k!e+EVX8ux&$CjEmcIe0A#C8B-Jf#!V24PPPCw==6WB47Uun8EgWHyBfS+~ zHA9RtY09kURnpfpI6u93sgqAnjkx8p%(F#B2}={nD-BR!cgRejbWPIGgaMSkw5l)G z_lPhv;feR0)}<&+?b#KkdCokcO~A-xf5jE$guL?`w6=3CJt0^R{zPeeyleS&Op&|b zG9WQU`zM-bwEcg=F9pcHh4##6JLLEa@rK67+4F|y4-&q+Mzt=D8gGPtc0Lvxf3mUf zD1LM9R{8CPekkw{`nP*5^}h)E-Kt+SaBY-k5ADc(>fuM)jyLDFl!->|r5@~5Q;5Em zp*=Tcg~`!QizKiY{RROi>pqC*F<_kSUH>vpH#ARdbEt=@nY$jYVZi-zy+5^-Nf5?1 zmH69SRJO^eIoO`oBgX-Wc;d^nz0+DL6loV;Gf8;#Kl}y{f%466(o%QoZALQ=G=eiV zWCOUhDU+sN2Yrg)gFQTVw`lXL)jxDgG243lYFCR1U*4uotKTU^hJ3zECH+uI^-^lJ zMXMRwcDS=Itnl;jQ`z^n0M}n}llTWi8zbxAoT`17_EWuv#oyEi;ble(IK+ z5;&O+U_P1ctut>A=f5LgkNt;om;E8>erX@lF(`>G!f_{J!SXCF>Gv1qgrA<}+3%G| zRJ_o;_IK;Fcc!^aA*xhPayk*%{tE`7tw^0ThEtn;nCRHBN}Bz1nSUp4%#>^qAw5;Bv)eoWox0kDCU~73 z()TE`^X0vVxUw^1P`^#54B;YQBuNaU3GgJ+EeS3~hkB?FmdGdo;&gZ{r~-6+YkF|hB(##C?es7bEXqvZS%M)%1PNfgzj{x)RPVN4VQqnHL zu!zIbJ3|^3%R27y&yu!zeHl-kncDGgu1U)$2AwX&oee_c&%IqOnWJ2(wEt;7)kQw3 zVc+Ut!#%&Z@IN21Z;i2U7fFuX-py?q!#+2Hg}E|)&IEhA&U@ab!h@&7gZ+E%+HS1o z+I(3vI>L$LHhSLX0;9*8k2{}&bye<9C{rDStF5*J&-c=s3pWeuX3u6Q)=WJO?)Ul* zKA(~b;6G#p+C2v?z(%-9X~xE+?{+;Kk2Z!`;Jo7axS)E04}c^h|D{3l({v42Ky$Pb zZ@Emsh>)l@S$9;dq&~gBH)W0?BBPCXcpQN$_WO zbHxNS-_*I56j4TovoIG<*-0%Z{Si?VnLhz3Iz)=Skx(I6< z0%ZafyMayw8~8pu%wAWgS1i=(gxFT&PpoOHB9X9f_f))U5TNU`hhvS3i60Nk4(lOx zB;Q$zG(R7g)#zd4!7hQ`wMiT~&!VIabtA_1FXMXxI^ul#8ZUZN28>^p4Tys`bidxa zp}qV^-Z)9lVjy`ssyQ-ilC+kI+-Nb7BQ}6QtN8IRrQfaw6^=*EBhPInHtn9nWxK<0 zCG*k^6;y?RGxqLqO71XpAi8coH(x^m(0UubG%cGVb8b1KtPqdQJ13`vXa}ZZ3!JlIQA~45jl^P92U}f>EzcOBZ|nUw?NG4K7iqDl%#UTzX)K z6BprDZw6eV8@Tj9k2`mvC(83siX1L4$`kYj?}Tr4S&<)vT`<7Y_xGyxbeSY?gXuf< zA&7q`Gvn{UH^+pxdRsH^G(5Ju_TRmYG)~R01%0@AWv+t~VlM3>bDt3gygK!NFJY#v zr`Y`%Js=H69zfXq#ooa2dHXwDkuv#G>ft@ai@x(oPdp;&yXq=`%ZjAi)5DamP+z0GP-U!fRx_02>w5?5xrR0nbv)QB&W&pY%~TFLJ6 zTNGcm{yI&?BX}W9#kI=~M;qyO-bYBY6Ngfs9PE5h6|&dGZBgq;J| zqx?Wh_lJ8V{rKoRSMqC0()iWk@6SU?QGzK$Br#)I_=E+ANx<;bLb!I62<}G>BM|h& zh^@%)qp6lXW#9U34^?$>4^ z89MJ4$(O17cierp(&{nkup5ND5BD-mR*n4UuJQVJ^u36vs&APmohy7i$f?%U@|OUg z`M?peCnI2^i=QFfw?Uphp_HFVr|g!cUmD9drNwFiP_B?fbz|%`zdd(P^bIQs;F}b8 zK$@t;aM&v~;dM%jCeVLiP`VlPw~QU$d9SPa)i=wte3bQe#+OVUc8xGJY`j;rMe0AM z;FyWno<*&nVlR&^5>b+L@$S7z34!D?4F!c3rr9leI84${*C#nT7W#)~JE2-*y3Y!< z^AIrHOS41i?`H*K*4z^R*=J$*Ktp(?8@)^~zOC5*jfamU&(!=s%P7(RoU(6Gh-epW zGb;!Q4AirYK-1S80J&f|*#V!nU$Xr7_5_dpLF_fXgsIJf@<$T~6tCLFRbbgnaeKhP zS@g8+BO1Z~`at~uJwZ^8xc}^O-<&(#ucdT{wffU!BWJ%WMaKl6I?)3ER$_?b!(03B z<8BwL_ATO1CdUQycm*}wCHvnl7J&+&a6%lBd z#*XRrB$!W3B6e4Q{Vmm7(ZUe;>)Sg z{8MoQkOJWwdwW=0|(hbsDlUx7?TWf>_&`d#BR(_cmEXo za@QNy%sTMt)H+tQZN#0ve!9zOT4Ov?)2|vt~NOxd(Q~89ki~F_G z``=|&zzqj~4^o`euw;_xJ$%KpR5N+uV=v5=s5%N(!Rj!W6#{B234_@ofH#D3`M*qA zw-7a1#7r1e^#3=6!mFvg)A-}!OyiF8!k7}eC&XH{+*_jdvkG;v53#S;qwRgn>lSV` zjcYC>ra3e44~bSj!W?bQ2S4|2`CnupL;P;7vEoK z@1{!(-4d5*B7jA)a9WKg9P-A}Mo#F6ke<%nBP!H()|ONQ?G+o`)6T<=Zkt2Dwge{{Gk=svRe6z~n3M`)vvOa9LOQ}4M} z-)9QXWlCGfWWlOO5=GJ^Zpbm_kn)q7!d}CnhpOVv;^r04gYwu-02DlFtdIJ;)Yfj? zLzj7LuHy0OG0smXeT#NE&Wp$>aAB+>nRu#B)gE4f+B8Te5cfPF!i#!V$-~d%XTd9v z7%X4&5i~x@PD1s3r{vlodu?C0M}B&-8<(S|C|UDSL`e3x0@_NFP$z^T!B2VaN7%`> zS!s4~TX~q=sqJireHb}~*Hk-ulx00BcENibu`&zP{tF&0oAU{RibyI1zP8ERQ@Q+6 z?H3r6OHkWG9u+7rs6B;1>x~4pdzq%i&eKxypASJW5pmuj#Jdv89OvVqr(mKUfX;Cf z#PT#pPR02v%&oikRi{W;9QRV=W1b}-MPiobzyhG9B<)9Q8;oZ5;(90unCOFbH8f} zBzQit@xXZT*i}LA8vr|iUe*--aYS+9TAxX?KWxH9bD#N#>cSZR;-D+!3A`n*IHlegfJOUE@&p~FuPWvcS&zjzj zUXuO_oNu23Vo^83Pdy_{aLvdVv%W+Dpz&A z-&{6#IUO0w^5xWY3lREFYB)u6__q7$8UOlUE3c}k+Tm0O zh`+(l=KMn`KC7iPk~8ybkid-vC8Q8Z;4lmrc4_+o<-1|t7bF#>64Jw4eRv14)uxBy zcL410hN3z~5+Y3(p^F?Ovux7E^Z>^@{W>8?z~Hyj&ElSfUNhtno4v9@bbnQxcVb#& zO|bnwp;z3(e|PtNOLJF3ef01d*S%ft{%%t0+sDXduGAEX%LSs>1*L6jeXgl`eV6%G zGhwVjk-~>W$<4R7-CFoqjJR|!0VOM(X)CF%mi9Fnl++P?c>$taw1d?3*E8>hqudG| z)SwuPoa3N&|NWUI~h3 z2GDVD4aM%WSd+xmF@H(wrD`C)PCEEp@ii&HQ1r-j$M7o2o4~GFE%IM3)%Np*N)p*0 zc_RH5Cso>4eRTIPAauA{p^%>fWIvd@?Kf!xzx!@sx`{L0km2c zX1*RV-YDF|fRI8`$wC{`l^Gw1JywwMHvB_$YTH4^1=sJaW=;SEe{O_II;%Y<|8Cfs zWFrYPRGEMCErf=#`G|#R`syt~yJF1MW4pr|=erBg;HbYc?yQwCeiTubXL6_^t~X3T zZ`D-e#q&z2BTORH{pa>^pw9K@TX;3hltn z($N1gJsC4EqN|R8kkbzysQW# zCSE;iJGrBpxs(4%Z&t0CZqx!TSbwOj;JmVSkt@)rN{c;n-FNs6kTT)qh{*@T(W=Pu!m$I$7xanbhlDkgg_9FW*|0SVT1;nOJn>rObf7 zrNkh-=vXYcMGzFttOWJwD_rOKC~ZJ)Yc3fUB|W0IB}gTxgEsOb1i$4MjUFx90}FMX z>$+=Q{Glp?i#c&0ni4o5gCxcf-!yes)x}#A96-x-Xn-HU7d^p39XVb3qc`p!eK!3m zep9C`>4oBledVeiq6-}x26WW}21z4KnIXvqK8FtEkF5H+zXyBp`FF~;8rBE@=uE*n z>I^;O7+Vsccq#Em-}2EulV!NPv4Z?~*Raxs#sMcvpuIpMsi1p@!KgJ!ppqLgBE<+B z(o0YxX_vOA&iM`kjTyQN^a8Om$#uz+S82svXi1m`?cqh9t7bTL3T>w!_w#vzP#2PA zD8TF0JE-g2_YUjtx$hB`<>01cL^j8>gBFdv(mHP6U%;KCNgn(N;I9>(@7mCm?)ou` z&*+@PdSxU_=ru8v>tnEuJ|dG?Sf7kyCNQ@1`2HhUTE7xSI_YAP*a9tvFm){)J9ShK zJFHOXz0q_7TFmFpu%19fXOjjIU=b}%TnbiEL`##5f^`95h!7_W!YJ0{(a|&zb%Y{1 znxeO5`s&)mNxaSSX0+aH0O!2$n7yxhQJTe&>S+|5QSNc{Ka9g@D?rzuGSW z10li=kTYo}AmlT{_*c zql(HbDaBAa$P4fgK=;F$Q-&GsZ-qt25SkV%K~Rj-B=)BHMvNdUR^nd~L+ZWT$+(jQ_Vm8}_#3DOvj7dZ-d^ zi|~24RE7DF!PbtBvLhp63D^*8EWmcLSUe~mokPT8a*#1+k+oEauZ^@X^Pxm(Ke3KStREa z9QT3Xu}nMmc~wugI;PDJz(-H?dE?s5W7r%;ur?hjTpx+)Lr1L~4LhW9`z&(gY?V_& z3NaOT4@D5s$`fuzM}LVwaB>J|QNYxhP@H)-^ zM@4@yU(H3oA@t-^-%(?>6#k;U>KOQ=Di;9Fp1bt3;D9-EX~{pS;ui-Mu^SGmGE|aA z1{LuSMUokPC`X#mzwE!22qZoMSGP~z#%y4x__Yd@eQ53$5x=v+x=trKEG0SICpkoX zL4bfwB!@40zV_`kI}7;F9FZZi@=U8O$=G+$c8yc1b{_Ze+yE*(UK`Y#&Rb1IVN zZ0!E;b61#^Y0|z+UDJ_!l7g&s@nlIWb5q8Dt&#l8jW?(dqLG}gGALfuBd%q5&lb4X zGUe;(bm)SKJBXmy5-pii|B=O~)m2JWClcO-ApbND5gY1t4(Xh&#Z$GHS68vGdI|a} zX1&U+He{n{IdJ!zI{6!1iGTW!Avi$lfbK$$p(atk(4*Tj4$*Qi~(w#bPtHG1^FLkmNK|-X~0|l;q@qg6pb_e@EOKYlk#x z7$$FuQoVpF zsS_o;Qa2O**V7csOJ}A@(zGSS)Wd(@Xy`}AB5T@{DPh;aZ^!R!KGOqem5_5Z;j#?O zaM3|MnNvJY++okNLqS`2j`-|)<6}4mr3xG0AbD`VN~ZqJ7Dz}{eyUhD1^&*~5d)@X zQAwwTdnIlB6>7|4<@#6M0g~BKiB#ZO- zZxL5Mlx?3Wxt^0zVD-upV6iq^A%85W35Ai8Xeaifd?%-9!TJzWAnM^n=V-kf5Y>T_ zD_Tw$C%q(8I{!;A7Hu-uc-H@9*7!Z^SWPX%*&wE?##c{gE`%W3v5RKq*UkB>R&uJ# zuN3|DBmJ-V{(^guLY^i&pC4&MUan|go*pg0^h38HTBpw!gCS4XFVfG;ozHj6A?G1y zB)Ana&wuk??oUDfJfRf?ey1#&#ZRGbKX`0BcLI4QhQt>w_bcBdfwS|{6aV5avg@o( z|2FNJ`$KS~wf1Y=(LhwF1mCwig-7x%k!^?m5XM^)Oq4}>!F9AD-8b{IM1=x_?w}l4Oz`e;eEh(t)!oDm_kGkBP9-fC*2FT-0VYif<0D-t;$d=xD-IHQKQzp!1WMPcLh`OYL1;4o` zSJcv;xDZ#sb-4^ISM?T5%^ui!`m5c&*oCdZYI>{hn#dx%9oKNCyWv!Os*!KsJZE~z zLNi%6^HS~g3%$6GAlBe(rXQpp4WChq`LsD4+Pa63%}veimFNoFLsw%5lg1uK@xQtH zd|tJ?@i;XQxBf}bZB}>O4~f#n9(5V-dZl>w?cxDzRQ^X=No$|$yy9CA_$1nO1_IuI8uXR zq?-Pz8qEe|ox1eZgz&U8Lr7dn)K0jv0>RG(#cY{E;Jl{%wG0WczPqO^doM!e5~L$% zf3>BH{*I24($cG7-5geVuVQZlalr<|A7(BxXr8m-_HL2zxwk28+mR4RAU;>Evr0Q+ijx=uM%+Q^=EKo{D!hPnS7ML{$D{@n6y6g zo?(R`ZN{Qg0Ip+$lW{-ozSK?9nwny9LLrLd{pZSOV<9df=+5gUk%4Gp<3 zz{|jBqPBIemix82io(*e)f_hJT{kE6_)cBoK3M`~;NVk$fHx%TCV}DGB}W9kUNGs> zA~x1K;Xe0_mhnHcT$_q1XA*Zy;D(;T0orURf(Jz_w>zTGtv@A@@wuC@EvXsDvl=!i z1a3Aaic#IbrvUtb3>6ptala>(BKDEh943F2)MM&ZSg4hzNtx`ChgoZgK1_trokj6b zRAo`oLYKw1qxG0BHhEQ|0sN4xpr~CG;-IFC$$>&~4ri8Q1+CaLb|*%R)dvuUGXbEI z%E*ZkoJ+K*AXe8{cd0i>xnm zt711mJn~Y~Ov^P6zC`=}r{Qb=Jvjl62R(7Z;w2&WDMQ{u6eFB4t(Ougu$JoN++&i+ zL3r6;xeGuXwmg7?Ix`T6EAt#L9L)H70KWuArrJR<;Z*D90cA|;2G+7=7X&qyd}O(s zHkzOH*xC}Ycl;XpA47|IW4xt2c4L*i%j8t$03rXye}xYw{!rBbAQ@W4-1nmFqjza#rX>N zeO*tJLOoCYr8$N!kwBNL%MuHqLDm+)2(5=z`%X-|64W!U$zZs2SNN_+RGdc)r@em>%mY{+-P>BF!TBcg?Hj5ojZ09D@;fEHc0IHc;~hEX z(fjdWxu}cl;$K%587D&Fy`qDupZe~h6>{t5_2BJZp5>djmJMGT? z@hJd;$El{w9!lw}uGj#p<+z>eSKd`F@>_>I=zIMJ%gxFR6VGT#O*o!x3X>kbTm!p6 zC5Bb$K4w(c_R>>27k)tZbaT7>AY7CHR&v>i_+#7F2LeYuXg^B11Pyi|LmezA6wlM@^v|^ggo#=Ah`|XGQ?aixGCb{1IBeP z!Qmj&td?3?9wOi6Ecjq1_pdSHAs7Q#Lsj+u=KR3}=VqGXcw1N8R9&SHuG<8?nwC}rTLjmSJqG+n3v zNJNv_|FN-Nu*}I$M(pj6t`YPNOrhZ$Z2r;w65Kz`+9lBhT1J^fv-SM9%ha}N~TdT&iT$xgv3}Y?u$NvR4WIPr`8l{6yfk! zcI@6E7YYj@(LS3*!F)E7?Uun}y>mbYzHt6`QGYv+nCz(zB|OBy zl1!GPT0Y9}S(Vr=Rqx|ZpKXE}CWgBh7Lk6!Z1r!-T>I%Ic!L!cwX9c?_ML*6Y$7-L zCc@h4c?P9q{GWoc^1pokCeO!FU5@#dXl4ZQZ^<_LA8Oo1VXaJBDO=yIcx@Y=f4K)i zm3%BE!Wgnm#OztfPU33J6a)ji_sX+A^-w&*y`H`yEo}d*NTKpF+Vp0<>EpQj3V~Y& zT7oiCjbxNZ8Tx7xx?gupKk6W9Q4OmPCqj)#hff6z6zG5ndOV9I5E|820t0dcK+mrl z!URT}#k4CjvrAoNhO;>=B8&ByYe_<9Z`I8=s7$_^1fOXrf`2y!e{{A5RT!oCIx02N zFM0Lw@&nBMO*oDrCWP10;8?hoZ!S!a9j1#bbJyv-OH#JTJpiv?)R6duskr9^J=Ty> z!`P-v@y{E$DNqBt9_u)~Qd!HjW`89BT))_poZ*9b*f?j5>$0&X@lAzRnEfV2=TQCC zaY;4UCC)J-UE9)^OMYu)M)Yo3_Uc4)VQyP%Dzfd4q%hNaobKUNe3Le7Ppn*C7cY34 zqbT0s+8@;oDeu>S!IX4iJi>$A5L#r)Qv(J$0aKBqT>M5yA_8308L22*BO~g@VAXE~ zyDnv3@d_gXiOe%RjJkWO1(oa6SbDS2yT~QI#BNOgtyq%lDDmmGGg9)@{yh;qgm&`a z9%s3n!@8BN=EnYkf8-DbY&_|EZkhV55U(Xs&H=@iPZv(DO7Y4S`P(uO<~KK%O|)f} z$%ZgWTO&{Y2ufQ}vYYESkMOoBFh(;J@aaiZEdEghR8r=zD=9gPq;~+HzC#5?e95QitBMz-0YP2Wb}MUKuI>X22|5Mb9Zwpx&;z z#>+axfUus~q6d=Sa92}RJj^e@?!vu@IHb9eg8;R~aqw_)@lbeC^B0ZcGhQtv17C0Tb`}>~`BoKZlh3=xy8l$LCHUZ!w~T zJ${xegy~#^8{m|!YJa|MuTxg0n8!Qw+ra;f#G&4Lm{Jt=E>)mW_a+I7kc{GG^|lOb zfbSU027n_?P*rTX9@QPBBj|k!yw~9)K8luJU-TJZKG-nK4lqcb8PjS(58N$|R;5%) zvQzc^4@0cUXd|HZv#nbpoo2w0;?5!2O0&I%jBN#q3SVG{92iB5ovEI_jv3f(fUBwx zApShlB0wge2F5_+jcltt+w3B%o%8$^#h_o7{c{tJ*@f>GW%UNC>=715VmrM#=Gu+5 z*sQ)CMndG77K>VRhMZjHZ)$h~4`Xyyc}SX6}&|G3XN27X;vMe>$7mlv(ix3Lwj zcB@85$y)w~>q$y;IDmP9J7v`5q|Tw|@3hj2cfrhY6-8BX#;ca^R6*w+jTgqVmMR#$ zJMKHxPfA-%j#s&Hh6X`+6RgrJSOIX2;AEc))8NN%t>nF+Lt*hKe#?{NYHk>3Dh7PW zz%(v93+$P5Qq~8k9-TCWlI$cY6uDvBYL~21X$)ieB;xbTc8Zwu(kr6au~pWkk%BP` z&tdUlQ*(T4mpF}8g8YW~;NIGE*n8!lBA%O8(&Rwo1HN#T~o|W_Btq7zS97zFZSeN|0V6-OafGL-9_8+Pn-& z{9j8iwRtuD%C;x#LI1GeT;~A6L*t53mm)oPN@hs%->T!k_kRbtLSE(lSzc8sf}s7* zk)M8 z!YvisM%Sd^`RZ8^9}6-5H|Rz!!e$@NBZ6#ATN5zoTUdx+Qc~*(u!csGVjM+SN&@Hw zqRQ3dljNX`hE_U5>PfcS`pt6ouMWRv$7yKOC16fA7J;MM=5@}DE#RHLaC!5pJ(6rf9u|{2TwNFBU7Am=PWlWQ8OE!&F@&5dAaR+ly zP9yA^tS90O#7Fnb(`TDuIVcB93XsUUF%*Ug_jij_a9qJj=5rL_a*@JWbv9h3Hnm^=M zx;PwA*m%&4!mHAjeC=ZLrqzC6#W*JaPombgiDLbG{GtOHN))~B6^3;-l)-fL#Ezy6 zd*&BBVZD)ye?M3itBJA>v~G+GP4^v4R2ly~7a|2M`X=7Z85}x&>%2!g`S-AzmN6{K z)A*V;Tak#t_Pk)b{loPxgR+AEosF`>!j<+&EC&DFPtqA3CY7?H=Ecz3aUpN(~6qck^*QwyW*q(kDvETMk8zwv# zqmCjTCoI%OnDW-|3O-|TXVL6SY<#3WK8n;odA;8#rh;G^45e+X?SFpvoovis0xV>xYX3MC%h6G%wEX7XLUVwXXI;sj9#52rz%X%+K z#$DbLDk*$*P2&c=!q!#>)^m3VBg7dvdOq6I%J0-cCfM?{5kljCFG}fhVepkVU*wrz z9fpE`1uR;i>%iK`d4Ibxn5^pHaVenVhSGtiC>asc8;&#*&GmKb$B zkM3tUEUz3#bCA`NCLS9&PJO9Gt8XoEhB*GhUoNd$-Q00aq@bF^DCsec*m!2XlUpCU z%!a8)c_L_BM=fM+_j_n+gHDnz8#3P7t6c3CX1m{2yP~tHoo8geZTw*UT%s<9LAnsa&h;=OSE7%Gy8e#RDX?6av#gNVQviD7x;@!=6C9rpNB|kzOt#}iSI-9NvY5Ub8j*Z+r@#_m-7-u;#(jk}^HU>#WRZ64> z>5&iifQXag2P^@UJu(s6Fx*WMZg~uT1p{qajF>ZXES~H+BK&Fh<%u2Yj)xnt-(TAA zzj5GU_Ci@uCHe{xUPAVW58KaMnHiR+zVFYsvGV@Klrqkf$Icid24$<8c`brdnuZ$q z?GzxvP9EP11iklmRzhle)w8{PdP;s?xAo=|@5SHr@2`?+UH8G# zY++EQ;;=JtZuv!stR7YwRu(c9IF8 zSJRxs`hWDkgZz6K5~@R8efF5;P;1%c9&U*I^C8A*hhu8UZ2F>nn%lN2P~T{yWobD~ zVkms31i-ccUUSFRol-q&Z+sq)faps?j0j>9mF-QbVzd<+t^FeM#?3cC0hE7;#PqLv z@TdJ(J`-&t7FRU5n}K8Cl41r_fNmo2a{RXMx4ed*p{{65J}{-zF%*~UU^LqDN>ONC z5bXh!LsTZ=?Hop=@EUANrJNp;AaY%N%r3sx3uedfw{ygves%TM611Tgc_0#xM^^aE zFSoScTB(2Lp|)D;SxwIkDDVnDPz~d3b1JpFgF5T5ISO1WUjdT7KC9$P?gqc11LbO_ zx}Ov8C&eAyLg~V3B0fKS%Q zKpjLG76l|?M1W7M2=J*N1#bf1XHuzy*tHl>O$Rm26C zk#t3brN|Cpt>aLk295CjLz`ji`H@QE%I&MNR8YET`Zp$P0PomEn9Y;ZHPqiNwO_R)W zc{QQkNL+dS!&%^hnYbW;hq;g$eibgqNPLduL|G{hsZDI_Kt}ln;>5X3?4l+#ep#7KB(oN^QO9Eo@NxILl>TPgeED~(cXbR7^U{;Q zFewxVvR60lefn9pm1Q64N|FAqIV+CPJQyUx;ZHFX>%Le!U$l(m^SO%wm>Tr|UV)jWR!u@gxaU+Jlju=D*3x88* zQeIXdF{&%=yWW!4%Oo`QlybuV$`Z`rPdsI+)#we-D$!V&>4@_PRnH0p^Am7o$-9Np zgWF<6*P~vDe-Z-j6(4fKfb5}I-z3%0ND{w-C2RRCk&Q6NzaLXWQHhfbMdeWW0l45m zkYK*NKMA%VoxJTDnIK(NJUH&I|2R4k76WaTqXP!m@;b)Kv2GQAT{`&?Mr2!8=K^Z; z03s85_jLo#hrQ;;9upAnqolZi_E0Bw2jss^JL)#?)mmx%77+IxB?u%ccLRf6uvVV& zDdA%VzcR;iqy!D@cJ*;YW)da`cB5vo|nvAJTJsC1y*E}A5U`z<~(Rr zm<4v7m0v*g9zNjufq4`GeWcgRG=Y)iwhb9!009sz{HLKC2W(bfhOigg2m37~TbNe% z1fY2rvLr6NHWWPEw1VYKFeJw`;8_EJ&;w-D}YrjG0%X)(ydk6eKe6O&y z21J1*-3cOv6^QE8sOk%JiGp{`iEA5^uWiH9p1<2DJfRj&1t>@u!wVV2b&B_dI+LYY zGW9dOykwNfv`TVz;vWN@Ny0ILBf9YZ9h0_vg>D?Go{e=@m*m$Qe9FI3lwTL5uwBlK zXCy7bLqYtoL4d=2?jM)BZ;~B0;_Q`b;}MQNfg&FAT&K;n9=+xzIV*G@=_j&48wRoq z;e@viRhIHdB7HhU1x!V`SMj{_$$feywG45(5hJAHHpDQ0(w`*oLgH6T<+5PAB|O2D zx^^hRF55|hBKFbxAIK3TjA+DIbuZ^*2|Z32VNnB{r`$J?N^d+#gf{rfu<o;u1z-`w07Mg+>lJ#f&6phdHK9h>zAK^%Q@VKe1kUv2IUbPV0?$Csj;44!InD5$S9?o)b6HJ#rNy1s>;( zaz3~@sXx-yEhtX+l2@>9li62HeLsEsUoR!ril;}@0Ff*+*1dfl8pzbw-b#nxi3nS; zV4B4C_QbP>;|u_qJY66$lsYuzP&5gIa#|S8QfP=z=FL*$pdo}WpCN?IGFd5$djtoN zaB_wc86XXWKbj}WWeB?o@;AH|MlWBrj{zGfY$Io(U$DSuLlm^YQ|Y`-I3Tv6`kDzy z!)tq-0{fio%27W&&BWDMY3+DKZj-@g3vqetjLn%fNXl5SU2(W&aPOLfw>BO1&N;eVf540-qcDJzSp^BkmJ5A-4!(i0bfF65*H2lt0^Y^0}n`g<2h#0L9ngWp#hlY)>;2 zbWtg#ur*Ytw?^NkQfM|2>xkUNQQSQmC{WMRb*el2=L{zOeP2SM-msbSPMKn z1pd5+0RxI$@jV2DX{Af=2vDQ&XkWbuDA+TESP?3=NUoo&WjRs3>d-}EhLy5>aFgGV zo9kgUTM$7TTx$9nQVx26FYo;`LSD()Qf@rOp8i$MLR`DPY>-ULokSk^jMoSlYu&&I zXs-+l?1KRKntgg`lG`amY8275UMS?7js9ifZE`=Xn@Mj`-dYEyf7YZGhqRCe7sL0q zKZ(}Abrk+2Uhh>JsV{yEBxm|$vVaA1EcO1hmucVVo*N=2gNGaqq;3fy!=A1lZj8U6 zi~8b)`wcoDZrNJtJ3W{iqA;*P(WU#=bUCRq{0Jq?HYKNsW(s}6uV=^q)F%>jNC1#u=*|lo|uJADQ^FiaEKN;YH<@-Oq?|rD~IT7`)U%>vLEyC44-|=%gq9VLR z_}NV8Yd;LG4RdnCQn5W-6qX8~Y?1%_>a)>(*paib7pYk=$62*ZO&0Fe(Ab+^zVe^3 zP8evO$F1#K*5VDAZIlZLOi1cI3!@B(F6%lyeC6x!XsXD*$2w9@x(t(=jb$!tKZUBr z1T-8_VJag;uH@a2m7*Y??oPS5^%4&%f0EI=h9Fam(#bJ3o)eA8$b(SqHu8kL}N; zS({+}kv}aL;#2Y*x8*hR*qPMySt;gtGiuJ?!m%{?D4}=vG%#MKv&ol&xYj7P7B$bb z6phhGJ9BkPC(Ke@We2qx4Q6Rx_6PY^9q6a;u0@{e$C%2;mw8e2KjLnjt)66%kdR(p z{&z^tSxgobd;8VmYvl=XPK}+yNXyc3Ri(@NZEIsPH&eWii=cqJ4DHMx8c}q0w5`ta z5ke1f>J55Xq^D7t=cAXWKeVTvervSrk25kazt>+b^G-XPUVan4oQK?&A~xu&UT$8b zA8tdQ&re_O*H1fd>m@pFe|J7jPo0`?K6Qp%ggoz8MWz3M!EoZI!m4V=uQ|_BXiv?{zEko)*>6p#tzUWyiRqB10CqW;gU-UPA zqphE6k}3uj!AECK?x`FejW*XQp6UZ@)1M~5ldVV6xKq;Wx57O~C$=dU@(*2sDd$D> z{^*o9TEbd4P7fxNXPlZ#YOxJ6>{p?FhS7U<<5q1zY zlZ<$f=r)J^?{j_Y0%?GQL95KMIaO_jn}zhR(Tr&t?$-7YGy#)&(z<9r`$nzdi}h7b zpN!s1E5ED#FO@X8zASpb{Ot4E&KK$J^9NUVZ&-(x1O<2wKwn7ul*rKq-0R(;S5-kvW*X7c9dJ=ozY?}G69Cob$QV9kE8x}@ zl&XRDKB8iFVXBdJ+sRKz0QwuU@z55?4`^XNeZQKcku)U)wInI2b~ILy>^#=2)wMH# zpN)1`f^rDE0{n#W&qCGLW=<^8@bDHyB$uyxP+_5AKE4IW8EvbCOGM9hy5NAp)f6^h zaXyL#cU=GsqMm;$kPnAjuKitxVnVF_u6^)z6Ejw%9x;*FShqGnD)bQlb7ZyyQSJ_7 zH-n$Ga>6YGm^vc?w>$1OzQaG9Ph-oC_MY1=3%XFHPq}Rc#y_J6VVzH?rx5q}+~tt7 z@EkMnZ3iu7j0n*j$p4kBUcXn`&M{(<^tf>fN8gEGq!7K#(8%?Br0ntEcp}3?%Dd>g z*PwxSuE;E|RO30J{>1OTK1&UX0(vr_%(xQ0gW6h;Y_%*eUlqAW zdK}5F+7=%)RM{V7VH3-+24LYM5mUJpJ7&Qxf7^j(HNc#$kIk?}7THV4Q-)y^hSE6% zgz%QRSg8g(YD73u?xf$qz`}9D%1wVuUTKb0P&PX zxcHK&_sm6N5Dxv;5WpcU`(PTZ5sm?Y33VA#ev!rRD0Mo4Ds%xl9@odbmZ1`cT>vws zTfEviA!hib*x!T>^Pg57$1CByy?qQGDNZzD-;}-J!ZW7pgCffD7`F2Z91q%-FiTd=3p%6AsmwMJW{ zhs)*q(g0*1QEHL65}td(UIq* zLr=cIW~9H3^oZS|=-))Xw}*2l*o(}s=vtY5GsYjSb^o}+d8vVWfVY^9d@GwJK<6$% zhcsh?r`920BdO@u1KPMCLq<#|b?s`Pz&okHp_q*tOy7SGkb^cB!K`brgD}193U7Nb zvSVhHk+vYdr|JaFdlLNW%Rk~qe$!&qLIu>@SgD$f%uQ6EW06cz)-&?G5YMU~->BU- zJ!o%0kn(dZ++n_k3QVBjD>)?w^_We%ec;DsT~Hdy!eV8G$>F_aA{NS`u4Lc??#I&^KHqI zHHn|-$zofed-AtotK54C=@kcFZHiBh#?yRm>oJK6|j1W3fGBMT)45(VkV3jHeU zvP{6lekkh_=8zs!ug_uga~idVCQ1O`Stegcj|ai2A4sT}qd_bFczeQ8^m3L2zi$T^ zKZ}HGu=BEhMZs#6tf}>_rHYzVn$r?CVN@--@E*3 zPganXKOZIZBV2Im=^6*ryn8cg7hL`;M5wvDbVtbagjhQ%1p!=TTF_sJaZvd8SK6vb%s!^14 zeWh*e1bpyG-zoatiLSfwNN{@|b5QJYlbWk#&~?#Ik7J_#T!OTvkgIq9E!vXDmV3t` zMpWvNRl3Q_>xWy))yEjRpJT3vYQQ$$81J>GhsF6I1%5u)mQG=OHqpm;lphNIdXB2O zp5wVMe$1%iD#J<;RDzrO1=?RC0b+gcJOw_{5^H|haMim^!C`VN16XP}~`pJ!TXI5AC)7=Dq?v>Jxs)K~`I}#3Tv9b;$di2+}8*2OB zMZ`6Ua*YBIEr_lEK!rS$xbsnd284E))I>m0zZ;b&i|fX$P^t$zsej=&YFZFE3vz9? zV?AWe_`4lx9f!TJ|1qt;Rov2I~r5sWVz0l{g+4DP%8n zlA%bYcZTe5pE?3eA!grN@*kMq+p$!Yd=ihbc7H5T;m(M}(lIkEH5ZAAv1PW-%Wx@g4 zFuEa%-%(v4erJ_s8WaXNXpJK!l+|VFx)&LOvac{ZB$84!5K#UqbSL=UI8JbutJsbN zLH#uvyJKJSj}ztZ?ckRj``u!8D9t--2g&>h(PTa86hA$?WroY`-X&~5BWbjNXZt3W zgo)tfac%UDp>g5$9r&~L^7-Yo#acXJYlfYyUVeUFd~hP(O5EqLb-{VEaI!51O}X&S zm$i3sk~Bdf(Qmoyq#?M`M!0aB09lsY>3cwJZ+E>`nwo+X>C-EQT%ssnr7n8X_$~$r ztg@%#JDLWuzk$8C-WsyVWbCZ=1S=zxSW(9LDQSYbgLru6$d`*f3d|ZO6=f0>(fvx= z_vDJQ{FBV64Mc$08tw*d6#&@&+7^dZVJ#vtQ%AUh-d(P1j1yNG0=c<&#GD6{`@e7O z>Y{*!@(8$rwlXC(9eejyq-=uF$=N!>ZEx=y$w=^{*?{E%1nhiV2Z)^#6)cjr0?>M= zJSBCtH~|~++;KAA-&5;I47cK6l67NkFTy6aHA9M67u=P;0*?fRDRI3b2lnwqga3!@lnEC&AHR>v=aDZ8KrL_I%c2lGJa6 zf1IK@k|*8fxeN%$5LQ&cTNah4uQ%Ak9kTA`v4yt8*#y%IPv*{bB;2Z%?3`)CI6M^x=_QA*+6 z+w!aqK|3E!xgLYcis*h^_Bapq?)@57r^gFWYhE*;9%6vxNB%MCVMLisMNa{3*_pfH zR)U_s9MiZftRbhf?8<$^-U2RCCY2WR2Tn9xvjyA-2ra!KY46mePU}y#De#eQsCIY{ z5n);4u-^O}h_=-8`dm?m&ti2vGK+NMM}!gI;-=>7sW{f}d_(p<`G^K82irDZ7Iir`S@C;zxGY-VC#L->phjFD@d))x?U8?r` zf~!#NEgp2Bm&Qe<>`B1s5uJE5T_cK^7QNh`dZalmiYYNRn(=8Lea#qUjDs=U`6(Iv zFR?&vD7gPTew(AaikpxPBYtI{SJvRz> zALFsc1`c$m8DHPZqU-in`y+O${5AP%HzkV0>V#&L^G6O6b$UqcI!Fuz3$~BZ$H)hg z5QmLgLE7f9xTENFqseCJ-YMgE-Z6H3mnDkP+Q-!nhy0?U`XrA}W8pG8g+KbBq&q~X z`+w;A%BZN~w_9rH8XUTY0i>lnXBfIeTDn0%LK>wcMiID9(wJLlQYv-hTqCKsz0ojp45pPB&cmRSihHfHg`^tyP~++USN zLjCf(p3yTiSJSfYq(yGU%gu_@LLHB2*POcX&-^ynf8S3R>lO2}Y2Fj%%5Exj4q??; z{>G%jkaLKzd@5@laXT_~_f217;laV;T^L667d~VnKqdg6$Yib}6x^hx4mSOsAZLTF zE$pi^r?W0u7=Ec82|Q2;{pwq^TS-<3VdK#pen;7z5ocl^<;A|;iSMx}0LH8W?`#i{ zCo8}$208OG6iOn2q{3~5(S(GEpmv6!RGYnFV@_zyN}Qfdg&J^AZ(q%Rdr8Q-`>6`I zWk_4h6Pz$jX%z-ssKu!Q1y>faj%EZ1C*>vy9erpeh3S$~A&noP0OXnhF$qNV3+p@l za4i3MrvzbcG?04;r`l93if+QsDQhV5*$k&DPCl|S5a2+K^6*jm)x;XC%IX@SNBOrvF&c)%q zZ#dD;C|Dl=+1vui60AsB^rulN7FyutP9mD9-NloN(3AsdAx-=ppy*q)mD0=oLjwI z<+6bLloaovPY--qD!4gP{4go3b&;p+`brpFq>}H{*~r(0a70*b!&_aaeB%f3JHe7*UjZPMY^V_zq-7 z6K%~YDJzbJ|4Q;jQKS&50aF0$-|W$Cr?1Hqs6^n3EDFGdST8#hT1 z)7=(J_BolDAZ?qB1&~Vv^{wCDTeYXn7!NWr>PEU;OkvQ-`T1MH0r20LqiL=g@KiR} z-5uhZ>XGj9oTZq<{ZS@(@JOt}MVwiQISt{PyW$ah+_j#wI1S}2TgusJaA06)xryi) zVt)MnXcDany^$L8s#4ada(4X47w@Ed&vHR`E}kx6cKQ#qH@OiJVbD;!n=Npe&XO6@ zLApIJY_H3-3Z%CQpjzYDOWMzkvgkV#SDFO&{}g$X18kwb(*y=Ex6#%lrGIdium1;& zE`9pJ>et$*K&L+$Bq9|b-@Kf8rA2$V#wT-vw`IR5ovS$^RU zMX9>1;-&P3typE@(cHyLEqVH4QO1H>p|5On=Sjq0m+H*l50s8Swz5rX-TEsMy8;~O z_R08HO$c>D*Rf{45i>7IZ?m7Ws+7*%Z;?!y#}U`A2`VZ%l>ZQiQhX38)xc+z(#Zz) z-6aXIKK(ZdEPQa6?AE*;)SfI+ar}1VbuRhm-q8~{aDT&eG_?5CFmvQcfo3RIK-lqz z6qq=J!lyJ*(2UD&<(mW+*|V4_M)kHY_$}kb31}*hy5v!Id%vLb3;uHp@_a#)4)>Bo z$N<7%esWe1jxif5U0>v;FFQgIY2W>mTICFqH&T_ig0{sKkr4}g#m5+kUmT6LDlGDZ6`UT)?5l*@ zyM4&1VkM0m=NT%Q6x^wv1QP+LmdJEI19p+8^XF_1j%^AR@IjdUwh`@bhLoj_uAEIi zIlpbJC(_a;nnJ$RYUcL0Jp(CZvPS(4#SXcBZUQX+aqC5R^;JDmZbs^(!;J=G0+I{o zV~>tmZp7T8y+VE4m+Z~dU5mQ`Jx=BvU($@&a>#$-6kM#lPo%KdgV3bvh%GlU*zBrV zUpeLv;MZUY3c(D3f7h7*Jrw?XwEA~8^yYC({x2!EK=GYy)pyH5nl#Ev89jEmhWNr^ zO;s2;GL>|jIB8b;sACq%pt9J>W3L8&8vgR|NzPJXGs98Zw(EV82Y2zxNQq~Z2VvB` z!ph*H;*?>JPvKBEwkdeeVf$hEBi0K_uEkuX=KyFf_g4_$pY;Aj{1FYaUuuc!uY zNNZN4dI+aBj&n8aoLzQ}9!KhIBKo3;f0lw(rrnt3_L9{LpCqr(Qj1iN>+BBL(_arO37X>-bj64JxaauPNni| z9GCPEo)X?8coLYKUyx}kJ99g3#c%dY(@5k8?X#sL8Yh{V5BSWdGT}P1@0yoof|<@T zStsncoGcDu&%%2%QrK8h;NIub_HO8`L{x!tpTruZjStiC8%mmc7Q~VUK zEb1^@7gNxeTU-3$o)oX<(XWs$BQfB%KP^_*hzrE{qOn5gWOlctUJqR3|JXtLq8WN8 zQ&NT)QW+wPF82<|Q7D3YtS%fY z!?Ma(;Gm4};uZqgva}%d(CY|}m`$L8`0d7+7AMT>jfPMol?uH%vfYF?!sb)>n(9Xt zAw_w}?>9P(Ok?F$c~>ta+vP)Ne5LBL&y1Yp)@f3p$eyYtcTuZPuH}T?g;*t*6_koUl}rUa;2$|g23R>&~eEi}+E`E~>t$vc-Sdwm7pEd0gu zs}(GUd)EDA$qCThk_lVE2`3Y1uOXd_KTRXS?@Xi9g(10ujbleM4r-qWD1)Yz(_zLy zh5cd0^8I|uoG(1@(EU)w0z+d?d~M^7AY7y5SKAbFCL80bHh}Cm)2|GAJ?>$ReJ-56 za+OyR=k}KQcvMe>^=@G}yF6s4Q2S>#Vp|L}iuQGt*_P`O$b=)m9vZ~y`;oE7T|jAx}#EM4r3eQdhQeT_8VJ(XZh%A;xGPf3Qs zw_8X-5%>tZC}?vVfm)jT{9Bv0HS|q2PAD1N82xF}x{6nm#C%lYr&{eqrzvL}ORGb- zNzt5?TsL8N#mBn&Tqh&s*U_@*?`69UX}udmnL4UAQ1?=6BKlwD(e+E8hYOJ>YO?%$ zv%Ar#ARyGJUzS;MUEpsA`HQvKElLCGbbTJvN1jHVx8ZJG-543^nWM71x@yq6%zFM< zSS|9ce7rW5ZlwbzAP}Vc8BN}G=qbE%v_$);06I*$jY=mZ zwyf$FJ3L{+!@Cbcdz92W9=GK>NlRE2{-NX9iyC{|!<)CzC?At=_Pn)XZG#MQ!A3B#H2Z`k3IQycW%P2izPk^0A zuryI%-m)-_!Y&}iD{9h*#L-lQd67CTXGm|cbA zNpYVGz?U!->4fwT?+Z`sVmE$^N}HaI1gY@4D=_G>z3`Hm_KX?+^6PD?#SO>SriB5| zD?GfTv!ciuzx+S50wW16`L)4=L!)A?3S|;6lwU%VUVmOynHoamu`pNBatrd@$gC6G z+4Hqc_NI8jqw3B=t6fhQ2+5gIcC#DGoyE5b) zV*e=oUshvHX_k=6jh=MXAe->yE>+DFTFFHc1UYTjdj&Ef?PtRmwh$4%xNg%Hap(jj zd^ggg1X28VT*Z@KpO92+)CKn3)f8Ya9 zCogTDwfnlr3+hotmdD{}gW z0At))Lsz~FK0aq>__}tmJIPKu*6K2lv2!*~dtwyI>VRr0I$x(9Wz|s=dCR2E&UYqm zey;}&Hl1LEK0s`f9pYEfm)6cep~w$C#%Q1b6#;$6-La_Ospu+HU{^XxE2M8( zy;$j+JvW!6nyHg$u1Bq=!@hrwS=;ud2{1Tv;&as3uS}T^&r+<)DX!j)f5KjjTTpR% z!C0U2)=4k4VR-+?l8-!enD|8K{x}Z)_hsT=Lx=U@fQU<{IIxZ^yUz-)l%GROz2=K- z!e2b-Y_Y>dK)lu3dYZ}`yO}^*i%3h_W&g5@&`&yUZ+WiI!Z?TSrnXC={|qTEdI z2(H`+uFMIpf(Zca$l|Te+l?zcQ7H4gb?)8jh2^}>%7rC&9H1xNx~JSJK2YGO?M6Rn zpSrm|)HD)+U6^?6xNy^vIV~MxPQUyDTYSLfD#P#h4k+Fiw@3KzU#hKsE63ku1YIk2 zVN$n(SKs%N7V!5_-+fz76y@u^o0|26aqhYCKVUhD>h0Hnns#{&4UOWSKMtQw^zn>V zIa3N(6k`!;@u75Qu?TUwQIpeHgzS7M>mn?|r`#xO^#7!|QK*vt0UxIH0Jt2_t-bXB z3v#n>mg^%{yyF_*2FZRK5$DjIHc#T{R(ILmyr*py~}9si#4Cu>eK6}VK`vK z!}Atq`R=1-8`6QYUDWzaU3NM{<6UjGgiRCLQx0h+dVmcFaXjq5_1gFF=k6fJ^UIjn z{tDO0Y?u#=^9egYOwpS{uiWo;Ja`$W=y|srh%XzdC%UHDkELaLqk{+$c2bD}ePY1w zE6Kkf_REOVuU`~!^>=X+)~lf6&OZ5)Uc)__bd|F`*`m$234G-L#@QJ(Pf;^9m~7T3pLHg13VPl^G(; zv{-`A8#JGMR)kMJ6WNL9f)xIS(Vi#gIbXTHI{UjUEy@wk7(>O&1SnUklfBSB92|Ql z?WcQ{tN#g=bjx(KAyYWSo5nc%MGbUts1ipe9$miaL2~lv`EHXR2?E)i}$V zE!D_l*e0bh#`dN@_qc1W!7ZasQ2ERC>S)HQO_g54A`hcw8Ym0)b@;A^Sf(Vwi1!Y| z0fTHx$oxom-BMW|m2f)(?G^mmG1FbmDmHv-_XK3XEzc4)8?HoNWAmwkfhc^GQhri_ zr_4gEf~X{xsQ5}Z_(9=`g9TvhMLHItC@%_?f<@?;z^_^!$6M1&i?6ok{VBEl{+ zO&@|P*?KojJgtc{@DbNGE&B@W=Vx5`!Z=}X!Pd5qx1ZUtz`maNS#WYV`|+3!1+R~53fK~;ko$sfnH$o8T-1fAFo znyFIduCs3OhuKiNi2i)}M=!;w(UR2C^@5%_;QB*PoKv0kuwB-aTJ>B=xOTYCLFtcK zvVFF{LRN0xX0FOV%6VfgWEX+?TKcPE_O{W(@26|s@RqohTD^2_lg=5V6c zOft0o%uY$ur3S!_G_;;nja|9Y=iYSPUG9B>zS5DqX1A$L*7J>wVFD+#ye7B#*bmcx z<`eQk_0!d>qW-M;Mjm$<2N;E^+MgPjlePcsppH*nsviEEeB3+zGcafMNgJ1eExNJo z8w(-NPNfAr%hd|Rvi*1unl-fF9@Z2w93a_~utVjWZ5#?Ul-!9pfXhpEFp?a(D)oGYT z?qaP9XVqhtDW5D#hGb&&J+bXgyLGDEsW_RIJ#HX!l{VWPIHK8f@sv4Zkj`auYYH6tFkEl+}l5ui`JDh zqhq^&@5vLc?XjD9RMa`h*67P>k)IU0HQ2~2eVc1zt|vks0qe)#YfQg{`7TrBu4PK&v13iti!CUUOG0U`le3pr+W4ve!P(1$g{g>E zNY{TpH>9#d$hsRwel}9^?HV*%xP_?G`lgC2uFRYdOw4S=b8dUIq%HFC_2O}yNENvt zMhz!?rM&5c?Ho$>-wE0|Fz-iKi`%W-Qvkc*ksC^8 zKOFHCajUMdzhiHK9(Bb-E#vhL`FTJs$bc_~qcOy}lyPeM&oI#wNq$uG)7P3fXPG59 z)n)Sy!ac9NDo$LW?waeukzL<5b@9EwI4Ryi@_eP=-IfF+25(AALe2+y+LQOse;QG1 zrTc@gR&Jn`#j2X7ea^+{-3@v|4oXj05q2VP1OuQ zxEt!nB!&(?Te}2&g{>B?wCD8dB2e4Uq^Zu|`=6)U5Ja?UxEkQT4}DoEW&$JMH$3NY z-+h4zCU~+T$e;>)&i3L2PmL1-cyCRh6hJA##xj#jZw;m3hOGEvsrkZh7*9;>?GiXs z%gIxfQhH?_d$$)V-lseEF{D%^XVIRm$DEIO1Q+={%MouZi(U17x9I(8Gj}(4cfYU! zvP!HtwB6DYI+Gi-c=$~vRVD{!99mB36AAvw`2kM>j!{n&Xw5wmXS@SgE9zQ;i5^po0Z z)9!97+l2h}?>HJZ`c5DCuj(_`Ou-a!K7shqfmHG}=QrCrw989fVQbOP8%TOti?QnJ zoLC>nnEJ}5+J1Jp(n+JTy=TbvPw#%wFaYO9eI?GKv6cWlLuB>h8q7T(#r9sMR#iV4 zeCC_%RHpc?=G=~?@%fUBgys%WE*!N?-C8sIbo83^c;1sA~C)3e>~F(`PD$U)ay`HIGN3 zg7tNBNwK>OF+z7&>~&>g-Cg10O@$hk+|sOoC{f{o}aC$Y39b7nT1+O22Ci#&6iO>83h z(}Ui%kuE%rx7e6)ws-qvt?wYj0>Z8ZhaWsy+2bG zFy!v8pOS~ioxY$u{K^$YFLU@6GF_g2Wd-EeXzuYdKzM428g!+0Ej$yISaSD%2^9KF zKR=pkNI%j1s&SO$xkQ%ORoQdPKbg{61O+>SX_4danTN6xTd+q=nKW1lr?B)(?W3@l zkhf6JjNGBuOWknq=mNQnMkRmNQTH2$(Ke9q^Ge%XJ|Cdj+zz%TTC5K0EDr7lp>L^j z-Ja`LQ^RFam-D*Z21*|V*qK})x@ug(FWCn^K%Gm$gR_l%gwJ4bFZ*o=um6lQ3?m~2 zA`%JnXM0VocJzAjyRGV|V>#il@nw}mUsqf>5R$%gV{)r^-F;E z1hbb>h?$FS9;O=Sg%>UIRIzl0O|X6`y#MX94+?h6k+R`K@N@5!Tyv%uz# zODVZ7q@l65pvyk$u`wazwVqB_52YU|(_$~ZLQwD2v?@m#STHNz=1RV%SYKbPBJ_tk zhB0som8em7W$kFyz7)}RW)CCt!aC*RxGX-#m{*qBB zYOJtb$FbZ(qn-K_+GiPjUx=+HULAU2SfsIU--9J`N@KtL@nW3A@x$_W2`RTEeF@2q z&crE2p0(g`rf|HVI!d~Xqn){vU3B4|*;b+Qa8bj2KePI7YO)Vdf2AnzDrNCB-sF{9 ze$gi-&SKE(O{1M{wyGt~pMJBt7zbH2Ey;RY_RgzOT(nZOfZcQ2N>(h+%!_libO8vy z_Pr_7EDL_a+!)qk{YRwQKa5MX!-mf|w5 zV*i&Ew-YzGTM+$NC7J%h{J|q#;9b&lfmo2(UCpOwT+5A4`781himIvyr;OknYZO=L zhX-lJO9y>m|4^V15i`uAATc3HD>e*nv8`Wv_mBPg+K>T1Uz#JuijqwkmY7QTqzRWY zdw|;m_|i{ll(sS)W=_OOQyGqkApHM=E3sijj{;hIY#0GN{LpQUBK=7kw)YIfw`us; zpRk<5MfhA%j@UhxU5{{aB62GQ9l2olRYQf+Wl|5|IKMKiFT_05)T_cJ{K0XpDV;m< zpf;MGxjCpC?-oB`oz=W*a#>V`ckjo573r;Wl}6rjVbcC2Wt6woLBwwgJ)J6tF|{h^ zirLq@wuI>h_PXzr-z@-AI`C%oV?u}b#E+6op9+_;79{|^)D{~nZEzT}b1mMnY?Zbf zJnJz5`lNE9O|G#B(E!f={{!8Sq4lS7GjAX6>HlIT59%!U^J*H}B&#dKLes=wqogdr z$GG{>MCJ5U>5t8IrVfL-m}@&3aZT34{>yn1K}g{hq23m~@^d)!a~fH{J}szUKVqfX zmG!+5#w|uYdIVkL6SKU7?c1*m7EZyI+(79@3(_tvC>M4A?m@>wn*cW#`=@|ai@!rdW}4^t>Vi*qECj~ z>m7#Hr|N)~Y=Mo&#V>Tkfw)BTGLe9^f*x?ru(W~*rODVA^EhKAv%24lJj+Kxa$kEI zoX|!33dHTgU$-|f>|<(2k5g3Nnw4kcSQOgjxnT5AqWnjNfB*62)BGR4@ONc44qSU0 zpbs+!J zp9fIaHN9?f8nMzBXqSdU1C4qVEF;M#`d zT94%V4EM07!M*5K&^5yOLu|`mNAhz(p7vPMtH;NF)`c_ov6YW^1NW9qEr`&OENA{oEb$aAvX~VaVo?hB4qAyV zDk3V*gG`>~d#hs9$x05>9g0iV3-S{@&%l~6jIMm6UA5x8FScD3+&Gl|MVu0}%{n*G zHpTa=4V|o{$WiuG(keDqifS8`2mnQ~mOOPB-=%Bd8jNtapFN2076u5OYGMK=K)U}I z<^q&w#ctN3ZMhMsEJETqbk_{K>u@@~A8?r8F2e5OrM<%_7T+}@Nr~PBP`L-4On;m{ zX%i`{m_MS=+)WZG$wiyTVXX8Amg^PkW4SJmEI(qIiHM_*YMK|2m)4j4bbX#F9vi=^ zaWGbxam`?!3ou<@TwCu5YB+PIb!UBE))qv^P6=1{QkM0bZK~6fbcRG8!G87?rJu3X z^!Cr&Uh2g_NzGitHa~6R-#TOn`nwWx8lu-&J3`KY@^FL`A?F|(-2VquDvMDrR96|1 zI;l@v=M5{`

h!+G8kJq?L{#T`jB5b}MbN|n_^F9NXDwY6hdTA#r?<~g>YhR502 z_reEFl1CSi36P%VMhaW!Sz5_k=iQE^L^c}cjdMCd-AR)wq&CAf7I_bPT0}~UftVu! zR1CbVLg%v7oaIz|L0Ck*jU>J&^B=u;J+v?ZJA+yHf6J74=xtBtvl#g4;RHlmP&^_| zP7b+5-k9pyBYM$3SwNAO4oKbU<7{*p1b2x`hIok!h04bw{BQU$l{60Hc8q$(jac9^ zvKG(=;BNUYycnoL67Bxyh^7%XYc_dtA~Y3Pk+0Cq=DL4K-t?bdiHwT*gw8t&AD01% znuQC@0ZeoPqGiQ@9Ztl%Mo|7Wa(RZcxCJcMdzPw>uktHNk~dR(ckz45{f0#a@q;Qm z@5;T8t`<@DUKq6n+i!)h)K+AAvz&td1WHP*s2B3KDgw?G#N2D`Jw}7-A&+6N484^` zWzp@XXf(}Rh;{)&uMy~jcvlgQ2tvOU|6iz7mPI=R8btKS|8HQNfA{Ld#9eyEbf;^# zyp#CEks1g0eGXaHbF%ShRKf76xZ6NYmeG28DWJV;>!_a#d@bV{79xD*kTlWpiQ{lC zp)*h>!==sbWI(<~;u7;Orrb{9>J#g3dGxr$JEtoBeBdM^3z$4BG1G7NnwjOH3}1f7 zF|P6hXkA~=V~zCr+_bHj)`^><4GKzZmU)&Bv*Erxu6=a2aYT=XNBOGx|$ z-Ji}SZ9hCQ><3(QZk-sG0u;Oc1NHGAyVvswc}*@E{VPPi_SF5?g1DT2Crz``WIKho zj~jrZH-DkGwQAQr@o#GRc4Qe*{&+V({x?9jlwL<_bADXTsp^}$ZO-F1n<$q_`R}?L z_QQ#Vq=-KOfSLqIQq${tVp@Dh=*N#)2CsAnIHTO;M{S@atn2DpPOn`c2>O0^p@m(1 z4C66Ns+zQ3w;X|NVvu$W^i7Z=$_+8tDZBy9_MwqJLlURgx~_U^u0?5d@de<=!hsfQ zH5ArlfjC^DG2xPih)i(>Itax7Rg8dP)SLf!X4(3WhH{f^KKna0)xN;U zy>)3LE$w)Ue|+47s4~3cjH11IW?ct`d-;7|-}K9E;5azSrQ6Ipo03}fnGoChdGf+P zYLQ8+R9~3CQO>M6h=SqpO-SnoNt{%)Q&4h*+lWYQCTjXNz%j<(uG3;;I)55sR;QMWxc>@hSJR_yq&wpDBHWU|J}w^TiDqw^8r1uKK8ZT=dLqq-{GV2 z*xb9yGEkF{N|l_xQr+?8xhkN}BK}3LjEHY=bl`fG?n7KTmF~V1W^@Hwk468gx0bi8 ze9*ZH%!w&<590^)D6i~-mXP=!39rA$))~OJf1X;C08@S!AjBYuKVc7slQC~kap!M| zfGPgPlQBrtNU1E&k}j}Cp^xtDH=ZMmiuHF1z>QPx1?H72>TJ5tSA%a{FUm z^I7XbI~Qf)8rO5o9Q1^!Xwc4MxFeb%s*NEO%Taos`D=V^&g&}~dt&o|{a*RA?^r0B z$u!T!LpV@`v%oSsA%;*UxOy@!f$nP`BN!x1IAq*aoC;JJ**fw^M)|}A6~!W)pVhm2 zXGrU*WUHO*rVcc<2uGUPhcBnw&?|`OlfSL8p`ry#V%#Yxk~0{UU4Q4sh9|+RVm{vh znimxFLQqtJX`rVFGdNCCT0Q4%F$9-M4M#ycQa2qkUCSt@7xgC9zfKLF{9(UI$=)YtjRv;P(p{R z)+`>fS&*M6QuXDnHV$3jmUCTodMgAvAyuc!RF0ljT(%RPo{kLYM31?Drq?Z1QI;HN zanEfH3HQxMv=SW0{FrO)XB|Q9n1}wqo^_GwOCKWIE2a{4r?pyvFpnaNx@Az85J8LF zAJ<4tqCro>_57DcVLD4iBx;TH#Zp}wMO9=LwyuqTiw**kF5cMx&N#V!2*Bp8woEGP zr5Dowa_q254zCutzWPD@{zWwFs5Kt&&zN%S!t;}uPiez;33#L2l8cx4*{1A)>2lM# z&&LtZrBWkk8kMqoOC_gmaNfc4d{kFL94%DcB*4jMyw{B`nCp_a4#Cc5psA(BT)$!$p>gcPQaON7vd!e10IF)` zV+e!LY1;GIXAm&9yqVH51QNUcwLVs0-&eP$53K*v+*V{9_t%uw`!}@C+L89(sB!Ql z#DeAN5P$QeI^`Dy^bPm-{^=}cieZFZ+`7}9PGEEoa4iggdYoH z`6nwc6WgBq0djhJo>er#Kq?;DYfYqyg+5$~i za(gtBUZ6nC>ELj_yBf~381}DE>B$fj{G9_Kb=w*_-ni_y4lXXRyDwv+ORX$P&*iBf zJ4qYwIF6vj(Q27q+w^xg_HXo*yhtMX3!N>MCUa)wsd6~BIwsmL(fqCV3SOnx`_Kss z1rna(ws=QF-Umu3FBoeM3zfP;?U$|_(}Q664vVv<`2ueIH6kIn9IGBsexn=SEm*L8 zMTDqc+DcHhx3|S-uqG4iL|}2ROMc+mz)0!FeAkK3fcoIViw!_Vbp#WV>Smnrae+|b z-!ok>uwl9(%Ubv>`>0K!`98LHTaX_gl<}nk>s#t6tI^q%ZBMi_10tH-wCr=YHQH&p zLia8{53Y`V;@H`w$Y&<~60#A)^lR|vhIbzIG1C74&6ZqtJB}+4-pf;narzc5y4nsLPq9vF@D|51i8{4xF zW8VzWvC9#Iz3m{ZPKbvOA)B3QM%!#wPn>9}{Kgq4$mMgd%m<$)NVuK-zHOhla2UDHbd3p}^o{C?sw0IECSx4AzHF!V<3~NzPZkebv~ z%-BNZT`6%C*t%Q2oGmG*xTR&GY8Vz>yHFW4;Tu@!qPw4Om=)8CPp10lFtDa8&7*(i zt{0#{ZlAZ*-i<9}1xF>mGr0%!{8X+-B&8otu|BFgCA8Q8+2&JHaWhE6JBV;RgiIcI z5O6p>ZgnRTY-IDP*Yy)bP8*w(_Ysl|a?Z7S9|lEfQmi%&#o%%Ok^B8S1`hz7$E@)@=NiS1G$nl z2&Zq%{Q!H5McIh1LkL^#FP5png3ZoVB=|S7#CB29d9jJWx9{Acq5kqH=~c`Bm@JumgNe@D@@O=Xsj=MjiWyd7LSVY_u7HSw@fLkR?E? z8snru=mmTNr#mn!O5iABKaV)4AyI-Q75GY*{X30g^DQoxQ-~TlB0NUu*+=e;2P=FS zeBEjvwGm6`Y-~CrAK6Ftbi&x}7D~?dBQ$jlAdfGz**K{PP-yC!iedr*#Zwf?;%FFY z4g_qUOC2@N^nt_OaC0)H#Knu`V!F*ml*FGXeR}N3b~pUz*tOjFV&(_I#E^S>hBXLQ z36prwoCoylZ}))x3*N)-IKpH((rMd#`msAMq{Hdm23yjY2$Eoqgz~ zIH$AkT&%8R1rnJ0<7nVxxiwId8$Xi`Jl(oF@txKp&(Hs?tEw{Pa@JV(fvE*Eti7GPHg6#Y#}%!TN_ zBS94#;U45_h%`Ya8Ra`*ib}W}ygxgOiq0t*cmrc~3=I!;UbaT64+qPB7bK8jp+L@z zz1~fZ>HfWWN_YGbNo|Xr?aUV0`&O%f9H%})#y<5`orC0Tr>KkdpIxP6XbR5LT&2fnaDapx7O5wt-enp52P8e?vF z+haY|EdOS`nqB>iu{KAh>Wek7noISMLpjy{d3y z(b-6Px`JEmjAc#afq$t-&1TGq0I4vpGm1WM|)e z1@59{EyLN>&Tm;rOF^oWY);i~hq*gm4<0@oewNktPBCj6x#b@^+u9V z#@*pf=*qv_{UV}tPsO~UsxMZJZ{d_~EG%tOf!%CZ1*TEa5cSTzxh2Pl*2-wUSNlaB z*jKY%+a*XdXbyE3A%?aW8HFeaNZYMU2EgR7ul+D;`RoU$jZ%mA=F65O3POb86&rvS zuQMqPgwrF&`7Z0|#j-aGfc8753?C#QLsPc~-?2{_lM9ItYrlS4hloS{3w?BYn(#?? z!z+s4^_CF51PO9&e))vD-Df3H8FW+bQI+=kg)Gs2>9uPZz0OFiS`4w>@{GCDc3&zF zUZ*#NxBT_&iWtSiJq{x-MHx^%7HhkOh~I*rT<3{P_^=+HrStT}h6)&ar|$|}5nFmz zzw|hzRXn|^X_2IXg=JT0X1>a64U-SJJt9KP{i2a^gY%DPONIRe)g>tpq+%>|?+vAb zy_hPfe}#0u^9qKrkbGLaZ|_tbiEb|2r>FE5|16+`3xEc2RQ}e)A$uF-n9?IyR^jv) zC1mnvdj5?O@P>i-`%o%rI=}VBRdpvXX&0aBS1yDR!FBSQ7LKRw z@Ix$%kmQAqVlo%`ca?kY5YymcD>23&4<}VvP9#4no(XD~$P4F>^;b^3VA+Ci*Nv9^ zww%>{Qw8(-beSecKASzjRvUQyJ?}FDi%?md; zNyXh5a3R;m(&O=v_U@w;g?>~F)M+sGK8=?5Ez|GWa2jY+Z<`FQa`$V>cLUx&a-5Y3%bWoi0|eqC9KGOH5SPj3P^&7a^%r&O+CE}j0htTKTf2CNBo z`sdBYUf(f)RpLu^2c$0Yi@9UbZMiu z7Cz&^*HEHt?KlqIqcE&~bevmeK4{bA`_uvDy(kN(=4Gl)9+BhX8!U0BJeqvvyD=+_#r)0x-R)5H6HQId{6OTa_lreE`{D6)wR+RQ%eAo{?IUuAjc!?&s!y zF)9`KfP9}7*b=2&0vFbydnlwADM1?b`eQ3$6zcc4Q_g)t`&7s2_PqXpfOwR}eET

k`x^%fusToylm=QtDO4nJAy zB2XHEqo1Omo)QY=mqGD^&2sF*uDU|>vBvx;d&HnV#rx3gx}%hy27XqD>BJ|J(G>6o z%8@Scg5pxhy2gS5?sr|p;K*mwTdkOiqlVL5;x~lfb%mH;Y0oj>D%tb(Q(_!;sneA5 z9Y~b)Hq<=4P=43q2*_Qee}?+~b8KDJFiuy7r}Lny@MG3cJzdO}H_ZyLm?=+Y?z{D3 zBzg1LQbzcMOXTm`OChurazJQYo!|4_qjRjN`Ro{EYk;-&`!AoL#cQsI9wwI&I@FK; z@fB8w{3?6e<|$VG#7s<`^VCYqD&D#ZJIj}pyw6zW`2|HjCYy_)Ki_jS!p9Gb*z(_QZwsUc6tw@JGVkBx z(WjgP&HMDD+R>UB4=PrDa=RLj<`fvu*Y*fdcwwp6Kd8KzR2#K^E*&ZXZNC^&etpAA z^XebGtYlc3QoMgLL0TwF%JyNmR6JL$n^2!$J)o$t}BJ!!%N?4I%EUj0U+f!&CEL5zA#qhuA`pT#_n`mp?B>{pIC?Ub!-GW1L zm*PQ7iI@Br(cMvNv<(kbM9Fync>W5mcK%N_6pZJoG?~Ne&K`D+eg29C@=iGq3)mB$G(kr~ zI|pF4zsF~zR_O4D?e%%X|u!xG4?+ep_X(g@2b2{k+og}Gpz>4nE3V;=ko%KT)s z(@r%_PxXAW^Qz4<;_ABC%5?wmjlQ`&R(0AbhBSi39Q4Co1Uvu5RTj%wcXOY9?Q6$f zAXcN3jGMIi*AE$im-e*9j1>s77k36|<{$^WWMPBX23gv?ZwuZZkve--s{SRaAk?Th zgSq!E+4W zq#eVy!1S^{y9yMg4bvfC>e=s6-_FDIicm1g$Ame%TdV>Qc}bCrl0tlxdZv_9Gm^>h z?%TuVjhIXl8WZj+6cAX}md`@MDkLCy&-2Rf}RZttSq%pr$bWr~M84$#x z3$#R=VR`rfMkvAuEJao%f{!@G3x)=*E19y^1(=c5RPUnXMDtBrCWuJhrdY8r?W9E9mrpGR0r&@3cc&yXwh8sl2d8?a^~y*UNEQFU3V+O3o-% zLqC~OzOV9==aIK&vXqO{^eMhb?7d2O>sF8B{d%3NG%V$<;GO91M|hJU8}wuNR9*;5 z&+r=?DD!YJWCfTJ;itdb1WCdv9_AGi3s?RCgFoP@SVFx25k!_be9`4XgFp(hI$T0k z^iC`C@sol2^4;Vt(4$i@uAHnAx!4R4Q~mz-wWQ4E&qYbQ0+bvL{LS@D`udPB;9j

l*s5ExGpf2)eq1J=# zA`_H?ctCUi2(9>N18+Bm>f(_e+z;7?HI~unaSz67gOx}D!{F5UV;9%H{XIRF$H9pH z?O>vS&*QJaB9GWX*8TWt4UArDXrXFPYx}he!M_g^J0*XEI`=bmXFrQaNR6{0SnhiF zj7_gN8z1{V>2E{NnK`fB7LhsU&Gs#Hh~HK;=88vB*en4QsMb>7q`@k_*1(l|iM4Q4 zl#Gj%umb`x)mx-^E2A)3d6sm$Te>zKZ}s;how zyAqv(6M)Ly@QX&R|Jv;+j#oU}2nK^Zr7_fl6VOTE^?m^w28tB1eeC`2E=zfliP+plqOn^$IY$}1F^BHXaXx!d2d3Ex=tl`rV+G=6FP&Q6BC%KmXY zSz1;<5duyj|M$l~*0`ndSp%YVf4X1=jA^WwE8JB?x!X4T(9WyLuT=241>*J%Ujr?3 z`7Qh%b_e9yi%DSQGmR(_@%p7&-lY5i?;JUN3JIsuq<(mB2pj`qu;?B?ywJd*C^dBN zdqhyCekuWC#1f1vN-QoTNAxxsPWAlUbS!l!`UEenc`k%I2itHWfmZ5$1P* z=L+}*Xs}vCIQ2M&AgoL9c_Mwu6A}A@G7assi=*R?=9uZ<6VgDDpJoJ>;FGgZ+bga% zwRR{0&xNd~TOFykjlRp0?2#pJ1EDHk5F;(3ym%2Nxf}n9+BULk_0s=RX@ODV>bL@j zq^{Q(dNtgq<$ofAK@D<)#Ez$+9NV%4B*ZE>k>{lk4(B{bsm-n~q&tMLvm1hFFB3?7wZ* zux(mU3j+9dQR!(i)|&_ECs}POsg^~mYi}xJEr#|Kd`hctlZrdO`;|0@CZ$iIemo}3 z?1|Wpu^6PN&N|1KM3UHxG8L8Bih3OLzpG2;KV7We@H~im9t#m-meH3Zsne4$(ds7G z637&^Ec6T*HW1Cw2XckjMiqGSs1YnxFQyStidPX`xmq-8ut<2;VP*WOO2&TWnhCQXUfLe=`V>OyFd5RK%ktBf!r(s{TQoJ(&RW{Cfq^!VOTa&o48z7bqn^Gt>|D!P=~q! z=XLWi5&yu;fjI#$7tB8iSG9(}O-L)78klw8&tcfXy5J+{Jo0wdQG#3u!Y%Z=_W~J; zxYcxoRp+?6qTUVRyU0#H+hI&p>So_}l#tlv%>Nn;C;r0dC-wq6+od3(UH&a|0na)) zdS~oABgQ`R<48_NC{(MHA9f}S_HDi9YNjm+(hL8i`ASCv2fl2O`H<(&!_*skOX8*h zsJd^q>%rz(SFzzEosaLWxh1jdHeFZ1!N&@?85~5$9~KhQ;zHvC^L#e8l8VVu3Be~J z~}ke;E>|c8Ya>oSr2#_74)o>b{yz(9Oy2;U=Gd_h@XDmD;PH3w8TjKEP?X~y z)d*5lG&QARd84;In$qR@^rgco+({Z3DP8^#NDi(MK<4S{i672dV4tu zx4p$sw|Okq2$FHTlG=%u!ZVy{%89vgyP}eK&WAG=;)#^fs2h7wE-i}|(kFUQ0u;}v zNdais`VE)9Og(6iiNO3N;AtI+m^xEY+ls5@gaXE@$Y zRi7ngJ5Gcweo6h~s9no*pjXzGJofe@bN{zFN=unininNwzwE2`@YzueCou7rHqYVB z4k}N17ggMdUT3RW-Q&!<_`JJJR;ZedzukLw|MAF~d}8K|WR}M_m#-aIu+&xxMPvX$ zb=e6TDiln2B%WTPd<_yIQH;ie%Y!;dYQazWWd%`5lYbGCrSTCOf6K=wlS^x@CYFN0 z=g9M^a(~dI#;0Yw8F;20I~DDuF)~8c0byX%@OhOl?cEG0Q{Vkn;Tq|PmK=nB$TpIH z8XlvTP#^r>lz0|EAyZla;Zbd`3!(KM!+pnOIbE|h$Sq=g#Pc{a%;?fdbW2t|Y2!z= z{Dm)+G7(N^7fGGdO?+c*pvJ3cg3OhOJpMRrOa0ctf-t-wdhTU|b!3U2%13$!30HE1 zj|p7$R5Ch)x1^MG3l>nwgNlwGfo-xH&?6Rf7@eE?mgy+<}Yi=AmMAVHbSsf-@f zrM*6C#^?XzgI>GwG)Uk>45T2m_(3M?j;65b-VZm@{EpC4Xz{bWKQj10gJzMPswtjd{dIN#P!pycIr zO{z@Wqss9ww_A>5oycu4ry5;-$wzmi{_s{b;>hmWReKrqzCR<#8TUu_c)Rg{8tW#f>6?WqsBp!UFL8w3;pqMd~54r$)th3TP7QyW+JO5dt{?J-Huk2|U z{wpXG2Q_E7ZI8w#Z4~_12aj8Ec)YhAJ}+$e8icnA`fJUzlXBi7C>J#u`wb%TF=$9@ zL*mXwmh-0X@yiFTSBtBuEJ1kjie~(16c&>jHhzY2kNX&DBPCy3JPC1qo(64-OnODX z?_5qC$JcBfUu7#(HOfhz)bZ|ZRh-jEw^$ken*p!&|2b58;eL~!!v43q`GaTXzrV=$ zZrhucEg!dQx~SOxvMlYBF048r#SZ(o5J_F#vh)m!eQ&qiu0bO8ovKkdla<}Lj@i&f z)BX3FRO$>tUt_IhWGn|jFmG?B8y`s`UhRA<{G5teZhwJ;8B9EJKEbTa7+d5M?}O~7 z25@QLRL8kjNZc=?4{NyzU{V&O*Vt$)yJz~h<3bvPz@0T zA_iQxfS)yGqWTQu5rfV$E$Q5>T`ZsAI6g;MgtR~EE-RxPfA9VZYkcba8 z*y>VynR(GKw`SuXDC#qgqGWM9?ca&_6ZD`cK&w+X`AWGZ*i2FzFEh9cB5zoZxnpo& zXjQws<ukq)fSjl``R#{;@{c2)naCO8jC?s{D$e%}`Q`d0do?8<$*>v0T={_Tsm zUW<6==T_3aRTk1aJtfbt12G4lXiT~6IBYLXNAXE^oMBQoMZ1Z;3HF&T#KRDdL*5d% z>3|N@<6nc5zOuNyXV>4L2t16PH3!FL>P~@uFL{fXlJp5!9yIahyXGi0ccdU&zQzQ) zVJ*T9vjjn=N4UF_TOkK`)%x|?B3{16WkMJZkg(PJIjHsH99s_IUWD-5-;*HD61I-H zH
)a-xjAr<70d_QX$@S6=i4=mRGZ0iso8mKM(?@=0V7S3N49_X)Uvs+P432IXA zpe)1s>>_>4h73AQ{)x(hNDee+^nk65T;li3A`xx0A|POypd==Lvhqk2N*-dnD~ftL zah74V$v;R?{Aj$?Bled+lH$e1>722A6KjibcX}dQM}JR}g^XP$5inY+ z3E&22+HIlW)Ei2{1aO&#ZIIEI+48`dh#Uyv|Lus#fhPWEkiXv0--PW`xT9VXOaPJi zgm}~|5x*ZYU@eGXHlxi1*$$jf4bNw|56A?ngHt6mP^U;n* z+Z*_BRBvU0AF^Ij0*C^4{W1>Llm9YiTS6IYWC6m;+!3RPfLVIiZ$;qV&Q31waW{t2 zH+C3YRM02I-ZTp&tbXBL@$+<>&${u7Gp65fsyX&Mf_@jAQm30%U~ZatLr8Pgm zK@B{YmHQup=5SD*z*GpIk3-NFYHxX0$JH7{$GuV`i+eIeXq{5jR8Ifh9{o&o`_PC_ z`LueljHKq@QY>%kIn@J&NNaJ7NUhg_IS0U}{9qn6H&YZy;p zkFk33M~UUG{;=&Hf8=*FVH4wco1dy7#e%CM)lUZwApPz>VOGMxk9y|%>}x`$$wC|5 z!rkhVp0$abd@ZSY?d?dv=gl@eky(w}7K~08AT%BPBsgufF)BP$p)m0#5nWE38-;>O zt&Md3AH7mq&{2U+Mbf<_h1t1@Ow;Asvxa11k#f0)4d0k*4RmL-Btdi-(7FiR0a@Qj z;q$3cY$=WV#P!~XJn+&7BZH~0q$z+bVX2l^jv}Tm_F8i#%u6>MdpDwDoQK%o&G9-% zpF7o52)QQ=Z-2H@Sw-H|46`l`@83~eg!i1|J$|kZnuVBIEGLFx=H8%*dZtCnQ^C&Q zTp!=vyG60Ad-t^c8Eu~rp3#bKTN~8d6H!zMEBwZ50)>R1tcxzP2|pv24j zEU@_8OA#!?tqab6@R@<(TTf31G4nbYSi{xGl?{*^dw8%9%+cdY5$bzO)x(j$*F(zk z#DX}8Y&4m&!B|jFGBz36Aj~_NPC{W1&n^0z-cC&)h7JNRef5|AU$q`L6?`4|@iQD6 z^QBT~5Gd>FIYJ&`A~lKyjFPx5N)sjp-6_xgjXjp{4$Okb|&^ zHVZn@DZ;s{wvy({#nS0@7LlOZOMR?%46_BpdpYcevpEZAFS50zl*}ISl9^^+mM5Oh z&K!X|wMwE)ZjP~NxNC#3O~2Eb{lh@X>C9<-vgwdfjui*2Qmw$SMw_2TJg`p{Jt;rmsA;5gFi#F6w#S(zx>U0!RKO*(r^KUxN z)Rh^=N-^GozU%e3m+az=Nakr#3Vv*-{kGblW0`Zl177*7+Dt9ymaa0j(yvge6XR|E zkdS(1nwimFAj69c_a_`UdB9O?w~=_QQ!2>|8#ay_Z+CcYHlr6z;c$AS${)kspUzD~ z7@#!=7ELuggVw~O|iw1d#1s%XsdYV8P*-?!mb#g zQ>@4?A4c2!zSnmz!5%9$oNao`j@G43^5~b-jzo40!W;te*ggeUXJ9Y~P0U1M7d6~G zBTJt(80SaJNmqMyXGae%#gg&^vk!gCTJzKVt8pO6Drbl$#iq#MM(m}Q zuA2N_?Ec4_KGd|PYNO0}nniQ{36mc&?Rw$gPd_2p!**?pT;L3Z1Nw|3C_nL6@t9() z9>enAgE54D7gJEcJJpURcAg`ay{6@SfGP+LcBI%$B>ROMFv(y^xcoaErvh=eP!a-3 zk@tEv=EZ8cJW&lS0Mz8(;tVi)+DT@e3qK!AGcsMfAfrG3*UEzsSwx(pzN8w{h;#H2 zaTSonWkT@y{~LVuT-BYI3tF;$$8}&U_v(7i;%cvM>BbSnek&FTD$ME0%T4wWI({+= zIZNPcPGKcv-}epnP1*ODSQ7qY^lA-}8$H@D#3%b2DMtN!`u*>r=HGMfzl*)EFE#(} z1rI{*?z=o<|J_dgdy#zE{Qd96?BCzJe zrxp%Rmk5~iCy>AV*mQW<=T?-#+27OjZ#FovRnGZ3F3TV+>;R*0vSjjs)1$o-G!fod z>2p7E@Z?PWVQ&%k=I_ukK2>*beFKs2HlYOm&@-Q2M0lSY`NPavYX{BWw9d7L|4H07%i^9ybLZ-c@={I$=uVikd!@2%iX|ZtS zPv77k0Z(!4$cJfkBho5V2J)1}6nVQmPEliXZ?>4MS`oQFAYFgK5 zb28y#M6s>wB{*pxoGR!{aNa9?dwSqhzPSb?GIy{vF`9Yb@fT3vOjvzFUyATSM*Ti?nc~M$kPeh(K z2NrUT?x{*V0pNf1INGvap{h3N+FBA-u{IajF?0~o&)NW5af z>Zo;-V+qLNl1Q~H1P^};kFua0R(D%cDxrF%21=xO|9SsMg4Foi^_D7;ejG{*+^ z9Om2N{mJatC3g-|1P6~}AS(>pMp|hyNz3-rdus$SIoS-=6KePW8ZtZs&yJvRPP}VL zbitCL|MCDlgo_rWVgwcNMU+V^mfWhaH@um(|5YK&J5I`)Ec5HQ&XPu4SrCku?aVn< zVEY47mgVNk`)*gUzvaOudS36#%9VX|HYbz7M?4Z*ngDHJt}L(Ohriy*HMw$h5UmKI zXowN|FMJZs*wxqGl70!dICsc$!?5fI-qF@%E%ylW8;;YkKuCu=TAM+n1@ngndsz_c zmV}XMVHiltVkUWVfMd$5x*#;OTf*+=JI+!$;2++G4O0FpB*mUpk-`uybd~iYW;6#T zEY}s@>MBUijCH2CTP?(NIG>l|SPd(&$wr9&*37Jv16u6f(IxQv&$ghhqxg|ktuVo;e^ z(OJpNf@84FNoBT-Al$&-%1hlsOPRd@ZiXlMG1BIQRxiM@huhvGasi* zuwWHH-2=i-S|}{sD++B)UZcwN&qSqf$3fge#J7t*DMiFR2s6g*i~0nnNO(KLDd<6+ zuG7S_<_x3Q5V{XDKz8v(1Q(BM)p%$ya`z;EAy8gtO zWe~Dj*1FCZiax07K=mggOfM|a#X42y3GJXK^R*dF((NFKDS{VyB1Mv(hJ6>U_md_g z(*O*i;9Meh0vMOc0FI2FiHK3j=p^F^q}GH~Lt`AJ;yaX;3sGyp_*K;n&Ol_gv*LKZ z6PCvPR;jDrgmzZW^SZz_d+H7cz3fzu7TNXWZJM9n3zCNM7!UvT<~{~w6+ThC7kxR3 zo8-ARZr{(X5_`3RD0=XF?BzbKDj!jL4@&-hcD44pjQ#5hVC=$!*OY(#%LUGh5yDn% zAvcro=r%n(2+cHO-a;Pa#@u%b0aGhWN4vbxs~7oBf8RQ5@BT3h9OTY?kk3sQ9Qj&_ z#6r!B1^H#?;VTd5SIEF8L%)z^4RuyWyBH?`UzU=<0R0U2wmzvpziLVDaN>a5XR+_~ zGh>AMUR04A|JK9)o<>|ku(MtdKFe%-!xQgHqtoBAdR2a9+M)jfeX)jw*{FETImN_g zm8nx-?EYrTU2Yi;iOv=6{dkI%cxL8p{6|rDjKSC@1z0E0?p@>`CroIQDl-{ZI!!tg zNE6C@x*e~`$NL8ELB9Q^LGCpAcG7zDp@Wde;nO5nk#n%G1~Z%POvJr{7hu^y;zshp zVA7MH$c{e#kJ_;KIWzY0-svs%OzYzq5ZkdSJ(0m!wfCoi^`Df3K`h+kg@ROvK}X$y zHeK0wmsV{7Z4|wWH#H~BWsW*{M~e3SX&yJDR^J|Ln9QhuvXX@?p%r?A{4uZxxySQ*e279*CLMb$n;04qk1tn$`7&TZB&;O$a(6a|y42&8rOZhnuW!SHl z|J7>^>~9X|eo+ZLiHdPVXs1$_eqrX%*&A<>S($wMaU#OHQL4amH0T2ToOl0l@LK~3skMp3zdn`>Q*}=IkEkW@m|gb|0u&YGKUt8`tW^(^l>M` zXA;4(LO3O9AXrwuh%<-?mnjVqjZE0`oT*7Q?g??30*Kz!MizgYci~hD6xSPcUpn`_ znFC{17+kQKk?b3IT5=zx^D)8YRxDPlrsqUX>FozbZD%9O5m3?(;)q;#0>f8p8O4G* z>FQbWs+ANS{*HcR_1rrO!Cu%cUV3q=&wB@K4y>kYxOX}A*}93&IdU+xneGbcZCDWe zpZ7UF#v{u@BiGkK#-gm0>tj#fZ&-9RV}XQrl^v)H>z-3>SR(<*ZaNijuU-u2wOMpr zEKdfeRbaI)JZQVxK%LWv9+o2}EQCVQr^4`ntq|M74_FEk$P^Qr-%FwNKFZRv@o)Ax zZ(-`U3v&U!@F15ml&fLcy&lvmXfE`Fhrcrdk;p(i?3hV z+K1+!-kHh`Bb~|aCzdtHX^v}Lf&Ey{O$OU1!^asA(da^D{fwt_z&b*-Yur(IE;6!j z{DWb@q(1MZ-9nIH9OgN*=XJ#yvL^!8AGTtBmjz$la0-L2{xk;Ug&CP18G26#&#NVL zTKvWDU-e6@Uk)iwmE`~i(U(qhgoFlCpi4ZV zg%V&z99guMN13!N+?cmaTJHW8zHXU>Y$$FSqNjU|NXH@!#%2tB^oM>T+0p25IyHi~ zLvMA~h70&{t=X^VKJ#jp^=b>g(mn7XK#Nh3!(;t-{Qi{x<4@Z$$0Rz2O}km{epz|= zPUEb{cWK5r>P+o&3I^`kdo7!&MyY7aPX{pFDylRJ@y5p<$^!(d|N6_oo!@H&s-LQ~ z?i3uw`(+7Ws~yKQc))YZ+9xK6x}JEsxT~vE18Kck%kkgWMfyJNOM*>1Ec77e%Meko zOFQF+ty=l@Uz$fxfjuam*<;#2iZ}A+Gh3ZRH-1Dc7wZQE83&3fpwYjjwM<=ChtM#C60Swb zWqGa(hYSca*YrcMOf!`dg2|rM$5{-;vR2h9y*-}KP)}xZVauX_x>OLNcvE494A}k> zP_};}7xdXfDgX2~J^C&YS`vTnw9a}i5luoyFD=r2oqxL|S|{rtmH>%H9WhIVx}Kks zkc=t~cs<-yS(F|IOXjNnfnfMqU%W6BF5vTSf6v8L=Ipy63Wn*C}QAs0Kw$IAOuehPK7E>Lubl60%ySDThae{J<+BegYbpt+^LE z6?SxSVxydSbhpt7-lZ3Nf0$Z6!rQWsb#QEY_z^z19KqdB;B7EPyL=4w z*J7S{&&TvDs77(MW8ew<%DCg@8jri2wh)#NVbF;Yc0ARjigCxMa0WdzCHG}k4S-v~ zWGv35m4KZQsIhfO#p?{lnixwtVn8lc&5O)cMO0~( zgdZ+T0IJ5BS1`h0r7BhIbp_VZqPQF}Pn^g05+8B)F7tK`Kq>BQoEJ{p$lXH#n#_9- z#Sks)h;8GX%D_st-PyuPKh%^9Qi0`Ub%P?pf_E(=jgg)ba9^JYIOFT|GxeH>!BVsp zsM2c#3*Ik^EoKY?c)C1|4Xwg(EEtbjZOLsK<3$`@HU-K)riYzPg`^I>CttM^8w6Gl0dTU6u}NqU8ZBI90!i|607CvIi@5`x!oImO0K&49j#YQkI4uo}gQeIi1(+8p z0THdp2!CmID82pSK1pmo#9YO=EiVkmkL&8MB0U}o)+Hnmqh2C6M;9MhhV}1M2>-Ic za32lG1krN|lLE$bBCN}U3iBJr+Ko7>wtW!g40>EOtK4^biyc@L@LSLaI!#)g(Sgbg z`+^-cgSeo{&s1YHKR;7(-1q#Tuo8v2a`1elyQ4D+mWc5%34XaNj1h4)n0WPFmoXu5 zf@+oeL;@Nooedk!*^ir8u+F$?N!E_H6JaX7!DuKj&X1h4gcl(#mJ z%y+t}p~HBXdG@${osRqb1A-MMo)Poc+$n=y)K>@Xy@$8gZ6a-)h0|k$xE$ZbEb}#) z7g@rWLauLLA3k&ht&0sI6uX`fh8AbH=;c=7flwbvk$uK>=?EB!=EZN+{Gy@sueA}E z9o;ub!A3#@RHolz%H}iu9@A}SZf3>XcUsp2{%5DK6$;j_s7l?4(U);ThjA_%d%xe6 zHHHi($B7ub`6T)9{47=dstcQRq1)3^B1KZ#&nP3PAz|MjrJn8#VAiq2pZI(M>1#qo zH3(J1T>b`)+qAP}S+T~I&QE7~J*BeK9(Smavaa!jurZ;@Zxrh4%_0T9#-N=Z)R%Nk ziE{1!n)(T*BR$|fs%f=fGd5(A{c|2f$4l{RACCB`))?Dy#B5hQx=NOiW+IfDx8JJNN#NO@v|ZZa`G#kjBl^7!MR#X!@gpb?h1O< z1hdSjEAa}h@84d=s8CL63+2G0Kr4q+-T`J7P&BT+l)5UL) zSS_KkZ8nE`Q2cU-Ms!qsGUaqs2d?2`v#*AVLfnW$E|PmZdZY?^m|Umj?NzXjNPt*^ zeXsbjrRDYzFij5At&l|P(67-mLVcGO$jss;JLIfDTP@;wJdDm+7b@YRO z(MB>lZlTQ+~QG@$OMCFS9n*@I&Eb`=rWiVZzfu6xXi6K7{4a2JTE&V z5(=NFP)L*v3d}u_e{C?f8)r@J_9cKo2g9`beQPC48)X{O{rs*_MePZKdwyd^fI`Gc zEc`x3Q_51|tz(R$={m4I7A5y>KLSiiTY>gst!nDs&tgZAm%n#%e4&oNKvH9(+&UMx zjwJ}Hj*agueOYWffV(G19f)N8N)=U(6ZI^QnuLA|ImhtC$_D35$XTrNqA(>E6tD#V z1GZjXZ3cspJ?UIND#?d$HFdj~6-6rlq$_B%2H~`Mr0ozXarqc^`)84jgsyhb1Zn{n={?RM8oK?V@&-CKz2*jlI#-S!f%aNqYWZou1y@MrZ_%C)UQd z3&eLwUqAu{A=!n&`34AE zW4U+NQ)~waAM^VzACqz?L8Rb@1`@*3I8wqpOIdN!o)99qWf;k5Re6Zoq9zS0@+?E~ z>nRwWXpY|I>t-1`>y71Hq|vxwbM}GI6#o-~Qh}97O@Inas?}b4xDnfBQke&wNYDj+ z?UaF;K5V=pN2Wg954iQ;CNjj(vWD#GhHmi`4}0DeyAcyZdnH0?EVhZBsLqNZJtg>c z!+xH2AvkH(ZT;s5F zYeu6vZMW%`3vKnOQOsN{M+>3{d5MINX@~YVs*$@46!En!b5nBa9!K3@cc=VC9y{#h z$vACSl(2lK52p5A(<9>L7G~C^NV`knb;$~`!v+6b;c|}XK10Dv9==Jk_X7R)a;^DM z$M)$(Uuoers7JnnbH1|b5yU6NP>;(XN581G5w<$owHf~{`;!7@NWjm3YF_$NhJFBe zN|CuWmhlEjMdXGu4+b!j^_iPQtzv-9B$yb{aD^#rVPmYnl;3xD;QC?c<5G|5vY^ls z46s~8^(9X3dt?>23jSB+eevbq$Azisz$h4#;vM!9ETsEO!#b{X94*@$iDvf$*hOF_ zEgn!GSBmfw8^T(^hVK*cGLJ?LYlwAe$RCusRN zI3~-4M~6MR;!qdHQ_RBW6d}X2N9*`0otl-n7*6~2ZWwGhfFF8YYOeFy3{$8GT2WW$ zLTkz76iH+))&|W{Bvq440y{s4r<>zOVd03ezL?_}o3~7x<9w~dlN*lACqGOgk}X;2 zCb>*tgk;M}y*1Lg6!PC4rEt)(vfcbDRMM zWqOr-EKVNgk|m(mwqu6@I^839xKu!%f^HZmXDRUPpd|a(fh-MtIy42x{y`VjGO6+N<_BY`ckXmDRD%5@_@_bgubSK!R$HAN;~_HNmK0YDpa)gE zLwv2UBN&i_67?`KJmra*mGKeG`cfJb$`Ta|kn?QNRCj^t{Ca>#NMOJ|-lc;-Q~QhW zSkUdN0Y1mqERoc&8P4HoFGW5;>zGAQ7;eW&9C2Vp%oy5OkT;(#aA0(xJ`x`7=A>F? z$FSp(QbKG2mXf$o_ymbcewZeEFa(l@FUZuJSQSC(-ftl%J4QD**!Y1}Z=EKPj6OrI z8>8MPa5YMWmRC26weIB84uQyll&O$)*%7@+P=QK|Er-ax(R$W5!;=@(p#(N;r(Yd# z<*<&;kxzn#vWlf?4qx{e;GAVgDkkDj4;J@AoJL8n&tnVPve_JbGHhtjeXr3%UG zT~Lia0g;=AiR^We3WL6Kap{6=v7 z?#zibhvVLQv#Vu(tV`_jPWi95v)RDVP3jouoZvN2Y=isb_RL+Zx*5g+nds-j$ti+< zm%700cFDyqt6R^7b+U-OA>AOdTl){O-O|pbyZQpE5$Ef;PfZf&qI6nGyUbH?;q*q| zcQVs|Id*V)|cBRXw^@~5s6OUa$BWBOP_Q$vY8d-2ud{4)i>iRIWc5xxXTr7FQ-#Q78GCl z-p0|gIE~sk9ErC5KB4@F(Susj-KVEABs)o0;&ICH^o~jKbCOD^JrhvVWzJaky6N%g ziG})Y3lK+QFXALhawpu?J1trbG3p>opQTcUgka2UnHht_}SONV+HI( z-Lt-VN*N#~67Y>N2NZFR4QbGimq_<8As|_PBN8u!PwV~6JT-!kmD|D2h^IYt<`|_o z2fKU(?BUf%+2u3F+ z@Q8-thy-Qcb`1eebsqXsSoI>a&1`^o^5&qj&nByj+sMEntV8Vsn=qJb<%9#kRRZ8; zFC(BwmtekW=lfo$6WWs)%~kegE*$84W7Sv=RiKj$15q9nD3lO7I)nFvXAw11o6dc? z*#U3x#%@SdIRd9jF{Lv;vs18c8#ywWUp)?GNow~e_EQ(O5H*Yy%KztTF6oHwrGU1* z%zBX@gzuu&d)0Wyz_a`YiMKZvpgdr;p@sx?L(BaBqy&V)=qkbfJnxUOC2zq2T2n%H zb1X>YJ@hEw6KOxEHZr2cV?uYoL38Sh$dwPmY)RBwEQ{2T4rl#=@R>0tPKKX;;_Vo{xX!&7FMEPiP zK^I8$ZfJE(l0jDZ!;u59@cSPBrEGAzxYbH%rs$l`C&(u!nW;63C5%TH1~nhNe^fUX z2NMSOCjt?Ouo9S27~O)dt$x@;2mM7egmO%O zguRV|S_QKdwEKhn)D0~P`+%(1W-)BR)frBu!FNt;d~&3M{Yto3DdSir^O%<|<5EFn zA_eX~Pu=GMP)HjXi%RqKK9mf;k=$=i3?qHA!t!3xt|ciVEJ)FzeK}z<+wsrDHCe%BJk*t;V4ili-esSF`)uz zT8R%>s5fNT!Oo<;EHntDgSAnHI<6k;9E2TxM(i8}DUimE0X#IDkOaiFD3gtqCn;DJ z&)3&e$bRFQ7y`LWKlJilu%{CX7^>OvEMFI<#G9WbhF7$~i<-QY%MT#~Ifi!(f$)z} zzota#Yd4=>-nSW)pHUb)$6vKF9Lk}@i?~_&vmg)ybi{wN#pEZDFSqf?i8;Z2bSA__ zNZNWwCyw?(=B?%E+*^U5nnf_t-k3okiBEm$vNH6G7OoN}{;CB)T&8ssc_h)kkJxYw z90=AIAVjN?+!HRxAUX)^c|T93Ac8^^259(3hQr0G)~yjIY<vTdMUlSIc}0+_}J<>xgx-x1S+XFs33 zP%BDZY{UG}NPvqi@0FJeF**^&_Djojz{iR`3iFsY>^a#gq)qR9{}=LC)@n7jr7|I3 zuUiiW`FIJ%2e6;>`*zT?e{O|XYftp}uj%mC{6DhJDy)s>;o?Yu;K3b&TXBlJyGw!M z?uDYog9Q&-thiH(mI8$qCpZOKTnokB{h#-{{cd)jXOo+m+1askeus$h;4)y$qy|Ka z*#f3xxPUt+6oar9CAe)k*tzf%No#_S(M^%0%A-pkMV%47Y@L5P;;1O{)ZIRmm9=x` z_@Z^2F|O+s=q9X;1~YuUacKftU?4$gfymf9FC)wp&@7|bYw=3Hw?^%g88!K24C=(| zw%&3V0(B;@Gi_j!01Ln>?Ng;BdaR0NfF*ZD0hJstr0`H>I549xRy&I{p{gJ>ex%7h(TGXZ78=x{~B0GeJO5-A;IXhN1Xl44>B zJRX`zNiIXMVIPCMrFky$fn$S0#IKG+z6c)$^>zY)>H{EHl1)yX0F--;!VNs%S*jh~ zKglknlt0SzXLc9|{rk$VsX)E+Z%L8I5*K_pxwaSn;EZ7e2`0fR%GcKvsGa$k7gv#+ zre*J=qv$R?g?!3RLyb0}it+RjRctE4y;hd++vfL#Qur2*?BRA`%jvhjOx|oH`3rnR zD7;ZzoN{c;1tww9I3p6Nerqxyxj?mk%G3@#F!HdFY`+EvnX+?bJhW6`DU1%~CoD)B z#Gj*hC;R=2oruZ$0v8cC%tZPjbM_4Y1-`oV1^|Ko2tIs1x7a{(c=$-4?U)NVXVDD@ zqRxYaPyj`YA_+Z649Z^iOn{ptH~W}cQs0Qp$TtyHwn$>%6I;Ky50h(cm=CVS3#=UD9ra7ql!e8S;PUvy zn5-e2z{ML#GZ$^f=6>4 z)mAZ-jlM6e44V3)5+y2NUW^@>`R>%PC{Wog&wSs?1V04U<265-`()A1{L>+;7r) z_{(NX+l4w36(n7)6?LJx32IATciBy3L8Ne^6S0&Xh;iihC=N7>_(1_E%g+tg# zb>Nm^vL1PPrdaTj?rK-4L>XSdmp_5=-5D_Efsd6)^RiM@^oe#Dcjrvs7XAA&KnfkG z2cHb*@tuZT( zeIogHu+-vzji>4A$eZkU5iP(`ZTcN?F?S z^TI#mMimPBVDaxRw0lRVvXR07V^F}fJ-P!oeYf7LIMgWz=-~*JS9?AyKK(bN)|_&0 z8X3+XhvPLD>)ozY$li-X>rR`Ec1$gdw0o-@4jo-$X^R`$hffGkd>N$s_@iymV3Yk` zsSb5(>VVdyKr6JXtnk5_N*2`I;@m9+0b8?68biSK9QwHcSrcdo9#9FC%AEK_AFdnH zLSOO^GxQf9!>Iktyb^Dzg0YFuq4Y1_8}c4u@n@%MLF3^jO@+gfiXS4CjBPOH)!A9n z!X5B{Y7`&w*G1gA7*8WCSp8ibmIvUrPKc-w`I=vD8KDEPY=AK5y_)~Q? z!h`=g>*u^!Lr?Y>L;(9X)tF~Y)dZc(t0xbj;IzdPzI@r_v$njQb`*XxG<(~Unjmj} zsI?++V}~^vy1rMP=$L-Y=E3V;_Skbor?1Q%0CipY!7E8Vz-tiGT=%OwC6~{)6kJNmpIS_{FOwgrLGdk1whhjyCZWMB>ZMd`F{9dP{&Bpo^_k<*Oqhl? z{9D}`fcn=`ZShk)fx?#;?}n>`?g}%NC8MH%<;|j+Si}Lz@%ptkvH|DCskCUXKGyur zgZ%E*cKK^~&RA0oi(9kY)IHcFJSN*$#=OIJ?6i)dreiTXBE-_gCe`pkC(N*)(LDP2 zzHyQiBQ9OF$I%)g1)xlTDk5M27yiwoZ|85eX{t&Rs96+2c>;ikAH+Why&5wSdvcX_ zm+>K%Am7nWg+K@ZU@;fXfkN1TjEjT;TsK7%Oq@E4{GMYutH+IWuCiNEQ29xQq3J}O z7c$|}4;0^o>h~A_zVsoloYIcTxZNOE+7++{N#Ax<{NsC`ofW7$I&qCRT|E8=sdo8Y zarai!*jcpVCC0ryWo{`el~!w2Iip78X)AJ6TGO6l!0bXFWdr+;L)AcY1()g9Q-J@E z8*tLYS+EQtVt`AVcX>!w87TGKoa&EhQ{XT#VeIJoo8q9(f|jpcmX=Xk&d%A(2JIkJ zzM`?tFrAS=r%&W}9g|%9m8!(098yc+v!O#MQvA=~+qqGdU(bbSeJsk=vQg`=$<~X<@6m|k0Cz?(hihxbb-n%2{a;OGA*KQ* zpl@|kXKBbJgHZ-@n@PgHN{eLy#D&md!v6rqf<3rGBc-(0SxmY3M*u700dEcCpbnCF%bTT_z8ZIWy`3sFA-7FY=7VIj^((Xu}(^@id zd@bz0O}%>-t8a$yaw-9=VezRc%X^^Ag{0|`JoC;>`A`!zN)C(QU70zVfSQ5|cDAU&ZZ2sFSgSkgvkY5Hs-3BGe@^g~itU9(5mj$S-l5m;S9p zCHE+>)m!Omu#28|?liOt6SC}?Zmgi`7_TjHZs}WN{SEB=#O}lA9jG{EN85hD;AG?_ zYENhPr7xDIgCtdo&Q5F4Dm}}wVp4UL9{ckKS|CPpbn}Rqirl(A$j=kzOpr)_Dq+z> ze*GwXE|>bSh58{M<-P&=sZWj$!ls;GBXmg*9rKQova=>a4q;=EPy;C`K zYPq;xreSJ$@$M!UYv97}{gz2yu*$;IBYRn5R3_m*c=Z6zsIS zk?-10pXORp-?c1l4WNdAmc^xr0*V+igmtaro2i{=6--O$CIg z19THiB##rw{bXKSOcTK5D2mlgSkLs|$gT&@u_}PInO0N^f%w31$z>m6=N8o<>sJy} z1oK1w*Usz6IczbJx_lB=g~BH<1`7X(t!d#Bw~c$FOoE<3E)yp z{=q7)S}Ep-4Qqm3axYc^g(-r=jUV#z0I8I{I{eD4f)s?dF4pobAB8(QWCBK%3A~p@OG_Kg`0{GYEehI98yONgiunabkNfMTYA5C%WAv`0O z+cB^s^g81kpI%j32bBs!=R+L3lYG+64CSapR9NAc=#K-C^piO7mOXR z@!Y_toz=vu5}s+UUveQF@gWA`A>e}v$l0h!|XB40J?r{8E9v%(z1}ByN&VOtA zp}FE%YCijDnzS;lKiASVUHI?BirN4zQ23or7)kI*#|^_^>~Q95!X{uSMA`1!NH+zh zJ9LKMi;CoVPqBPJ+B=^A05|aH-3U-Z5~zCw^cI(d#AJ*xD!VZ?vqbkbJHa$_Vtr{Y zGUb%SsfEso#5UPcEzbTiR-jDoQoGF(Y?(_=ng#FTw2SoJ5>jOP!&fP%bd@v8Z3xjw z7IrQw(57JE(>Dt}R9J+7IH{QMP&?WdQ9(Y)2Rj^7?mSJjqj~bcyr`7ao8*1+g?{9U z)Jh!rwfJ}1LYLFXQQVKbVKsaI{`N@zmAhe(JCu@Nr;IT6@ zzY1@7^@vWx^UR@L6}|D258b%X;?mE}>n*YG<4r>D50^%`niMQt_?_*r4J=3cNEa;@ zfu`;f8KAr093OX`)wK^0*1J+7(QpC}x1)(` z>;yYep_J`6z*QJT9WXTuxFb^dx|`dQt3bX@!%;k*LFPPLqwY#@kpceyY z3agR>l_tah&J3b=H-^#ztzwr@7$YFvIgV?@elTsAP{I`*oMJFu_i0Vw*RJ)jBt`v_xy=l|LeWVN5UM3AgNUkEx9yc zOEF?TKdX(Ih2}7w@u&RFihB^AJ^!$7tDG;mq1-b`>)-Ep&HgRzkS$e{^OPeu!Oc{$ zO!!$ngvray_+LF7(@0cbGeOp`>1^Px&U~*77LMMCUwD zl3=bYBzesir{3z8aS#e>n-H+^3Hai3=7h<2RCGo*^iXiti29{v^m%JBys#j=Z#LVN z>5;xZV=>BWgODg9lgG_j6x@Mp=aMi^$91FCwIW0`hRsT^Z${2oa=kWh!0&N>6c>=h zmwY2Bza9CCeXT+w5#4sT$=c}l;Bo!E`zqCIPTE==@0HJNw;6ob(?^1wTOTP%0&|8C z!`Jdc^sPHu-dqWT_+e4f7G||fxyPUnNnE)m(oC z!Ka;E)wB>P<4$CTLzRM47(|Oxx7)ivsjv!?gPttM|3&B zaRwZ`uai!vr=f-I=E6Ex;S`8xk$juA|iJWujds_-CXNOq+w~C0sCZY8inP zrm^yXD$aemWaE|9(yCDjC7q9nDE`&Hu?E;kR6{gQDlN&f8MX-HdhjBh%2%Abs3i|t zkw%lWYSCI^<%z4hX?dK=y?cjWTu~L4zOzNV;2A&q)7&r2ucNOG>0gI%D3yc?05vg+ z+x@q~7r^~%W6XfeJGSGGkwY3EBzV1bk2Q5~XDLlDMKJ9uJU<$H$=jiyb%Qgb@#1P+ zfo@dMW96E|I~;F?U=l(+7@UkM_70$ccarsHG0PM?9k?v7%%JJHH1sgx%R*P0RNRxg*oTz_Vyo8~|z z)aS)VZ$c0TEUBK$puKP~#cKtX2YqO7TX{@?nzg67)dCHV5PO-y`WCKoTpYOIoZmaD zDMfaQML)rJ5qg&hx1urmz%(!9ucB;3H7KMt1ZnaOfaNy$bYcb@r0=Hq#9|?~*6sRi z##nQNH2F*Mvyvl%*vvi8GhQvncpyGbT{G8ev?np{#9`$qH2b=bnMfcByNh4@ou5rb zPaOqTs=3M7uQ1lLM=41&t6mW>nwS_DcnZ85%W1;FTD8wed`CD!pdkA1QM6*aDZ=v) z#QCm>X{Thq(v{l??SAj%y`?azsp$7TA*s_I_wehHdZF2n&!%vyUG&=wkL$D>}ETD6BAvi`d?M%R)i{f#2_cf}aEgFplHGp!}K_fZVp zC_xgfR&lWVZPGLeQ3BMakAZ(?nQ9%Eq^`<4irpu%jTzrVCn`3iLC3GVHKn}f_x0Kk z-0XOi2{A_QZ)nn#4i08CLiiUB6$*Okhb#v(QoE!-95>w@luTTGm2eh+{tZg{Oy{7I zF_|ZpTub4LhVff!o<{6~l%BV_)P>b^9eG`!HsCAlsS%--@N-kl7bjR=c~~IZSOSqT z@M_9me-8fhL$ri7v&0_9pC{+&3$&OlYcU*HV(|1&6wL@`LNt40%L1t~Z150bjG@t) z>vzzx{FjQXgqXdqD)CaaA0RDSQ4sW@(8%OVr*{#j-m$qoHkBM^wK_MSjpo@s1PO%( z65ZRG$89bpEaBl{!-?M4hNIa5O+|9b5T0RbCTuu)aGxErY}7?d2~Rv!M&MNuR90N! zld}aT8aDj99b>gV(aq(TF&8$<-AI^oF?$fLp5OSZ`utC!npEv4Jn^TRG_|6cDc<{k z2|oM3yk7u>>J>a$Bv_c9Q>BnN%wd}FoW-|> zT8_U|-Njt_n;V>*X=33^_-A+dv1Tk#+h0|pLN=y`aJl2M`&-cw3wlVj7fg~OmhoqZ zvYn?jb-yPv8W()#jjNfOleINiF(rl0h>GHkL_~^_}~KI z_pf}3ZJy9{yJh5veAHaWwCXMel<6Sh<~_i z{v56T%D<@CSU){E^3L_%{8E5!e7ACh-m|FinZtioCPshOqjSX!87plmOcbuXI>Mjw z$NXdkru;^@|99|~#oBO}cjT0^@;k@CRhJ*qEOP(>Yum!{%;2^0_k)6^Y*H33IIooHWL zon6DkG;_6=UV$V76<&is5m(6zV+1o)0TJAzJ2M$sVT9`)!97|*6bHdQ@Bp>i*(kQkoz`9i^^=81}YXof8P4BogvVJeNxmz zBEwG|Kq%AX`I8<&X3ZgS>BVJj;EzAZP0@G4Sm9O@T9{0Y}T1ps>osT9Fq{$v;! z=}5mV5TZC3VxHAjuPQ{yc3%}Ey53W3)O`r%)ezzSBr|bY(|H_Q<6B5bC;EdOuHXJ4 z?X7ZQiTkJ{OHJefnx-eFnezS@cJ7`~PoV5teL2ak3+|uUfC&zD{MSh=vZEI>+>~7x zz}HyK8LGKmuO#mtUe6nn28~(tG5Qn?UzZ!_W@rnSLqU+A#t`}4h!*5WU;q)#JB%=l=AaQX zA)40?!9zkAMpY1I(P6~AF^7bl3GveU-pcWN<$Q7VV&Y7*50*MqoNQc_R34qp{_`f; z$wfl=ZI;Dn=Sz}!6B8D;f8kv%N;|y{Tx4G_+Y|f>V-kjH6KsuWyDHXi2frjbQ0ot5 z2*1;~kzKv(p&MRFf*=neN-g5Rxi4`JWAsP5TLzIO|0-7!x#^h7VI)L0m!U7kX4~>X zM%#h+(?Q?okwidgQM-VK+3GMY44v?7!5L)Yo&ZG>$UMR2&&$zrg1+cESu8Rg;06j- zE~1bE2si_xkmHDV7*R+;L?Imz?=YeU5I>TPf9|%(@EwqC6{HkwKA+N0!q44MQ(Sw= zWBCbFS-m!qV4T*N_)gX(O!Gw-*x-WeWF*Ah)m=Ry5k`38#1RthYh;A`XRluUrh6~C zM!_EMk(Og;TG4X*weOI5Ys)KRlGQhr@!XzPH0$F{joPu`6T=$|pK*ff7w;+5if65w zZ6)y&+SMQ}dYhSr{5X@^YCzzXeT$9HbdQ3|p(|K(4B zh{dui5!~d%5KFWHTIwP=yhb(k)E%NC3)7Xi>Y6H*J*^aLh!=!7h?NmIPPvi1jlEoC{7_XE5 zDsj$CxRPZ}-@S=VJl-Mh+qKcrUjId-Z}iqzx88YCt(NPA=l!ogpIFs+M^gHTV|`3|qnP;C&BJAytVc>B=)Nns}u%K0~XEt^v@ zqyBob$mwo&!b~(7%BF8KGPia>EMs?J#cQ!m+Mk|waeE4wEDjeupH#@%fO#2Y?_XLZ z(M-}ujK$n)!1OLCMIvxHDV1D_s8D1fbO;Nu(_fdM9vHmbx;sxDlGr1O#2Y!5aZq(- z2u4Sh7z;*fi0W$pUQUm0CgFJ-S4R)+%%!ja0eS^p=kWRF!!0~8_~3F$#~;W5-}o0- zdwMkbh0TWhu;Zb1Bm#0z5heCev%bX9~6$xqPU9J}y*%+QERkS>qV%2L=j?j1@! zN;s1L(FIOKtx>u_$3q~E!@Gn+yOEzhE--F8*OIKThp(z$bAdV$QlN0MT(H01EaluW zgP)#getDUSx$?4Cn&w{_TDhclb_Q=&B4(_Ox__`vDV5emy!y7{8Lwg|N973 zK#%o|L;UivewC0B4FmRdRq%_Dc^R6VkXwdq5z^XEZF7l}0Dnq8!?J*GZP5(g zMO(?B+2u>9ZJ2OME=RbI4xtia&|N%7zGv0fAVDE(xg2K!|gm zpgbm|%5PMyTL4@X zz3w!4hec}h8~uck>4`h1!hLe?NGa}D7uw!A4t?9rBYyLlMllg1RQc~0(L)t4=4f9!ew27 zZ{(yfj`0z*cVOV~2nnWk8d!vi9Hpx8#t|xu-Y>z=7s(7rJ?gc_l(pJZZTW>B z#ShSur$JQABNlpBUtE>@q6@-OcNPv&1Q zck+L&LnopABQ(HlXsYEfPG+T{hZZf&tIFfw`TmEDseinWGPmAhm}rBLkChpdlO1R9 zvNO{KEeu{N=v|r0Y21eWNRt=1NE_1K(bx~b3CvKoA#=o$tN2tWK+q$F&H_8mfLgr- zwHNZE{33WmdwjF;$Nbp%26Mp<3z>LC7fk--Y6L-YH6SX z{NeIxOr#hK&2t^FKHkw_PT077Fo=;q6(+h4pt$8bUa??IwLvX+4jOT3O{j>V9|GBAi?;uIyX zuD=ZLr4R-fnaUDe!w;9fK+EJO*g_I-Ob$?#=TY(mdkFY-H=mnpTi1aUDIZjqfQUP2 z$mBzj#w%)M<$3Z+A$O79!P6tEWEfxDQy(!o;@%`gnY;_kkEh5M3MWD$E`~zcpp^~Cq9=qF)@7?N~DP@RUriHS{$ zeV&IN=Vs(vp9{lM**W~azDVYZ$GdB?`J zzv_bQhf$*vtj;r*mb9;BLz<)R{V=aq2>0td0FxPCW7kx(!bfX^V;_44!IA8}bBLG` z-Ua>8X}-3q9_fL}n05B+#!x;$OtJ1`Jv~9r1cv~#@~=supF`yOln;F@1H(+cL>(f5 zoVOS>jGpZb67;q>gcj0%3bPF%Havbu9ew)p_1D#6J3_UbPK#oZuRne2`SCU_)XCP_ z!*x+TG03^)^%L`ANaEl^*kYy2UiDhN<`?#h+hP|_31f=&jxOC(_QJ!fRaB|HpBh1b z?P))t^KYPf9YAm1d`-P7 z1NsfV6W`M~@CKUmI>|ejT67%uH)sQ6;kC9#F>9(A{iRf)tTd4$Wa4oz4(SYU>2%%c z`u>ppf!&nk>187%o8f;+AEI7s6g7YU&bW+^@48FAF%|LJPW1v(u75SbdtHR^Zlc^d z2C;uqS>bgjO=Aa77<_|iAhVNtW3L-@|D8^0BOM?H2{5qOaKQPPZ1K;9%Eat*`XWS7 z=e*u$veU;z)v_;WexdU$WcdNW!F&MurTn&6OhT{ubAnE}n+c87>A$c@lPrpO9z}rj zyMJ^s#F=Ss4pcy)*U9rN;bB9>>H6`RukUx1ampu%EY(DE0TKSwwyV%$jY}@2W=sKZ zHljE+`mzSpcY^I0Gz_quY1oR86;y^c%?^SyqQ9TatQ|%IP*^8Lmzx_3c;Q}VlwQVXQ>`1%vFL@x8}S)O}3PZr%8| ziWv5lIr7y}!cF-%!O+jnC6AgPF?K30(%G3-fnka4TfC^(0b^R&`Sb#8b%gTWzq1LA zKshCCT#R_vG`W9g5i*#v@74zxp^Zqvk;-^C9ZswkTL^#Je=3-3Iq0g*m) zpHCk+(jVJ%b?1}E26?uN_S9sj#2|~BJSTR4KRRd8^{)a{4@K zYr18jV57prOGgKMWj;*q5z!-2_2$r`z_evOF(2|l;fblfYKSXA1mU?ET2J0>#aT&! zBnr(oFb|~_=mP@+iY}n%tNPgfD9|5r6;aed=rJ;3a2nGrKN;nBgzusb=rPxX2CHM0 zQCu@Lvnh>+`&uT#S1kX1`V;589dNTYG+!#vkT|(aoE|cA^umv&P;!2%?-xFP?M>To z^fUh0WBxfp``b&`ePF}WjU`@d7|nbJuxBYAHRZ_ir?3sHVRA8?TA-{9=er+KU;R4Dk)sSLQlD6);spl>w)7fsgNHVQ^^MjSQ9a?)#i zFwDXO#VKwWULybU)$P2AcF({no$PKzkWeU)hEc1??OZH|PIuw2FH|_i#<3lB&!F@D zP|9~z&AY*%A7eEf#NIPx&Lb#-`qFy8Fe-!1Z0f+*b$@(P#pdA8c5`#|j5KpCd>0%X zcnv9yg?G)H&`rk>EuoZZb4%l0RVx0wxbDmJ$E$>RDl`M%Wn5xJFfVe@*+n=CVvB|t zA?8SqV)8Hy{^*Uq2ifNq>DN=!JTuESmB%s?+g+p611UHVgERHa-h?JVG2xxH#GINa zIWBIy2u-=cbSkER4V%EWo5X=fipB_0vnV&=0>R}=P)1+tr(u{@1gkrJ3Iq;A&7ePl zee;y3;CJU~hrf&H5zsWm*y0j+3$|5wu-NU}8ta;#iUsd))~Ui!xf_wYJ|l6bM#uBR z_{qf>?z$Kz#9~~BFxnJ`+TMGIYq-(=7${H+DozPVX6HD@TbtKJP;vg%(QCM~L(X#Y z7Sl9Dz(jXgap6*SAx*C}&@y~6Lqas%MMnZTektlB*tt_;eI%?O%yUA2Fuy?{=$>-9 zCP#s#HG3Xl90crnezXiD3Ne{viwIgBxlbl+>-kM2zPW{ipUDuc7oxUNr;5_+I1uU4 zOz!~!Lvx%}V&0uFRP@EnJC5Lnp$?@QsY^+yLD~}Vdgsm*(j-5j@1;B2qe_=eW({3* zZNw!9j7K8G|(3=&j|(LOV-Wi33~qhYMX zYP^7gQXCQBp|5TR=1my=?9IBq43T3d`rRFm&ZcZO`|!EY*KTirzZV7}RMZ5AU#CzR z{#*R^7!7_S>Uj_j1u7%VjH&=y4#mqdn^g55GjCz06A}dsfe^54j}+Ms9=k|C+b}Uh zj&pRfJIJmcpMO7xKHTxM>Pj?7B8M%j-ub^(rt*j|RhY6wg+8GD0LmKtxBU#8;cHIP z8tKY-s8DE*^B>lxGi;QIiO){^i6N8?ksYmC4)Q_c&7kS}#6ycwKGD5579c_0$ z()R|w*$FlIa+%nC#o3Ghe0@eD<~vvLXtc2 zl5)@gJ>Qr4cgl8V;cE21(b_i&1deJ8fX8DtJ16p+TQvC(Bxgm;eWk%APZ-~cFiQvN zTq#vWYaDg6h^nPO<`cd=x;?YVepD3ZEK*zan12i+JzN353(nwKQdXj64*TPnDCqIk zw|P8FK0hyPm82!5aYj$;5IRrEG6A%RmEK$&W-3Vz$8sB$IRwDk-|naLUqyPcJBPX7&bcn z;PB7koZCZrrmgS1FMFj(E~-ufOUHT8i(^92zem7K-;~j(k%msGvF$^Hh4YJh8 zu0H)mFq}UyPr|PinYv8aV!$`qH6_(j1p2?dG)#uJJO=Db{|U@oh^d*!hOwVMGL~A^R*MI0tcC>V>k0J_W3T$)dZml~&>&S>E@KiH zja)~QwF~1Yt7EKcxRj)EPR~g*+LE&F*TiO9!A@%MMar~Un2>W+yLK~0Yog7kYicNB zjK}Jq7erP*6w8-s5zk2#mt|s=7iRo;bhxu1Y!WJl{6l~>-D4l^oE6Fl#YSpve$8ohfQHM-Zn*=$>( z+}WdNxm!KlRi^M23dGNDHY!PUTyb!OaMjmA@k zv`$8?1;LF+B|15s?xnRbSEBOAf!3cVZlb^;MZao|$fEGr&YyF9w8Pgeljo5P1xki! z=NTOR-zLw~$9>+_L%xvJmvF~e`b7D3Kf9#BCsuz_Kq`h7=|&j=V$Aa{e;od%kgsSS zNFzk;ix>}E3)ee5$)|3_>qNjn2L>1;j#aM6XZ|I!QjAzLY=5e4RT+ z7+mYzVZJjXhhIUQTyKTZD1+6If_%LQWe^BN;@f<AsX&9RGno5r20BWhi{hPe$43ppVj2xHt zQAx!$7UZGcsBJh-P{YVt%#f$6>%@BE3|qb!QUPR&FW%@Dpbv4UKqqwqEz z)6gL5kj`vRz@YeoTp`_G!JpJ?^E_lELvYegBw=U8SxEbY*?Af$f&gAgVej2 z;&eDfsi(a%@cR3wM4!MDE!}s(B7iIm>n;6Sa_PutW&RDoLt3g5nsIjLvNu)Nx3pIA zHk8{8&TGQ0t#||x(Ae#(?~~~+5B@~hfBmzEM0=#_+Lu7S9w`al1a6>x`-?!ndYnnf z=_Hz*vR6E?hlJk~g6&}?gYOGUQ_+-LkHi8u9n$0U>-_845McB$8TUwuWMLcjx%|#n9Vz&hyd(P2g3etQWJOR9}4AUGnFnZQ+TQw z=Otx7FYBPF8|i?f_<`NA^9TRRT?VQ2YrOk$^cDM!^p0*~wYI-wf+p8=@1?$?w29v$ zoDtd{e_sEbv&75S7Hd$Yv1=mPr|}*4`yj(nKA+-AfLQ|pcl>4NZ-^!KYw|5Gr@w-z zv>Nm6O3>ritIOlqR}e%g9CH-i6=?h#s90Lj>^`Tbn(U|a=Wm- z5pX=!W)YgD1)wnt_1|_QwNaT5pSkc91gx}I197sk?M>VrR;c#4h;fBmglMc{;_;~1 zGp6osq2*LRQK{Cx#NOU^r4_BCh~fqmkPXX_LE5ZDHSi<)tcPiu+<5z1Oet8Z zZ)HEBXp}H^kRYY*f_`BD8Gh0ChKja)BN|?JaMWLOlba9Lzv5%!Z>LL7SOdrnC+Op9 z=wS@IqN#@cPFeR4cnEb{lz{5#T{*~qC`+%U03Zj72;_5w2&%;kn(4c29x`56ooH)M z?wK21jyKd>@>?aUnbs}S7@!2JF$*VDtR3)R{ENnO3qnt8`+fPz7oYNxFIxUp`948J zBLU(-mC)|zw-xegVg<3uR5kVlraqP$u+Qpz%ZK*dajfcD7tQ($c^1xanHX$le)gG( zCM-KWS~&~l!7ffnE>N1*CddF#z?LLXPS5b}Gq=~x{6#TEAO_CvrOmMT>D^&!K;t1- z$XbMh9oN$)Q@}tJyvtojRS`7TL>8gy2CS!uk^soEjShC7!Uk04Bz<%V^mbd&7>clI z`citPqVWif@npylU=(zbjLXkiNO6^bw2Fdt|7$Sc7=Q%KZnh34PX>-7^_6(ts zu7KUv5Jmi1v9(`>{@Ml33|emJ?K2SF?X!p()I5$iNK z$iX8Z;o7qQstKnUbqPc9wpDJhxh_U2O5mI;y5Q}BO^`5ztvq!PO92lpbv!&(o?Rp< zoP3BhM~I?P>ltoM!`NJ#+Kbgqw=LSNQmm1|H%-Spn%W);w^D5QE3GoNVgL#x7Gafd zW`@bgT4gZf!dou(13%;DTvy$sF}$&y(RC_Hju_RscyKSbLJMS4#ugXp#)4R>3wuCF z-4@9{2?ooAVTi~XaS;980H*ezTFVfKDfkSZqtqWtl}^(%qS=28-t>?-AQqJ%;*Cl zw?L}FPAQ$UoFnEZBB5fg0%UY(3Q(Fluh3*5mVlVT2jz$gQhu(i8?1jQq%D-lO>A?A zHm|rSeJuxO{B5eE?q$i03bvC6yF%9CB_&Z+hDiQ%p_wunt-tYaWE)%D;*;H4OkR`tB&mOU{Dg})4rG`vJ~=&q5Z zwdxjU?c44*2J|FTTmpA~UUna&NToXQlA-VVl4fkB$#NMzb;vX8e#X7sWmSz` z;*ar(dBZJrGADTF2vcNA-qoKIMC4JB9D3*|e85O0fYhuqMOBS;uQZjwo&D1orB=2) z$OIlaZ`iNz_bZ0WuHrU3zX`NkJEA{OqRV>HZ!K|CKiPkBHoxzQMASb(# zMM(t#e^uVOi-6~Vr(1>snFI!0bk1VIb|qzE6E(eFObbD{uYe|9r&&FiEF7Vf(L@}O z8Iub52*{)m85_tjj`v2!h-K-h`NS9yi@vrsf8(3@F>sJjDKeRygsdTaOg!Zwe^YD| z{(-XPZJMsm>!k~D#69_hmG)-S<;>4&7OJ9qB6RLbvC!)y7kVsnv9ra$(gHB+YgiV+z#H+AB5>z*)L~E#(vy$;;6JfD`2L9+T zTGj&f$U#4i<&vKL;0G3DdexkReXm}qFED6X0=-uIi2)y~fHlj@f8%G5pcfBP0hD6@ zX-sbsKv#rB{Rcw0PK3=ih6wQrZVZPAkm}4M_^xnUWVDD^MZ2plfQQ-Hqc5?;Hy-S| zh)}QDk7J{@{=mJB7_YFTtq31 zg1UL!HjD2oqgHZ`U)al1@`><({mdUvlAfL&P3mP9=o&kqV9b$uL_xG z!~PH67HTQ?gorR%Bi#RMi+jEEdfpO|SYjR-^1fT_rK~qJTT5C>A!Iz3{pxR#a2q@S zz{Y!gE!_hOGU|~KSsB++UBMtVnH?whrGYa4o8{`&@6v3`_;jvV&u8^tt1WBV2y|-c z-U@lI{y^dZ*lE2}_%;U%%Ho(d4HE?y)g?DliF(#sJcoySK(%D{H0319YhLqE$%vt) z`mZzOLuACQ+7%~Wsb6#7%53T(P)Ft#MNf~-&|DC zmfkXfdL*YZM5B7ya& z5~V==vXJ2Ye}S4Dk{=~j9A|z_&k4z4#%9rmxR)+IW-F(Bk6L`KU#^wuQur>JeUsy6 zyYDh%HWJ#uL};1$fjYk9r&G)AYsDni+ycVoYcc#cWncQL5~oPhQQZM^8lvoKah%57RN19}-X`uVN*{6LHpRYLj z1uV~8$OZP0>N({KQ!qsH1FZcg_w)en9Omk&;yG+V`QxbVGn+FXzd4&=d%rn*Tm9r~ zG#RTiqTZlauwjoa+YC&1Q<$a|ojm0a_^=PtqJZVTTk^NUua30WYkH+5q!ZW4oa)7c z#;4HQA120UF7iU6`2GTxR;|F4u53(#Z483j5%VZcOdorgC zBJUM;pD$(T924{~3s?6s3f&$WD*h^Y=HK9%v#2LU^?FZ;D@{6|TEmN?-z3Slpst7! zZ(xNe>?&qDJFEIkz-4cSf1GAY`4iFQMj+Wd-T%1y>ZqpvKW>`Q8;q`PG)N=TGDmke zh;*lblr#)Pq`MmdX#@#rMo5EnBORiIAoA>ce$P42InO`)Y-hXokGp$6?|KEJrwyj! zMAM;@GlPpVus){qzRWzMMe(uqKb~lfJ|il8khKE3&yE;X-gxEPli@xx3a^0AuIADhp;B_rsXr z6Czp`cPaE?^U8^>x}xk+!QMBj2tpwRU;dubL_smL>@x%*dtkmPCKrk(VxcW=Q$NT# z6nsQuv;L-NzV7x~7F(2TC4^L6%D89$)kiT->SyM=XPuR<&ukf1o$!ek^-9)? zcmsd8*sf$;$?izkE;b8xtOR9Bm{1)JSG^r>Wxf)U$F%=fU;IXx=Kk@Yfpun*Y&EPi z0w+{cx$yf3GNrT%!+B>=CRqS=5EiPe=1HN$N~)Tst{ki8daKX5wyVO~F4xH} z`y(^!6n43_t(MjFn(!a#Kh=&pQOJjMtLulj9-1kO(EJe`q66eo z(UI)y;hDmBMPHYNwU;jUJ6gCn*upekmghzU#;b`d$1@t?UCqyo+@i0xRT2`d3Ep*}e||fni^3zxyoeCc@~k#hd)wBSYy-5nAeXCs6gW^h}F7NQI+iaEiJZT()-?Zen4v|EfkJ} zHR;v@469i$6fa^~rMyK;>(jh^xR_X|1DqQ#{gq{GaDUh;6nsE*1nCOly8MZn6%BQH z@G)5&IJ*$?k$c%Cwxcz?#s&79Y`FSfvH6zZyz7t!7so_zyT)!=+)2Rp_>UR|A%_jJ zP=gpP4a;>v@h3&Yw7f{5x51ST)V$m$iNtsV#kyZ$&>QWFX0}Fq8@j?iEthL)Rn6luA?(JH@PIjku%+1&ruDU?xMs9)v-FXA zwPsh=e8Tgy2j3L>u(V}en0*#A8=#ZZS1CM}8%s03;4x7v>si*ZZ=9^yG0iFA!4j_p zz%eSM?DaGi{hw6KCTwsq7r^S{A?hQ5FL2&Q#MCvisn7HrK@V&P;|z}&=UCh-rRUpV zH*svi{9`%|7?{X$tV=(rvOiTxOom?UN9n3|56M?N;Zz!8DYaxKyQ>0py7@MT`Pcg-vM-o5en{J=YdMhTsmtl0{8w5Izd z>!vTY=sd>S&vo;0Fe2I(dYE)rRrS8#;)p8AJD%7R_+9ENA^x!4kWnvj^v!r0wxa+B|I*+*= zS&zE8YH_V3@$*8Wyy1B^P5kZ-)C*?QqWp|J~H4jjLz_7@Tpmjs7TK{Vf@+P&H;>1VV z59t|berxz|yn+UT$Hym1nrMqY(#2hGSfKnJODocG`CT;aaQ-7$}r1_R(|KDMD zO6i(MXQIKVk0AYw7!T88x(~jEx6*j8Ies$7L3Bz;{Z|bB?O&3={Y_^2-6i+8y`tRA z)JwHyVVS>%%>9$gF%$W&zQ6KiQ@)7ssc8z{u7#GEAi4qVAu^P@dVLfLV&E%Fk}*2r zr@^fHeF%o~%GJf>B5>BBKzTQdouJQJCO}t$Ap4V7O5(ZOZSCvS=hFGf)qK@425fC^ z-e})Hwt)HDP_`p}#U~AEJlB?^JKyWp`G1~ze|$WDWO(A~nRAlx+z6&@RhQ^8pdc)w zd8~NN9j^4weFBvq5C4}Wjk~l04D3h~bA|@_5Svu2lt&)u_f+~7cR4!|pgV4FP=D3L zieYW43nRqs6gXSMOST~>%P4Ckt2}Dk_Ga{@%K{inL-KTp9 zclQ*AN5r+L6ZlS9sR;Iot`8mYEzJVdEae6T%mos|Yg$}G1;YPI-aMy)gO*foWElp7 zx?{b(CTe8>o}CB0 zFXy{~Yn_|Bn_Rf%4d7qz(S`{eDz5ap2Y$hGfxd1g)U|X!N!Kf(W$?MqJ{70sz-bAH$3_fLg{$Wqv1z1E zxw>Rkm}e1NQ9c0RsfS_wB|(7dIgLL(qVXvzSRf$H<9Z>y+`vquH(n^AJjqZSF)7s{!9g-+`ANa2?Wnj zfQUeGmxfP5;g*Dq)2E`1&9DCmzoTqSBujnj6=QIAjqRqg(XP&qUuH8UA51Fx#l*1N zI@>Dwf`;trHx-z)x4v!t__i~Y^3)Yh>o&-LiEe5hdY&l*uTxG| zIA@;i?W#-xE;4;bxfbJN4etH$xiAXoD7v}>WeL%SaMo5lFIMZ`2VZDL-nt?qz-FT$ z8LrmBkXIeRJ`VX$wIB4?TGVb6rNd^AAS%y(C)M8SC5Un(QAM3-ZOnK(6cX9tdX9XR zH)l9uD(X6*MJN&5a3oUy#HL8hDw75lMfvjumy*pncOQTbvj$s>px`Nkgz9x*4tqT0 zJc)X-2SC|dwfYwz5U$38ahqYo)kq=}uLUwDA!9)SFVCoROJIB6F~X@5D33;C0tget(W6BPT!{&hHZ*VzOC4dF$ZHn z0hAOQ)H0-lQUEJUEmX3-;Adr%fhx_G&JofFf;`44(~!7B+m1iIB@FcuHTXEkKwXW+ zt)PSk1kZg(1Y@Y?Qc;FC*<#T@A%35Lz{Ml78>|FHKN?sd{kBaED&`2u!aRxr$Om`W z5wXar1I0>QiCNW0y_!&@%CoWCtsg>LiNlMMz*+^D3V3rT(QG)Hqb9Km98f^`XftbM z+#6`Ai=>Pf2Oz+Ko*(K<3HN{ZtiMMk5jT282n#CwEhl&r=MT=wfihuZkaj8=7Yf+c zd!i4CigVy{XneJDhBl`Q^^d^=YlCcpR!WNiw6K~I1+@DPy;c#X{F`Utb{we7e~0DH zuR0J^I`#H;3$qCaeC)ZYz7jDMC-0(4)_qdczbOjtmHwF_~&ytPwj9yY_Q#9;hvVJYP=^$QDiJk#DypdXICO3t~{Z;2}IMO(LD(X-c z;a87&(TCSM2e7U?_T49afzFB=DO>4=@=rvFHPLP>7n=k$D6`s#U8+Dz6&#Ht{i-Hi zjBNwVQ)2m0RgCkhKT>2Gd#lG$?<+FC(R{Xh6(S5IJTH$7|lM&K;_QI~}+8li~W z*+6y8nJUuBkdQ;e^Ec5Gyl1oG!D$c|~7PFh)iVlSzeDh~<#F zmsKYkYX7X^cuaM;ukr90yy`ts&VQU3EtAttx^=4LaAJd;E`K?UY7A*ibBX5MO!*aY{X16mn_(T{QET++7NpZvma!d%?uwnz82LlzZmNvB3^LQGWF}7hI~p zv(GVA(H;;+Ry-cLQ5DbR>|<+A6;;Xtg!|qg%jOnm_IQ#lDW`qAA%y;bSn+6CZrfs@ zyy(-6VM{%lB52GN*SVPPjH@1qp)e>%k+j8TVUiqWjyrWd68u^~Ufu)uv_}Ov;5=~q z3O~!igswgU0%)>zN`_o6^WDPN+0L#bnQf3#!LQINmfaQtktAD=mRgZDLnt3T%u{K; zk5E0PS!2>y2gogr{ZIqY!02BA^e39h?8W1IzR2mH(!SZ4-m~(f_ELJ5qqlS0q z4^k|{+VYkzckh@!`p+plWF?|G8&K7ly#qvcxz*7vL_mRgx12-SfWle&(6{#?yc>aD34(h1@PgnQigSA7%i;=Y#9$(ko!LjQ=4*ASEXnNpJD^=yu^<*Vm z+~&(?l1g44ARI4xec!u8;zL-BkTz!@uc2I>Omrz*4t}^H=K0|c{DM2&yPXG$epFbI z3g&qjg-FL$n(oS-UTQaaXh1mXU%^GxxP*QErj!LxH6<3Dm9uQ4{c1JmVZJhFL%xX=mVZvMnkxqC;ano^!*C zT(73Ua(G*tyB`GicGAxQ?{ltO?)CR3jq&J_^n6$Dm&k z(%e$QuBO0Zm{`>9*;Unh`zy2TMqWUXb(?kVpOV*1WC8EjdO8noStg&Jp+uz_$H%Tx zy|Wc#p%nLL+VpnWqXdqdksl+>t_?)ggU7AmW9G@YB~Gh|vGSUJ-<^9%UXu99-FM!* zfL^-$AinW9@$vCEgA6}>XN-czA%l2ntM};3$%@?W@j$y+A zT}>;Q<92Ev3G;Y|3fX8x60$juCFtgw<7jX<($UZm@$kO^K1>FY}(}`8uBu9?$nSeiTk`NspA#;O+O!pT#m^nL+ zvhloKPb!l&@WPrKQ-=TL=CH>++4nA&X{{gpmq~PK6h_%%E-21)Uftz(LF<3<_=Ait zG3KwAEK>o6xO3gcgUg?9riu)^TgFNuE1<3yEXf1i`WR7!ptZBf1NJBF*G$bojBbOv z%)8!lWy;qIpKXCBOx0`eJ2`rv@%=RVj3MB;>UXCZ{ENz1l=ndyWW+$7K|jJWGU(NR zydeRh7HQwvx4&mtvOA{E5%nRsKKe?Bg+1kP@;nY@_vNt#ij0v*nSOt^!~J!ICd=e+ z3{=VEGylbN(}d^p{flIZax#wvj3D}*m*AvUkU=yzW~wwvEkoSWua_e&p2J2C1_=eY~KK#4Bj*vBQctD*PuzpT5%LYojpJO4t*D zRddp_OWIIP8S$hsn6p$vg;0ES@hoggIg6viXzm4P_=5~#wa;>DujaiXB>XBXi~r6K z7s!Zm5)T%fTV=;(QR>z}e34}u~2p45A*#IzWax_flVRRi=B~cLV$mbVEjuRGaPejayTCuqKE8KY= zauGpF^ArCTjw2%>C;E0u@YA27oqIcKBDhH^vA890R*#`8>4(!t6|AU0$ITdtUoLA3 z@W{91>u>Fpld1Nw=$Ag0*X-Jt5vkzOekt@F=%wC@h~VGtCm98A5mAg(@pLA|ygl^x z7P)h{3jVJg<_dNhJ_iM(<5)bhcB&q~wLm~k+U;i>bi%E1gti5iTjU1;irrv zo+p=oPv&u(^l+$th{%Jp8!%5PEom_m9cZ6YeR1;596U;te?Oz<z&5cH;Ud^o?Qn zX_k|W^#|3)YE#52%w;iOwL(~}|5UNRF&9lM;Qh3-abh-De);zIY z`7kX{*uDx>TxyLe1gY|qst+Y{E1kJF@y9_3vEF{Lk`5*mtgq~?&-&3q0eFeVajeH2 z=wsAMs@Wz=Rq^gEy3K|P*oXt^1i>d=zjFz2qD-nAOQrT zByFq_iwGctsBk9KJ-V!T0UP4D zsEW7X1H{h;S6P}kq^KM)x`zM$AT_*@Y*4ZIw5UAL{zDkqIyemne;@m{L?$NlmDr`a zZWD1no!kAzv@BWj6mDFylJ1;Aha|uiWyW%v+t~FW_{_NYg9q3{vAn*DBkOCv@r==n zb-Z5_-{--pRv&Z|-&31h?J#y?{N2SpKZ}F7;jY%X@xVf_G9nJ5NnLWNW?Jv)W=-UoFKGZU*cnSLOi?JN2rr8&27?BZzS!AzTk5 zfm^dc?ufhCJmysg6*06M{2=_mhH0sSIEw-&y`5J;3L^Z?^ch+P%~6Ou zIszgjf!0Zb-P^)(!W|yoawPDfHPk#!DeWS^E&EUj_jQL-r}q+uqv){S$Qqn$@*6Vd zpY^+Q2drwrODI1i_7F-$wB6oK%}x-46YfRn;*Qb?%PS{&*+z*eX7xm6pV#Mj2@OG3 zYl)aX*JrzVS$^pL@hNZmO|9pPka2a5gU9D$PzkhBw9m)-Qj4cMP~Ta7FNupQ+D<8R{8?uD@N8bAhZU9v+p4fP=pqHHhM}J4V1lBQpDrI zsz`|`Ko3yfjEyCMB;aOdh4|*E@0;~`AfhbMW;S0XiM+qOu8fO6 zYbCO}1GY&@oA}GZ1T3)$A^(I${t#41YCLixGcckKnzjN5pbZZV+?o47l*PpP1}KrZ zgvH*`NM)R13bF;$;WVkMADRNy^`QWB{o|L(`fJx-aFz0kOyHK5xB8w7fB8$hsWY-J zWu^x<34ht;iO=P2yDIWb&5mb?QA;AfocJ{nPLtCO#vnA{h1wK)gXBlMLgEb?L@XX| z?@iOMLf@e=RPX8<{oW)nh8wFsS+Y_8lB8M{X6sykO4yJ}XOydvg*ZkUSEv#b`^Thf zIZw)=v5dx$P&EUL8=W?*ex^$+qq{5teNZi}GTv97Vm7s`dKPp?Wpe_EDjZL(|LU41 z5Ivrn=`VzSEr&OiJYR_JAy8g<*Gog0)IdXnh=w!`B{T^{LyR^!zi8oXnV8ZO6Vqbj znf#>`APeIBaapz2Bi;Ic z$u!+r2;?hEV;SKG^`t-hgZRrG?tH%5879G9Y-@0M1ogzSBohUNirWMuZZ6bDE{B8* z3H?EpeZH1x6VVy&7;YN?L!vTeILehN@C7ikTTQEwkiP#EH%L1i*+EFJk8(0=$qX06 zasQXAj`{AGOGVg2dI{Uz+@q;Xn^9t9(qx*l0e_=>GgiW8RF0>!59-CNry#GS}tY=C9H4kWL*+Wh41k<0>_uUnp}sRvQkbL=64 z8MHOvO}jpf?-4t=RT-T7;Xg$isq|Yc=FMq^h!^59F0RuGt{#!2RYlb?xl$!mMDphs6w?InEMT+4~-SiJsC1WS>jI3kCdR$w@^gq zr)C}-PryG~EZQ1C@sisif;1cwD)jYSV@t|w!H{A-u}sq&VUg5Sc6u-s-3jB#Yt{zU z;y;|2u%QX01DT(n_OAm6G8XBfAh^erNK%BH3vmUlk{qxd69H=!14mex8NXs7$M8wPn29#WX*Vi>H^)&9DlZ{{F#IZe*82DA$2nu6JML0k6B<+FPGCO zzU$MY31lJUP>c2S+ZYvHcDT_y%xRu^`3sdoHyu|AR$Lperku9g$+Ybh*-s-}-adWf zvV7yA7BMMS?%mUq#`g6!&t08+!LP-!uLbL0-z*N644q$B z{GK7XZWMsq#2aM13iuiEE%n%>%ivHkcpM@3`0rDw?@H3)#dGlV9S>dY<1AC()}-%Q zfyO}T&z`U8T90T@NM|HkV(sdf{0NN`dE_g4Yx?4$JMzw&;OZ+IxO^0v+C)koViECR zOX7R*L?353{Q_tUh}mxKzs0%v+*0wj1CJ+8D)8XOxrC8hI%K|hp(%!H4~?OSMmrp5 zPk#4PUsCQgAum()F;x9gH4pk^DnuevHi4CL3wo?6vlV}@iLWjhs8&&p`P8UE5{z?)I z!2Y;5@9``Eg&5g`r}=#F&i8yvv$1v*_?!wVrVV5#zsb55{jNJjE9I%4&~^223(2ML z_Hj~zK3Day3B8Ek-U2c9=5QjQcWXO@&_x8ubC7YM2nnd`qixJTln>_v3vwQ=fL40j zjoIAVd&psoOKhtxWPT@u@&W(ycCw|6UVInRX&`-&98YdPo=9z2n?22E)m0pyb@A)a zJWhueA1goq4c|4hc+c{4r`f;Lk>l0x`ieq4%Jdv+9_g05eo3RE#&g{tdqS%Vf!xOE zM&yI3D^rx)$v%T+tHcN`+g!l6u&3{}3~(HM4>xph-u_&Qk!3BDd%e3c<4E>kDuhCP zWeY6|QQa53bSDT8RlEC)Blz2$YkTHv*@fz3I$!YZ=iiiy|9FE3lR{L1-~aJ4dhBlK z44}T2A(KMJhLs-EVG93v&2ya})8C6-xGy2GAJd-;KbWEo^vG{4dRa{tr7zs8%*^gT z<2?WEz9fwQk2mnyl|0E`Q;FfCkg=G~OZU^;oaSwx9rS@3&ggT)+pgXJn66qGHA$JU zZ80)n2RZql$nTB_qQP(pOWbrff!$wkX_?cPfO)nK1mu|431WXunKq+roz`rAxyvKX zK?6UEpT^2Wt!hXId(S1sCV$KEq@cCd194(Vz}qQEb_`Wyxx$og(!qnts+4daTC{%W zTmM|UBbvIUCz<{65C>)l&E7J$clpxg4NrH?D}6uoJ%4PzJ{5d=1YDGBrOTviqyw|b z$;kn2+!V0VNt0@o>z^JWmgN!T(@vp3B7fE+<1IWAW`f z)d8|WDQmV*!ll+r`?1HOYEQXJIlHdLE+kjsDJ_l_8OAcYEi9f3-vycuwurRQnh?vpe^ z!<#9uRest;-Hl=L9Q6DMm;K!eLq$+X6^CsqXR(e^*=~nhzLF*kT}2xU;s%M5v3`pa ztWZxuJ4}fZZ}latjv!S8k!BD4zb`mRMNDmX>-w0Jh*P{*buQa{z1w8S|5PJ0nyokE z&`%FhUXl!^jTN6Blqc^WN#zR*wm`n^^kl;kQ^&2iIN7rI1e=7kusY>_UN+`UtCC?= zHf)^@>%X|(dN_*K6oPFpq6;m}usYrb4BMC8Ubyry#9gG?@U2b_Y8>Nzs;?k^@;>1p zUBSuH8vg;ZH4?_i9ZtoPA;V)n;r|7P)>t&cs1{-Ghrf_fP4w{kRH>IhVH3ZvU&O|7UvNRbB!?X(q@eh3+TpF*hQE`9VXVm}mM zd@D{8e4g&xBmo9-ylq1m+!BqYf&3*Gu1ZORP=M=y7EGZo}F~_veip&i{aVQYpWP z`OF^_r%|uNse3A3dp3>#t@`IBOO5uw)4=iMiI6(%BXypN0;@EJ$;;G14lcHR*@(4= z3;TQmcHw}%q$&C69@}M9=7wNAcmZBWw9=8(OBl+x3V%ne5+yL(>fZwt((N4jWuT80 z()-?a1N%!QcJ~k7Hl;#{2N|0=%E|tm>)?e&yiyZ^#A_&jw7%UKzPX-UYfUJh4WJXE zZT#tFXt31}t8ghZa@Q-%4{<$tRnm2*$GvPqh2~VWf>0yf8m2CUwb@}LmQKDAegPJd%JPcQuK&aeo7n##V? zdQxZ^i$;H-p{KlPKgN}Jz$Y3V3c4}<$)m}u;6Ca@4 zTfrkZ2G1tX)rs$$P~*~kk+n3Wg}mhjM}}SxeOKfO6q&0QQId*_R=$exju&@O?`@p{nKbLTN6PCKW$afBEdO0x(IS1oaq31tnex5k7uuYz>Pvb z3KL4CQj2Z@BX5s3{4?IPR=E_tm%!UMxG`bKZj=05!m?2mo5wUnB_FJ&KuRwOfVnF= zpA<&OvG%4->*_cpe%g4l@;r+>fuAS?j%VJkVcY4b`TN=7iuG~5siwahKAhk(YZ1Eo zMqq7VJx(Bwt76WJj;NWuSJDXMO#{DLWMW@ep_DNiYPK0V6ZQ>H@uF2{C<03=7gZ(q zjuAiYt&X(vv$IN$4CoM8Yj{&-w3EY(Lq+s;YkBhUrm!+$rRJaPwc11pe`=GPiZNy2 z5+NzP8XyLdq$k8;vG2hYnsw0!;G^uJX9exeLb~I3YEk5J>t+A~loa0gu;cKu5qyF< zsFF>iu`HGl(adCVKN5D^SdM#g&s{pr{UL9CVDXo?jE|aczy|Z;;W15pS|I1*;T0FP zp*O>k-^snFVCx|>T7Z{Yb36?92yEfOcNf@$g{52pdQ#|qgj@F>Z?{_B+wSamwncU& zNb`r90shaB98n#rx)Aq`zc0}cxT!m29#x_Bq?-^f2?ZgYz@Yzh4#78XT#iM>=bBNY z1d}(Eq0esPDQ+JPB0;&3uMDX_f;DzIzaf-Z;@3dO-D(eq&bqez`-DM^?SA@;46PWo$yM|yf}_lq z1mQWB@9*;iaR=6g9ER4?4FDfo9ru_1*xzHl$+VwNdU?VKLe=G?dzj&yV z4z~&tE_~Z`lkn}>k3Kx|7BZN_iYv1 zIoJ)SHl-DR4BREe99-N~lyo%Z0@R7{Nr37^v9Y%Ca0^l4mscAHmHU}ln{VA+3*&dt_}hp$S$ErrW;BO+th52&?D^uK zN0{q{Pn+qmKRUGk!oI~A3#GVsvmRA^5VFCn=RXeyM6HyIB{Lpk!a9bhf5rF`}m zk3>mOfJ4a~4^4=Es=|C7j4&%2_@vOl#XTNzslf_-^Pj7g?9aPU!@5oR40vWQSH zJUygI!Y3m`&Fn>$qOBzP>a3pz?IL=K{oVsKU;k}AFY_WdN`&J33|zpl6ZN zhA#PLwuMXofOjO>bEoiz=rL#G%{snH{KFk#v&@im$mp3OW`p@s%vn4K&Ak5;kTzOc zr$G4a~dt1JsX*s3sr1Rt?iYc2h3GDD@ z(H80f9S+&Q{gdyMDpMD&Zk7e(Q{F>Riz&YuQvBr_`{)}M(=i%Q`y{tXhR2g0OT=+T!kzYVO8T;zlHD@5B@Y@sTE%K+!cDQI7q@*9(kM#=wm4A3c`B!hv0WMO*)q@D_Tq<=#3JsXSIAH?`y7{+S3+PeyYA# zI`M1?mVmUyKt#3-M?~N{s}*M*#;Z3~#9l`D(3R(T8k87_HVz!FRFf$e-30W|#%29I z*Z^lOr(95oRcF(`0Ie=F`$H|S6jFfDX?~s)@Pbh2w3C}!2Z*ySBCULcKXj_Mh4`Gp ztJhjT|LlW=3=KL-G!K;f=;H{xi(FBT_Mm77MLse2h4w9LMQ$LK1eSpfAOwL#bYPlg zBBf$1P-VPQk%fr6(WP}KE@gzNfpr;Hoy4#f4QjPC;xF#!wj8x#7^{nULSqC z01cpHeALF5_q)ox9GLA(^G}ekqCSsi?#9Ix>TDMarxGKL#gLjP$)3ygWP+laNwsIV zFk{Sb*-FpSQbUqAoR6>#0a%lPc%0l=pF9Fd0)RLZyGrIWS$%;`5PZDIAhJ2Z%gooy zwDi$DCxd43h4@*%0=#&U#7Wjft3wc{r}JlWO5l(1UuJKB~qyB`ayf zpzpT*R1(oVM#2yr8VJbwwY++2t&&raD#z}BK*arOi{hYIo~P`QN1HBx+Ha`6|O$>}Mw>#P^QINAMgOArs^WCwGqJcx5i^0+Oqe zlAlNx;I`5Vih&Tq_=DlUMdgn1f;yaqFF%usz@gzpoC6-1QJj2*z#&}lfBKwg>BT%GIW+uLjY`V{g+=&z4vSF8SoZ0?HEuMh5i7#fz!Er4NSuBskStb_ z_bnruCr+B4B-=R4O#A1OLrnh8Y*uGqcD`ig^6Em!8cz7je7>SsD@@BRPd z^NnK%jY zo<2oUJm^utHHiIp-VdcbrPbD@7dwV|sDx)XviDsQc7L^9VW;Hwt_s-+X+0MGp(K&~elt{jDCCAnflrP3uUF%}4CPeo$@QBY`w6i= zcLAvqTgHfSjAVbPaez};jAVg_n-RErgi>R;RP|9mT`Y}c*IDjxn$E|7{@5(7kwNfP z`dQ&QKNPAD1YLw(F-V|yk3I?<|7%vX3saCwEcL_kw$!iMZ5S}Yrum? zR_YXM$GWsWopZZvOvIGS@LRmQjn+qo!&;{tX|y}2fjC96P4USbpDf@NVGaUog)wb4@6ViaZ0989(o*E4;a12~{T&j(&ZH=i#SWkQd z=mb)SvA@I-#dyN@AVn&vhx1@|3ayVIhR?hc1?zu{;>MZyv%Wz235a9gUDHr6Xtvw{ z!bz%qUW9MlRc*JO7`0uJOWdd>2bPqjihHxLO8)#alSClSv*L_GF5Z=fg2tkRyQ%#e zGuJt7D60i=--eLVvYFPf`LUzKIGzj{%%iV*C#6*o;HHQ3BNCraY|BUP8OKGXy?;KR z;kAtO8Jqun=XOPzhCWhHkv6b-yGwEr`*tq3&A9TxEJPe>?;;-=$WqCFb_qut)%G&y zXNPhwypSUu9%0t0LN@huL&G_v3fl1F88^vjS!U60gjt;5f&TK0jfVJJ?361epjJYM zw`_{Rgoo%F%lv;^j1+o{QKixXq7n8?Xf7BV zT5$XWE;zR_)X8_4kXQz-!Oe{>vutsFIe+ev)S_)9czHB=O{CvRf#LHJt>^0{H=3Wb~Bn1}% z0>*BggB|;S;2DxB2bH~Ws6O-wyJY8IqTb1&iQeG)Qwvl0)+Vzni940GT6yb^2YK(| zBRqUV7^1n1{I*6W>L5ixKl>rt^4M1BZR2+lvommVo92FaOq~5_|!6iS6McPk)lDpWEf7PUIZiL1B6?4S1Ixw z>mKaez_dn5>dEGYF!bj(o|#M)CSOrAsPJL~1!C2(@ohbc%K>p>$ttA*8Q3p{u|;N% z0!!k}FeX>Soht0>6)AhoI*5n@^#&XW3r?Wk6u+_j9g==V_yV8B{T=+8P*>p*BQteu zv_(2k<_^Q~sl?f*$}GW}Nn;#`7Kn{u@}<9Vm6nHoV6JtcQvMJv%(uD!Qy@l$&5Fol zFkvxWB2Hs%7ta`(+Uem{A9bJ;FcZPcjnjHzyL6I_%^y-QEAaW*1QCvdfRBvrsb#aJ zAtES^)8=|;4Ws)40Ui#lQ_!pN#En3^pNv=2l!g0wAili_l-!E$5(?@gN&cGdYG3d< zd$8p6Bx0YqD29G}7wDC(iO1s13x_ddmn;Jcdv+6EI3K zHOuxAkbvnHWw(q(v>b}nKx+{&x?;c!iV*^RJgBDoD1ZYc;yrq&Wj$oa42%piFa=-m z?)o=4^^jibG^|9BaYNP=Z)Mqn-WboP_mNU+Xhf*PP6`p%>4&!Ywx<^f?hzcGRQ1$5?b9TQxz%yygMhIS|IT(1Db9Y z0lDxPCF8${>@B6H29qP+tB`?|>;uU5ip%uzv~{I_!lftSbzFPErt(xg!o3=V)l|1{ zVFro#lyX`G{z;lTrwxMiZc!G_bJ^^9ssFh2gT}-W5M};xO3gFEoX)B+6OS<8v9K@$ zk1)Zp5R#4ObPMyLY7G2onUetFtiYC3&$4y!WC&UQ<$8T6MR|SLV_862vv?)(WF{H! z{xuWf{cFp?p6{=c5X*gQG}veKn-l%NfE6JHEi4^ z5v@e^|8IGUD#woSln|h)_;0D7MShq#PWgm9fs$#n^r*OSyXicYe5=}RyYR6Z{0a5b zi;SjR*iJN&(Wv2&e&34G(QaB~aia8-wUPbgmGWSK^MP~;(?BEB7tk2zc4vf9D1WSN zolyZ$^SqH#ULC5EE8+5A$6X?4cbNJvt!KNKTru;UCiWK4pX|JtEO73t zeLo2jf&1nJe?lu5*#iDjiEMW-7TPw@S9)P9w<3Mp3(Wc*2x+}?v9e*&fax4a?AyC( zMFiivpc{w2_T=mdqVMd|+XmOAcALjo)WGi--Wjh$VyrKC7Ux-Cl4PG)`8q+G_lgQd zMn(qJgtT{;><^KShT{7ILNr(LeursjLvQc8-(PXk0b>9%1;p4AA z61J@GU$f2B9Y(O*MIN@yh-}H2mhHtN0jo{P_TrI%EflbE`O)_Q0vi{BzANOgag9Z^ z1Qf8JcE*zu^Os;p$Vvzpm10Z2zdf=YxU;vDigRxYmut@QC_lebVBMpc8Z?A&aR}Z_ zWNHRlFfUQ&bi-NmVzT8^vVrXuhAHd9Esa#!I=>g}U!{Dfol|cTwWDQA@e?4rU~4+@ zIi#?w`kE`R*}D9Vvc(0-)3TTj&Py#e+1}SyfdSlzFGzrNTtdZ>V7n>|!ZhND zz56zx0K3mP7I5rYCm} z`RdV{Iwv!-y?i9#|F@9%RyD~+7x7mERTY5)Ghy&2j5Gs{{R{YagNcUKBJ_h3y6=?h zN-6uhK>~+T;Nrs`vF8UpabX*P%;q1TGp|+5CcB5*7w#D2JrtsL7$bG{_iDeZ7Y-@* zEB}(4GShBU9{O(J)DD_ppE2FYtWx3gEoudCrw)*?Azzkg_!DoBXJs#jgnI-KJc%9Xabo%>SCqu`Q{+M75hc?Lzf+!ul$Ql^!2 zxax}Gj6B=o)&dU25C^8zc~+s7+#ppxeY`{4MFtBww$2GXy^5Y^LhSCZv1jML&bIWV zJ1Lc8IZQe=k$u(cIVdaB5TAp+oSp20QtHRFDFb9cl;czoYDCRQ53APbbLWAEto&rKw{bK;fBjxr*tIZ(e3wuk2ze zhhvjy?OHp2Y*+3G)-kz_lujQ6dws7l;YqhEm~<87PY^Uki$U9@Le_indfwf?;)vzk zvKaoC>4L6c-g&vSBnGDLoR$0vHla^G8`jqJ_q40JY}&(7uLi7=eGdTF!iLO0 z*imzu$jj|KnNu55X1vGu#1l%l*xOs9sWii#3f+aLkH?pd(F+h=<9Wd4J+w}F=*%EO zoP*DBBDE1~Dt%P0h{k6QeLK=#0?hb=$9=Tb&? zZq2cHtWO?cI9|e$coOebS_Q zx!Tk;0^QZ;USw`OFY-PXm?%GzJz!?;>Kdnlt8Fvr1CBh*Mdrlc_`OW}6Iyo=`t@bp zcnT@n(rv#jey7vv?;2~GpW+j%bxA8Sr-s=%vRiS}*KOyV3EODIEaX8Slv@6$OY9{l zOtt%~6vnVvnc6R}rfEZN7W(f&wHQv#YwKSdUd7XWk(VF*d~LDIumZbUqii7d&J}Kx z4cv#<%JA% zH`dxu%t73N?CL2s3x#fUEz_f%$|r%e=b`+Lwso=vQz{R817kGF#+TG=Fv;yvo>4l7 z($p_6c(gm%az3}{3NY?1sk=K~ z1}f*CkD4k8?(uE;V>nP^dcU25Fhvg|>Z$1aM5N5rB+Vw-e1bzQiI3g@s|c}kC9yji zX+@p_Ql&O4(u_4dFN|gMEF;+1%+~jkf7$GB)4?J9LL*5xc8QH6n3njn|A*HiqCpZI z`I4HLU%CY;j_djpG&u%8gnWwrlWkw*EqbSXyOPbD;5;L(_&q-9uk^35Ld@Wm%d2=y z1^F#TVy#&KyLOCUVBVidOjb7QjksGvguRGUlutDB&6-*GA^MCky z>!7&0;O`S>7<6E8AKW##!{9-J6N0;Ig1fuByE}vg3GR?!2_AwIAh-vz_u2Q|s;#&7 zw|@-Hotm1e%RQXa{q0Y8$9h{!W^+bOG&2wn)*v9gh3tHHOO-fAqsAK=jI|7`fZz{;Bz5k~PGZx`q zPsYJYJnG-d1`IG)=+jvE-*wlc=KU&O>rd^9=e`?mzFt_i`5}v!HQ8{}1b1%hn4 z{yW#TbTe3wh<9rRId$+evt&1&n{9bCb6A7=Vw>xHm9rwBG3l%D59i=>hNhF7eF9_P zc%-y)8i{8!U%_K)xgSA0v}w?;IA|dLT2e@e*wRHF^FB6S)k{tkRr*h)W4_ak^$y(- zm6(Ngc%*L3d3@y4x>RvN>=@~7rnapeTqFCCSL2OO+(}HRE*Q4s%3LmnI%cy}f-(a2 zHkL&{(?-$BgGlK?%D>km$+{*5vL+qKh=R}gJxCNrRjEz95^2dZwiN8n<9oEqAEkI6 zL1!Td-POLs8Pa$v@Mh1aRB%-_)|XF?6izkqLZ%@~0ESLY(Te;YM+uoeNcn)R+jIWa zl%)H0=_@vd0&W)xV%oIDss-*O)`6%4tH>OKBjgZL-0p0%eLL-he1~;t*&NEdIY88(<=8@;qP|@E;{Imi!nv;6sAVLw zs}+7dx@vXu^B)6FgT}C7_v198Jv0R~)MK@WS+0ne1@;pW%QN77i5U(@Bxg?7uy+?$ zU4mn~+eS;@)RN#BwNdIS;H>`eCR^7i66hLGYr9Y&a|Z?ic&%%LnD~dKumD%$o0K#J z8!9#@B~66A=nDVMK22Ii2UVUKt}!r2N;0VUz`R+ zJ#%4tBJ+)ry@fx`R|VBRi>UY7ZH@Ajv0mULA{q;g>iP&s_&GhUDgN5y+B?j?IdG32~R^yaEE!QN(VE+9{hQR&1IVUg-0RrDOTI&Jgz=E0vW1=IbpG?#|x zp6Yml&I;jHmaRLwP(^uT-Zv}1hCKky!2$?~Csc&Mk6O${tiOq2mx>1vL}p$lE8ilGwj zP4l~+SF{f6toGHre#4}h;!7LfhFQzvZF=hM<(B^D%$mLx2sk}YY>(%E=a41Qr9#^rS&gk3Ph+#Ya8JU~il*RJ3 zDybXG63=&x%VTRL?Z-p0!K1u ztf4B^rG6Q+XSO>P6j&VE5TVe*eN-;(@YksM8vk+^u$jgkNMwLaYm z%%Hyga`v}Ba$mPgRsuHp2gAa;4NA%34njaFLPu8?SxGt}&!5EBs^T<4X(zaQ z1Wr08)3lg|GN~PVk*yhOPqTbpX{!nZlCucb(?;>zR{h?9P(6r&(Ln%U0e%F43s($Q z*pgn>yMU2*$>8Bx>>uc&Nc_4?6dISU`mqT8qv7W4;u-}$FJN4!wcln5O^%Ql$Uupb zF2Z}|m>iKXkR@;^4JmXGHzyH^7dnc>(;j6P|DbSk^eL?}(%I)a?uu|)H3_s{A1^za zYLFI&hr%no5e2zU*p^`Y*q2h#%32|4QO?jD6jR63r;NcHML*h;rQq9+_D|Y)o8_6U z?e(_20U@)@a*8pv1wD5y`WX%4mdc$O7k*I}E^rhX)i%UlRBw6*IuOk4Tgn=Fd~o_1 z!>Ig@$>tniw37j^L2N6|LtL>WL`IODdGX3W!ppmi7Hh___}eTR_;a$1wt!csV`)0J z@Sznlstdn{s{%4=5WmJfIW}|=*j8w;q3rWg(hS(pa3FeN#a=v@72&?GKn}AM;m)oE zq=&!flFs_)uJR)8ewh;asfq1{4Y+6Jbl5V#`+dJl$WT+->G?(35s{9I*HL>#6jW`t z`!Q7B-DT9_-p6L&KUEls$0!8~3;+0xwQHy+WL8P(W>tBv_I{YuILNTzCg{a@Ye*+1 z-9-8ubn{JI4N@8uz7)NwOw zA7i)ZCx(!J=3ph}I&V`>PjJEXwfZQ{Vl?&Kc)G@4Tduw0YfMO-NcJS(@1Ke&h9aES zN5;xp#F=?wpOKN?TuE=rf2K;9{zO4ySF^XyIh`6KH%DS$JU=-)K6cgNu6 z-7I_yJwUlWvFbGy_Ughe8bfsYiC=}uVL-apFUM+7tZXaIJKFW0Kgq!P-0V#+n)hyA zWiv~MZ(2#{pM7@I{D1_dD5dJ>xjeH$gurj2BvKii_6KGNOMmrb$yS~U zZ^Jn~Y;)t&CO-&jXg5fN_q(Qpz+2+v`L@cXWh6?Pg^6`8GMQ-&1h$5hXl4{Y_@S@y za;D--G0fZb_3!0fr6SZDi)>biLkzI{Te+eYP0UuZTu7QmTDi)iHwoCESO)}K*`G=k z7YB|{+D_JJ=tw6$Y3$kb59*?~v>tVGqV;d|_jSV0VkBCp*#t!E8C;nBP#LHYLGej~xu4^{!q}*(WTvl9us3z)Bjv^KH(&le8~wJZ zwhm^$X_U99X+k#p-ue_Bw8J*|{;5p+BC&$Xd*yV^Jnr&zWGiq@P+2eNVM|(6+qo`B zY?52TJA$7TXi@_;_@JiQWrzc;*t=UgBoYNi>k`|ygcq5+n6k}lP0^aQ$qv2P>BxPL zT%R>#L!VnuTA>D@|+L0hm2E4uUS!jiP2p6e} zsfUz3T?3-6_^A$wK^p~|c?QiCC17GaZ624@NtG5QAhb$L7E}s$V??B_mhmmb4=={| zr#eTrq=GdhM2E*j7oUzWJN&z{#qTDyIr658Vyp6T78UOKTE8qh+QQ{z77&KFYgIX+ zE^?4IDa5Dw`!%C~aT<|Qm*W^~C}ojCa7kEf@gdhjf#)_8VXSrL%EGUmCH${t#bZlw zr}DAiS`)C5Xf27#A-yOa~j`;IRqy8T@lmhVhP_Usd z(#WVx{2F+GY9`9Bp#i97>iimE>>|x^4bJf`u`V*?lyY_WLKX^F^0=Pfbd(cL87qaETgvO72HfjC z^+l31LLz6`ZdLuyrwns1rmO#UhuH*k`B>MX6kVu3?}giRf`^BYb0`IzqP+rMDf_1L z8jJ8%F~ub64ii|tm*1|g9;XRdWV=D>e-T1nJTT=N8h79}%X&;+M=c2>l-h`J5zvq% zWul}`(4XszrHM0gp^2VeCFrZnmG5A-2W0VA*ih|-|IsWK=i*@10$%O^V<~BA9tFb4!^yDK1tmFNVkD8Ag zXDH3nr8}~@uCCP1d83&2C!WxsamW^4PyJY&A!48S@EVQGz^b3S^FoT4Z7ZTW3MGFb zr-k^#sw{)m;`$x&r!FS*8SbcjRB(V}u_>VRN80_5#-3Xh9c{?d^naTwIQ0dD?B%I& zt)3(@hhARCs;V+-+`G$~3cmPne~>75FCgaYA$B^i@$l{F`o#T~7GX$KR9il3&SEUHj|; zcT(U-yOG*W8{~v~kngUyj1a#TBn-w&q6JCsw$6T`IF#`#&Xt`-ieMDb_@;^+fw>^n zvezPf=`RUwfsH#{i6MAu;Q3@QLFukkYbR@LMa9gGKJmA;zEvz1+*;}{|u`)8GBH24R|v)yD7{IseIUN?vUBk+l)d&wHb zp`8AzKGKByV0^HAVJ9<$s1HvLeSkp9h-gbW2?rPl5SVv`XJ6IuD@)9cp@F>sw{jE> z{LZmhV+0NS+Oe1hSkV7H8Rk?{h&!N=4L2j@jK@lbkbD8(%rMJ7bdaA_Wsw|j;z`;Jn$&5LVa_p$j-hr?y)NC zi-~yV7&Ft$iPXtTQqK6@Cs-kKIgb0M=~1_;N5x|tcZi$-=Hon?^7~d7&M)(Bicilf z*e5^0-s*kP2Hyo^`#UaiB7UxVZV3zU6v;JaAvA+`p7(JxUKFB#YlA@ue=CEkT8(jdHdy3xcDJwAChk!cU}W8a>u(#Cy|H;hjTkWQX{m$wX$*ZkezRLX z#kszYs3Q9hP}5^Qt#wm^o$+RT9b~b{bi0v4yrnX@Y(eWY$?zo~S{DDMh-FOOg>i&g zbepW@BO#_&y17cMKxtSeP2q&)#~U;&D5-%;9H+ff6$|y}kI&CS2~&oa>FN%?;z&`y zbr8~9R5cYYSo1}$iI3>4iK2)m$#*mQ4~s#=^iGYM($X4q)*cCHy2EKsh%~s6ewJiU zj1C@I2HySp;BaNu&|O*r#EiqJD=W0iY6P`;N6m0C%W1bg?voOHe-DsJH3}C>I2Y^I z>syp48f~BLS|*T;)&0zP7>#zM!gn<3Wv$l7U8xh&cXrNUG?tTQZS`V$prd$FFl1ba zE?GP{X`0=0KIfu+E{uBf5TiV)A3IZ81fDaInz<)tqZ|8L_`n$312;xPJ!>;!mU!um zbJUSQ_xozQqtWTea}ryHU6A)sj6|1l9svZ#(uo z#2989-w!t;qEtIZSRA}zlZc7-24OZPZ)<;kRTZQOsh@K5u0Re@nU76?Zq)InCV%Sz z_cPr1d-6BIw$Sfh=79SBlNtmDifF6)-mp+IvR2b*G_bjCF-;V3SlAX9$Dn~5fvb2l z@OR)U5zStRgp!1QK4gHNlEia9q~N`u5T#vam{x6V>JXuDpY>;<(?7B~N2x=5ecA8Ivw+GXs~wN?ILHiyT{%3J6vR>7k0ykBF7(>3uv zjvNXgwbn$7)rZkS=Vt!-r>&136-aQ1$XoncZ`&)$-1z#8|tOd@2}!DDzwQ;^HErtjI4#Qq}E9f zMaeb>%y)z+uUG;jqk!QPM!y_nL-?-)sxef)Yp@t(#eDufZ1$FvM^mwUON!!=f|IHj z@@lSR$8mLSfDY+bJg@Be<2QZi7LK$fIUo?3%rr?yid}2LH7QTbkY8;^h^tbIm16n< zh)}z1F)jhG63Tm)6h@S&`!HT&?Y2a!$bTrkupe*-i0P{!n_sTfJryfD^aEO9j0QG2~=6!L!?_hG4&PskNA%9HM zlqFuC=WWRA6HJBWSn+inQl7}52WrWezcWD(LPWoUNa!Ddii?Xc&r>6x{D%&b?Mplu z6Efv#ttu+WuaW&HM4!T6gQ{LG2lT8x{pt?Ierp>0C-sXuM>~is`?7bSWiVcB{(*Kh zf_S6EEkoYKVRf+r+1u(oqgx7@lCPRvSJ7X`I5qsY z`xNB$6;_ufU6vZ!hi^{&gyfC~NT1{Jr$i6Y?^6SB->xxTYXu2o%sEyRDr`)aQGY3} z2U5BpQ%~qdYM|{_h5GR1w20vC=k);n>sA=egQuHk@p`V+jwykT)s}H(losNd z&FP>V3dI$B$)M-^-QM$Q$6J~_`4$e5WvP--ATnE!8sG!8cpy>{z=m4>p9Z@Xz;g0& zutxuHbHcxUJQDlMazG%edP?F^*1M6~EEi0B!N92~C_CF0`-{vg5^Dg6Q_5ZFkvz+# zxp~pCeu^88TSc9uWKRUJi04tY{F^NXe0RuHHB)bxKC6Pn!|(7;DnzEYA2l@0e)K$8 z{(WA(zJHE45Eza%C`ZbUE^@M%8;>Q?VY?mB7>^A$$o~bH{*YI?QiNW`K3Dwq`d0ny zzr|VxYJ#HlFE81ovCLb{ihV8_?cN@~gS%oEd;zmEU1eaj*yho6?T_?{{iOwUE(sjC zM#YB>jq1#Z)0a~BYcXx%`k1G$%Tn_8x>+MTXd@__a-o`OBiJ1Ja&!e?X3Iv2v1kL^ zQM>tlDJ&bVPTxyn!cm%Jm^1@Yxo0q}k;QvVw{1ifJc)kZWodBC&yRt24a`c=~A+rmt0wj6_0Uc9^hY%6#A!y?2t%TYJ>2=a{Q8}yI6 znK{za18BTsZb?7SxwWg5Df)#>7lk$l5c{)cM*^#!hCczM3m`K$?9COs_vY*GijQwA=wYq+2q5V_Az&+-?R#Zcpi%lJkeQXjOaN}YaDwM;#q zyXtol9(WC}`xX|Gv!;_VM3$M$;n?KN+5ip00%RjgLqh4vn6m-H38W~?LPCYenD0wN z1{Z9LBdg{@q^T)MC;$QkII|sFhh}**qkV=LqpCL+vQe+u!VP!28c`)`k~Oi|_II&# z9R2rL@-qXkOzZe4NA_LH!&c(gRi!cw0vRdUpNKw6=zrZrzpMYLhjAFTI79H!09_Bw zA1?LxIm5Q^uRH$e7pz_1=k4&2_rsyU%Xk$Dc|~C7>MoQ7%hIg%3#&PbtymWf)>`>I zB|8W~*|wb&U^O|C^^QdB)9t6Bv6ys$@(9`J+`KgOevkL?ygav`=KN=!G^`hm!krSL zchw3W`)g`K*ChHfN2Szv_d9W`$Z-|c|Ij9Wq3)8U*YdB__05o@a-fcsuI1l-d@;S- z4_T&p5t2qarA9ktu*wpG2lleUw`ZnT8W$!;mg(04_#nxEhif^bqY=U9q8w-|-$<6q z54cx)BSwxGBOX$mG2#`RIi~8MkjVd@GbPjtO%)vW@gu{0Luc|*tR6w&%v(TS?O@vt zeVFq95HK0r5qs2V`txV1^&*e5(No_P`j*P?WiA)>pYTB8n5m>MS>Q)fFUM#Ho$?x@ zT;`k4i`DX$a(HFFBbHK>Fgmsl&ED8?WKRAwibGy#(4;}+wkUIZbE2J5bhmPSs3Ok& z_FQ#^D!lStSqio=vn4WW(m0#zP-Fm^cR4NkW3~Hz;2c*g9olzWF|6OV#al^eV0?h? zOGN`0!L7~QUoH*`Y4ppl#H!1Y!_?oCFtJS$rE<8Ppopq-2=wBNd@L{6516vBQwlQ^ zY0|**zX9tF{TJDtlE*KQuD?bW93>^J`oOJLaKQAlp>*`=-Nhz1@=U{*>4nyd1FwEd zh5YcHH9Sxi(N*f+v6J_=Z?VO>gOm#C3zpsp2!k~sd)l3SPDX1>YFv^89oc?6%6{5 zj2C6Whi^R#2P^cbfBG{E=%$gLp6yuM{T%<@n6JR=^NLs1dAd%+ykL$q8ltU{3?6iR zr;Vv|rr|e1!lI~atP;dZ#^aeHe=*t=1O8Z`tp2z8P2-n%OZTh&@hMH#L2Eg%1twTf zPMZ&hkSVvgq?pE3 zZ>7BD_N+emAtodII?!&8V%6|8>&Z69o>owizV&6LW2Gv_gok5gn=9n2Lg+$R&&_ zTwv5`Q`ss}viQZuM<{CY@;MO2wkk<;f1=l%WsW|nimr5mxrTp7Hyld?eqcile@G1g zGUVzHsghu9s2m_l0w`bjH>qDX0K5l?lHx!j2@oYU0g^!$IihGz3R@CD`8Y+IX9CHc z3=HQ@lb%a#%IS3-mv=~(N4^%jg*J^fD@16#KfIX$M#K%S7>{ngwU9U^LpNKAtzf`r zJyP{+Ihmqw_PbK*%DtiD^GSmz0%T{Ryp4w7%qm5KCNL&!2*HGRT6gZndE0i;WR@bK zLCyotL%zN0CB$OQb=4F8cjCtl)KR+?=89bLbM7@1{lS1RNx zS3dj>(^q9`98UN!nt=!Zx~8g7Zxk_Hk<9+g`!Kh!X_Jt_h;#|07AlN(4yeDeJA32f z@T8^1`@TI=Nccs`CVt*JzviLYS7yH)n?tdr`?%L+JT zv$n@zWya_22%m|fVWymbe}Qc#8JmmXXlqnH4qV-7N+BkzSL5qnT0vDCkzA=zk{hfI zF0g-LVyX1?C{k>+?8Zfl#SQ6cR9wF1n(B)lKczYjgnz@Bh^9U(Mxt?=D;@t3feQV% zeY`P(*MzRj4(mhRz`Crz-tx6Eku^nJ8p(3x38E1o>aud9!_kD#ANZz<>Ogjzyf2?! zaZmE#MH^3NHJWXwjj#kR`G{Ztb-bD&R><+W1fqRo(;KroPqD-8fXtk;=rm3V zTagc`3Jr_p_)7>UI;_DReyQnfOZ6wc^D21537-1*=3&&cuWNCY4H=M{t)PSr!NieH zAZ=}XZDGl@#oB5z?faAW_|iR09NtTp=vEn!R{fRsk~(1cj&z^ucbY+l%h)a((j1`E z>Of_Rs}lVD=(>{aEx9QXM2J(ct{bujmgPfA3U{_0-F-kPAtm^=CgUy7$l4SZY5?W2 zAd*#`cV|Pgz7Q9mhSAOB2`rzSMn4DB3r@N!5%Q*XS*=`0r3ZV%D-1yow&dUC6N7<1e&fg-2(yO%%Uyh-`0oF^Xis!dDr z6(}wqv6VSk?b$kdG zVok6^Tl0u7&H2airBO&*$-+HJVDBwO`;2+qAW%Mmogb_(8g}iI9Mxm$sS?JyduJEK z9p0lw5j=ng3w>xT(})jSn56 zUMBy*s>-JdL`T{ZLBC6G50$0>FtKfN;Vw$MD(Ro`Mu3A3fMZ|F6>=9joy5P4)Vl0$ zy+_k?^yQoZS!)ALG`Rb-0w*SC?>-Yf<0h}TUs3u-JQ(PpY2+n6Y5+s?F6zeE-5FGDQ?hp%aqGDi}mK@6K z-+YytkZ+AM#QA`umx7pI3iH=XSST@(m{r`uhRf~a_mo60e;y(yOlf-+N_NRgsvz{* z&BZ>W^A%3>HBZ}pCr#<;kFJxoG3R&h9=61JSmN2V1lE zJhVV^FI<ktlaR^rPZJG9zj47>8lK^@qMu};A-;wuge}W%e;Xnm`yw7oA|6{J z9%~{VKSexNL_BsxJOc0cMm&~9Jl?mUKY8HZW>KA_QJpLhydUa4jCtxoe{#UpjrZv| zkl=WX^qcdu<@vKD8yC@Js>k=`m+>{)kG9(+!I=#q>vZhSrYc__AhPCB(DZRveYT36 z;Y!VV6^L#Q=j|xW#*V{A!fptb=A~lML!obDSCCSw>;JeL=r>T5;LDu|pLEjDL``_} zJql}-hZ-%QKH3dAR08=m6k(^GF7*s5UA}IIeUoNZ-WIXHA|ViH4jw9p3+8fLODs3<-Wzc>!2ZCV#8e+WP^n^#8B(6EUtGg0U9@a=DXi{ zEUc6dJ-syAmK7;4`gWg3NDju8`6IiZR@8j$Rn=U8<(XbYv){*pk2!ma5;40h)w5I()6j>-41c ze?6$jvC{uY=!LfoGRyUZ5wbp6YwzsMXx3c>9f@-rUHg+W_w`XpT2r6W`rzBQq4YtAuJ4yFkR2b-$6bSCX%1dkUg zd?G}w>Y6S7z^gXNzVTO6tbsJZJ2|^ToPZ(y?sAbi4XCYn{_~4Vf2B?jRvJ$j^5s03 z*zeiqs{)Ue_u-$~AudB!*EgCo=I8X5;pd$JOy071aslFtP9WRwk=QQdZ>=q1RNF;l zwHgsu32fT5J90&iIialD;nUZ7w#|QX2^>U*HBq;BAAM0gmwnKwTBqKgO3 z4jv}aKtpoZCEN0q!sr6lF5y)k>jF=mfOIfY5lrx_5@lp!T=B?F&M34DXxLea&}SK2 zRw&LRa4^tvkhE|vd_9S zk(Zg*!|6GM24!G#c8b@0`Hz4Up1_-*>c8|sp{!N(AfGHD_gzmVxnze!jJ8|W>+yGc zywb#s-;(NzF>}a6RoEIwzT$=WwBUNu+CNm;Z14jUw|$r;INwHyLm|Hmmt_?)UXe4I zo1j-YD-aIKkbY`^Bv}>Vno^BgqaE^{EfwgJqp{l$Q@P$NtsXhaOl?%;_L!RaOx$L) zo*3=3Mj^4lwwbdz{fcZpuSMe94;XCov5z9;i|-$PWwbLI+%1($p~;RkvEN)wkh2EQ zi|X$$=gCa!@k+hJ3aD%9cPnys?Kf!Psgb2NR(jEavgjKYuAOQn z;OS7XghaSIQdAewT(UIBYxi&KlYS}n2py-hS$r)I&YF0AepEVM9G&R>z5zRr4mAz2 z_wd85GFNs5lI!|wq;hkuov*#BZX*L zh~T7{Dc*>JGwUubSLT8G`Do&D51zf6ICw~{8C>G5Ln-#tHP1@I?e{B;sHrZ-gul}Q z)X`F}OQ|2{y0@6{;-W|jI%8y^0A(8fOfUAt`4_J zLr`8C^+MUqJu6zPfTlvK^Nl?*h`zeivKtfS319buPbEGjZj3&C`i?M=T$w?H_WXqmPUI=#6*luionpL#{R9Qwi~H zXnxvz4bTwC+Rd*yK7U-IFcwGjv+_KvR;FOlI4PV_TyfDxC=9NmD)tHOa{EeQsQ-(? z*cvK}CjJ@AW~+2Enk{Hf%BQXeN>NY;;+69!jKD*YK4Z!g^=yP~rit69jWx=S4rKm} z$4?+Y=_XG@q#G9kMUyOeEYgDv6&dK3yO&!i!fBfDg){L&#Vu0N*<556%5((L52aBq zw*`8?g@HXsc1)Gz!Vh?6(^<`19c4hVU9Um0N!ukW;3go zQCINphI^FgZwA(I`v$!*f-;G79C?JkYp`+MaG($1(VC$^{%#3InFOjajQn;~jAJO% zd7w3Sxt1;nfAy%*zvk!xMptxVe*U(=v5fa5M2q;9R{E^ndf`sa_8saLk#{wOC>d$- z!~h)=6e>4miI~HMuUNhjJ}@Ut3MK7V_bQmy=VrfW{ zFKj0Yw+r|i^-z&WE9{N%QJaNRx-BYMesv=pB;-ny0s17XMV5Av$TzbjimJ}=U(mtW zaTpGt#Ml>5C38z!1@C5)=~TX_4}ILXuDx>YP~8?ax{t}Dp~lp5ZRAB}Fh7;qLdiM& zfyqEsE|<61u;;bOg&eqtQdBOP^u^>i^e^a^>v0N8-(=KnbN~5%6dvRYakYv#SvX$_ z5h8w;2@m?G{_o}IzpI1T;))8%y(Y%6M1)SO2N{S@=R*bdHAke;?%*D3*#>IV*}}fBfb2p}B7Png`Q1cq z+_ElYedwze?+Ts*l_rX#hEiSGH5<~m@mTNKWgalgQZCeUwU97i(N|6V6`a7T7^*oc zoEAOq@37b;5vDBaB9ERm-fc}z(Iq!J(Z^vFPtdZTDm$ACoF!fV>qz;Z44Kh<$h-J9 zw*hXjIzFW~tv$FABMNtza)J0qH1&U=$~B{BK=hl_f4IpBWKzdb#S zRRZ!aO64-IyodmIUN}t=`#4>xebQ@?p7$F|nl?m>u_jnJZM<78M{ZQuDiyiK8W4gj z9Ewc=!wBFq|6k@s(#j^4VIl!}j{Jy)ZOl+t#eU|E1J$3PR%@NKKC_8&f2}z7n|`&?7z2wA~>E2W`&+GrC{Qs;rDCI$Hw=kJkI{9fK!_0XqDpk zw34LGiIB05cRc#*#HHLh zPvuU;CYrk-8VOk$ek2Q46yMmBbtCe(z^Pl#ffqRj8?EUcko>r=(BONnX~wm7mCo z6KW?!yFlK*V3<@TqkeXus!|8xfHumxS}T}ziN#6%txX#Mq1Jax%dk94aI5W+BPsi4#*0eC^n4SRs=9Oo$`u~*@0+xyFY zpnBhJ4uDL;;)01eTgzA$y_>Y}depkAUoL6?1bqJce3JKc{ZOtQpjgfHZ<8fPd_hz7 zlizP+p~P6-VXggl#Raf1a<&sO@JKzV(YBcn5AcE}wOUy+$BWhIS4}a3H(^P)P)`lC z$(ZB`spk_N|9P{V*kZGzw060eeLWFBdiT}hZ{j&7D61#Ze3y!iI<3!GP`aVnx1UO~ zV#n)2+3-l7qYO5LTof+9jDAj?%|nVZa)xNQ*B~zW7BpjPqo6nqOryT8?rD}9n{Ct` z(9(BorM42XwO}1_K-s1#EZ4^7r)bO{2)j)t?eGk2HIGy@e*-1RWk|K#vl0zs-i=_v zxmFfx8*xK6CPJ?rWI%G}7QI0JU@MLHu@Sj%b>B~EAgad+r|2;E$iUJ%Z&yWiQqD7U z+;cpULEut>WtW391PDd5fKW7;Shx9uG}j&2U6NCt`k0G}YErlJlgNh^yn|0uB5YJM z^%2EoZ06c2plxA4ud=K+s><`OZ{*;n({ufn#BNx5?dE5doVc`t?4+dU0Fem4TSNzY6vwj$gdA7l(Z zzPS-J=`_s;{(W~GtuoMe#C%zZSwGR^n*|n>hYD{CaroQZl!tKKo&J7!}x^BU)4v?yc0<#eH}K-L2=OY;7rmrD>mtjAFnRRu$y(~S0oK9|BlpqB*z z3yuuxS#;+<%#7MKJx$`7RP3Jf)gJ z1f4^n{tAc7)66(#NH7~Sd9VInQ5_kwJ;6EFvTY{E-k8z1E6hCAk{iE%Nk(oF^=D4o zrT4)u&pGC+`S52or`Mf9#VEiWZA#gT@^i{)byZIoe=xD&h%SD*XH&u5drM}U=e?6I zOJJL5c&x=EY}5dP zl9-(%wo4l=#vUxj8k&bR-F&WoLOUzz8rAbqew7((YS&sbz@Q1)%)o9<*0g-fHeL#= zY|z2_HRcw^t}VYli)e5tRQmh5eSA$#LH0~uqYjyk(U8 z)bop|A@Z>sG1qH0?_|?&*$`HJ*cl4&x<&5W#(fE_X;XhmHnGk==1sg}z0ML;@W1J# zbFK(HZLW~;4*_XC#6gC;BxSiq^lsGAk}9pHMDxUl4P3t$HpsukkR| zQZ)Bt==@=2^tf!R(yXD$A+%c%p9~?DFqvIide3aoq3q`H6N@YbETlJ_1+AR6$Z?*? z7(U#46UJ)UDdBf%M5QkS$vyuiD&$Wz^ujV)BtNsr-jmJU5o!iX3d3iTl-9GSGb7$)B)q0Y+plxGy=-SOq_vfK0fA$P{n zJCXU5@k!xswnp+J{ZpNXrUm=sztz<}76nb@H%yXWNaiUHsr#UX>;w#B9qXkdE)$^=NwQ~=S8MFXFe zhLEMtg}j^Y@EF`oMYHjwiv7?s^nP2BfWhM!`YPVW=!F(tq0c(^wMC1YrG>n>Vf2H6 zLd)-)3*Te$Uumw3lAnwza6uwVVUN!R!G#ri<;eM2$R==gK;dP%QQJ#jJfcb(6b}n}YzyzoK7^Xifd7>v8S|}& z&SJobAPX%vbj)r_jsAlh&h`_By z`HeSI?Iz>zd@AlLr5!Ga8j2@3Y~xlX7)}$r|I_6>1c|D>XI>AsEPVm_F>uty!@O*! zaPopSM{80$4dP=<;`8#ssgap0U&cydkm#CbhcMBbt2PJsC08j+Bk?kMy5uGYPjZV) zpRhrcn7y{u#_9WZ1I;x;v9QLY>b6aZA*a+*g~zRthJ7r7YJN$*mU2_Qt;I&2r_kj5HfLTm4Qj z2b*iN=*6HZC{@66AfqFUk2vd-J5S#2+I5)$EB|5L*m(;vp+*~f0^Ov*qsD61X%zoVH_Qu;J?pNpe;nxwn#z-uy}7^{MChZB?@bJlApsP)D=!(!2FQYq*`N5)3yYOq6ix288Jdi#N z=&caWdP@0i2JB7#BN6?rHp<85C-*4%$+(0%2+cr9Y%fsgqBps~ zq9#P!@4jHR84lMt$j9i8Esiv(6?Pg47O|}Cdc|9&&dV%=qWM_D>&>G@S3P8TpNi$R zOngO!rx7*YrGt-{!YtveZ)KqeNmI7TmV>0_HG6(;GyluKDo&LlAlxOJ&cjJhxlRj0 zlJC3Dt8up}(W=X_|AQ}Is2zY+d7#d-aY-ZjzX*G)pg7y8OB-pRacx{1 zcL~9rMuTgR;2t!=-D%u|JHZJ~Ah-ti5Zpt6;I7I4yx&aC!BkECCu|yyXzG6Y-g~cg zEqkrUi3-7XS7 z>IJR}z$8wzb>(~4-0s8BM{*4SyW1EQ#WXWe5_tJRS#^^sIx>^5Fby&V%{kUYthwoC zDo%l1D3^|YqS4WkpOpKJ`{6?}+MzC#%@JWqmO2`>j-nWx3;Ef^t})Gaj{Lr{_Rm3y z3Q;*umOLXE)tW6<1jB*>m`|kpi!Z*SKs(mN&t)J((3gc-X;a+Gz_7kbsIkLP&D$qR z2*}nV9e0DdRU)fV{LT5En|ev0^k+k1bVT_0PkSFI+aRBbyV`00?A`W3j9wvYWfonP#iM|-l`0&9UrK;~9?A&@Rl#1l~TM@q|$5cH41e~r=_AsxnjF&<3Uw`!>MR@u!FwVw#0q^WYUFqo}!_8YAdF1>N8nT9Ko3AJ@WnBzoj>m z%+J8Xd~|tTS=j5}?oAkTUoo(Kx2ZHMVItCXDx6tB#gKC;543ORipVHgKox=i{NP5422>+9HHBx<~_=oHo?&(q5Cr0&_ z_mqN}3GmCmGM#prUW&S#^Ep!esJ~B!`9L*6|L5=EN8uGc#w!*}@8+%Xuj5ivY&T># z$ME@&7o@jAxMb^#Z##Oi)ml+Sc-GfPvtM(~F(^#d^q+!VAJKjQUd?{kv0| zYgUZ}FNP;g{9Rw|-IjvmcYOMPZ2d44zQ{ZNdo>8(VfFiK0ajb&^gpkLQdeg2yPOI7 zk*K}8rt8T8d#>+DkUuBpQam99WlQ;%)@B>NK#;_pj?VBh#dm(?%>Nmk@A&(gjO_HG z6x>EEPuCm-)90M8Y>G&zN zT~L)Dqf8>tP52gfS;UW@n320L)d8|V`e-=g5%-nyLUlVBIMZ`WMPfbIlPj&MPFbD029Fv3dY4mdUz4#U4 zZbNJW()<*zxSJ$#2xT!S1X{LhmV^*Q8Ivq`uW%T3=(raYhw5UKgr?4kKL=S#dXo;t6c(<|JdTtT) zR;x(rzDSjdoWSW@57RANWjKQ;P=j1U7pxoG8`JS8tHHU5>TNPtR=K-K5=MF&U2Il+ zYVX&k&JT*j_%kf8>!Ih^Vr{`Y1{dYuUuy!Fn62p&Cc8Y^OJ!sMXecd&gI)@9k@ne) zC!`beS8sKit(`Pz2P1P9AE$BjLY!EImhaNnI8(~X%vD}pBV_bk9RZSw<#kbrl$=~k zQ-~zjhAap)misz|@HS5*uB2p}`km(CRLo){LZfCj1{Y~EAR|zyGWpokG;vaFwDSsz z^h&+;q#L1N-^UyCv=Y~%qNHCOjN6a(VJ+p4yKl>g7cTm3`7unY&31=!B+BCZuC@h} zQh*laL8j_h`l39j1bU7G1@45QUhkX#8$QD7b(yHC3MBUA0%dz!Dmgfzj#tsAKl-OS z5fOi+j;XVOpj-?Hz7k8HFy5uwx;C<+WgJqE6bfUUSDvkftkI+XCWo8$LhHmZ6b)%BAfcfA~TyDew@U-dSV22K@Hn6rG42GfN zM3r|`ffeWeFz6sDWF6uy*v@>PYC$4T(sZSZw__l(+Je8ncui1Gd81 zEKWIeKn*_XNR(*bAu^Z_<@wc4-EYwOEW?xE{fl&=HAStnCg4s<%!>u3qjXs)NxqfB33wX`|AIjx~MlHa#4q&v-{(P8%Toa&eDG#6op?Z z;A2t*}P5=D=P%;XW3bELz2%O#g;L{>2a@B66Wczx*3x_J?9J1v;J9m`t^4f4yQ z+&VvMNK@B*7>@chcetonzo=lb4<84Qp4w}Te%yK9~XU{~He=qZDG`)o9=-|{0W$TTe_t);n2H@yn7>RH8 zVbrOO9c)Cl+2AR)CeZ8^!wuICV&K%u=ydHut-i&PKy#Y-K{x;$RsZLf@)4)GB%s;0 zI7-jW9-+A&X$wwLq!3n;0>M#O5+IF9%AkYfeE+W59ykA8it0r(>g z6Gw$e7&D`b+uP7gep5SIgeSud2T~+FGBT}51S@JwO|uul;5tG z^FSWL+{8fOoGD69aiOEp=XHbKng&ST_e|Z z%bZy)l?;T{*4UXq_-bEQ2mhp~MbPZWpy@h>wkvL6`UnWx6{;|nrh3?h7OwgXM}qnY zQp-mm(vB?SQ^%^g2f|!UYxRS|{>p}PB8mek(0&UYPw;5{VFa?uAcKk(lt~u^ zwe;i+7mK(e_lOB#MrRzcvMrVXbf>9{GZWsMSe>hW%I}NqW7_3q6pfUH05_Xg?Fd>Ii>zHuBXzOl*&R zZg8HJka1C4T=Ts%v*SZiP$e7(1(fOmI`b95(S! z98Y0AD=HnZPT7@GYnHsw`4wUKn-APCQp;!;3B8#K!O7^8n7U)L+UFY)vio(-#=Cb; z1Csc1l;Ef%okaLYp-1vhCQH<9@7+JFvtv&Lhl+m3!E zmz&aJNh0aBsdwd)s*!C!Gvs%JmJ9DK%7lZWu)G-mp_56>1z{%(GZY-N5`}IGxh@_i zXq9p6&=%0oY3jCo@Q}p5!h*K1OXEA}Eyql$62`dVZc{XMs*LfihX3_nf1bkTu9}$O zH%H942pjXBJk^oRhus}4oxPOudx26^Q-DE5a*grq4c(^QfSO61hx&8BEZ!Mne44M*etqLVD3ty5B z>eJ|m6anbM?Iqi8{Wi`r*Ug!>XL<-FJvC*Jqg3wK-fQ_!Jsnt~q}K2EhYCMN#mVIm zFMJ7+SthSAHDVzxqQis&6W1_Q3>lyRW7z*~m=Cop6bg3k$YkQNZ9s za{B@Q_v5I|LzZeHO~&;^z>JFRu^{#ai;d3ex-_pxU_s|Fk(|U>eyYXZxRtGbpn*`N zKSv4oHGofiFBpI5c%xwSxijV1EH$K2x&6?rNN$kgU3!%UUy4&tqURX>1>QV*vU%#v zUQ?u&;dZGwibqXwMyDCoVlv6NpNj^}hon`z`T$3S^}Gg2feJ;sezUd4t{A(@yE|iD ztXUhMa@0qNd<>tAawY3QO7Ir_S&E{n60UL{Y7GOu=1^Y7Q$g9Y7g&Q5oG+{3Zb2x@ zz7~XP>tH(%DVdSrlZ~3>zRMX|vTnN3CQE%f!oo*PnCJ8ALC%I(S$|dSyiu{&ih#n8 zMFU?crVzb=e`4{Sh0;-4pY0}m%AyZZ_2N}>y78H0C_}#Z^1EUB$wY0+JiwQ__z@KF zV%G1N^t{xzI~|uakbQ?!Qy@>ZL8XG=f9Ob=J~Ije9yFM5xRHfLeu)SC-3ml_Y)!{9 z$?7FSajO0t$5Q&e%p9qbc9NRuAUjQm;A>nbV*ti=QfyCL+ST6ZPMt^AlmqY^>nVrz z>vt8}O~SSp8D68_6o0yCcLojr#Vaq#|<0( zqgDMv4i@h5maqa^d#J1oLS)%5~j@KURl62Bk6m+Xj$R;MkK8aB6KKeStJ5i-rzOsGCo zPvI3bTllfwa1XQ|e-%bQa{UF~D#dxd&9BV$fq$PJ*WESRvEAge{cB~n9pY(!-U~A~ z-o6>NTcj^>23jfQFE3hzWR;$dudE8`CkSi0(Tu+_=Ppm71sk>G?cpitw>g$Q~smq+i5R${p?GGMSY2T%Z@^}kw$Ep3PG>#P6Kl#%a z>M)zTFJ3X`)vnNzI4j4S-)czNQ| z!U>poUP9jOb%9?m`So!?+}gwR6fmlFKm%}cFeLeu&Z?MZ&5P|E9v8a&Ixj?)&4QnS zB(LExLIp;*GZS8Ax)1Pht1>hN;#QU`^#L@MFvhtS~jS&@$>_+R=#3f=DI@Uxol8jf~u* zg_M${j%scz1dPqT6~|{4uSZJog$lLN>Qa~Po}pMC5C%Af@WNmzIB}ZzG~%mNF&fwx z2xwSziJ8O2Ixrn2S$wtu5)0CP>K)7r`}8R7WO+eF>C(b3U&0bj6PwQ*6Pj%{HX_mE znOPq;1fyYx<31R)to2pf3?V8=8zrVs=fKXK#FG7Oh=2pyd&{xJ|?^y~Uh$pp6WK=lG75FYXkn^ZMG z1b}_Nh~KZS((j+|D=}lC&G73Yt=Z8evC3V}Q zTCoT*dp``{Wil>bAF$z-I&y>_Aab%sj!+iRu(LvrkO8Kg>c}YnfGOwyqrAQc@;ZV5 zH0b{>wowdc0@cke1Fk&3dz!FedqMHQ>XYWfZ>pTTD4S& z?@ZY0BLlR|jhA(vq1%dDkj)3j-5jhjO=qVnj!lFC45||Wlj>X3q!=m5NNIeOMu;(Y``?3*$vPoeT?n5DO;-8ECUQewJ|a9d?cHEt=O@9ufD$Nt z=bPwNEwn9l@?%_2QwVer^|5O#X+J4LXMu)D>MJYvtG~0T$}+K>_>#-AZM+kU^92y; zkVl14{nz*ZEHvCcK`6?&11<)WYSbd@PTqH6edz zXHB|$pe6TA6|>`blNgUQ?d=hKUWdLHJ8s`e*vmY$`)W00FbHX@oYzzc`o-mb4(;`! zgty89_2abOy3HqlZpns+l`;pS(S?jV{a5V28iQ+oC7me{l#L73y1V67j(F!AQ|);= z6l^(^p5^5n?71zH%Ej4~O6?erVx?*&9K61ao#J`l=jX9IU7}HcCXIEUf_wYz0-a{T zR80&%E~O@s3As6e&xf7&OA*yA#_r$99K1uBxtWXQnQe~A^ryWqgbEGZjyujYW4rAk zXzVzbf$4PUmK{NI)d-*TrcGf#_pB8XWgmX0?>!zl(n5kamI(v?!B^0sZ!l*?q&0#F z62hkIY^k1Y&W1E=8(70>UDT#NaRSn8|KDyIw-(NYX!wdlF|}`lBBbuBw$M_yZwk)C zuwr(be-v(^>F&3UV9RTSpCz8Nxwp#d+G{z3)dNduio_YeY+IGICR*0vB%bwcf5V*B zpXS3IN^RlY1~tg)J?kPX8EP))ptb-cCmvWchF}xp0HgZKi5!)g&A7mnP`Fd>1XHa* zhJA{A{v3&4yq@r2zPrvIn@~vhq4H8MC0x_q8_irt;bgQO3wyn~mpNQBC@Zi0-rO2$ zgrqT63;kdkzP$9E_bFisHA(!~9JA7EGRN2~Hii~!hZ=0i9FavskBL;98j^B;I!@-G zAAzUbPzUTB5gfN0UM+lqw&`;l#UHGGkj|{_V96GXu+Y!Zx>ms}Jtn^>vVmMABYkCg znHOgCm{b8p)_aXwv8VS9eaAP{B6A#^vrTe&(>$w#rIqBi_X9I2bo8DD(B)xanInmt z5^LeXOsddXN9eDzzs8O_QNdajwTwY%tQB!>U>vO(H`vdv`MxFqp#J6(4#AH zaFxn!&DDV>>z9dxNfR~cyVMc3dwvXD-HY z^8u-|QZ3!FNA6kXR?5qL{_}b#(KkKfj4oYzARxU&H%-lI>pF+-ufvsSN3zUj1Pi>2 zb1I~hvw`*%UM{ka(YNEwfGu1&){Ye!S0kVui&OUF^_JR7Gg&Hp`}jgnwpxFU+3(9N zC&>hty1=IgW_fv6IJR&p{MjZjbf#RaPVjc7KVkD{TbnwLUfUn>Nyp0c%XjF^c+d}X zN0bROB=Ksk<(2uA$?4>eL_kJ%B%0Dehg?xB8GAhMy!Z?{W%}D#tcPvtk!o|iDQBKY ztk{ULR~3`q3i&Uh;vDgk^4nWf&%ot_#;^81ToU;BnF_^dC6i+Riu65I?6S0o*hpS& z;qO%wV(lt9`P(4LFPRCU*wRUkf2!%pS;8p4PA~gO5#R6%VU&fin4xqQi48Ne6fP`o zD27FefYeX|e6cS_#6HWtfciomSE-xppc4C&MH*2mu8VwIuXP5&*;V#^lt{fA$GT=X zITW@unX*=K3AB$yxu~fPozlencp)yfJEIl6+e5e&XI85{1BIoAlNSiK-rDF)uf zZcKNUBKRZE(_09;^}Y|Ajn3D(7xfl@w@jc(PDI2i2+uFQuxp+eR{&n0m9=wKx?4kL zX=2gaMa+kn`%9_WE@(4P{Z*+rsZ=+XlOq!r?fh*DFGG_w68P+0k{uQg8|IlA!qywq zrSVQ?EFfe?)MZ1N(hGNI;J33P%VwmIQm-Q3Nwvo(pH-GIeZ;iAr&lxL()DjzxyRH> zp)5_;{o3y8!@|y)O>&gK=ChZNiJ`$?+rEP)3DFVsNZ!dJBTfGzVXOgj&7aTP+Z94b zj4$IU*;wG$9)*ZmraI!&Io72-W|zUVOE2TP3WsXo+%Sky5FLti+-m%veO5A=t+&mb z8cCstS!fil%qo$7mTiPk`r?4SZt{NQid}DMYnT;^Rt0?YvuIN27%hAE->a5~=D8*} zACUiqnnF$pK&y!&cs+LH{G(+FD-IcD_8_-!UTd1(mLh7IRh*M~X#JANpM>V{ht8(B z`^NWnZPerXL*ull^%zIiX{KUIzx0B}m?Yvc&Xqz+^>yJL+-VAl$xMPV9dB zN0%VKi|p}p?{J?4N{s#=vhS58YM3BRM4EauqkLL;jCY(~qFo*W3k{J1N6fwZ45i)E z6gJ}mhOrm=Qu)aHWQtTeCe}SG^H#wqS|GBEQyLHAMhAbiVZy^slb#(~M2*0}2-T>h zGsAqK9L&KAnWr7t&;F2gT8b0$5j&9$fjS&PC{wW!7)oiA`4Pa%qz7=B2HJ@OdB_L@ zliKOr-ds;$Q@3jP^A`nkVr@&KE)_#BZLZx&Yx%^`Pv`AF|5jCW4&UW5q#+C_SW_Ey zufLf*Uijyzr_8cEZM2R0faF$7@39{04gE8UY92W{MUUBj!s>Q)_k+jFvv+_9)l6Sg)OAi0*#GC+pD$co@gD6_Q|jwD=arFdmbNn;eGHkYar86Av&?Dz03`a3O@F9rdP zrC$jNgQqtf3Ggp@MIq_PQ=%7q^8Nabj|VWkXs|;7y{11((H+3cofzrK<|Q zm%N8a4QKd0R~X9erRQ-xLC$+0$ryi#sFCOO)Li0fcFK1_zx@R8CwwBUd}YNo|3V94 z{lkfWU+0GdS$B5k$S7oh3P1)Kg%v0O7=;D^qsSmfR0G5m9Bd-ctWhnW)_VGQL_u1iwb1@BdN)?Q?wg*WXZwz^FUZYdZ zIX_6$mfvzv5qzVYRJ2Q@x(z5G*@_5vOjn2y{QYZL*3Hfd&@_d&UVa~HQ3KX}Azb*g z700Xiemd#&oU(;QE#7H!adB;xSfgfbI;w>k(A_2lr#rJECq>1`7a=tmzge6!HNj7Y z1*xJeY@#*o&5&;(CoC%7wgioZrVG1fz=8rNXMqD2l>bMmkcI&klo-(sjW^`51s@hz z^T6!@d{p%_p5~8LwBw)ZDHDUj~CPJ&evx#jR1NfFX|Sl%BVbJGcKw zkVre-mkR+*#-e0}$|D&~jWJY=E&v-miHfl@o2Z#pvFV%Oc02oiww&OOr(vrij!Xk;{$vB<$Dlc*rQLdiv~tOA1JVH?`bukdhk7CH z7KPYuUEwp$xTsaSxyR9B+Mt^nII~E6MM6oU7W$fZ7boj>5n+RMT&O6 z=xk5!_%#knJCRVL1z3P+L9|*T;Tf&c9FM)i#Q5?)p-X;(D0;$ndbHNc4_h{VKJYSL zN;m-DvIG9p|EG|{v~5FV<<%u4EJZ?>1U=2lZ@!S23fW||CLlp%O=`P`vRz=yB4-+o z50NGF$%{<~+Xuj@%<0Creh;XqPSSG(0Vwb?#*S_He*hEjR^Mse zG$+|y5;FPFzSy+56i>T1#2AM7YY6+lmCobS^L(3d78;>;HyO5~d}?eqVlVjCHGFny zcI?6qZxQQCn-xN0X-7J4VXANCOd>2fQ~%3_i~u%k*hI%aUfAwW-M`M-Rw9`k>1Xh0`jVb-EUCg|ACsL<3 z;oag$V%fdjv7kiy?v82pRo0sibtPIAwhLC(EhZOb1{4`_e3PPWp!<|Jt#glL8305o zH>1|XU5<%jhapw0p&`b`MJr5R5A;JLpD0)+1}mmDj-8e;d7Dcj#vAA3$rnnC#ZzVE zp~W(s=ua-=pDgNCWLcE$Q97rx4=iPIj+UhQ`1qupX8^0kVIAAK|%kppUx$FRP79uUSA_cNj z5$#$!qL${vW<`;`dAu+Q;M^tpll2Fb8J(-j;`r0Q!uM#wQK7lqG+O7N+kCN>H4ey|NdCmP+}VwS zT?-x)@46!xWA&H=wOqQ&vsYdf%TgT>j?#G=_TH9{6()uu0^yw@W&G>JemWYFylmfo z674b$GT{M!B}~R}OL7(+K*kRg0A}|e({2PPj{jGwkQSgKjhhc?&;(qQ|8YHm7&cO; z4?_g2!?FvEai8?BXJAsarT)H6?a4^AT5U@6qF;J>@^}Y$0R8^q52y);AIht%efiIA z87Y|&6TdJ|hPvXdrz;dlYp-Geq**1-m2=t%>lpJxCA-dYDOo%8vyon z*t!XOk7NiuLl-P!=|y~WhH&yq!{Q=(XGSo*i*JJ5X$c4INNsSXX@1eAvb%fa-oM#k zKmqax6<;-l6bC`hm6JqXjk5t@oC&<{FZA6O;RGF9mp2bJ=)tT2)tdI6@uZ@armb?@;n_k z2sA$GkJJ+$Hts_wuMZHo7*}U02-IfuJ$`*22Rtjw*I&c|CBRmi#85|4)CqX|;}es< z?Aqcm$(p<5hft)1q77F7FK3bV(Ow?0+KZDo1Fir#CQLYT#=eMNz-&e>T+0<8uMA%tfgl zD!DZ(z>*!UEA4AysW53V9cl#NP{nv4tuYyn<&l%caV(-4d{t-`8%fGi64E~a40Zvk zBM!hnOhI+1kDiioe~3^O3EfJ=!Lk56dKpy1%B_lvoUH(?9~l_$LN>v+9vj>I2RYj{ zfb&xhH~UaA%*pV|h~o)$*FE2NzBk>?un$#APly4-W&_MgpxY(IMH0!LYJCgI}HiGAKpLRv4t(^Sw)QUm>dkg zPkkzhq3xU0HVbSF+3(_(G{qlxT@?O=a+L9@#?+`{)39RGs6x`PLei+B$FQQus3OR) zBFG3h3s=!X4K97%2YubgecdAFeoEGF8UM!FiH791aiJWWs!YSV^E*CFG7mxiCUu*i#qrHb&#l4LWEVEmIt5-FPZ5!^m; z)cXG|bY$@)cclQw_$f_Es4kKtq=*C2Rjx!E+m|_Fq?t;fN*WL+e3=@TLS%cpz4m$M zYjjaSXrV!4GDi$Ec;)YEp&3EeyOjg^uT}vK%K`B*TZ^2j0847m6;tba;_mPx8f1}& zEN~Ptjt<@lA!x+|#fD9ysnA{Ff3@hvhwwzV7;}6vnfilYIC(yGPTaw)(2Fh-bHM7K zy+OU9JWlRTYjd$&-TH6Z!LLt}@SQt+8G4-jk|GCwXOSnSW+djU6Fp(wB(KQki}!B} z^=USdeuDZV^5daHq8}`Fy=aYK&&7rK!8|3yi3#23F`4s6e3{herk0D|iqOt5v?`jr zy;u}OADzWjzoLX4MBkt0X>RP_jbY86gHy^z}iXcJQ`_L}j7GFYH#$GcfRs_`qW^Ep@eL-QK=d1JZ4Z zy4NJk*27=xKV5cU$)*J_k+(G7k1M|Fj>M#+SB>clsQ-Es8)fh;hdLSP-hWOG0|_P$ zwMWJ%;#i!JkcHpxq{wA#bFsb;O7D~Pe`j-{A3lG0j!m?kd_TD|HB@kEe0CkUvbwDC z_hi_^@H_q8VyaKz`+bFJ$=K7J2e+~V<|UiJ8pm1Djbq%Ay)mLJ>bK+NnM0;bt{-&z zcDOMhv(CjTk(tf9vr2w_r~z6NV48NRGjk8sx~x6q2n3(2Ig5pit*8&z(# z;4TcqcKsH~rFNX7w*V}f%LygT@5{o~?>ZYjN0p+@}HI3<_5MZfRcO@$it?=UV!s?n33e1lpeO0O0(rfOJyXsEljyQD0=(v$CSp{}8JPqoPBRRGLB-yOsepM#qyc%$S*{Ntz0)+Qg zN1(^9n6~Y4u7Y4LIb)J90Q|kX*fXIO8)L$fd;h}mZ8@}UaY-I~8xBVLlkfEz!B_%C z>J?KTeVj%d?fGxV_gG!v{?s1ShKl?_MlIKvm~#_sV?-A|=qiM1w%ofL<4%wozD}nk zO3}xfcLitYqbdV8m0~CGIx&($oG5M4*r&8?|e2_?v1#yKR0~Knu=m z_0FkAah@Lzu@x$`2?Gt#ciYIrNeH&(nq)B6zZ^N}@QmRAkjbq#Y)j+w%sLuDS%QMy zF{H%&^MwIavA<+BILCB+<7BgA&mmf5aAc!eWo%u}q=XPL=tL6I8G z7~Z@5A{o9^u!X)NyGy*Ib0^XY1G&z)l-pl&-GDk;fWQ&uLYaoFy=}sgfFQ}sOzGCj z2!#h5!|X?f7v)zeu2Y66Bo#@qRSX=w!S7(K9ak_E*AW<{a3)Ao6NiNos1z3DOQTnD zC8y&ukI)OJ8=|I~fro;=td}xxa||g!x%`VPp8+~VBSS|m!->BApBHY?*ZQ2kn%}bP z%Bl@kZYi#xxc}nHC6S#bfRb(LU!~jPf#|oSRL<81he?2$cHYk7@_n)LXsmk?CK;G4 zp;bQT<%4XjAXT|`NkaOcM1QI%&T9{-BGNkmoyd4GY%_EmDwaM_=TRyQIZBDOy)+_i{o2DcwK3PJ&tf~?oUKN3DjF6&;bXzXGdLt;X*xh<=1#s1xpdaL4Yj{0+pEjs;VQ1Kz zhy(hWo=5o4wqoj=RFX*zHU=nIufzQ<=R#7kGbRhaGa`x;N1>1;M*U~X(~*X153moQxJBZ3QLq>bW0Rer<(s#Q$;=A*23BMMXzp&DDwMa7z_54 zYU8j?3_>8Q5^is66+1E?DhC|o*0Ni^l0Fz`H>gyzbcR?5s~eR4Ovil-P^b3lSClDi z`J3nxaC)gTEehycO7|qdR}_SWb&!pNVKBOGEnHqu6SD%WW%kOEYar5PEgm?b!6 zB)ac5p2a>wR*G6FBE$-6`1EbmgiIWApOgUT>4-OXN^&6=DiUtgmY_a&3LjZ%KHLTN zm16D3W_luDP*ej}N$7mEIO-B!2`X?0-cIo-2JGR@g)>N$<+`?`4*$GEfD$ph%~y z%fDOu9!dw(>CKJz0nKvV+RE~Q4jD^*L5`+4*`X!ZmxFw) z*K_GWY6>m=Vji|#emp%U>J444Ki`C=b&}k^JA4Nn$$^hp>IYk>p@HPq03n~2F@nIK z^Kg~#vA?sV36Vw?-q{sH`3{hI;c%6s5K>UG=ST<)&pXv=G#FDQ()QF1Z&p31+)Yf- zI#b$)d!3&~&r7M_T7CBqsc|7+{=)aee6CFC^Zj=sDsDY~yqvYX(vXllDW%014x8-E zA0<46yL9MT!yGma)LgpJBkJND9=K8Wx24Ij^b4ttV-7{-Snr%e7RsKb6W!qhburQb zDjU2=tQgL!-)GtD8!fAIC+ykV5}&SJO5l3x-pFzY1=Pa6Ef2xaBW|>W+S)H}pRzmX za3aqcG}0RNmT)c|GzVgO?S)QoVu@p<<`Aw1HSvkqgd2*&`5X`WH>o&@=w>&_ff=xa zfY<< zP{8rgHrr&6s(&UN9G*;@Slj@>qa531>=pS_id2#e+`#JKPoJp%a#HcriE@wJe?^a8 zAG*WnE&28Rj79}S1&=2Q;s;I9%RZNawP20Q=_+T0$rnPoEXC_gm8*rOj>=7$J3lkE z)%hMK@pA7R7lZU+`%^FG&_=^Eb&~C6o}dVD!Bx*mhup+94N5)!MbdePYQ_nxq}Pv& zXxc+%RjBhA(b@L=#4_muDDX4 zyhB|mv2q?a>+mgJng*UwD3n_t&p35g4~=;wZO18w>qLaYy*ROyLptflXK5$}5lE9p ziMY}p1w^ME7BmQx!ei^lCJM#F=joZ01Zm=PyOA*ho0)~?&mCjegDx#ajx%_`PLkg0 zZ_&Ixlq9a`8yTZ(l))(#!Td3~wGM06wS16q0M1Vn-_TlvlCK%V%+|PMAg<$IXZwuF zHkmvytGR4@Ey`-EgHy?SnVv?!(Msk`{5)R8sq{VJa@tqMDLyZHqH2U99mi||o<+F4 zr{pR8{dT&kf_U=cHQ4>+bzS-XQh@0;YhoN1lkh<%%+UEq9!a7uQK}bAQhG09kmWN` zvc&hfcs1oNo~Ss*0Rqr>RNRO@Jia+%V!;+^{6CgUVk^I8vDvp?bH9aM_?M32Y2m&x zkA(F*ssP~+^ISt=@^A2l6fdq*?4q-RE}O5tMl~qd3NC{^$&N|SGojwZR$1Yi(BQ9#JIOI3ytD2{O>{t zF~evOiBVbK^H7Khza{#N*@gXfBqb zUIPIq1BHK}5Lk}5&b0gq9p#doyz0tW&0_*yRF~EM;Un{nv@|zgg)6o+OBp1PI7|~H zEz3vG$Rda52rIrxA3vvbwJRO#Eji8Nol%st@(cFF&zAsNo zIH;7`UU5=mhwNN*%aermx}BY2>K9kxKS5E zaAGuO#W}6I=JOhB=?=^zdWz0QF`!91%cUq}Uf#cGLovJ=VfJ+i1YtMxmN8@Sy2DXBr6~22=HPxF z!RLX%UwlU#4Ep{~Fms~WBSe=%@KyxWaZz)?MDetev;sI+2Nm@YrrVPKfv$|1!T^dL zg5#<4A(OTHSErJyw!cb#QIgAb>RYZJskhfW_!a}zi+1{P zUG)L6v+z_2pU*KAiEJFWQL_0b!pUQ>8V_tq@=H?qGS)uXg@y8fqz&5+S;K+29{W*z zK9DhD-BDLuvsWia#%+?|SN z#VQ^Asjq7ZK=!DAp)C1&@>8oU#Ss+#R61**4#l&0XfInm)Zh zO)_tB$xN4!?iJ~wXO^q2XJ&K6fC7`kKxj+>!%1PVVI_7` zA;n15u}D>H5d)Mj8X7}_7};_Onp%~D5sBeD6AYSfvw}P6(LKba3o9=b*8<5bNI;V& zmn`)2aj8?H?2mq`v3_)nWFE(6Tl6U23G_M)mN+Cr99D_-oHM2vBTE!(C5h*F7|kW$ z2s*q-%b_DOV{Et(eCzp~+D|31Xy%6LQ4&^ZVL$M-Kj5=s?m^k4!|i*SAu=X&{B9lA z*Lq@qHGUTi1lkH4T#_?*;ifcRcMShHh)Oq^9!q)f50vOaKJso#^?s0O1inz(l+LkX zy3j(l=0B=(i_ql02kyE0xjoK|2~A;>kwS_?>+{FKw|t|CRCx056Vz|TAQzeKnZVwc z!{sZu4`R?a#bvKt3DLJY>@XgiGL!!cr>(G3|T z--$lfUfl~I3GyHLy;3$J} zq3%t^<|mE+4}L*`zP~S_{#Zi&xrF*_3HA39>YpVPq;r_VY*qPu4fd}!*cWTCFAvyJ zXcEByH)qnKJe*?ojK|ooIUpZc76meG{D@HudQLP;)468W#PgS=6~q46L$h=6Q|ZO3 zx2fbNhj_&`nFmvP>g#xJ1VJ*{5myKuASDn_nRWpQyY?bw5V_m&x;7aX3Zg zc_OznCNZq=P~qhK@M6eZ%-kk%{Pp)AP0S1K*23C>MWatTNdQN zFZM;Eeb$N?Xl3DH98(rhP|5-dURgjvE(@r}Fggoy^BxSdA_$sUfx$H^FbJo^P6=m4 zTruFeZ)|CB#gw1tZ6%lcExC^#NI_XQMCTiJ)KRq35gX@`4;j~t2;h!heYPKk zVx$iFJ`&YXODScJfISo=<0KE))@gLHiXb9r=Uue00$z!-+insCtO(vjY5+Zd0!0*f z=B&al3zf%c-~tK-TtLAv3n*A-0R_t}pg6oNprD!s6jZZ-f@&5}P|X4gs#!oas#$@3 z80yNk>`T(%o0W$iCVZ5%M5ieBj8#)J^Mf2^MG&>~qn24QNmT=X*vfzpTZR-Sv7=(p zGgvX}8O&_^o_(+v(_HMiCsfgd!jm1=EV}u_R%YVVrj1lurREK!0(?p;TS@$gRO&BB z{;;iNbjB(h;=(GCyZolrzJB&cA*DX{WGzNHrDzxZjk-udJdycg9~ZrpQMcY#vzwDp z(E7}5Fo4C7Zw z#oop1cOVo&P&a2E2{Ms!&@*+GX9uf@K-#d`pkNe1@R971u*r!GnB+tTEFzPWCDaf| zMbI59bHof0Wru9`stmq>rvk$mI*v!3KF32H9pAeWeikk`sH2L^#=&N&&!k2Um_r91 zPhtP3(-S54hjDJ(P)d8Xz&r}y%{uR?pYYc=`$RX~0eP{{YsD@)ft0ny)mvtt%~j#i zC^OL3FCeQSWrnzF=c32P60OSe29^LmWr?j|e#8>>mxH6nR_(d>O&Q!z^|m37dU;O- zME9&BIBFpUK&LKWa^M9i=9TO0|M$QC?|=Rq)vE~lrg(-UswV@@{A6@ZYiv!^P_+8@ zSIQFY`=V%4982rKB!Y^-b!29Sp6!6iMhI0~K*0wKC^%sO1urb1;D!Yh{IGz678X!Y z!vYF=SU^D$3n*w}0o4v0D=-clD==7N1qOAjz+j9HI~c>a$i-?;0x2sGECxK2R;>8M zueI{fV$UZ>j}>Xfwom+8$JEYnYj)m_AS;7AwR9twR%Lkuxd5M%%T{VXBA5Eh(Gg@T z_nfiIhB(;8Zu>iPX%^UEboK*x}xt#scORN2L@`qhypfrZIts&Z|wXJ?M zhh8e+HN)blpp-1rV9d6`oHGQGSA(E;74bqZ^9;TVg6!ptzMmlA6q!;sIwk`?k&$wm zu_XvDsR-(`HRJ`0=$H2$D+E#j_H&4%{x$nU!5NdE!xi(NLlZIuxut|5DuQGZ-!4K9 zDq~PAZ!!iICnm#hFQwnsjyU>lxl_fgEPJyx*OPoL&aaZ)FgQ)<{KYZIjV>(e{V=-A zX+nDu`{~SV@Q!qJpK`N86xYk%-3qhE!Nm%<38ignWVe|elH%fh!`s?#1~52IRD@WW zt@y37@rD&2_;khJ>g7i(e*NX3|JK`9Vmax*)e)EeTedEsi?#BVQFwix5m6HbQD4xKHW#sXq zB3{UtjF!J5gQmcK8e_8|!^Qz*FUImO^UM8^Ha9H)GScU0a?SEDPl< ze+BR&HW^Sr1?24`P=L+nCsRgfKt*^o3L229$bR3@Kt5)c{D2!8+bRezGq9qYfgpL1S<4CEbI$Oq1)3gLFhY@T8-Uas&q zGH4ZvH;_S%&_6zASi9$N55n3K+xIm9mE1}rI~m+Pdn^hi+z%4R>s!bTZJ^6-|`}rK>U^0~-c9R{=Ce^c@joAg_{lk+J>@ z0_C@z9GX@UcsjHFq9R)HqP`02zl@a3S$kR5|BB$u_35SV%%ZiH4jZ>wo&~BvE^0HA zg$(2q#f|QefxLLI1!PbGG$@W5bbW35_{nb5>;h&`d9J!JgG>@T&FOVd@Py*yCOUXR z5gw?bJ+B}J;nTw?dl6MkWMhW@l${woft}_jHrYXGP=kC9;tjs=Lk;#pviYKY^yrL# z*yVmg7~C|dy2nL012(7w$@|-=2i%2RB?Or=t_}^JGs}D+yf4i{pBFou+=y2*9^Y+r$F^K#K8yiHdg3it-EFKU`C1> zRsi_~zLcSb6~Q^p{S>f+JOr}0r=W#0Y#J|4`zpf~Rbtx>Xlt!#+$(qj6P`PQf>w$2 z+wqq0P=_F>1&G#K2Vx$XSSV6OH5X9O$O4L^!~%-r!~zN$SwO)h3n&O>0mTtx0R@>X zpkR~*REtckz+jUV7?iRCgI88yhlTevs5IF|E-R9XY0v!d#lBA>6DtorEd4YoYDF4b z!WCFC?vuzwmj-W4GPWS1m8Zf#E3i{b7be1GcncGKz$Z-9{@&^)lZo_~8JXAya+IUr zCl&383l-V+FDfM1G##p+3`EAJZM$22SXH20$p52qKJpPyp+lw z$qC1vf{w~dpn@K#M@hBTIHDm6AkWqVx~Qm>3780-J-{4*zJVAjnM> zFO88n>MC&B=*c18;P6d_<0rEL!Z7m2TqUEvI0&W!aAkXx+`evj1YwveA%h?=Oa(l~ z&0T-lOUL;ahEWM#)C0rFYvx@|?>18z4F22^QK=5Y)ThAKQHLHf%=3R3>v24pTVEp> zQHZducL+uh^qmY(n1AHxyAP-648Kkng~lmrjFDAq=88ebG6^`=7tKp3(xHGdfx5Zr&i;518>xW-lOX^I=R=F+iRhVazu>S$TpDu z0P--nFn32>0_Cs7o1XJWmDlbrHb)m~SP|S>kAUt)6JVLD6ogXiMD$z#SmOeZPpJ*$gJN-Z6_ol-#Kn6 zf+P&!p#zQ~6+v3EZrtoU!xOjKTr z0f|%uC+xv7MG?Ne-|Y72@H@DBgHwtQBX|fB>4>=_rr7T^1$Rkv-;4E59bIeE4m;*e zX4QXd($);Q(aD01zF$oF#L=}Tt{Cy`RiT*q;Ou?H>=o)AXvR^Ern7l;)U4uEUb(+%Agqb^hS1r z6L|Dky-jxB%nQHBJ5Y0JG9Va1>&e65d<}qDgs8aui;sJkcfQ^ z55qztqIyBL?~q7EjIwrJMg;0%5tR|%Fjz##5u09Eq$9Sy^O@PTqevB*3D@l?B8WlS zs+lGkw2`l6bBqt#cjJ(Ue1@E4P9HKsnaBQa);YLJ>tdZ(PaisiuX#7GS!Z*O_yNT% zlIwdTwhuSx3m5;K(LyVrynz;gPibMlFFk3Y{&M8D+A2A(=jpzE+7JgVxMK@_lY-kg zK%#C^=h{LI6K^}JCvcp#wta&Zq(T)$`l)2pGzaljAJwZu(vgMYRY0Q!U5C&+87LND z2v|X;hMlPA>Doh(F)N`)2W3pTh@*mn$QS3JA;ZT1X2XUEWZ2k?R3@99!wLrXq%8yF zm0+-fh`{^qIlP9*d(EK*Q!@{FK@0Xd1`aBbk#z&mLPca}(04Xzh8P?!6cH{LXhFx3 zm!}_yjTYD+L@|d7L024MmPs{jTorEC*kTTTm@;$BZ`a&V^>y;v<#)42ZnldOakEDp zRXz|i$Uy?v#UOhVT_S(77I``@yda;7OH4g-WHw3IGy3wHQA+C}3|Ak9BeCX9GnnDM#fs90-3SMq-#{52;U)dKv00E>$PCG4r6pc=!k;}eCx^< ztqRF9sCFa}1U(OYDTE0s1Shh;joDvRayA~QBB)7?nhkqhPRYLBn*Fug;MAcQg?#?h zh+kanvG0}?~0VFd|uB?l*fSDvKO;&Q4BG+CPMhmU{?*>``UTDEak5=|O(;q+S z%7r@CUyf*Dt3%wci@NhnY)-2iqSFEwhiAG}tz~3G5tZD#jNZeLnKK!vqEytfwXr=G zswfq;te@ULs*H5v?}H9@LGuX30*d{~0t#hZK%s$BSDSqtQ9vmxjo#@{f&gHlnTrX6 zkSWb;dm#wa(RED?wdf!a*2uM)AAPEP)e`vfRUn_PP?}w=p-9vp{&5xjJUa)R-~<&aSKm$X{X_dm8TYSJ_%3Er5UlbV#6DV1^AR$`u*wy zVyVB3ijcQYThU|Z6$-9wwMJPt#D!OEe}bAywI?yy%)FK2SuPnAw}w3uO%*sULEDNz zG8I9D!yQ2Arw*IUA7f*5a~Covm<1G?DFe#AGfL^RWG@A=EIbKqTtLAv3n++X0R_1% zpx~4R6vVQCf?XC+Fw6o9npr@>H47*RX93j$7%MQSX9WiTtiYh171&|U=iIX*4(?fj z6^lOMo)u|_ZJ&n5SERu`E3jhWvsbv7`6>6TJax_5TN3YFnsHC7YrKJb>Z?3@2{~%q z&u#b=1_6C-+n#nY@EmRsg;(-(aJV6>(3r)>|RkNJ*{DAV`&g8`|scQ9wat z6Bcx@BA$s4WB^=7%5)gxLoqU^IEQVd(2LARWE#UPGSJwBKq~SK+!x~5GoLo>BCi!= zhFDCV`&1y6iXex=UK>6U5fn$vGPD}8$V7Tvtes|5pvT_YX+}jvd;=n}hq$-@u*#mJ zJFvPI3$Iczl4(J1JH%8x#o1BO4vE-=N4ffq4?PTZca;13)1o6X88i@z;&q>MKc=>< zswxD<^SBhO(Gfk>fP6oHIktx~LwErOfpVE4{0i>FGi#+-;aE_OBU{knGEyG!UFnxZ&~6$kCyR}K$Soe zZjykE03X#E3COf%CnH!uCB_XDuzM?X;~fn4q@fAh-G zFW)-ivhW)>f3+j}N6$^g*NWhD@FumQ;hE}>?7e%)xQGG`LENG85+sW(T6+f$Ft+6X zTZh=9ZrZCPl4@lHuh@%O-480U-SH9>p>F|E&Du--qylN*<+1&r6~RHnql^DB1gvCJ z`-=^m`g0rhuZBpU-*1XQgs!zVm%rPff}#FU03@d$$3FL;3V)8Q>c325TVF3-GXGYD z{q-OFeULwA2vy;;rdXf5#Gs0QxkQg&e-V%LsP19P`-x(({WoLgi0Hd$Gv=13;zyTn z>}?3m`B=V5u z43*_BZg(rO$?HQP2zeJW^pg`Rf(y4Ik4iMi-Ua5PkK>VDlg$ zwXtZ^eWi1QqkI)k^_+V)&^@VP%?|3QUPVw{=RFU7)O^qICW(xdqeFe>3wx}nywGu@ zAf{&QLgdZZgPRQWup)5v+OXjQnLaY#4S^C00yZ{2feYjz+$3jvG`K(pN>O(t)hZ(1 zmE(b^MZ7A<0~tk_J_iCBL}akD_RE__u!*H#CHS_OrN06w0kBOWE5E&kuN)u7x82v; z&hpVjr7iqAh;WP?R=E3Ld=!Tf?(6=EjS*qcXTsE;e_HHt7PBqJIFC*r51heZgnce% zFlb=~1~sg};D;61#W;x*%sLdVi7SRW&x|@5obg7hh(&h5}4OAPxQgp49+Nr~v;K z(1eXKj~Dugs9u95R76z3alSAazP`f}iU{AvVSk+^@X2Sjo_;Z$kb@(|{+tt%Sb-Ju zJ2_IUNGpaolUB^}gd|oTda=b*l2{Q3Nvyz%eU9J3NTL-#-arz-rzFvfy9Xpuf0@M= zcUuwWUc~q07Z9PN8{*)Id+kb*ekrM9Z5I|z5(Qw43V+PXNEo9c=-%P>j>-yR#2E4p z_;)-p5=GT&RL_Y)MWy1E0(D!sAc=~gRiY==p_qbTQ=X2f9WgNkG;#rjLN1^njRh3M zv4G;tv4Da?7EtiW0tzx&KtU-BD0pQ71-UGsT1y+!y2S@s2@g2KT|r z!`AG(#XaWIjB#2m;0=ree9AbzZhXKv^_Qb#$ySs&qnr(Kp&VN#QOH`*O3A&S0N|C1 zc%(6hsT=xO5%7vH*XW}lqER>}5g901abC%R7FHQ~!xFqw0r;&RW=&|&!wM(z?bRjd zp&&RXn6aXTf*@PM&KfA7Ao30ibkD}&TMLLqz7eMp`-+f?$RID+#sQ(|>^*79zUPud zEjHVcTWbIhyg?``!6y$cQGmP6pb;OlCUn`t2%*f!+_vbrHm&l^V;8!OEn%wm3bX;bfI$p zKFYb*B!28;q6a0aSpn^=p}QDJqXKA*&?p8gdMBJ#w%Xa~-y2zJM|`ob9^f=V6xppb^lWb8#? z37MH}8v;uxBCm>dgnN=8i7FzKu&KeYhs3QEkVKcUkwmtxZycfX<>_iI?jh4bGKHs> znk5ce!MY`8x)uAk`k1`tlVUsla=BHaQHTlg;wFmicEnX0kSTl3)EnwAL^^XN3*X7t;); zqHR)vcv8%S>Qy*-Qua0|p44B`KrIU{D&m>rbtXz3qn=PT+P4dupisaC6iT>&f)o}| zC}Vv=t}P!NAS&W*&~Hjaym7-z)>c#zP_1(uTp(Wp<1`tZ9|Vy+$?`ASLE`JII0iBh zfrM!?kyZo};F|Tzg&Is?GK0y}Bal%IJR$NT|ErxQWL~rM_rqQGl?@7`<=mx-JYB(_Hmt@Dpp_+$O>%DjvJG#NV`}vLFviFU2J(i!Nr4}_B9*gAR1rxQB*0B zjIudY)M`S#0YWEbpj=QfZKaEHR*4IDzY3mG4fmU&pz;=v z9_&UlWg=)WdQ!_*;WQrc+tS$j2m*n+1wkt-;EjCIq#K)hZ&U%@2qKSE(2XJd1Pa~A zn-hqV;!a!5p&JpH7ddkF5P`U4?A2iyk&$g%IDD84_vOJVA|tz6!zzjh{}QZH5qWQJ zV--b2kvOb!@|43&_t-{QVLN`P5XqbW6x|ceY@axed-<8!EpA|EI}RiDq4Wj!1I=N# z`<1WWwYeQeWPY+cL8FigVW@t_yBO!y!$_CV!x&t+IVjtZmthIWM(8@$vs+=!KskzC z2Cj^8e_JtlgU=X)zkd{iCu7Jj-HG!B)fQFoQ>0dXjPtlbiA*R{iLX8+lqR0;N%~p= zbQy5H`^H4PMFr-!ilBzgEBn9O5qq$OpmeyS`n&9!=|xH3>r+^u9r1&WlqEb8sN^9u z3^1+x$sW?miE6=1gfK)NH_Lkan*XRkIKfB#i;WupR^;L8s53F_Hpl{4_8BqTM9F=mW}7Iv{(JfI|2bFvXp@MSJ1$W-dwrtUn2Y(@z9&~uy4skL;xfKg z*?r&Y71vJ^4L;?CUfDh1h5E|@FNk1|OQU{UUF8v^@VZ#EPwP=VfQIr(X(qY<9;8qS zv;;BbL-(o(F2`^;2D&HXq@S$|LHVi>O8IOFM)fKHTJW6&sweN79sbcYd0G7ZGj|F~ zSK%)(VkFw?pqRa=SFU_urKB~>yir6M zH69vIOG5Rk5JCyII-+Np=%guA4pr_*7l{j`u~NG!pp zC+_=nQ>7Bz8Ov-n8;!N|g6LPKe;wv|G!A!4GwY;2>De7@W}h^2bHv3YJ27M^h$DL+ zYv+c{^CO)}-iLP1(Qy`TkgvsF*BQp_l1%q&)X)m}ZlDI>7vIp}jIdQ?kEo&kau8*{ z-zo_^HH^Ccb;Lmp9tA?qrb>p zRT*;e@5hNA0+3IO#@lCs04gFkU3i2<1dau>V3vH-AJ-0+d_iQNFP3~kpkZ+o&`<9> za29-#5W{RI0Tq$SswToe3CXI0Xbn%z2hR%MAJQ9!r!}=DUWQ6M)cx3Iag=cnE=(0E z>_U7oV~H0H%Buqpn>!j-`DWQn4#(ukC8YDJsTXe%4Y}Ch)uVvSA&&m&CTKRuazE(v zrynbKKcugkN|aNZ9R*rl+zsnJ@Uq^U#h{73xZ3wEY&q&L2c>T9?}tz5e$?l$BaU!@ z`#n*=T6;-E%d`*Ws{qn{+{@1PLdrLj_|d(JAjQGm=IGvr=mTw+Wv5f93dt6E>@F&R zfU7S(=$gDsuA;2>6+xnp*)*yqfb6Qn#zGJo)kV<+k#TjFdzsSv!9@}ND&9Vc)+&JsaIK{Ke8VJU|(l&Gga6s(umDgS#^9% z)L5auoOFgWR%pd`H?RWmDJ%2>=m9I#UyfK|tNNRC@w?v;2P?QE1>LJ5o!26@f#-Gz-m>hp<1leH^MM1H~ugXG(Oh3dv9@npXjY3bJvZAnq`MsAUtx+0|Ys zUVS9ppWIh~-pQcIXv!$DAn=CS1j7;b2|NLUU_nK+7qh3p5rQDrm>eO9-15N@_7r!} zKno_rgBF|#1i_ggvWEna{RUwILF6?DFo8^1^pR|b0z% zCs2Rr)x}>XkP8^Y=Vdn7ZrAhEnHeEF+ZZ{EzrKDso7v*uD&KBc{DDsw|GkXazB~F? ze>qzGw-UTbQ@$pFL&Fg!_K89HY8hXK2Be5HciHG&Mc^RvgE4w1wWLJZ?Bk$!GD>b0 z@x@nmfJI>n}=B2Wl#x54p15L|k#>lA8N0WBgtYqx<4RyY9*X9_e> z5O9f26+9r5NtoJ{1|E=6XJiE)5JX-oi)*MNYz%OK{GNT3t(^=wXKX2%<@D zT#Xq-OEb7?7McxO8Z+qB#NufN3Nu6>M6*d^+=J}V{+O#=AoKN%tKVgqQPR%G1EMWb zEN{c&FssvSrviQZtM}L%O|;^*8)%}I);)T(1nt}lpOYq}C@*h_XqTa1vWcDtefc`# z5=72yqFRE9*Js)Y0kxExPTJQ={*`S4P|*sfAl<(iDq0bDdH)A0x*_%;0#Rq%0->W- z2&X%>HxyJ}vb8c(1f)?BB(l1eLmDzrv^;~z6+sz=e=zj3BG~cdZE}jBQr(^cQOHQy z5@irsM#|EmtF*p4tYKeZ5KvGZacY7%Y;OFB0&!FXX`%O&ksYrc$lbXau+}QI+Zc#pQK+e>5Owlm$9u1XBOE)4>}X`tNdC@ zQpGo$9Au_eNL~Ze{7n^+32cp7bS@%xYgUVAXT&TjBm(*u!@bHZGM&`I25rDB`%~t% z%}X#yWiHLQq!r2Cz$L(^M~=O=Ik}|%aujvms`Vzd&G#E(7Im%_e|NDCqk0uU5{-Ky zAq=TrJh|5tHIyf2Y6@zoqqa0Flu&CS{Wt-4Q~;ICMm}g@1(2TRRW4A6j570n&_Jn` z%ydMkLlAk5Bzjj7kc$U_pbnW_j&!!$=8Pflf=4S8Q{`RQQ|iLZ5yL)7-ZQ5NPFH!% z5E&%lWCX&dblUKO2!sjr)d+%6J%~Ut1R*jqNC818LLDUG`G+nPAJuLgG~|1bmL|OE zt{}*x<9nz&Ot8^~JT&X%8$*bm)RdX6s=&;YFF0^YRT+bhA`&tVd|$HL93&>` zd`7aC*(z>OKe=6OwV&MZMLRv3wLTEknU2eBm(As;S-7knOX_=&V1C(XD0#3H-$EV@ zJ|mC5vcF`oLVlV3!9T`vx$^qXt3SSc>j;r^=NqW6c34-5Y@hwLB47{?g@2<664*SU z_*+F}HSTw1w5{x$4=m+m9y}h^pLj7k6^~)0K*Co_%OQ_$MP=73;{#-)+wS@Y63H8qsilVq~I;7H1`uKdl2K(0< z?29$nVb<(;o1wHWGQL>4O%LiD%&6HxMP%Nr8lz6aS(>NAw&&AXOnNr!#js~EGicV6 zd!cdnM_$ak*VAF&PE>0Kj!SH5T24*ec&8QNtshz*fKPd6FQbk_i~MqMXlZ{x9AJ;1 z=ymQ@6diFKTKtM<^iwJdvuy(ESrM&_-NuP_N=+$lY(u~~712uYXO45Ubc651X8$A= zJ+}2hU90#^0YXtLfE!XXtIFTO&t_<)RNwLxGj?=RXUc0RP^ywr#^TAlUCq22%7nIg@MlZifr(pTT%n<>H+ zaquu(`%5C8z~_ zV1f#ueAy!mC}Kr$IjKz)dMGb>ABoy%p-fcXP0GGR5G_cdYX&-45#&XBjSXBN10^&$ zn;M8ghK(mUoLi~^*=`475FN=%5{N+%I4#5t6vcH4=Phkeu!IPN@icbgff0qL?+nUN z6^RNjC_^5Z0bM9VWkm85l%X=>DNu%dkED$L=S~@elY^Tq)x()yt4|@R!Iyh8T2j3| z_H0JW0cAiL`ns_)n`N>xM-_$HCb3Z8^+fETA`VUSHVm54DW-;7$gpgNj ziIeuN%vK?tixL}Ov~s;0_yYL!=(F)eY`Nc8|VIfG;-09(InTVw6v6 z4>4WS8~8#BGFfq=$WCS8a5ovKUX_ve2EY(9(8o;fMD?^T)(48>RY1#NN}p6kkbNRb8h6^2($tHy)`f@0ON16;MLLSK{wPAC1sEE5! zj+G!N3$e8Vh7b{KK+T>wItT(Ew7m+XAc#yX=I9^@7L!P=a;-3{h6Y4L)?+~fs#tL@ zfCf}Xtent*B4Rgsm|}M`-KV9s!-Gg^ZBKseQ2SI$*ys&~TRVd|Fdj0Hng)-J(4&oSFkz$X5vzxRjKod7aCxr|@pog_`lFgbb4SHAq zPIw~Qdn+R87QL%7T6n_tjOd+=6UVH-3Y?(DweCkj?JD3EmysC&Y9}I~{VUD5K2ErB zLWNV8Y;%JO?tppBVgZHjEuc6-ETCY81r*G%fZ_nLfPx|xP|(Bz3aVH@K^F@sjt&c` z7PDA^eHiMNP&Mr}C%WMPtuoWeC zzIl7|>K~MKLv+4@w~g%J8!L=W!ja^6(S34&vK_@x8@FWUAUR*`Sg?#7w8 z?4TDJb!$gk;pwEZS#TbOV?-eHWHR6vkwHRqMlVDLAxqma!Yd+!SWPs2(s8g)i54I# zBR+Yf5}C_vAq|TtVvv?=2v@8Yy^weDq&6zOcfe8U?Ym>M#IzCes^lpI5(muy1;T0H zA7i#i8J--9!`pLM=IjU}6G&~XpLEPNNeFX<+2$~_N~e&nqaJoJ>ufhR&rbY}9OSd* zEymBX|QR0H1QgR`@;Qg!;6fYq?#?!5Lh)pr+>^??lz;X}b}LmN-_jNfl&}I`o1d%7 zv-Js$lvltbka3LvPuZFDSdtq__`l43gvzYkO28bt)%(70H=##IjQ}lx^zY~63r2*S z8IzB%E)8_rV=x%*H2O-Z3(Y3C2xLV(XA5RTP!K3j#xZ2t*-it#s0c0y&ycpfN>;#N zdh%^>iG5aDpPDRt!#1 zM6_MEB}&n-QW}e>tcQZ+|}ZO zaObrFkV%>-Rs_tKk&6o8%IkYMrPvdZM}cDv*h+Fn5d=yQMSro@HYtnN z8v}~4Z$8aJ$A}O(apa6+*noZz!9itXWJ__M)HGTSd)R;;Er&fsZZmry_7JJej!YNT ztgWOX{by6r<618A1Z>ZSJaifn{f0a`qKCIr2U}1>ry94tnVPneD<>G!Q?jaL`wWA@ zv=(u76Xej^ql>JEm`zV98uzwA^pcWy!-?%}^c#Ql*MBvvAxqeTID@dpzJxQcRZ-Fz ztZ3>OW`xlS0V`oNiNT%q`@jD2&%gckqrd(AuYZOh$ol&C-NT=M|KtDu=Yzle1BBOds414#s*Aw!~DW4p$?XJ3{mBBb8cImLqsWt3J*k?o@S$h;-DHVU@wvVwH zL5QWNLm;>U;kq&xZUk2$h+?MI3Ir>}_aKCIgY?PL9W2YoZMuJGStZAVu0%AJa8+lo#580nvCv2Ha}_5%0fPX#Vo=4*q!P&K{4r{26@oX|BEYBI zv6qb}Y1Cg1yj41|X(}?fRWcsFDo<}h0;OgX8n7wA6jB3A7gbwVh(ZwbPO>o&zltD5 z%469`pUm_ghqt{9(x>I6elUV1DuAo(e2YZjWTu!7wp+jv@(|d{5ZJ>Nfltc!3K&8V zS>XsL$V~4Bx7X=RGmjodkeRlg9uxN-=7+)G&Afpyg}|v5$qEcvOB#b3m0*6@TDk`i zny~NTSrD*M8-sH~w=?0lhM>!uA-=QkLU`G>=I`y>5}dJb`$Hhy zYWdL+xF~Imp9}#-g(;yj#_2XPZ56>ixife2uOYPVhx^SIha-Sw&H3s2JrmG4GQRHv z1{wUxhe&sostLE@UFkEj<2kHOlcE>kVd za&5nYX{=P&8@C~$R#fb2jc^KrRtWYKlyL0vg5okPY{sGDQCfkE=i`4G;Rn=3Y zNW21B)whrMTA*Y9d#~R}A2yfe>9-{7$4?Tbg?PflS7~aL-?drHJh%o{W~IjP=aXNzwPaa z-ZsX${pa;b`WVjzu}_ZZ)mf2Kn_&xmcZ$)%Bc%wgeKN&E^y*XEHNQ3nl2;Mb7i!X? zZLvt9z*`HCNrVG)L)M->JIxLG!rAiyW^fsZ3@Tp-Hx)29>?xT+rHJ&q!3;7+Ry4y5 zf*`BHmJbU<)+5ULOopPt-9;VG061o~=NQ2Y^%3l8?#PB0WD@DrffqWWN5E6>a6s8} z+;TC^B*+mrM3`zuqGBTjood9;56#?mDcr}t$wLaF1Lw~wU!y7mO_|ziUi@TE(>MutY!B+0LU#>mq zNBFQIPEIgwNARSclvds8e5#21%$G#)1VJj1tv-@h5v?(py(^L@Gi{HtK@hz<2#I($ z27*@st+FDjyY+2bj|r6%OafUCb{z#EYEmuB7CX<1QaI*PH`~g_r|^AjqJv&7Lm+s7e7C1HN$fqHOtsX#K?|rOWL9HlUv)*#Bi+a_hx3 zP=tHJVE_fhZJjVcMUaZ;TOtggV_a=syW@`@QSnq$OL!;qY4xdt`?yUn@e2CXO)oPE zgJ|__FK0?h*Y!8fsivka04ZYNc-TTT?hoQdeDmh{!~gchIkmVO610GJW5g7>Z8#2r zGeiUj#0_bvcoe6kkw&ZUyMZ*WWI;V_wcpPk+(BOJFEf%Ye}3?!PYx?v9pb?lzLz7K zd!^!~7baQ!wo!9dsR&|0F1<*mAlRv+>_QMU&G)n^BvWR3&!OMc8)1~G#z_QGtN`B? zkv#c57VxYk5mF~`BKUS%MCK}@xsxJ`RuO3dBXKeYg?o>6Rwl%dhb%Sjq~s5ob{4q7 zABK36V4w{MnFySl7c5)|n+T#Y^@IxG7F$@qBnWO11a38ZBy?h9c-;+jA}e(*H~_gQ zK60607e#1u%kUs=x_hMCW<4VXeEJp*_qw+mpZw)DcdwSyX&-2M1RJs#zy~p=L%|Noli_};fkOWxI*L$f3&l$ zX|6bSjVoHY-wj*=d}?6qS9Yg?QGYoyFt)nGy-4rbeQk)_hB)Zrttzr@Z-}0h+ajH5 zZdkc(-kl+1kaX=N$FWAnpgCB&pk&^VhiAkfe02~`#A$9+05uryK0x&3ZMn>1b|E$V zA@H=tki&|2##XRx4lxu2VrZ|96bd4Jd{BlgAE`T0g`qR0`JbHupbUAJY_kJPR0I_< zNfIV2PL}Y3AmRcCXh8sYnXZ@|HlF7J!4ZPU+)Y?P7BBmf!U~EAPYyg#5uR%U3D_ij zr#aNJuz(+{O%+Kx_c#MAAk)C31pYkdx^btBK(3H)eV#-KXjxV4oBTdwTHcT5)lT%%d6I%7&4V(bHaDpuWGT1Nd z_I`lKUj1eEj%t4{t;o5@)Qj>u;;h@YBPo(sD-qjSO-#B-j1@S!O_}^8m5_O$K?tQh z75|`48mZd=S9720IC(W1$B_!4>#Q>-oFJ2>zQD8>8W03E&bGNCc{^f~4uSM7pb)?X z6qK-l!V|TCf*KZ3(8B@>Lt+61Pb{Dyiv<*R!~zPQSU}PBV+nTA)|CcQOQS&_D|3TG zI_zrh)5>s=$qEcYS%DRWo+ShwYE5)t+CXaQp+&i8qZJLG!A>>5n)|e}B5T@ChV7MC zHPUHCg*T86@IpGa$s)$R6xiJULm-=i!0^b}w-mDG^}a}?%(Lb4+Dtj$)In&yt)$Dz^J-%xup-`OK{~=G zuacopIHn>9c6(hk5-0PZ6kB{a8RxKRi`&XS2aF@{!1L_@2HW`O(1n6%1dvBuNTwp% zy*_gNh^;(qBLiYiWE4aY*+B@F5d>dPXAQv!fIccl|B#E!I@T5l+4!w3FFVy+U!j z^9y&K2^x%15yUxM6p=(hWETz&G8NH!BBiTJW{RuIeP#$>9falx_5~5W3cyw6*`5fS z%#{3+SaU~>S1A6HREKw1-Cxp1X_zKF90V8v*QAS1J zs_+b&i#kfSlqR?NPQ58Jj^h3$ z(_7+xz9pL8BD~Iaob>eNJXx=Ch9FvktwlggamnL$vNOdc-mYK8-~QCx!?Wc9!NwZ< z#IBTEtiXyIFO^%g3cwpE1o&xk3@D^md=Dt3{&LVC=Z)tDO-AEb3+`l4?oEx znO0QmktJkN3QyTvOwtfVLFAQ?h@uotQqE~&geb~PaiRIS3R$d!aBj_LM+I;{c($$8 znP&JK*^~9i0}GN@5l_&Ntva+Jh-?*%ya}T9gs%s!#=p@EJ$&_e=G6a)kVHz!8^;9M#|VbZqosNJktTVYefOm#X8t1hkggI^xIg1VQxM z0G}wJU27M)RXPMo6OoOp)8_gPFPHdSAA=Nyn@XPYLSsFXp)c)KsKSX*h%N_Nr%{t3 zh(|X2APhk~Wuv!mbskS?$9-orZJU99mhTP0ddxgYKPa4Zeot@vQ4x7F@=rDdzD5(K zpB2H$L9^Ek{)-Jr`hhLwuRh?jwq^?c(61NC))*Zsi3riO9{YWpVpPJv_a`4QdVGK2 zh`12x!voQcj?_YOsAT4R9`~!5qSA07ZfG@CC5I|f0Y25|kV9pZ@R`4kYddC!E;2o- z+#mLZ58?n*)#e?rd3??WEdF&Xhw$YqDdf9*PG2?kxDCK&dZnt(eAoU0;yxr&)>BaNvsI07SCCOKxC$5 zg4uonfe0e41~{W4U^?3ipbVKt6stiQvKo1h0F+S?=&*euNJ55a1@RuguxWZnrr&f3 z66<{Hgcjr>nPmkLC?d9Bh(Ol!586yTECOgj@qljaY%_nprtDd!v&_zX%M&NnA(1m;o@(A>Bt<#1) zDx96)W(|4Bc-R|8l#oY7yoCJ#dB_l)Ig&goB9jgvj|zZ1d<%v=gQ;X^@kx8o!yn#%BPi>A~C_W&Q`pZH3)Zh+~_cQp6CM zO|GaMiZZleuNMnoirVV2-7Yj$%^SuVdDK^CPs#YVt|I1qe64}9id)hnDyFS0QM9Hs zb(Ne0O`&>hWrR0y2Jk6o^g8hYXVhP2oyTP!XTPaIokvH^5Aq11)J5W7u}{L$M#@py zfNftv1S^830&eajfjeTt@|!pO3V0?%$(R9wlnU3pW(n>P z1Wz%!M;sSk4k27XA%_bnsAB;IV=SOxjRh3cv4Da<7EsW}0t)U}K*1jiD6EnNRAZ7A z7<94%gHu*u5X%Y-cImLI_R7j|MX9gYD=VX|sW-KQORrkgdNw!MW@T;+LmrY@`p|}s5occ* zL&pdNWFhPQhml{aBf1rmiq#AcUy$r)sGojtr5&d}8HGfa%)<2tMO^35zs(8GAf5|m z8rSNJ2ayk5mPna8b?&udjeVv)?m@DPuL!_3#t4Y2z5nQ++j{|gRQ^*a^$MosvT!r|AsiXe$!XPZ?BlVbf`i?Gl{AqFeoyKssh;g zU9i~sw1zrq#&Or=nqzqAuw7q*r7xCg}JbT%7;ginnfWG$xBRO1sx+cH&{W(7~IKc2={Js zMfi?5Ss`<7V?jKL2&+LpG|mFwBw+=aEhhqZ6Qyd#d=K5+yPubfhPK;CO*b1WxZB6H zGe2;1N9p3<=^ZHHc{=s;$h`He>=qsug~Ideya+SMBGFdFA*PnZ56_i0W@xp4H!uV6 z!VI<>AdbBT+~p84tiK#F!&ZbiV}=cJCfjC2T+2)S%!&X?r6chK-K-ElDX3&mPm@5Z zVzUGo;gfmNpx!;-NM9XtOCSpUs?p==P}RL5y8Cxq-jvK0orxMg zL1ZJjMicsBqjlh^ncJd~85wu>!3%X1YQ4i=GUeoK=U)?A(5Vz-*l3~E{@p+e)$R4* zS=or?Ug~Yjhd7GEY>+6m6(R1eLGHZZ1%cZThr!^=i@eoBOtu@_I+3;t;9#v)mUaR` z@+utPh^NXRc@+Tz_~`=4lUd&p0=A75(W`^xHI8sX1<;M^MIykqzaWP8mRh8oUZe_d zO)+ghLLy}yUg8*nKvo2WM*j5>NI^VDBpkMoY2y&f+*+9_7bd0sAS)H=xiExGW6;u8 z0CpFXz z{$>7r%bx8M=`_IM(hv5obf~2pNTzi-W*uQ#C-oji1FgL81{&C^0iVd+Ek=TU64;Pv@iE+ zX{1gN*>(b{lbK=!*g7F~TFLpSy*0gWAR<`tFDZkFpu9W0l&MY?kr|rEUj;mor82)V zPvBgcq%V;{g*rNv_Vh9>?$$3w@=Db0$qQ$%dTa+lu-zFE!VR*l(a{U*L584_YK9nW zRc)S-gMFB6a4rZ^5o~{f9At<*4`V)5L>2%x^Fa|;jDt;Ii!m|sE$N8i@i{d1Y-St# zujwqRGH@-`=RA;7?L+`oRLI~$2vgdtw$Y)&dqH=cw@robI5!O3OeTP_h^Dr%g1;Ng z(Ff^P7fI)iG0ny4?WsB~E9$<$|L4E1F$u6sZFe$B z8(_vH{Q*5^c2wKl5#_3k*+nKFz3ccc4B2<)V?_)iQJ*M+;_i${%TxG>PVS%WWAu4* z8Vo36ztCyCWaajk_Of}k%vXvaWmbEzh384;^n{8>;e{Zcvry_=eI(>DrKa!f zb7W7q@9iyV_bXgy>-vMiX#r>Fh97N);o|wphRCX)pY7X(?fHuh!4)I6*1!6vaTDM- z8zNIR-?O#L9qD~X#Afp+N5pM(A2`B$R1%ojg`x*02Hl=aF|XChV|9q2JtUn|v?mZc zEcmYesZTw+V;y?BlSjDfKDW<6lrk&3b<>Fh5Y8u4_9$vRHMMicWA=IZ+FplkCxa3? z70M?wC}DFclBs4#+xBlTJ1+1Avgk$K1G1HvXUU4@+$CebPVoY^1K$Pp+1G1yRT7$EOz$Gf*Rz-vhV~pkQd8Nz_39@ zv@bgA8VEPYfZVKRD+M=HL`&U~xRUK2Fog`5RVXlp4(NI0Fog_}I|oc53x%)fN)Hgj zznOQPg++9H7ceeWx@`uBI(LI4wH4o$zII;p)mWs?3)g2bfT?s|-No%1G6=eng%^UD z9mn^;x2^{B@)`<`f2#L!FUYCZucbrnBXqZaMoEct>$~CkwaAL8^&S3gr&-f$xvth2 zrPcqfJF=d(a=|vmnIj9>YvxBSsvIy%{quw8yC8zw^AAS3cJEThZ_~-fdq`s~XvMIY z)~6wv0?+=JNTyWCas)Clf?wnv2#LDS9D=EXw3w;J!HrE2%!+S)ZX*b;)5;1V_@<5l z-$aI#04U#fGC?lu5ZEg2i$N?a0$b&7*60LFL>4peH-~Oy*7y-rSzsFhBxAugGN;Ic zg zp$!rjc0(ckgqme4`(OWzXkftn`|jb-zyI-n|MS6L{_*=?{*V6$r(?Ek_Tamxtse0zP4%+H z*A1QnFb}(IFzObY;WTV~)n`O$OM}Qgx|ca~R_f2%a*Z<+4uKX#%jk*_zCj2zn+1a) z%P6Ek+2H{h?ys}WwQ*Dg@pTX^bbAaWC68%ljSYg>3WPXfy3rH?Go@jp%a)nB2&zIz zGoCe9M`8uvJa6K1vhzMvr7Jq>v>UJbBv&3}&_!RItcM8T+bkm@0#)fC^rErVgQxT> zMH>S+$_Mc?9Rwv1La>npY=aCf9$mz1y$_)%omjRwfu3y4hxzRv5S9HP+J-<<8-!wo zrpSYYRo7%%}rcaOGRC#%&vk#bVM(Pr303Y5gmIs^{j;_?!7t`^hg>WTn42R;gsW}z!xTo zQRHrVnHdr-@KOgET(fcLzWtLc$fb1~W6|kV7fbq(I4Q4Fy0%|4~Y@k}B$W+*srN`4CB& z^gaI2O#RY|RnM|QA}fGvJ^X}<3`!AiHgbb4vLu zxBACkPI&*uUmJnj5a-UXlpHnZ9lw2bYP}5r4@d#*x?z^UW5BF)$nC`&{PF^sAsqcUhI-;lel7~46rq@wg z<6MWp2(qwQKGqmP=Tb<}7@?Iq-oOYo()Hl8=Pc6godF|Aj4TVx`Q>Q~JiLAIGawST zAr3}x_Xq-43rI6f4|$VXS2`Re2gnd)!`Wv>+$w?!r%bq#c~W2Edobdrm9B%0z5?2< ze)bfEts*Eu$u=YUvaRBFaJ5SCNY(+(wNHv=AY&v0$N-#M?GaFb4iIiTIKakmPQ_UyW8lfKr@#Y($Q)C6 zK%SER_lx>fQ{d_~ur{JwX3a9tXGSl>LoGWI43c9*FJu2T#l)c-7t%rmB7NZ^Y|f&J z7;Kynfv&Oho+;)7eqbjPc%Y6!vgCjVI^xxos{Z$Fufz_DWNFhzvLA!hV1YUjHlnE$ zyitNqyll}%39Yj521)>4j08JCA(MNRxor@fLh3I^M#5I&xc3|xQNo7klz{SQ#fKD| zQbH#IHT$~Ap_H#?Fd8wG(oF73HAO}YwZ7Hs$&o^tHI+?%2^ey?THSfER}spJf5$;8 z`NGOuJ=qz>(b)g*Q54+XcympQ>gn_K+b-NEtYoWOXEobaU*u{^o`4 zjYs4`^o%gi&Y{7(K{2>yL&u|tvdd~Q0N zc6lQb6|rKME0H|kR%_nig-C4G->2DVukwiIRr1RLkz6Kn+_EvUEjpqT31?>zj8B5(kC9nGhT;FeT3us+)ndp2(C`=QeLxej7irGKG+eW7|y zfBvP-l1QrUL0{RM5{34-f~*y$L=uG}5dMfOD1tDHJ>|PtEcdQ{uL%6S+G8)cK_1B= z)b-~_TN@THq6|6)fn{60pJNQ8*t+cbSKpK?5=^ssgpRGUL#?6d6J!q1J|sL%%5|ksHZ|u;;linl_d=zk_i? zt7%*}E}pgW&(sYW-HZd0J#-I38tX3ymtVBMpRwn+_YbB+$l``L@|1kLMiiy$Ht*_$ z6r?IPw-jVg5NxLQj>uj`kSX962eKzKy(e-JHRSr3aHAr6^(oYlyB`J7lecZ{{pyLu zHgH%%;E|{#f2QZUYXdS^2Y9~H;p$s^fvmiPFl4F8%d^b_!jL($2qqLi7$S?3;fOj$ zhA@AMhq!4EMaVRW=XuP*=NVB4AHg@Q-)u2P`K>B<8JWCjUv)S6<&&f%*%;n45<@{} znhh-uJ=_~prJ6NTs4IpN`H|f{TWF8QytW88Hd_Z?MKp1sE!rakfM2E;87r*)t z&$?IHc>?-S35iyC7#JdmStWhZMWGKrR6`#+Mr3Y6AF|kaGsmHrJAI_yHTtNda3CI7 z5i%39rhT(F-K6V_zmDl<_E@GE@7n8_YLb5VB)O_SE7Mfw?WA^U>Z>M2fAvlfL%)*F zdsqRk5PbDM6VuP?S1?Lw)qXcn0`THjN*iK(@ew7|Uk)fi2KJH}ByX!qJPiotUc_!M zTfE$$L=IUbEeV3H+8=_{)iF5wdkO_oR}t6`?$1T)WTN*Z=GnJF?Bp?5YMqd}3U3A9 zHXu?b?~Z@R5Kw}xj=N)^go=2^BC*pAClZ+lb%DmH$ebYZ<}x@z=8-XII6)AM;pwXi zpyjJ=Fi?U_Biu$<4fYJ*ULXM-;#nEj=7gKc2J|^W2|6H7fl0g{N>CAb@UttFP!TMX zBcKEwBm7oSf{rn=DCEVml9XnH@o%w;I9T5#;&agOJGIhPc)dq{I5R&M+|sLoaW<1V(TK z8-E~x0wA8PI}_wk0TgJvGXjY_Cfiu5T|i-n3`DLDLcGl634z-I6T=XpTRi3UfgO4bkIWn%aLLMWMVn`%6`h{Jie}GXhkA3ypL8%ODn5g)DLTz?mloty_4)d) zDLW-}OHaM3?nXMT=I#d40X`+2t>}70I`x;Mc*a)zH)EX*ahfB>#>lBuN|O8%h1Y_> z9`O?j(pks2Cmq{PIS8gyK4y*;GAT1{lw*v7Jj!Fpex0>5MJ_8Gd&G=DBvM|z^(L8;#XN{%MYQI&lFMTU8^lrId2JJtD6>wFG^8Vw;zm{@cnC)jxs;HNef4bIq4V&? zj#6xYq>B-3Qy+;R-99fwW3%=`cSuHu@NgCUq7o8)y`dHn#9@F#$A~&H2t~(;vN*Uz zUL`6hX`a3#dh_(uyXK*)qaa$-YAD*?>b$aGvPHd3praw9sVcsOL4-qB=w2(Q-LNpd zeLLtTXu8UY)ct6uvcBrE>XSNblW@^$~8$7jgkwUDb)~p z)vHc5++>KI6qaVF9XlnYaY(P(%hZ1bSyih}>(XHWT zZHTC4buos9BHS2mF>ggUowk^_Of*Y9poEU-l#rU$C_$eS)MLtrD=0z|kbq2OaJx1n zpr3jk8EP>MeLJtQqH(Rxocd8|){-R`f+y!f3Yj9o$rKgu)gb6C>r1X|)Lp|6@*abz zkSS|xV(kQJ+RC1BZW=}ktzhp4QUE?Bg{?GuL<;qn15%KIefL2!x5C0R&YhXEQqYP> zWvZ-HmlBP%Eg!KI1hs4S6r@sWAhY%tIh2_~3VyQL`O|bx?#%gvg)ozNU-x1{~Q5GTT8zq(d9`z=b!GX{;bq8MZU`h4t;0t-lUJ zz{TrMPJQgg!QfsgwtjgZ^1MA%V=CD?CVGmssUZm~=Ui;-Z-sd`Z2i?8HcD~Y-fXn> z*Iy2{ei_(b2#MPY2v2)pTCsxkNwp=rR=Sfa0zZ#;Tt)Z<5sn*ppaNR=COwoRcrxo& zDV@P>nP`-BLIV}>!f7FSK!zXz!UPYw6GXcrCdwu%0vVg?EDqMww-knHiVamu=DE>PTuVNG6YI$-xY(vmfXX@)EwA~ut%Iwe>sXPY{h=P2>b5I z9XLqlhBz$(+Z>TgsXC;5#*_%Tl)_E6&vX+Bf|GciJ!RB`PFN7Ml+o0wVx2&BNt7PN1JJjy#{0tSpB@4z|6 zv<+K95PA70jA00y281CKjT8d>NhU*i>z=*|r;S;<67*pMdg2`PAxjhAANCNLjJqA1 ztspXKx%W_q4&YX9GZbWiyx{xwUXjxs2cGZiKAbd&)rQ@J9` z6k6LykJmqx^eCY4<2=+M3zU8R8(UP!;0C}`ON9?}N#r%LzZfFBOZ*yRc&g%WCV3oDgn`nwP(h6212x!!NOKN?urVS; z`+?0nx>+1*d72iHcWR1>Y2lldDJJ}&x9DcMgiM@>-Lwb>vJgC_ank}7!VspD?#agC zq)P`a%E>EBDFjaoFWulXOfC3f7-C19NwjWWno{549Zp}A%YSriF-@k1_%*xZrB(W^ z+Z_!)rIJ_cv*niqDv^Pm8HnC=(^)!J|>gq0DrUJ}UsC5bmacJ!A+FQB9!;qB7xr5=2X1ifRf)&`>=5Pdd|) zHKFsM1>@{mA=tydqI=$cFhm{*;Ey^6U(sg$Q#`~i9QdOSfs?~T1^SSALP6n-vLS2| zkcS8x?0$_r6dz$w$U_m)We)NX@lD?i8Qgmr4ymwgnQFX z896V<>zFpuxh7pv_Bughri?8?$qw$ERDFF9W+KB5zwY;-o7_M;v7nZm1${QoM@4 zBD_tCXpX-yBBUUc^T_P*01e2r-_o8Uq7d>-uFTdaB6szP&4w^SL++#)7DL633SSw5 zkW6GK$r#ks`Dq&)qCREN+nd9N%oIyS_IO)tYzUb)yX&k}97+&)-XI1g2!fNEJrYW& zh}NE59%+jLLD+z9#v3pVJhaHYN{h#BqKs^dQC3VYn6B} ztupckE&+ZT5niH;B<=;;_EnL<`pZG^;xduF@!#907cbUB{K8?L7&){txmJo(7n9%voF%RAv#^8Lmax;YdtSLJ!rUP%8iIt#3SZ# z`kgAG*`OK15QN(bu!YVOP7>#)DLbNB$HQ%70EDsvXdCOz5RpfDaoqGa2BIj4ywC?B zl-J6FBUnNf&j9(fb3)$3 zefAK9e2zF+Ll6~!{h9`YesNEyAa<<_k-g|(2puC%j4*^OW?c9NLCE*8hVju?`%u8M zn^Sb@a~0$i;E6h>gYCYb?A@VL=VmtNF6cqtE^qv8Q3ze42yvV0-NVE_6;nR8luUQp zAM>h>(5KP+>e5VecBe0`J7nJ1?m}zUgXwm3U^Lw%dGXvBjSgBZ-3@dAd`bs~`{zFRt?v;xzW5D}Dl zVxPFKBZGAe1kAQgB(MUWvSyp@zaqGe#1FM>{}n+sl3V%+oxBQ)n-K^>jkrC0ppWqCbO@mWvRgWYpd8OI;&_1&ptsz|uko&Khatq;Mx7Ti=5*QAFuPSreWB7$N}IoqMs zR~-_tC5qeaOg$OoRT5~$cQ=p#@F@xGHPT4}^_L@?V5F^NgA5U|d+4D8cuo7h(1Xk|8u~&H@^ONqpa&h{MVklOvOyLq4dFe4EGlAfs)a0c zjPM>o7CJ`Mra=~p82OhvqF;!R>ek}ZB1fcX_|^tN2xM@}9Y-~pi#3RD2~73xv}*Bl zJ|{JO8&3gjDNBOL{sGN>q{}+66%;U{16ea%6yDdN83=WhcDIU~N6>*xmV&;_aP{x^ zDjl?fyc_5M_(=yZ_AL;-ULEb}I*45TjJQd8DBjz2 z5mm$^5uLOPWQ;tGAZ~)V(y$)HIyLp$ZR1fL6_3+{D2Y^@Tj-KxvdIA zR6Oq$5eFU5$rggp0kRpa&B&8cpac^S-`=1EeMTg_U-VK!4!);s`dLB_u`xjj`jluN z#DT3NIwhn6HcF6hNS)Ro;njr6U7{__P$3xan%Urof74m=H+=Ix)O4?M13aC z$AJMM6Hj{pi=iW4btlOR;tv?v3-TS%B!3wQ!akLYjH#nI)6Hkp3h!> z2Y#btqVtIJKF&PiynsUPAC3P^a7B}6u%ga0SkdVjtSI)Cp!Ld%Kqo6O&VDPfqTsW+an@T}-=f-Ag4QdO zyQ<*EIIZ082F3wCwMcq__JDEfFSFbD%T{){`==fs<7T3cI0?rN&WNekP-dxwlu+VN zH8MvyrTh_ZO(e`}t?N9$orBH>-}8K1)T?Gx8W$j^b@}{7uQe{nA z)#%(hk+-9KFB5Bb#6(u1q6HL^x`2X;7Eo9#3n=Jl0fpJJfP#}2P;k-$3Qk%;!AT1! zIB5aZIB5k2F|EKLrWF{(v;u>eI&3??V#P=7+q9ia1LB%!2x))XrRD!)c0F-@AKYdN z5v|Pm(DXUy76qT}^+nBRFjH^*-EN$~L9&!j_`PxIjSc4U1pPNGa+~(_B)O>CVExqbhWj88n z1(EBf&^zFTifpS#jC;+vJI0XQ`pZFZrv3fA)BFC;6P=LO4biEHx~s5-I-)yR30is1 zmH^tFOU4`sr_|kMD+%OM>Tc5|1^dWENw@G2E8?i-z3#w65G&w?$`#vwkwK~Mr4x!- zEngXe9tk!Ef>*~N>NCwOglq)P>C>1Q*%L%-&*DkEvA|{x!YlG(G^6mQBM$I1Qb%0W%1ruS;`UhnPBY#atBOnLf5`8Y}uf^zmq4 z>roX`$81DOWL}pf+XQhjl0fizc#herkln%~#XZfEW0Wggu&?e6R`hWUGcIU_hBt6Q zwfY`>3quln8To(<>Mt{Smmd}?;1p`Bg!pZUg9^NS6X~l(lbNu=VMR)0GouyR6U69p z3qiEJSrcGHPbNxAphwb>z51BUy+!ooRWb<%$&;B#Xf>i^TrUWG^fFZnnS4PGrQP`=(g#duDM5*3S<~7@ zjo~1(=5!U+9*Q8)HS6;UDae3)4I2UVp9m5vijr; zS+-2}!KP5epc$1Rq8%R$A)=iPI$#KyY4qW2HbqDD{GHH2GP`7uJdsfhq7xzdA*Tf2 z`QQtY%-qOLYe^={ye@mSFx%h@S)O+8p9CbEwPBycw|&T?BF5w)%h_6642%tV4&vjc zk*V$-=R(PY%d9V%m^8;RDrrTBH&6-iDV6lX@d1_8Uk<252et)3D!1au)9a+od`#aE z(OOK2{@U>Z36-kZJb)mRf*@cYH6em{i%=$$$h2Frw8;=csr9{nktb4E0Wav1(Ew5? zGsW;Q5rawOA$fL$N-6@w!}D7aL74|JgmgOzg7a9^j_XX>I@0YVGbQV8w)0|N2%I!N zn-uIJh*U1v!djJOBx(9CX8q^dQ(sDt2x^2eAqz8%z?n>uo8^KBH0(8okj9+N^o0&8rx zjcFskgh;tHedIb5pNQ!rtl+lIsgK>Hh)a2>4$+n8nu1LJb>WYGjvVOf8?&zGWQ_+} z-Qf*90DQ^=y<&X81NE1q0K`@RIk|-U-G(@9iuqlJNZ*yJQ>0HySMw%AgijDO4oohn z2#jL?=m_8cQ+6iVku%8=zKWg>pjYHi*09imnpp3xvWm5MYVkL@3YeE3+ct zD(^nKH9{g8?|@u885pq!njVx?21dLX@>Te=MnV>4M0-n-V1mp^55OD%V zIIW--Lts2kNfeRdk(Z;dC?fGZC5j;uKv^+EOoWav977Bd({A607-C24QHn*~HgqmRhRLFqkaV)QL1)wnI-ps}IRVtFR4} z)b;s%hE8nrZC$~Si9#1ul6mMF=)rY}Ptb$lr}VJbk}v3C{&Ha^g$gQN{Luq@b>um!@G zxTGpe*rL|74M7Q8OjOY)9v38Ta}fD%AdnKacol{Hu<1zHqSRD|erGxbqT7l~)Fwh+ zroN{;=kaw!JEpA^BTP#6L@cmEfNf92v{e?5jY#%HAan|-Zs>_nt{M1L_C$=KQ$YB{ z@km9n1Kw9TizYB_=7ftTFb1hcG!culx_%FcYDy2-*vg^=zNZuK(EFVfzpSSeq`a&l61fMVi1 zkJ8yt6S2HU?*M-B{86LoCml4o|vy`a)HBMMVv-;%ISfRbdpgH<3@sI;&=<`@c4 zoXV4=GiGfbsT#p}rf=Ymugry#gw7erVMUgegvNWSRR1h}Q{Jlye^GM=Y{lZ3SXnjr z`64JDGwinNI@tt5?l7#1I0oN}lagH$(^hNtGxZSR1iYJxDXbBQ&TJ9k;E}j&t?Uvm zEQDHwg8_NU5aD19oHE2Wu~5a5POVJ@*V;82iCDDE4TQoPWC9r?G0`f8au|F^Y&%3N zsEv&|hzCzwO4Kl}Qm%HRH-b?-;Xq4nGUZrbuC3zDeeqa<(ayJojTQL_?Vi)s} zrwU3Ysl!a^0T3l%(V5R9N{E^2GoCe|6eR>)nh&uMB?LlVq5J@11U&IHAR!YZ;41gW zfMSF|XepuPf2=WBbSg@Sg}UIWN<8-_@k0Vuj;e`RDKyup{mU$+;4mE#{DM z6ZQZ8$^ZTNpE_wOrls1|xSw@lo`eu~f34r;hzeBD!}ieHyPt}Qj_Q|~vr<5j<{R`@ z<*|!s$DFEfH3uyndb=}*Jh%L^&|EpjE5Z-eRi4yoCZOqKPD~vBm{-^x*34(@^(z&`&3hyrG(qVdnf_Z4{m0*I)D$y>kY#B?1yqaK84 zKcWwdE3MswPApDWbOO2fcS2OV!LT?X@<0IcpZy>@!~TnqZVCL~{WX~0|Hu9SI1T&{ zm!TEqFU~FNHTxKAiYzXKOns<-Zz1SXm*{N86+W6ySw>Na{1O4i1=FCi znbwpAc0$A)+&L|;F)>}a7T*cyeamj(+Z$$bi5C&S;miCRATrFUZ6=p^J#lS*ng1Z7 zTaKArVi5W5vHjUP2}nDh%`O3HW6JD;kHPqy*(H{xTL79}5>mZ4%q|J3_&N})06S;9 zh_D}!ZA1J@A8$-EXC?{fj!&I+1O%1{bygC)uvO-BM!5$XI0=RNAUq zA1eDft?U!oX+^zv_(IfDhd#J0R8uPqEi|fTB&X6gafRVCL?Zkk63Co|a<3VGL+r;# zo%!3PZL*a+Zr07~%P%GpnM*dv{d`ZM@F^z>S=(u1*_#la5iEF7b}4feTZPFYo}vbp z_?Tvkn5s)NA)Xe!EEA>wz=AgsKb7vY@L$Dr6-o!U*%XQCN|&aYK`yi$#tO+n3^KGB zPRM&-S!XE>h|<0m{;LU5fQg;~6GXh8;_$f-m>*)cIhev$GCnT*5O*_1ZM!4q!s_~u zLmlr|#AQ;MSJncJ6RKsGyM9nDbw1-;9csB9E_HAxXHY9&)OL-NpL5A@9)f2wLET+2R)Ff%@0xPX%lzuh2TV{Vm6HX6 zX}OH4tG5WX)`B^QQL-*%!D2ZP3OvyLWwDIu_NA+)ikF12QZ_$L_n6_sd(i|emA=gOr}l^p#gcn+t+Dh(o=Q}9bre?@~8F+U#rIjzJZf0zGl zWog96Qtl!rLk;dUj}K~aT%|)MamnE`Od|X_lkAn`D<+x0T{6j5|F|=W>L!9j3;P_?#1Vz(%~^wcqng`cN0&V9^wjx~P)CmGdbDLbq1L-|=8l zgbM|qp$Os6DPpfCUs1&T?UEw4s>Qtu@KvSRxpP?_H^_q`czQKOL=>cWT}$#j9QOWieHOh~uTHeDowO}tDO z@tE=(n=Wz;X5^VJatthw*&>JFwrSTCq=Wms*#d7%_lwygN2vrIn;JPvReG2$@WR~8 z4(+_NMeE*;En->Zp(O24LFJ;Xsu60aT>IR_eTbWnlIjq0sOUWkuHVc*E+!RL*<3v5 zQ)T6w;0q2d{hU1Z0OLR$zp3x!p<>!9+TbTy#VtaiIub)2jWa5#!bO75P=)a4RIyi! zuc%`Fc1aam#p3;5+V`s5(Bf>62URc=#8eTblw$dXH4&weeL%M$#wgwL+=7?|mJCl? z4r8`Hljojn$;=Vs|$a};vs;MI& z-Lt`B84xvSUc@m1qBusbn8_k$D~~bW*<=wAxiP|WT134kUJ)2*rKuxFM4>V!X(GuH zNoXdL9FcEfCdo0lDVa$iJlSf8l^`D`7L2(fmK>B5`!KQOD0Kuju_S~{dh=oJkZm_q z0d9p5N}H7<&aK(R5=&VZseDkK?LG*Jpv#8J{RzuJYUuo;b}RlFg|gM;oZ2l91-E~* z%>LNVSti!?yNH$)NrhHURncf^bR`$|G0_#mpQV)~V?T?*T_l8=HZ zD}xJ39IhXHhB$;jCyu?ad_^4dw{?xVCcV`%?!58q=j+0kwL!!i>zk-<$9R)R)X;Vt zJ(EY&vx+<*ofgg*<%<}BWi#t?nT=%GyfS|aXx5uj*Da9~VMApR1-U~`*2;_$Z~0R3 z6ielWkt~=OU>42`FnhKxz|15UU}lpGFuS=fz-+KwfSFt_z|1fgV5XT1Fq#$S6`UF93eG&V<8}k4mH5U(_rY%0lq<1o!AQ5c92c9vFrpzT-64l1gJY`5XoqYElEwAgBBOvP08iSNga$
)g_5JWaR-#PLHXd2$tmZG13W4VtNH8DZK)dq+WqZRCu?2`6T{gcCDe!W}w)w~!Q5 zr$JX*FYi>f*BTGJv6tMj#8B@Q4C$)?HQuJtV?4j+i*M6{)j9Ni zw~qSaJC`$Fn%M6z;=a~*GLwrbpRko)ggQ>o#@58mErVVoD zWZOsCsj1tsnVMz^shn&qeXxi|<*!UBsDni`>xap;7S5Qhnj$d$#!NIv=@6$yaw1ee zNEe8uF{YvfE1Z)oj8QhLv|+rEMKK`qc>`i8j0g3VDi*+i$RiCS)MOJ7d0NgceKYIC z#O%(iLX?E)i-!B7Q^oT8(&1;)iDy$+QvqJvhKq{MS{7wsagIH%$ZdQNh) zOe3*iaUt@}QE4H?n$k~T8I1){4JTyXG8z!&2Vq+?jReGr4Hf#&xwK2swn|L5qFgpp z;`0`vnJn^yzTi`sEOHEP^d^fOgS2U~$eF&xoi!A0Q^&-2dzqVAlGCbMi%n&ZipHoj z*m7Xa9eBA#MI#{99>nCakMbao%4aTx?XGJd)L6C2t1JPktnztI8(rMEWWJ-zc(FVC zxQE4Dv{DI(xMWd>5)k!@S)`5KA)j+eEakgmN{c#_oNiz6ReIVNiBV5g!GC;va*0bW zpWzbWhp7Sew_xt|?rh&@ftOc1~l;6JbXl8NTAdiAZ*4bGYqfECe?@E8dy;uVa;Kv~EvadU6pOBwr7nvcjwDdvRwul$%OFhgG@j@zs$y}hEyZK_` zRkn)vH(x+-m}qOlh;LCxN)tv5BL6;~W5&oqxDlEoVvuFkd#+H2csEs?RqwTD?J7B{ z-Ya{^_CVDAP?T)$FzV(1?XEHCM=&5@}>$T_k7 zECMF+pl+*V@r>!dc4@oia}Kji1PjDZoi#hHIH%jrV>3rgw~t4b#aNeiQ(Fw9epo5< z3*#an$~>-ouNcJpL)W0>3)LVdj`xS9sQUPAux4Q%S3dkjj1KXM)o0I&Nj(}R9iqZON`N-$;>P{1_{i}k|I$> z4`!BlPWKTvmn4KPxm(C17PcyPKg=FE3PUT0LLTH%O@bFHxya~BsZb2zt4=EM0|o2g zk1}=SQkRKy=;wnwI0`jX+)*X_=8lxEy5o1~=;uDGeTfFiV{TsIh%jO1okVRLd?1=sQ>o&sJi||mJ zC9{%LRU@o}F>yp;uYw^tbIavKsPz1xgOQ1wa#f4lldav zuKji93k><~tW%1mGS*a-h3{*r{9@T{kOZV}n>Jy@#C*xfNt%G!W8xKB#D_F{#6#=w zZT7&YUIf+iDfDBRJtjioe{72;56l!&Y4S*6sVpLs$AqY^6K8RAM-Eckrnw^rsmqbf z9SPy4dFblh9BECwu|*8?{m<(1EVD&?apl}G)rk74n8YhzoC?d63C}|=HNiV_*QfR> z_m;ui59+TkNI1&}ye0JR@B2BG?0`ormbz1h3jC_x8T>?4TA4Z7gMsf$6;|Zu_!1-* zmqEGObe_kuI6Oo)1J{R;V5m?80YUC3*xyhBc` zW((#8n8on|%&c+&W@fnnGof67nN=>pOf45+woWdW||8y)6E6gEp_V(&dhTK zXZpEob%YOj2% z^TNkVt1>r$v+=kK=mv{Qr1pVwe}_l)eev%_-M<+)R~F=J?I$C-PVyN>68@Z#_FDWE zBhBAxb=uU~iZ)LvX@eZShZmfL@?4tQ7Sah3CoxyUGRh)fZ0zQw2~lRoBIzq;s|PV- z(wsC$X-|(uaw2|+aBxVrG){;(>Gb$-$&9zNGdn+qGy{Tz zlo=@=sT-uQ=4PXSwAp7Sil@}KH3`Ka%)~SO3GHK`<|O1RA@J7iA}?%S_#mQ9Q!%Z649wNuf; zGPJ0k@;X)!iux&Yp2m;aBVVg-7p8uyq@(h>sG*(3b2DG^Gt_UIR5c)7$DIrSb= zY!MJOEbOGOoR_wdPg-{0sx3qwf!B!{A4%kaXO8Q!Z)1o&AT7-u7^0nGkd&$~5O)M* z$sHJker3n#G03VTF(B2({m|OGSL_R&G?C<>N<~}{Ns5b_wv#}qxeJn@>UN2eePVdU zRf<j+Te&kDBe!IBAH^=_fKC;_n9~F(NgXny( z9kTIF_n9`sM1inE@@IDtT4+(_oy||%QVINQm^Gw){qMaj%yJHddo!NEX)#`Jr?vOxDsmAZAEhZ#y!sglC%o9q`SJV2u81E+w{WQp69@>AfAHloNp_yk6x(IGipLGG~ z>dHn8Qz;K7o_tbWXL+dY{T7w#E=;Y}d2dx8A5T(Y3LSDoaX*c}@E{Ep=3AS#~-&FHXx;FTP}?`BbaO#Q@lYI(fR?gVBoxd5|RUVxcX zF2F3FbLFU#7R~to@3rYzGy~H2nwdx93-+a5=8*|m6a?6E0fZ?!CK3n&znY08M$zuj zS;aYucD&>?^9Tl^H^w{?Q)$6AkHjcnm7|zd@&~j4Hf=rX9_5%J#59tFtfKmW)Ma2M zj(rq4=}+PiQ+v;FQ-{xRJ_=qCY?sGh!W~+yQP1Nkm&UuO#`cfh$5ZLy$%BU`pRe@P z<+A~&PM_hXVy|%|9@kJlLp<}vm&CJI)31mp7Hvg5TS4bp4%zDl+0Xwvmv=7m4%rA$ z>9n0f76>JNFj8T8oi)Tx%EBSRqBW`0dB{Nnn_}NoS6!9k;WQ1M#!3 z*|v;E{j=(6I@q5ppbR-IlI3!a@t;XKV#Qze6R zX&svSFi^g@(1xn|n>G8^RyXFCM%ss9QDtJI{VT`pn-h<1JgM=Dj=qH`+rM$PMz~4f_6l1GSJtjcO7-A3Oa3+ za^dWXI(oCLZs)>dtKIFPs(X+{#ZGkDQ&&5|-`%@%rTd8EGL^t66M%M?xg*!9ick)1 zy>mz9B~U+AhgPk`OcwJ=ea5+29|@^q)S;q#7{$k_dF139Qe|Hk5g)4Qi;6DdVmlrq zOeDE%W2d|k$^QcY0RR6000960l%3g*EJ>1Ff2B|#5S_6{4yp^dWOLtVxW6@;4e)75 zOf{P1-&4ewaFwH$o)P!0Dkap-%~efIH?v><;eY*~pZ?+ZKOa9%*Pnm-?SKFA?|;*O z{LSV3^H2Zxc=_X>{^o!Dzd!u>w?F;)@Bi}qpFa-gpMU-3Plo@P@%o>?>3{w8*URVW zm*4&M*I$13rv>njCV>C+xZzL#7{5J!9P_t-SO%kkOu|ps&&x+b{>c+^{+KY=!|9%o zfBJ-+CdA`#Iw#_v0dYDXJ}wFQ=Y-r2k6S|i1t6E>;enz2OOE#RaX8&R%0EoezkPKPVL`hVhZ51*L0|4bq0!vmxJFKyx;n3ez92g_OcZ~TT$ zhyOb#<#0ZJ)_<7iAB$behG(VM*CJ%L%%7f+(*e``V=>Sogwy=?`8k7A|s++9zHGqn0gHPoM;>++En|D# nEnm>NrC-{=m9!ZJZ&q259BShp{qN#OZXn z1M+!z0AgjVkjuy6iU(O4W3;E^;SPPYI#w|sjfJd?74i5yeBzz0j1_XcQ0=XY74dmE zV)e8lR>b`>WQ>434wrLXKOoY&7$cV%?cvQO_%K`s%_Z@s*R}?jO9CQB!hD%aVqg*y z>oe5O%n~BchdWkEGfPfzyy*v7-aLa(c7aIqOp3hYJiF$fSz7G@75tBnERoe0)|lR4_f%~aNd-dM00%?c0JBfjr zb>i)A4Pw>_$mwvzvSQYWX_QxxyGrv+2ss}v0}m!=@raFynI(kilY=+REGgukix)(i zXF_D#Q%yV*vv|0E?7BQ=o%{i3V{&K`Ld~2UnuMIAs-rmf?bYPpV9qIq)-BJ36uKGolXmEt(4Nn-qVV!ak2LQA+ZFTvnss7Yujd0} z5|ghJ)1;+_FG!m{-kKdvtdr_k2#&1tc$0O6-)Ei04<5NU^|wdHq`X1$V4kdVyB4yX z!gE&68S-Qu+P`&khOD&1ov3N2BIMw5B{J<)i1hUWt*|bJ6tRCUR#wFr>`D7DsI+yl zN|BFr&49xoK30G5&=zqJAB&M`e}l)GYAWQYaMHltiFv$>Nvn}#VAjiuS3vEC)!SSX zklW$%s3HfUvv`r);f$x6c;ZDAH-Qur58m|y5ED-ftbJ`0PY4n53>=*JGEInyCxnQ2 zusE4`QV6{fQ%wlz8&e0%V%`o%uB0ZHl+u{PE=@`qc{GV=(VNX+CCj^U?LbCsQpH>k zWbBDQDnzk_wlLCWWwLZJXtO{NS8T7{`+x!uuZ#p`8Eeqsp{#XD@ ztV~fvKFIsS`k=F3Fz9|nCh-M7v=j!DBdSLe7IkhL2r|p(o6I8oKC^s&?a$QT4*eMq zW@DBI_dQnB8S-QnDzlkohRn>Or3PkYW~qpiwmHy2YiWg?op`A;j!$Hj4Ut+i@l^9n z3|)`q;$)qzViZLKpIJ#OLd3%Ti8nbFa(uMhjEN;6+T~-1X(g?Yn`QuGF_*+lpANUj zH*vJUcjwAZOw6OUUwEpyB*uPkylE~8h}I#j;O3IllKUW7hB@LVb+9Zx#^JsjkTJ7_ zNX4H9!LkbZY%gbK2_ZduU}lL~)XIky!pxFVxIdZPmXy+BE8Ytxgn6|oShhgs6|vjn z6fCP^v}TeMXtUbtkt}Jm%62e?H>F;3dK+(ScDlMI&7q^2$~D%#wPut%M*Jt;0E=&HM9*MR< z@!JuxOoQ11Wmg)6h-HCnfik?ih-HDyilLA$78NOJAQYwIHcCnw5D`nE=E-{!mn1~{ z&z_OV(b_r2o?A*9Vm=PH&Lx2mm(atK9_Aa#^GOvFl?38=ZfSn$VLSu^@AoxNCSN%}vSs}PmoIgPV68(qAV zZh@wf5TpGAm#}K3dnxE@s(ZLvXOOv~Yset=x1X?aD`(2aJX$q9*x&!G zmzyfm+RAUuoFQv%3{&w|%!*J#pAiA;WQANVL;46QN>KEWSB_Rh#p)nyVHG2n6O&^7 ztB8kq3e#f!!yC~VvjSF#GA;~AS@kO9em(F5S@U8n%HZ`ZenOP|ZZ%-}g;eIyosWDW z%|9TfjCdg}_Td$P`s9fuUJ<$OiX=pvUqDP5@l<8t@E}u0e2ng0nlkV)E|6l%2uMo? zPLvT3>ScTWw21(`>a9Z!071 z_TB?yrjh!-3c+!}W{{lwQPeAE?a{vv4YvoL9q3xceCdDW+}&KguoHN8)+9!z;NYk_ zEJrUh<`*%6-$RJeV!Eb-ZEuF^9~MCx_4twl>a? z)de|69WU1+t7gTYw8PIe&x#om6_QAV^%63;1-4$s$W2V;t zBQZ(xd%w%i=MS&}HqE5Kw&Ivr5;BT%t&o{YE{fajRkTcwN)@V&#J9=$7{yf^aB?QC zxd*l#0ShtuYFuGAb6z80ZK1B_{GE@ozU3ayeDey4j+KoPe~L;pET6yeJy?E$5`nR=;K1Ntvz8*tC-nRx3KWvO@Nw zH`Rjombz-kd$?-MdpNVr3l`yg{!6$Q&DxzWFUfn+uw9M(+C*2|{*HTInV4$WuW`@i zP3{qXpL;G-Kx@c7^|zy#naA?*E4!{y(4XzLc<+xT^dE+(YW-$d|#jRqrgy-UGjje!(o`dz-${ItFuLddB(+WBE zLMv-%h1?Ys-Yf6&E-COmc3~xru`6)4SA=FNs`&G}JO(AUyzUUJ8i(@+g1@8=9m7-y87k7$t=9KR3t_!rX{y zDW+X9ns8(I1Ctbf!0M&V%AaYQ^RCrSzEKsbZ@*h@>B6%Zg?yt{OGjJR_LJFg+WM_S zHd|kOBe;{ab5*Uj!U~%DpiY6NuC~lk=4P3s#T8QBWv>8;c~Q)*wRh6K-Q34Y0vh;H z&g%0~bbj7!A9bFU73|R?>6k^q@2vv2l?aZ1N zLT)X5Z_TR^MYb+scmp>mhVG(ee0{58l_|=BX<890LS6&-#CjNS=OW4;af_k%+EG(Z zg{YP+4I27pm8|%?mPZ6BtdRi`bMN_3rkslZf^zV#c&Hf%ugdaylT1M5x8!`8V*;V} z2-vnsCLmhQdUs4ynAkhvLz;0Ql8JGXOh9_t#w3#v23IGNNeEL_E-Xu>YW4Q+hXG{h z`z#MyLvF3pp607!8?qDa_aa3i$iEpG5v6k zDSNX(zRupn+}#wg9+Z#8cy+P}Ux|jQun$i;nG*i_+9j(&?r@{#8;8K0h2Q6nxru-1 zywu+g17~yB=v*>ze%$%BOdm7k>Ai4AVg1W4U?Qx3(Qe%9!K{51;zrnBejE_d2ew$b z23Zwj=qdo{EiWNbI|q11W{)~9<^P$vH+{t0xpThL2ikLKf2NNLxt-c6I99~ybXN1@ zcL|%occ;dTQ6Vm|8&s3U>nZa)2$;p|^_ELhMnFUvgMe8;RHiv700@XO5E!ldx&*Y~ zUV1V)AN5IU8EkdOwBcLNY?(nqOmB?Y%=XzenSRlrSwAO1F<-9XG-IC)1vjFY@z;E^ zjD7J%G*5gG&G;hs3J;bJ<8sQeB$=Xclbp3eLk6c^@n^?f6I8UwQ+9s zT@uPgOR4koK>Ti*n#S?H|pl$|&@XmX}8CUCk=$ zn_SEbFe~E=Fh{~(fLSSDfLSqLfY~c~0cL7>0p=Lk3ov^nFThMQFTm`cya2O{@&e41 z^8(CF^8(Cl^8##2*t~)>)4YPS!}1DlvvTFAcWP<9b6n(opSF4B!PVlwOWV96&s_8h z&V=*|?!^^g@@-y`_u?8brEOlC=ogoPslxe{0e-&_kg43?`3_T6#kp`(ZN*-?twxn< zp>%`eFZJ7!w;5B_3|TxMaRcbXELB@pd&`G)Ho9PYwAH(&=*aC=1=iFGQN0&iC9I?| zTE)s3#Ik~hm=-7XHmM@y?U3ZHl_5mu%j_MqX^INGYJkAg*2@aH%1^--)znlW3a)WW zZEcK?q2mM*PckJ{h${F7XO{8xu355_I|%bqyq-Fcu;DW&#iR~1G9g4>7=~^ts*v7M zZWe-&-p~&j{J7?xDnp(ueFghAsYEyKfoH?qdS!ZT#N^wgly=gYc_uzqZ^bvoERePB zl08>bnk8p{7#*t+MaNhW?h|41BVtoe6IEyoh|NOZ@N3p#?eSeT+C5yg+&x^e*r%U! zjj-z|h*l?1J(&Ba*wCDHa18Z~<{U-Rs=pmZ)aK67*#)|M z9C@s*m3D?~yaHV@uhjli<-D+DnpY}99hSGfb04g}6|a^WdP~;eXnIuuYLJkLp{oXf z$t06Z6{9%bpa`HM+){%Hu&P#wPyHMe0mN{1xMW(KX{92rW~zi(4`ZT5nvh~WtdM)8 z1*cwC(@J~{g%JlWHFzQBZp|d|LW*q-m?R)dstyt_m=;!#n@R$r;^{%+B_Ptky$({l zHV{eTFtwy!@L<%*qX{XEN~gq2LfV3FKPDlg9-8GQ0Z)*w$S?Z?heQM3A_ zOOKsS%n~}-4#J+wnJc7sk4?2@m>A~CX_-1lvQeSAB*nBO&}N&*IcGgM)N+-v@P`g{ zGB)KLdnZphpdP1PBEMgnQ8?kN7Eh7k;Md9#h*_+17Oz#Wn!28rK}7-SmET2Xd6 zo_Hp*lyiYR8HBqh>E;4?9(ai_AO;D9ID2sNSU?m%8x)QOM28tO6RLerj@E@^FiELq zh*1{5=V1czI3Bp~lwtwJK z^26;IOxmux)wjJ8NyHtSZ@3{B;rB`8>rVdottKRG%o;hjk1lS=`N2G?HFAbLNrcTT zCXwjGRf8ZthV`*RR6fC6mesLBe4PZ=A*&-EM4~Z^#Bg1L*4r;bj6yM(7b{?Wkm`?t zu>M6ucCV(f{>5nJ>%*_G_EpHBTiVJOozQY{^CMdI0-^F1ys6ud>{s>lv3fW@Vq&5Lr4+b^!9y9;nvaQ04b~?m#+auXn9(Nu~N$6 z#(<5+Wj-4z>2R4SLJ3v5!`Y^3D)czW(Brd?u5no*%h8mB?oe8%PI=*@ zXr1yl+DSdMPsK~N874KjpYt7RsJXQZXTq8}Pxga#*Ve)M+d;i>{Qbi3X$_p4PZwTL zWT}Uz7RcHu$ykQ9FM6DN1A&z<`i&LK=uPfy_2F72)w`2@APQJq!!WU-(U%;w4SG5fpqyARN?o7;GoO@NmzRhxL zGLaEtf~=3|FYbMefzVRU9Iv$z-OxN@-P%|o$`n%_t&K5S9Us&SgF}jTBUn|uU#ZV| zs5b?#Y+a03?l&@87vqI|i%LslUw(no7(K@kXsie2O$Jka=~JMsYc&E%x&bCjX&6={h*1iq?2-%HYfe-l>&2 zZ`QbSL-U&KKg9g@Xs4^H@=LZYj5|gG($jPkH^l7SR7EnV@y(ag5#PPWH$Rk=bHoPu zG0Q4MHgFTM_Tz}v~rUNxrr*po#gqot$G#Vswr%eta>q8og&{`4EfI7YI#!< z4^k2Y4>A=5L`I2eF%<-)_gR<jMHvq%GXu(-yCah>pC394{+6CMLj3Gkv=mnhE$ zw**g2u!#Ax*JFLovj%GSv3acct7ygFVuT)4o!gO*mfZ)b|vEy>ig-Lm4IBaSL$MPuu|)T&t1x!1VzY);{JozrX61~5DaX>&-GS%@ zY37v}mx~5_zB?d2$6{Uyh-$6y@yshRmKH-XuRsX3)x45I@cm6BAwxvcQx_>>R0mZN zqEW6N_DCv30jyExA|dT~5K~7&S_t3KsT|Abc9Rvd)8$-+i9IDM;cOz9*h}yqfl`3s?&`EFNsA9$^W93Y$IXAr8;H_2;r(}mPjFN$}>%b5S?^@S9a*CLd1)BV|y4eDc@cBZq}$j=&Ck390?)y zm^2d6R(q314vZgbN@*;Rl{AJajVeZkN?5&Vrm9wLr$Nz92WKPFPW3TZ#I@P!S`o!| zpec@3hpWaA-jp$AH1NsxPh_T@ev#jZsdPsQ$4^W3GD8eaRck`?6U`d&lC`RWtl|E_ zcUVLCeb$&&Wf;n;zttFfx_fSBTxjDqy2Ru%Lw0GSwnX;gd+THLw`#%12GQym5M7Cc z(OMm&cU1+-`99Xh7_2t|Fb=aum7*L6hT=_2w9#rP5MuSK5cPsEvS!DkLbOih$*Y4p z+KQKBF^X8lz!cyaR7?e=Uj<^$h_Q>}_Kv1BfdsyHPMAOd;r`47QXzh5emoOM2$3&} zwci91bJU_JCJ+cAf15yJidw+V1TrI*wy#z?J%y;M5G@-d1jm>G;a=06k&sq#WX`CN zD9WE&GAGVhAZv`O1y;PZt77D#k4mIsFgnMQ1E!Vg^a8Gyv{KcijLK-^BlW}vt<+}~ z@=3JQoff!xqBg7jx}9&GrDY}uwXmj)b@boGs9wRDI`(no4|grT!ym%$^T%?*`^f94 zza6GR<`&A8KdyA9?RLzNCx5W-$huh@F?)59`6IemwcHNEQ~`Ok=%O{VLez)JG_DCG zMyrDtag9$dTGrESBIS0?T3QiuI!MFT%MjA<`ZJqUh{&P0fafgAeD^x_ysL?E`OfPe zrV5D0H7LK0p=(9hJGRzj5_rX|;P#kI0-|jDpsFf0h6s}hp2K=ilS#at3Jl`(J&eoL z5+ZwxsHr7Ie&(f7gB<&ee-ceg9oRXkGQ~8E`I~7fM0YJS>Sd-$DXrDQOp{XB)G{&6 z0$C3sY29eF=E0_$=B$3)TV(S_w3GAN9!ula9(|M=i4WLwFf?bkYVQWyXx*ac$L{(1 zv~~S}yjE;|o@F1>0uRq56d#K(OY`mCn5Axgl3 zw0aT?ouri^M$LY(5UF7xlnY_ukQ6Tu-gsOFgv8mV}s1$bzs{pJCe zYsK*OH5gFataMF>5J4MNieePy!c;bnDpvYs8hw?qki(z{MeL9tWYC~NGu6#+?N|X3 z1ZJizwj>C5J-*?UT!r5!h}owY5=8y&h#=+;%=KvA)1~Lm{rGxO2xBc)zuL#CEC!ZB zYhQGFDr%0U(8^aKKK>tyW917-zi7b97o$~;7IOtwzbZx)fknp@Q4wn5V2sAf7frqQ z78^4~1f*YSZ{>>zeRJ2Y6*2JrN)qc~Ktw6MJv;~Y0$;?7s2XL!7kF2usT9?Ur;0B! zZryu5a+C_p_Yy6LyzKfACX*PYdS-f8AVgA^74cdSnWH*s=V`${-!r!6d@c>TrH^UO_kI;S%~{1V+;wl}{7jjU zb7{@mH@4TKJ!@;p2xPJ6ugN5)QEic}5r_7CR1N(gMM5PU-8mH)^}}u}D#^tCi0_bz z@cU%4^pFoiT-W;B!8z~#`?J`0e8}Mf`SzUm1-CjKG<_>zw8Qq#ZWRoO@0H4(vsEy< zcYPae%ad$Fwio7e`9W{i!74@tSU^|ct660g zy8|<`ya2N|@&e3G$O|wcFDBzTj~D*~&j@5!t7zK5$uzlSsVyfVIO{d@B28nB0}3&9?) ztOolNZB}~aMP6J7d<)4p@<>tcXMBgEgx{yArD=UcQT4Z@EX;LouG~9_cY$nK80;3T zxwS>p$Dk%_SZAY&Q~jbn3zHDh)4<`0)?d*Rq*zI3$l8=5dcq#b3R=aC>8T<_Pt2BE zD=S3w#0{$zvO@Z8a@NFnjw=dk1@Rz07I`_6bQ(i)ySu*LsR3)Ir4MN8<=qNOYx|p zDPEQu(N4J9Ecof;aAY*#vs{neB#@~lKSVpoakJ;I6Z|>HSLMp+=+dCIIc{hAnpQ$x z_00!O@Az0HYehD3i{?9QBK$s^EKTntHmScIMbGAT(S=Nox)Y*xo?K_hlT290Xg#gH zt3B3aGKrpE6?niRtcuY9t0KSN_8t&9%Cs4)VvJU2<BX~y{5g6IKPIDZvn(?62sN89#}lg zCIRW~7iN%g^Jvqk|W7E)_Lvu|k@z3W>OFFo%Su>qLS+wf=U*A#>N|dL-|WwFlP68M1Ona*TB`J6&1fV^xd}RrNK1 zsH}<6C9JH-z#9pOFYm6KcYHLfWsF;FGB`yg9;+=Eo@%YEPaW5U1;pt&tPLiRDn;Qp zER-boeq8KqVROXL>$XW*p7eE-?G=HRCuy1~{jBpeaz|3f+ewKIedW{-Q!eoV`#E7IlM2yJ zvNhh&Y<;B37k6$v3yxQzUngLer!Luic|r6eXvMw`gvHx5WA&(vj%18ijPq8>C2oOy zhf9Qia>Sju|B%~cbJ{# z+zj~+e+a+NAInAUBmStr9q~uXhQU|?=g!S1e;mK%kJ{>~ojIck_D!OlRS}8-fdoVW zr2&BiM5ST)Y<5Rt@apvCB5P%g@itG|s#p=?3Gnhyu zU$7k!xmoT`PGpg>_#pi@R3G`6pSj=t>?0qk+l}sNuDcxKuE=*dq*e?JeUK&eIpUD| z+YyJ%9h&Q@@K*-^t&TI~$s#-{(0)gBy^7AUQdt?J*;f^Y1Kx-(-F|m~RWYRWMqcwq z3|D8s@jyB&V|MA%>ojjv#G^-yt$iWHc2OOE?0HNgfmfCR=4e%{kb7?)u_ngARDv9f z(!dYFi!fkmKO`o#hm}ksG4^jf0y7Hm{Mu%efcV^Bhx-~`lXs;MtExN+7@lkffI<>PZAga)mX$lJl3CY~x(>p!`PCfy5y zrhr(?r7GUqb(gg2lS0#@?0hJg2n;htyH=Icw(@~pZg2L_8^6mg0!+8A57;GsJ8)(o z8;gjxKGR^I{qx#_rx}0&q?*eQmVJk=>gbM5K+cM%Ly9yrAzF<0>H(#uf!BV4i>lNV zZzAWu*AeI7TRLBQ83;wkxCfVBrjYKpiEB7X+?`1)19ErAT6J6Sp+r21R|v5e66e_E z2u1m450&MlD&Ph(7Y*f$s3fJ+P(rlJ#MVPJ#OYw|i)e@sV)RDLlMvMu;QNYt_-Pm- z5!+A-$0D|&mJHJMIdwhJE`9-o*CPB7qX5!6+U310kS#hkNY}4omaIy*Nk_-xS%ZUu zMJYKPm3}bwLc{g7q+BU!ta4x4+0C1^uI@{Nh(>b6{g4NT#Q0W&yh=bsBZL%lU4ml$ z)H?^oa&~le&>%5S{bP-TXe1yC8*Ic!8gaYk8&1ki_%_uKXXNJ~ zD7HYJPRbw|zd)9c-VZ3Z4%WV7aR>GV*1$lh&At~32ShFO5MuS4g)DtD7& z(+RisMW?#d2CJjVA{w^EC%Lh(@&%&TMqBkNM46G@h22~ccwIHSmwB;H242on&&=m2 zwNcy)8JRfZt$L%nB4SM&@F7hcRf-ynA_6ctuO&q)d7QIt5{Ys3t1C?+0Z~u{ORh-- zQn-AXL;}*oJaSo}VC^UplSt}dJEqGdl918uiVI{T5iVWc2rgotsrhzbu}P#pOXvD? z*G>ag`uQ>NOE`V)yhoEr*p^a|do^}WxM0HDE}s^y8sfHu)20U}CDW#R1A!froK1z? z_Zwbl<8Hhkr0w$+6@1`#q%FtMXyh07RKCM6!te9TysqCz{8E2A3WD9{2G6w-<;FL& zg3gdFb&r>~daiAvc9-Pu@<=PIXN8zwpq?g}fLP0Sf|=ITivPkl+`WT$Wlaz-dScs} z*v<(in%Ks~wr$%J+nI@NJCliR8xz}jXTE#iy?5Pz;H~v~t(?7UcURS~s`k!CcXdbB zReV}LmU3HLb;7}oTWNu{XV$6v6-D?-6*jTw{)`>oOh%9Q-rC5rEyv6;_4(lkk2sEx zFOs&#YLJyaTYXHGj_WPJyakC7kNwHnBWSp+WHLlS@=n3wEG^hbeX*dIEW9JRbHu_YbV7!kx0cG0Wo8u8!}a{ zxmvlNsFp7dnrXlH7dSQg2%g;!AiG>>w$@whBCUi~kMmqI`dk?ULU9A`>29IL&k zCdHqcr#F&Cu`$abkvVZtHvxG`tI`dTJZKDu%AwH-Y03Ontgt>U0jH&KMh6d9I8;Sm z6Nc|-<$8;oIB%^{Ww3#|AZ91N2gA(8Dgm&wXJm(`vq8nkM(jsl3r+R{`>MY;Zvhq% zI&40<3B9Tgaa@y{e*Z!x|3Ui@gBiyY#a&Y`P+MS*@VYZ@_T++*kOeW)pO!u#eQ$Rj?v5SOBZihru5y#+HTD&{9CJg z?MBT!tx1ktwY5o%d&XYY^lM+xV~-}xq7R%_HQUt^f611ZVPn){u88x3{8tm~n(+DE zj}iA$u_s@vjJ3n?`F}&A)KjU}X_=k5^-BlUrt#|QWFAnEvePV3Q}*~ID@DC)aq~;A z(uO8^iub)0c3^~&d49}C;Tsd<#DwB5eC`S@&hcoq(eQEfMd4po77;L;1i?x694%Vm zBmFst7e6&6c|oIB8w;R;z}2+w%yD|M#owvP5;Hp9S`V_6hx3Wn%TNX<9sA=0+Wh=x zd=*LyrL6I3Bi%QRx6;^yjygC{*S@L`Cwa=oQlcs<&}Fxq9MZ_w!c9q96*%}YinwyG zj!hfgGt1~8{cB$0zJpc=D)kp0d*_;dWCk9lc$P9t-#PxygmPYTe|`dOQB(pW7jsN8 zT~6R*o#x3>=-{a_w(#Fa30dxB56ZmRMimksH2B6gUFd0s7AjYB_~#A#&)X^gk1^tp zr!;|&mrt<&HCo>$egZy75K~;=G#zGmJkml@=miW8sZ8#?xHC49$0_IPo&d^v=Inyo z+*P0lEV(wg{bEF=OPgq#5$U~#5>`x*JWXOHis!Qr*w+w3zQ@||gt1pPk%!l_{FZW^ zHL-;k_t1<=Br8=($w8SFb^FS5$4g3zMpMyD&4Fnacwi&~r&gbBU)4TRP3uWh^&O}J zM+QSU@~co$ddi@9R0;7rJ=_f)3eBH3-isYXczs{E`~j5z(hMK~iZT$8m;h)1EQlrr zYyz!6hQI-UJ177E7j(qKhS}ZT$=cb%)YQe9`M(W2lZUNMc9L9N77J?FWy%XN!&YBB zKu&Quib>Pe{`izzfHeG3#@6xJT76ytx@E6M1R30{raZ5GS6(n2^y~U|-9`H~UA+uxp zZrZSzRn0lB#%(~yK5%J|s%n`cimkZq>^LKS%^SDavM^vYA}4Gzj}#m8ak1Of>H&ZK>a^^X;P1@>qwiwwArezJty zlWJ}wRT}Qiu;A8VbioveJr!E)9;C?%b!5-;lcGiA zJ^JDIo`>6k|M-8Vm?X#{2eF`v*9dz7UPR!eSE;BNI>l8897%DD^EWrk5YTMNm@;Kc z<{lI6F&j6-|3F*MPwO`bVaT(!E+f~L*L6Eu>iV{FeaXHIqGDiURya%JHj!=F)u7mT?Spb zpd6e3`{eJ#LG6}@0RaAx000>OHHv zN4dE@Ws|f)VUm+f*wlQcqy}V5>?FVdr{um@rYS5+6Sn71o)v^Z>bi@AqiFm~JVQOP zOkQIz#uT?^-?0vn5~_>_I8T&C5KeDR%LONQy5D1s&>_-^Z{wr}cFk z+K9^ILYMMY{cFRB5!<)L5Nd>Izv&Ew=a`k4pDyKN>T3@y$(-vcw%l1Oib^@PhB1XU zS-H2ZVwvX zb1uL4$JO84@E(5uyW{5p{ra{hIvG0{N)?rhg*g4s_jjC4{hp7jlWVTO^VHY45SM1H*n6Uh0^ zBK$j15bfBl^kQrnTu+q}#U0j>zc*>kB67O2Fe0FkgLFdF4l~=^;`SdSvm}zFC!?I*}NniVl&8 zgC%~pUD?{my9?Bs;D|X&5hnvmWu`_EqlmG7Q<9L?n~6=^nt@X51%4kBazhXf7QcwH zgFj;yOiE|U+@h=;MBULQ`)p4BeG*jF%oL(tQM9)&#tb1chdkl;_(DDKh%RdzPoL6NNhkyG~A(M(FxCcw&_{6R7it>vPD%P{Ex4<>`znhV@ zLhV~+CR0bem`)Pab;e|L5#zW7)kd4H@-;6vO+*5Dd2Y*6Ry%N2Tw?yX^(hpC5zt1)RGfgbFUZizOgQYipyiT^QHMe&R^1!BvMB6HS#uwd? z*8O^rt?HE%i!8Uz0e(QdA3aCA1a-`k*wG_(`U6(eJk1OH!bjJE-p{^a$UuLS|GXO# z&&LXnsfYo{q!nn1J08HZ*kWOM96W4`bsdBYtqO&i5hfoQW0f>!bjDP}PiBaFB>~Ga zz!Z&`fh2J*Dl6@do>s1wc22xR}O#kM!dv3CVZJ{G)w|>Sr#vNGlfNmq7*T(s&(&~mMm23CpZkURP zQy(sx%%hVeKMKv7knWxQn^B+9KLv?>hVZ8?y?OxZH?6%)L3-jWM^qQyVGp)Ga?7v{ zT%}xj;=mo1YKM>V!7ZXniWS2CF5(|?T@XA+Txf+F8qD-Cv5^7M!A>U=tbtjzSP2Ku z?z;w~7E7H`v)swCpaa{DBeL()m75W?3_|#B{NDz&H_#79B0CKaSJ1^RnBmv*P1;iAIw1 z+BBN4Y3pVcYSzS01KB12Yx-=FCseOW`x41(qjrXn@2ZO&33+wFPVtlrzR9UY8`g@_ z)bE#ODNKqqZ)pp`d;U8Ky|KXot*=Qp;L)n1`F}h)|KGP?5)+E-3nTzwBme*aZT>xb zI=gt?0( z;k`wm2i)Z-497S9@f%yL+k2A(#@?Uj+~=T!fT)wDmB2D@K4BO7)L{>*#{JhP-`d`@ zB=>LmTE{mQhfDFx3&Xp)cl}Q%?}#nm$J4CSKkxyt$nL*dzHV;GQib1VbvPsE^>-2U za;>qfagjS zZ}1~|TM ztK%XRMZh{rqM4j(&dxjLeTa!X*<(le3Bkq|^iWP$G|DIsAN2Kx<_v&*Tmhno{cb}z)2QCcAC2^d!Z-t+H2lk7}0Ip$CmJ| zZq?cP^sQb(n?N|NY+P^Y_&zZY!^ZCuIj}mWW2jLTqu{@m z(mE1sgMqW?r(b3fRZOB&;GgJhMe`?)hAUSFzXELra^VhQ>cmFBDPN!#7)E27A_%`4 zK6tP?MoFj*>7GO+DYE2~%P)jM$X8tK*C;M^zrt_W4sV*<&-fQmeMw!5;{26GVoD)Q{!>I|N!(ak*r2H!!U zJw#vi>`F(jyI^x3xiwbpZOk^(BV$mGj$c%u%D%q@c7iqa2pTw^ZhQ@)eqmpr@neIg zb|*OT)ljY1nhgCGkTcQCs`V*O2ZOAv!(v!tK!*&li)Lh@VuL zrll5N=&S-(AFMb5(Y=AtUTRjEZTC`zqsx#(N)NO1+i9SnQCS)) z+lm-nFh0oPR<1B3Qfcp!DXdd|3MQ)2!c$nLs2-E)=<_HS&o)Ubkw{fwLM1lxV4MY- z{~xrpm1CeWmYEBMw?P!RlvWWmvU*!vc6>)1h=jzioGTcF3jKTnvVXUJ>~h(^ zSFPHiV~Q9K51=nk8QD$Bx|(Udu$PrW6>PQnk3z!QlEvdVp}WoS(bhKyU&k-%*fzY|fPe5%)K> zX)LR)tDlP+l<*B`(5?o zMpUP%=xl3vzO#m-+i)#3IwlO1ZusQN(~*}>#EJvr6beR?Szo+rjqcWGl;y=|v!|JD zChD+)w$%aoJVt9Gs=CZ>9t(NuM~2DF2u!@jhKSd>NL0ht>!p5d2M$;L$f!n8kj~&} z%~K=AU;pdpzDK=aBFu=vBK@B%ZcCa<%YrDCW0fYt1lM!7Xm73CjnWY$)OMaekOI}l zRsASV2~or`GEw}3B|J$mr2(8LR9>Q56fWO^@Pcq`Gy%v4;$Z0|i17K^DM|onEk(dS zyT+izpFnX>U~M2c;O&SIN>uYbZ$wbBPRVizjV2UmLBl}Rl%x?moe zyb2Y}$6^*tRF{=hq2l&=7E+j7H@_erwl#1}gYv)`tOPMm0uQR4Y=r{AT`v`n>BljO zJ*_>09b5=2yGD)?l$8@QEE+)-7#W8{5y%Nmr8j~Gfx)~VPqHO&QvXJ7idg$ww%L5z zlv}b~IPsF$Rr4c(6Z#ohIqiUi);RuuADE5L6U4uH|3x|`pnRSL6l1>^JH<~JfyZv= z&T6zOV>8bFx|JnQ+vz*_m#ouEm{(<`(D9-ML#TK5IRtAxCyw56R-y1Q+jp1D5~<4qC-(aj8uzRD zqiDcRRFXJ2!766P&+_34%2JG*ux1~Q8!DA*tR`p+o?#w(s<1Tv!EVPdQduE+<1*~{ zyi_!v0xc+KqJQ5PVmga}ocE2GnPt^|x*4y*MRyQ+Qxgauj!WM9xr;3JH)u zEF4SEyZ_Q*2JmCJ4ZAG$*2Xv>!Qw&_9|%_xDXA{Wb>1NF>h0RXHV_s%MyVL|E|nJ7 z_a#%MZ(e=9H|f1c$FBCUl#{}z34ts^2}KfWn>3S-+EE7EsZsF)Li&BpqJLOShj@@` z{U)zu9VX_T+0GrS7b|XJG%lx+ik+v8hq2RIq(y`!%BH3tzJOSbZmdcaQWcuHz?1_n zrn0%7v7I_!E0Hq4f*X>gNU$#L8G6hTmfj%RCXaP+7RHDTQy3|5B7-KYw`vOYyEe#h z?t}^JsHx~zCzP;M@6sPw4!`61!%CRN^yMpRV%zg%E%>YG;`MU>ZfXkR{=ep_ok96w z%SuyrBew9kX}hyMPAl3|Oet~;4cepUp5l=HDP%Wp$dHyYeFqC8 zO0_AIA#rAsm>w^XI6pI-`kMZNk1JgB;EF@~|70DKdR#!l$o+z1?tLx{JtT6SXCIO5 zRo7Mce0q)Qz4nNfOFH>LyPBBx&A3H`lq$Ct#U;UO>?gaIse~gd6rH)9*woDKZd`#k zhAYh||4}s7?Sdg^RC^bG zi}%X3qYiLLTcw9!R8B$qzf8iIIXy^UuZIyZZv=ar(uG|T!FdU^Ucs9h-O0NK*rn9W zeInX_Dt^(bHyZ9rCv_pg!9hNfVNG}a)q1c?hf_SS%oot~pw*f8EM+lyx53eg|k;E*9>T;=z-_2ox70`>+{o$f6Gd}vko<$ zIo1neEwj;vs>nR&4b^g$%gZ+HnEe-sa%iI!WNRCGLC0oc@G17Ns;M z);MLb6Lhzo*E+LXei_0+MCK=wPUyLNq!tNVdf8E=h*sZ+qi#I~f6!Dk->aqG+wWk* z^cjTDmMZ^{!=p#BzBA*N&|vH#8bO}wF3QXLH7v;X+NNsQ#qsab-!G_}Q2J@>^1=o{I?8rJ2T5@Xx!m97 zG=;7v!Rq$F253<7OXfD+!KsmdxkEi(A8czBX=iVLd zz@$O&hZ0}6ci%V=3#D4<6r73}vGUzAJD1Fuju@#@W$-OBJaek=Bi%aUz6iJ7Q}FE! zYHJ)@F@={C zoJe!1HPn67*8Vw6>Lz4%wdUa57E`2O(^z(XFMzf>JKXy#yO(|Pvcy`fDjzFHXT;j9 z>%o41Ht3+^dgy@b9}Hva7zk@f?u5KM{_5EORD%KawH}YlnKRewE14-gcN+#>%0$`M zuB2tj7<(Uu?up4Um}|TBD(AbsqqngRrRzt55uvO6gS%?|&PzjC!Sx?eJtGJmeS3mc z@YUBx5ZSB9Jt@Zffpz?h=Fvmc+AtW}lS9QjT6>{QK7`tbR?kls%&NM&?_gwW&wV@4 zdNCh?Et8joC{sx=BwR4Wn{vcOGI(x|PVi=*9n~n?v=*N`@pRNKZG( zOpnLG_VIPzc>4Gsb07WRFNTmQO8e`e-iRxG008rUz8G2cNxHwtbng92Gc&0Pr zL?Dsb&D(z&-!~Qyk4{h)YNbg;At~J`8ATo+8_x@xN=y))ra}>JNf@5*nS;mZ5X>iU zFZ+-EE_KG`XG6JSsen)rI@U(`H5oyZ320U%>+YA+BdOAAxok+z7sILziz-?Sq%)QX zae+!*Jwn?q4Hc>KUj@jvCVm=O87Aj7H9emf-xCYrFU3bttoPV+x@|a<`j%x~W@}Y2 zb|zDPQ1c8;7d-Q`lc# zEnL=H9_IAtub&TS7fIsl#G`z3&EHY!b*aR2po5o@;bLI3&iMc`+% zvT67oWBXNA${{-Rm(46!UB5Pl$Y)x_J+mN74(N+6j|^KpG9ntHTr!oFZ?{8Te5TRP zjT6yX3ls^QV<_O)hX-$Xjo%q<3x?}lq0Q&;8 z^02SF`RU&@#txA&Cf`TAjhy9WpOxLmZa>H$I6-3h8`$yBEb|twO}jkN4Dm_vcLQCh zI^rT%Y9&Qx@hU9Dn?&V{YToJ&mm6;dL|MmC8dohqy*!c|p8;Q0AIms{Q70>+bj^;sYibQ(XvfGZl?!v@xrq_^)l>X<6yD2@ms&nNp$X}D9N4jdr96;h>WpfahCHT)C%l(C|L zBgB>>bhiP-qo4{Tz*#}t<81$ql8PN7%4vAu%9?G~r3h`#;oEj>h~eO4blax;QB&<~TpBwoxpi zbQE&+>zlMh>-%#bur@Wv&~0Yw1%MHyUXOM&oe*RwidD*!A*+qP-0p*GP|UDSL19DL z{Fh7e2B-%~lNYNd62FVCC8-#SHOxTzP$7C4&WNmH$9Taxp;Jqanc?pgDG zkcvZn$+Mb`UnyhB#z;fpFcQ9v32l2Avmp1A)^lxPV#fm`zF*TeZKBv%Nc0JYXAL`M z(!#<-+)v9FOk}BJFCE6&+mw@t-2-qMeL^sQ$8inI$Keo_kxfW&`xa`6 zOn$@BbUXar9>(1;gDn7CfW5h<%s8fv@KY$AG$(IUaD=fKFQFk^MfuE^QjqDFLPD3O zE(BA6U{p79|HLxc*2P0uKOC)@L4Ov5sv=&->o-P`yQqozKhwdkK8~bDCiy4PM!)$v z&lm_uQYdE4yKIDcl6wO~$1r9UbrdU{=Txub(^w|5>9cQie*~Xo@l5oyFK1p_nF1S= zQ4X!IbK#L`_@36sT6t&OSz~`F=_6s)D6%*zpObaYdHBlEcz1 z?&_sx0UXj#@y=4NI{K1<-HSq{uLYL#OVz2fK7)P1E&SJ`x?&uFNOev{EMX1~A#T^N z;tR=94oT32HHTp@A02xaN)Q)z*5(y+Ry`K$x`iR>+#P!8T+T;e=g#BVM6Q=55MDHa~g9>GHlg5>cp@%JGRU#=UZk zzB+!ds>2>sVd)!s{}HsL^jg^2k7vCKiKxgXfn7iox9f%N=u0FJKCzSCmARd5$SIk0 z=&)Gg|M_eE+b5m-JZ?!6k`h(-^gCj4(&%|ob6?IkZ*%!ii7%gai&M_4aw4=F~_;z`s;c<{sJ!^7&V zDa`aJDv=mqH5^lMW3jn2l^+j;!_Egpy|}L^4-M0L-c?&|DW24-Y6&uj>Z93nb3zcH zY=CCQHrJ~IQ*+8I`i)%>zvzhk;(K$~m`uHctvKON**wMCF+HVt!(m)#;cNjpXS0hh ziCxXb)%|(F9zm9*(TJA4W;t0|j!|K$|%3edmmlKl!|%xv=TY z(A|6(*xlS;yhieKH;l}pt~JG?{$?-)lakrFm8n(-nX;N1de)ej0qvEqZUqdqh|m_9;ErY2#t~gflTi3MgqCqc z{4lR1_K&&3&tI<-1atO57V7J9 zX|S$_d5*K80u1T6-V^$k|(bz-HFIpm_} z3Z+IlK>Q9JhH0;b80jUwg#RKLE8`Y&wTviOha>VKVKJ-_{4uUx@fCVs)uB?!1LoQ8 zaQldWkhgA2ZFQx@J98*D4dD? zxr;Ku<=h1u=9gpn$D{iP!;m;a^&?f{#(ayWXs~3eB3H^J|B-2}kcZH_$NZ<^`Ee48KNG~o<2L+yEzj7O%87EOIm+Q z%Lj8gzAZ#?PV*r6ec$b}UIs0DVyGr})S7n()w_DM6MhQI-~eF=f-cp0Vy(!8FTI^v z->2#f^qS;-!Y4KF0Y4;aV5#1DT)K1TN@h=Wtn};vMF2$79X{`3(TcfU1l2_b;Z?7J zpXHSe*M)Y5^rsBAC>5M{3<0hoU$C{cxpE^IH?oF0ojK~(>&2&e z)yl{{FRdV>BLdW;DIC08R_qGwyWdqiF(0mDk9F-}DYq=Sv~8`rwo+tbrXv~G@_r>C z4K7UDb&osOA&S*Yt`3J9rK7j`y|%5X$efkEH?B}At}#CUsAOIWeHLQ;-xopTD$eaYBsRXu5v3ed+Wl znX_!xLlys> zc(%KtfTrzHTOp-@c9D6s%d<7ex11@d-!19otq&1>-_U2cw4#RmD(!<6x4%u2Vf4ZW zMnobvQD|bv#&4#;j+Sm{R*>gt)Ir%~Whfs9yd!QAK<`3H{>6;fAtNhd}R zXv#Zy!tg;^*l)~g4Q`UPF?|$)VQbtgB6fjk(9%{cLs*ybJ2_c_G#qvmwzTKgf&2lz z0Pc??WyJT;C+nG56kBqk5iN{oIcgiEWFg%TdCFDrT#G!bwWI7XO-Z^&^XH4%>Fl6f zh*iY%<_vLH7Ye$C-=Qi>|k*fnEZBy%L(f~yJ@sdV!Nr9}#Ae!mp{#M2_BUhV+O2@kolzBDG=B~vI8_X-C= z`@eCq&!ZAi3@vd+Ksk;`3eWOIMXBPRsz&B43xka+c*>f)bKc`dUQ`La%P|CaiHYP8 zL|Z&=p`(XFb8B9*=8-9@OG2KN@>NugV9=C zF}*cMY?4|Ol{ny*=OWj1p^^_oX<>^!*t5z0hV}Y+Xu!|3PKt=n_f4o%#KiS%{uj4k zy?Kaq8F9XfMTM=<_$d!nT#){6n7E*byA}^j&z->dGV)Ax!Z~^V#jib{b^~}P2u=w0 z@nhO2xh;?do4vSRvZTX99a!?v&x$7aJWiCsLRu(%4oNN)UQe67@se9ad8R3(z67bb zdG;c1xvu3`d^rqCaD}lCTo&5#7XA>1tfV*3K_sn7vu|0DxH^3o;oCR@S&7%?bs9Hs zi+%ueI*cnbAWCyH8Vmm;n>DF1Te4S00%Ik!z7_`UpHOlVRRlyXwq~~Ne45G2_^t`E zr{Ey8QfbobsP7uC(i|EZ-~MihxV~73P zDQ`5inDRN(HblW4LrD^Aq&JvkTSEr*0QW?+Dyc&9?{t(W#x+##Thk=;&^!c%D`x6m z<#-vQL|l>v0U91*iPppRd&Kelp59w&iPH+P5_PKji0(n_Q~FlyQ&ZNhav$<`k;3=cc`9j;EZg&yS(-Yil}R%r6tiw*#WPxYbV0=2LPyE za>SdpY+bRaOZRkBxm2`r5oYD?wtu(Rp~;uI;q|E2$_gG%?Jy?e9-UKTx-%3hkM_O@ z##iw2q|w?H-$hx-4aYKZ@%SipQv{((6%45xU?E{jyWQ4ofndlFx9#?G4iir=!|iLI zjo0CrOO8pN(uA zU=EVV5r~u5P@VvY_L%~dr0hlX81}~-*6ERccIVUYJS(F}9 zGIWHkOI5bA&bWbG<3UgvuS2AWSpKThmAOt2|ws0GDtDc zyv+6p7&|u~BO*_Z`IquKo3L)gGNK_&k#q1PRo;n=N>Nw)m3(|VQ~(+$okI|FLh)(P_n~|zke?Wk9L~db zth4A0+mqErnpi2zn$WAwy$A=e--SsxiIg$peorvxJFpFdOFddp@$1NdLbu>b7 zqK8I`Cs3xyBs1jy_T}UHRdo2L_b%g0zRAh&4R4%6T&jGgEMTx%8qdqR2sNIT$y>`L z1mWcYPqF++;+`bO^Y(AA&E}JS`Sq+L8V4ls3^A}r-Xo=9vAArEk@3O^&Fg2(x?5MM zK^c_qxQju%UsU4LVv77_vj>G*_ZcGCtT8NC4P)MRxF<1gpGf(E18puAKa=*!tSnrO z;(wuD$mfdRpB0x%!&c5XP-ljiq7!o|$EYb{(BHtoXhxm=%99Wo{-j2E+-|Q4*$mG2 zew+D%ezMnTMmY}F@wqu_zQX{Y+;Q(!`bXL=M;HKwa%8Fw1tHCEgWmPg)apVXw{lt_ z1xe|hmwQp*h=6a)y!c+!)Q0dbv)%Hh8h%?rhK|(J)%x}239OOusq1$%>kotxiYc*x zpapDjC%gb14b2QXneci(q>H`Tf(TURGwS`ckTHkA(X?r597WPTREg9Cx{g|3MxoXK z(`(Tb9RD|z(J^36r-Qgsdju@uQ|!7-?pSi&1C-VBJaBg`ZJNI%xMSF3#YA)BoJ>R^ zUvP+WQtnQpwI2!13l@KL(75|&6L3sf7`NqBS_%(J9YNuA;FN!oZ zNYZpf(L=}+V}sYCwg9UN`gxK=giZ-g$9*X-`Nl z#8?$EA7yJeHn@V-9or;oJskD+O|yNf1;S!n_n)*pmk{`{?WQ~fH&A!zOlto-?R*uh zJ?T|b(Hmxd8SZtX;;N0a&vQB16cxP{vE>(GhLA$uC449dvg-pQX3|~(ZyAkh&c6t1 zf00XALV_QiS^l1W{80T88Wlf2rTC2AgNgP+BwM~ze}Ucq7BY!4NP0Sx>EAnXe3H z`g0Y=afZO=?g&}2AVi>XAt=U*Nyc>N4AuBX?00s5K2oSAt%~v|V43cW#_;nJ!a%YZ1 zel^~zRCe8V4e9gPcSsFECQEqoEjBWiL3|Tfw$zCL$Ap-WqWqe$qtXj zD$cI~Ib9W0r$-ak=5**>`j=|r%Yn1{SGL#8eY7L}+s626p`nmqEUVJ{O|jeBmZdWy zKZ`RC_vRKZe51Q7jz+IR@b5!UA6Q7!Nz`^~F$y4vfw1ij?KK`WH6k z2#v)@V5hsTc#VwfdEV72V^$YnoQ_7Hr~hND{{P(@A~apX;sY8M-wqn7{y$SROq>ke z|8;~g|IeNOhN@S7*Nj`^MD=5y{vI3!Qrb#IGD*9@?;x z4zzb@{+D7(@>N)pw^`RL(2A744R|RWGLCxRSa*K{A65wF7uUkN4rX_mov94b2cNX2 zbSE8@{j-2@OJBP(?L5sOxZ0ycfY7D1PC*7v3>&ON=-@%IJo7xPCXTfgTyK2=CGjRjEN%m%{qvidOxz z=J1qc6hB{Qps~vy2ef_=Z#~SSWPxZ2F+S_l&r=PNw4J~ixLW&><|hBXHNb*J%fl5N zEg#`dzYKavC+a!8ssz^CY)y5K=bi2SSkJi;*~Yd*unBmC31BtJ!cQF;XE5-Jf1^Bs z6MykHbi*FFzWfE}G*LSM%nTvS=zSwY;sf?qSA$V(X zq2TT}z6drPwMF=_gp_+PazFb`q80HkI*on+=rGkcIS1=-e$oAbr4~ZN#8CRmO9y`r z>abi%p?!AMtqfqZh4=!VJC zpQ3}?xM0)aMz+vSL4lb%I5QbqXyvxkU4Bfz-B26Jiw6{G|^sZFJtQE_( z%7=^Mhd8i>IM9hoo$cV)bg_#^h6lN%iNlt(R$gj*8D)Q<{Bob%a3QK@l&Oj0Y?Q2gH z#Q;kFadA(W;Bh{;`vCP${=a!8@Sy#Fg%t3FuLNVp2mt*1`=5Cwwx%YQhRl|>hUTWM zOb&MDk&5yXNbvaoc#xzdMU?>nuzxu!8?c}Y9T3yT#S8#|{tw8iihceoYVP=a8A>OhJ?vO%IjvOvs$e+K=dLB%X11DKHk_-7wT zEr>ER%P<3Gm;wHo3qk>^1e#?4ff+ym$a)YcP}>ZESq1=@0gA&v-+^F)xIyj!*$)B% zvJiwCBn$)^gc8&ggaf1)BpW0eBn$A*bN{MAG^ha0%mDu!39=8Q7DNGoW9a1RBH%f(60> zQVfy}5)JqlqJOPH)gT&F0HBD090{@yq!vU0K_|+8XTv{p{|hiEqW|LgUy%NR`p@tG z!uy{q|6%;kJO85npTYki|7XL$;Qt5fp9TME0*MC60!0brJdjQQsRAAO|Dd!(+DwDg zuDB@6tNeE@{QvL=a3>Vj2{IDQNJc^w5CKIb2_g`UZ50)zMQj~dxLDahG=wC;8Ptdt zM@m#k)kE*xS37l$r@nGXWMc58ZC2+*A(+ zhaAlB^|{B-_f;Qe`$z!tgY*g|&>!|qWZRzn%J%aGMYE_Uycc10Ou?TxtS7ja`{cc> zC%Ru>X#3S0*2W(zNFc5k`F^cfK*cH(kUJOz@ny4u>xNd~9{HZTGvL-a|d1r@8(sdRU(|-?nLgEL!_{7%?WOyijpt zXt09PP~WvH`d^QFJ?mjH{`PK(A2Jy}q}4qJu!!ylcn2Xzw~qXaFwEkPsqWnofIrQ1 zVg&+X{$%=kYQ{9O_UATh5Byn$`Pl>8(d-)L`kqH!Hp=dr4)5=&u zE25vrqv#Wz|_G*f4BX|R;&&TQ;aX>`B+xs%n>E7;% zfggp|FOuw^qgve8408Ul8hdTxh3{s!Jw^fUP85U8R)z5Xt)@O;eW9q?`KJuv!n!a9 z-rxaI0giRR-ZQ{N12aR-=($&qyMKVKD{A+QrYiGHrWY8PWs70nG(xz>If-J{7u0m` zcYatvFc7x1;^r0gDpeV_7hDdZ6WU<=^St~-J`oJ1(;P1`yjFM$?K=}70J)+AT0%D9 zj{-|?-Q-mmI^f`56Pn4IK=CgQ2h1+Nj4GPqE9po=SP)&)Wq`1jlqiE%=I|KluGj)@ z35m!1JYqmQFA#7SBu=1sED<$6EBI5?;E5hQFxn&{YWOK{%YI?0?e+ly_F^`7^#>5O z(+Bp437!zVS=%S>&ulxd~17?lxjH z6j@SyzxQv*4%phYiH?`z(Tl$jkzaQp+zDjbq2npwOZ=JT)#}{_hDo?u0Xk-YeA8$& zaK6#El2C;fVlyPsSQK;)UIrtVh#YeTcz};G4mfg*U%+$uYH}A1Vyz1rG>2EhLWnOF zku10f+zx<~zg-+Y&>K8U@N)c>5|YqE3Bn@WlbL1HY~mX177_#8U!m1|hctdMmvjbk zMei%_t^P;81LIGM82JI}Q1M(g$V|$doy`RB%j+@|>vezi9~RB=>#f{*+P~4|&nNuS zU%V5@R_4JjmdJ_(kx9&N&6iwX9$`oTYf-qkNj6hQbnnOfjHtbgB7%G*1q62{qCwry zz_fwNA|8!DBN(^m$?*Gcc4e*4OZ#|uTwZfN92R{7c3k!05ds^+F}JrVGkFd*e*sFW z1g#fyK90wmf(8zu5a2RcD1dA!G(+?sXoXFhIOS&5%WmHdAdP$DD&ClvahBehMs5C| z_P#Q#u4UVDBf;I>J-BPw5Zv7f?(XjH?h>2?cL?qpTm!)p+#$I3J~_AVIVU%-yWj7A z#kV)`tyN>ytQs{}$*eimSLh$hjKQv;8U)@`Q(au@VO$l>KCodt>9n)~V_L~&q1+3+TUL0WWVayhnsdBh1c`C;>ok?eDtPrabyP!`PAAz{FR z^%&YC6r|<%F2VpR-}u&@Oj`ML>^>)4Qw(4NZEgpek*B?hF1ACF^$h;9H!MQBaSrpx(EI=(;>qECw?C$ zcr4CUw2%tE8!a`0D&K$E5Hg5F)m#$o)@uTSr8rXrp-);1Wxvg7cWxdbgbz``eSun3 zpcRoX4)6}6dUVP5M>=%#_`NdC96dHS4=0rTAkqjfYr;&4<8#AjW>K*V{fmI>!(89Z zKm)SIA^Qg<%U9rD5ik|odF!gYWVFsV8+{+)8S>x^RKS}I6H#u{WuJ#=rrq_O310&AE^VTB7MN($#d4&U*P;4lw;S4skT)_|0mSnFn_KjPL-v;8WjwY{1 zo7+Iw3yk`=hWG5|gS`b{sn8*NUyJT})1xkvP{QWI9JWwYU^xXwew1_itMUlfAuzzC9FBT1oryMtd2Co z9x}Lx8ir1=_E?<3fZRqt!TS|ZT%g9kvuJb5nBc4b<-1*i9@e*sGm`^NLWI|x`vPAC zV0Wz|U$9XX2;CDnKXO>NrqL_dqDdFbtFGF{^XDtjsFeZA&EL(^gZ~h z0|xC>PFfU{)Hgc;f&TXaQF8byG)d+a*NRJLeGi%^G<2rq9lST4?wHv zH^VHiCuGOD1G%AN8XbG}N-t4kwdSxl*0FgP-5=o0h){OJUL(~SOUQbwvbN$ap@Sp% z!lAaDb&ut=C*B`doetJPq`VnoQmaG+cLSGfEKOF50|qD~Ock0&GP4~slr$vCO-2eZ z^6Tru8pCft^wHn#W_>>e+@2}A>WPr!>?M6w9cj_629{=$U-+WH_)!1`x1ABnDD?}^@CeY`W-;Ez5`DQCT)35N!Zz>AJx`-*$~4H2 zYdM2Z6__wYagex-68Ua6CoJIGUQ0bKYs2@xKwD6p@K5erRI~|Wx;vgi?oz{XfN3*KPn0ljrE5+dF;9! zRVUwaONyR|8JKPvo>OyrzAg3(P3dsdz+QWdhsbWwR!vLPq45g}ODFQYNhna4HWH2y zVIl^tqbqZfVBf_HSJ)m4FqeG-u`#x$BEwPB(`C@86zd}8s5?yx*!{9zFn98uEFnT+ zb7B-cm#l=*at*LTpGuOr!&_o>Z=)*%n_#$|ef7K;8ZTJ^{;3m^lb2ds)f$3|2a=X- zvv@lJHbY4lg?WfvnntvQQnpHd?*WY+kwstk$G%LhxWd=41{1A^54}55vLs|!-In6{gOH4KJPfWx`Uj@D~*5h_o&&SCZ&#Pyd6ED~KwtgV= zo@{hMQ~nKu+TFG6MN~r5V$bZGn4Kw;6y@VgG0C8Z(5tglgSjD~Ugp*d7$lx$tUr`$ z3N$HO)&n`xjXr`^XMiv*zrAo-U8x4AkS2^U~*@mtR z%!ZjuRV02;si^VikU3)O^QnGlw=$2du1S)bTGnKulNP#m_`xUW-r?5!w!&;Ya9IYc zXg0}M_+(T3-ZzIN2}hjO*)SU5RD{6?c^j~@U<9(}#=|xzmW|6NZP*_bXTaN7eN>(b z3kep4e5JRsECE_&A<1RX$!{np#q&gGr-(xDkdUM0%7Px@AXUW&0sR}%$0#SB=H=+% zNfBb31Q7i%=)&SZLOz^ zA@F>=DuUUvXYO6OcTcp~B|G6RS4^3yv}W`!Slsy)5x7eIaXamw$^h*Q!$?_j_+ZPU3Sqd(VRqV~NuDCChQv%i}Ud2GG zoR)K{?2r>y;xS(V(x3-4HWb&-_Zg9GdX5>*BrnK3hAqdpvRDsEq(J4R|?)K2sW>dva%lL^kyFyTEe*yTku*?MK=M5RX13VW)QfO z92)E}qy)~6Dz@ZDaan(U1UnsH^jK}XBB$J1Plt*qqm&k0L7eax<8EO!8S(3C0dTB4 zPLV@Kv5e$QKO;477fDnmZMzd|fM1z#NY>C^uZ=)dD)BRf7;DLdCG@V)@Z zrRxVWP7!Nul4ru9tPq7cx!=^ zevEg;Q;@VSn_P?<((s+f#ziyc32t#bKuJVWyUPGXr#C66PJtbhd{nIINSJ;QJWtI zl`Fdo`h6`@`r}hG-)Eji*UgR^A_P=nGo!{d?pIY@0Vt_j3GXbV6n&C7%4u6~2<9M; znaM3jyNOa5nq4F9rg_XhPzSW}+tty%`TPNzc_LnQc@kr{Otjdi7OICq^#(b|OE%*3 zuwkY(Kp*{N5|zrl*On)+OjwQ_g%Yxs7bV_2ta4{o+XrUg`KHE&M{V-hZF93`k*t5S z=WsHS24T;eQqjz_MVZc9v zp&W21=o+(S($*$5QzIN4w5rQrr!`?QOfoDney8o>LQe@TGVc(7Spg=O58q-^ z8jTyIN<~BG`-KLa5uIVUznr6Z9O=#Zw8Uo80fSM1<&ehyJM8K(K9_yxC~J_*`5Ox4 zraYSMrD4)lNt~5vCiUZ@7TDRh2WltLOx#&H605?9w_nE#3VK>|E%DeYBr(B{ad?hP zV17*0M7?2oI?q;66C#)?_pEx@4fSp6H53f{m?7 zlswcr-kd(N$IVTPk~TH08+RWe7(UpnU}b1vuP}6mI)c#q7?Rvt#dWzaH6LDDf&NTa`mOv&Pc`bI~td`Vc9cwB?t zwY!RDDfbQ2fF2ouQ~!vOXsvy#XYPZc!o$7{5&gQ2!OCVz`ciPJ$JJ_KlNCiHz$PGJ zpKc0gB?(Oyb8WIRCQTWwEK0XTLAX(f{2gTi!Q#^hd!)ACW95)HBE6nAg_Q45IP1-X zSbnNPJTa<&7tIaSEaPJ@$c)mey)y<-e&Hi1JKa;r*WnyWFI~!D-zSt4PudUmBBsgr z43@dnHeQB@C1eC0@ZKei=x~eq^$Et8=RoBvR94LKP;N*}f3{a{YKR6W8aeictmOfy zV1k8Axx||O8A|>Ld!en3GlH%;M4L#P%~Wufzn>(QQSN z8*)082~Z!CBEu2ht5;xun12ob#hydLCJM1?R(KdKPN#42eau4B)ymq~D=z{+PRLAF zM56M8i5=T}3))r&dP{#8<2ocKDL?CX0_qH-gfRx|`B1m6!G*U&oD89rJb_GK>?AeS z&eBUsOu(qrJ^OpQu@25X^7|c>eEeW~@*9$7Gy@&eZ<1L+{Elbg1)h}#=bq~1m+ANH>^n$fFn zbOl-m>Vj6TDf4`Cu#Mfxgm`w_L|i`7g&yeio?CNlt;skd=g6*wj@?D-p;MIa=inCIZSu{Q0HG&ZbfZ4EhvaPU*|r; z>1ff?DeRAuj*MCYOnxs|X>ZB!!P~*;y{FHp0vQA|&K@+P&%;z^79Ve=IJ`C2hv1Xee8+Q*+XZ|M-MA+{X@}=)QOnM(7+Dhqn7l9nE^l;Y6NbX zZ1}Y?ry2&?RFdx+WJI68G(5YXgvC}^UmDL!WQtvh)G!9d@JO4om37eA1o~&quz*7c z#xJi9C>rpxR@)H9*23TR-N0Yfej%+2x4$t!%7~s`cut3|N+8=8>LB-3n(U!!7>%R@ z;OCI$Df;)SU2CV5$?}(2)j|b!H9em`Dnf{ynnmtfdaa(Hj}xT_0aHCI%%#1E;iZ(Y z%ayhO2%XL(C}Qu5(Z;v&JT<9E9=AyS?KkjA1~l1};%m8FRdEQX_#tXnNt-T0(YU{4 z72t_hMsUy_ZZ<7tvtrUs8#FUK3zx)k^bwRdI2M#B2U4kp>()TLs`fB@Y$O^rXRXl> zpu>Iz#t_2bVCN}IpezPE&44nCZb=BH>2{>~Lutzohb~nhad|U~zI&+npkJxUbfwj@ zC`d(!7DmB5NK+h3gVf&$O~F~g^|hd9kF>y(5M9>0sNUk7JQoetxm~|{2_gR)JC04a zgTa7GR<6K^ZAzuQ%QWwkGt2FO&;HA#??3T@8Pwf~S7vpLoilrtF_g6NKM_4NUqP5? zcFc_oi$P=2972k8ziviIvQ*E+NG7oV&P_tQDQO=Nn?I$31cpC6n-l1nVv~C+07tF(rU%P&L{#GYw5b}v4`>u`L`$y{7j>E#t z$6;2n0!sJm$fLo4$ttWP+6=!IOW0s(+U+R&oWyFsnR%goYkR|X9Iy&KmH$1 z7FZb>ujNquy=DnWP&_C~f}&&q$*;IgT>JzH3Pv5H;~%~v!mwB7%8-CT89{b_)+A^; zkDEAA{iYL@Pk}>&&J@=8WA3^h8=-Y*?E2L}x)@Oy`8!JrjHfnR&lN14N^0#oj|iYP z`sY5|NfPFgmlqmvp?-G0RqOU)}e7MmEdt*`BUzT^Esn)5o;LYKkD!zjUyP1otn-1Yf>7QMEzY7@iWX4&d^ARt$``btzj9o!!5p0Ef@h)+ z1X{ZaBK0raI>5v=E+bR8*_Z=FU@Padx!N-n_uilK1q5nPuhORC^v@WRh zI6yUjb4uDsQoBFWhjfmU05VpvLC|YKGxrPQcTEv^$Oe*zCB~iV15{D0{Z9&oh!BAH z&2SL(U^^5JD0LUG5bdtcw_?nazKXP$wNE7sq1y{E30+&B1bV5xFZ1b8M7P(v)O26E zagcHF^TpB^!;k>!5Qv-_q(GDwe}Bcb++7`ryL+Jl_1)MsGesWWg)e9F;*+j-a1aa= zR=Mo?l{Bz@9J?^ML)=ET@x6Gp2Q(dMhW6R;ByfRs>|$=c5?ei?7{T1{#HFsLOaKK~ zag$5i@AK2LTKyf3;h7mYB{}esjF^vOEPM$UUwyv5D}TVbr8szOKwX@ESXWaVFoq`8 z-+jJn3FmC+uyoyjRU79Unemq8mLpw3we&Vo_#UbZP8WM{GhHw>%HXjpE?~){o*bPXC6Cd+M$C+#Ys?cC%x&Ow7uIy8nA?LG zLR??fOOLw;mqh!9*ot-SWWTQ`djddFMEss`JO;*IQv%b&1Y)&zhe2F21b>2O#}di} zI(Q>Med3$D1{jpBQlFjF^q7-g1zd_1fX|@OhLbV6M#O*3r4dd667?yC%`isVxv`{P zT|n3KF`nnWGvph+B7}CRdJbF5^>p&(-Z@MT6uj;jjy;}*U<;GmkHAH!&ky+J^C}MR zK&S79Dp7UW@_XV|YIvP((Z-$?921JS7sWGMiV=r<80ti$DKaCVRYpk#?T z!@o1FESxH@po0f5kolyghPq_DUqQl9S&N9E-#r>nVw?ss3MGE#d_7lw$JnXI7 zQBa!E2BqTDp4=sltUl)`+RH2W3KVk-C%jiZmqfeD-Dm-sufK=A)gy~9C8}grBf7_g ztefr%2PR1xlB`E#So?(bH${p?){1JGjF@5+$aMu(di2Mm zAhdpQZMPN7LJwZJ*h1cWdV|pi#6w!&7K(roIwQtfFXt%tCr8giOJ%mkrj-fAgC}h{ z!&mw~gW?-!MK^3J`Vj1I)9Xyo%niwM@X-P;NAEl_db1MiTvN2N9 zk>b(&ho}^-&9ZZ{iJ!E35DT@(Gaol*&MRv?T;v~2lb>x}@V_B}yL?hL=-%Dm8qfzv zp7Ca=pjS8*16PR}?2Z05zR&TpKx%JSijC+*0CI}HSgFgy9nA*)9lvT?3*=wyro_6; zb(8knT8_I!|C=(1(TSiAd5y6L3}paVn`-AbgJFq|9aSakcJDdbyt)ULDqLn0sJE&_Qd672+8;2Y26KpQgB;B%|1eO1f_sv zY3~4!UA^F;2SB^9zA7H+d1C1}i=Kc>cr~Jl>oE$bLnbQJ1tam^>BSADs8?NVz8qteE`$OC3;tq?;E^K7A^;~fz+VFODo^~l=vUb zi%Ms+{PCy|jFcnICQ_BA+in}2nLDr{DHzeaIcf4h2i95k-Y3$5x0VLqAN4j!2_fu* z{oneVtc&UtnrYn4V?``T4>t-AbH@WI7v5dVU>~zBnV6ortL#XauF=yv+Or20`kI>Nh_Ep!H*VP1 zz%S-HC>ji)ixofGj(jBddNGG{j~$+1InY^%aq2UJYai05*C$OCTfyE5<{uI;kqU0M z(#vYE%0?}5OSJgrll$;BAEsR~I(I^hWMRb4taprd_n4DhIKjzg~1RT9=#A9gM1O_-#{Q6p#a z!GDrx7+5YBs(Tfb1jwF&m|2*HeenF6ZT?6w@9RmjM78gxmMNy&ZoJ7~n{+YWwFrkP z?%3G}ZiX7)KO9lV^o93Jy66H7He13EYrlPeV&u)@>&p$QxELnF*Pe`a!`%kP$!`-$ zJKI$2wonF6Z_u}DoiknbGySnPZeROGG0J;mT8en^r*P;L@JKlE4iFdeC=y>ru#hhQq#^g#A^L)BlF8FK2d4+YttGus*#?YEom(k(#wS1C~>sx*WS0xyGuhrG!Pju=sj7jTFOAA7mnq>xv z=o+^&pK~Zb2j#J}o}uzH9{Vrf+-|_bgrn%y&3)P=k?T`(YAbNGZVEJ5XsgvR@$uh& z1H;{8Qakd(j-V$5oE1|KCFV8vH0bT+gIiIv`b{bI5XhKeDI>u6DQS*k1%ob3%D4^Ov(s_N_sW^)->vPF` zJDTYUt{>!1C}6^wbW*6)7uUbqymut8>r$0JH*WGs({xAxf)_%ugb~*bMtF>uuq7W4 z;n@c=v}k0Fq=TIwjfVcz1{P?DG75Z&I64@K2a0|>1bAma%jM91-yZ*@`F7U|vu(u2 zjeTBFtFnzje-M@Ug%)zFo&=gj{{8@&m`|Q;C8Pcfrm}+YZ~=PS|2XJ&@~m5jcdb<7 z+U*{5CH5%1tOLw!6YMZAANd`9qsGZSw&up6l0KftF~o3dT#_9h|AsIDz`uaxy^~mc zWRFhZV}zI;l>|Z~Bp$lFapagvmsa7{;p5DB^kNvafw^g`baBSF4j#m zFkF)H@Q%EN z_rn20B!=m(Mf;o&3waNkuC3kCvHRhHZSK4A0E)hD!%x~3T(3s~RF^>Ur3da$wDp8G zCx3LyF}pJ_Rd-yiM|ZCn&63<7H+P=(zTX8~8fHR37`(Eo?zmgf18$6?J{=Fe{M(9= z82p8}n8ejwJZ<==m8ztuoJf_he&9c2U0_z1@pphMDPMyut;s>Z{~7B-&(XyCUlA|Z z{%}Cd_{aajapQ2k%qYR9fu|_fwlkh62_^4D&gibdQjH&iY|!e?OYQ6!0|Pf~%+j7r zOO^#o6~EG6Y~+M0VUY~u+CeW`w6G7&V?k0oV~L+i^vNJRcz*gY!EQJz{}nkvw1j(M zsuaUjs&?N(IQ32ZSlYr6ta56tGT1mKpVDE$(udm-|NAIfIkmU^U(iI@!j2x_AFsGF zJD=@vCP)j?C&%0lkF%l~iAx40pAvS3DeVmB9Z318R_K9b``}63A#e@ zm-PQWM)IfZe?Ls}FX@FWAy^PZZ$j33%=N5Fq7+8m>u3Y4r5ynVR{SMKUzX$~Z1vu9 zA!4-7y*%DbHFOQg>VBGw@9+Kqtw7KDiDa$&&e`1qLKQ!vkO3CI#VO?J@sZu(+?Z(zHy#J*WwAOZhVd=qN9I*>Ip zpaS$k0ewJ?Z)9L?^w!+K!uF5m=8qNnqoqY}0^MNhn?D9>QGkx)!he8<*B>hURXa<@c@F5o|~v4=Vl&=z|WR0T{VBIosK2*jO`JIGfn~JO@NlKmnl1BLUs; ze@@o1d`KXPUsVUrBr)twePa)RQ``n0Sjz_0{+(eS}k%Y)jXpx#Y5c@@E2p)LLXS)U}=6|-A_khX856~5PP;27+ zhoB0McJ@yHEoqJ8g{1qLQ9@1wU-Gxss20kOXI#H5F&?R6w1+ykBC=;BN@9yXo|d?4 z2_V`L{pcK;dqC!+#y&Hi;y7YNrw1!_U_SW@IwoeMRTmuS7?e3J)JIU~p5 zfHBoa>o5DQx8LIc?|MF>^qWG8&waKahK1set`^9z)ZuXNbOFV#Y5o-)33;~^3r%m>2rV}DCHR2p{$H6>kvJ~b2hxgq#TTm%Gmq>a6IDK_(~UfIr8<+qTp?kh)r zyiu=fD+laE)2z8qN%dct5pEV#Gtf6X|wDp+{QjM}-X64hk4lUCZ<@{5f2)|H4Fu@kfUb~(+U36>`hTl&iW20lAV@)D-4Nfffi^|12QFju z8Dnh6*To_4blqfvRk1mW74BCL6W=W-D$9Sz&sg{3Jv?qBO5(DAr#VXk+FJu7Kg#?3 zQHW`huu9<@1Q!HxWdIazR8!VN+tr3T1oBtt!wnoDb#1<(01@70PvmvJv}TmWry}k{ zjaaws`~hpXz2(f4i>6h-0t&6H@N-1oFy=~_^KS^54WNK2B8~OvH zL9i6X4J6;tj<3pzrcEcDa(uz}{YH6~2R;fiYQdUyq!^G^Jae`LazMW6ij`p$a}Wv; z-y&8pDavu@p1e%tcf>|$>EP)3a?Y9IsHv)R%{?AQIblBTfOy_t-yYZr*@V$IuHljr zG|bvvu`4hEdF&t{5gC$TisFh+#wC$s>d`pb6IKf zne#rDf8nYE-D9)7xQ-wCv5lC0^*#^(RCY*bO~W+pI!$WX1mtsg#2)X2R(*$;G8_$7 zlEowOQ8>PwafDFrnuNwrXDI--d5&Pwfdl(+Lg~hO%c|+{U`f+GbjKX50wFZ29<#*C zLweu0xD1y|+O-khA=6kASZ!aYoJ0b{qKGJ~UB)Mz5J#hgpGt#!JVhY(09vB5kYJs7 zBrLYr+fFvVSh4H!a2kG0iI*y%>7Y)wk!ljh!N_HF?!e+w%cRKTlXdF#gCdQ1jLwMN ziwdc4V4mh*sX6Ml|6;eQr4dZ8(;i>U%@#b?|E1uu55o_pJa8i=SYBRUT|TOuqQgvV zZr;!5o`#^N;VUWr%ki_)K!|r1SYA+S4gIpPzj{wnM5AZ}u3|g1J_WqjVp)8vn@nN* z>y{PLX4(Dfj$-beJdM~*wueatdAkBeinTN+E$jlT(?T1ARK&|~i^j?Ztw6FYIHMg7N7^;hV!$Uuywerd=zcelIX93h%ZpkA~_pdoS$^8|d-3!IJYtjO2g_dq)*N2FLxwQ4tg=)H^LQtcVdv$E4 zHt`hOeXvD`%vC}y1{Amb+~ipO)Ux$lv+qtTP^kvd9k>Od3%>*NQ1;#?p4dwGU%%!l=Yr`X*q^5oP@KFio(*_*)!?im>XsAQ{5$Y=IT+=)gO|gAZ6={?V zdU#OZ2R2?7T#QRdiWmc5tuwIp19C{MkXm`9cxqrTx)|yOnM7Ne_Xu*mPjIeiCjAFW zC}#c)(1c+IM|8Yd_EPBeu+7t?!=;Wre?Y$AGvBoF*Ue zb%evMbBfNoQ#*q+zFiDP$S^d5A4}4X%t3x|9$7<4gr}U5>vN%rlsget8M}?~`-3;T zy>Mfp3m1IRLU5k&;llz|W zQz;YKZPTE_@JO`|37``c-I*DOUeJ-B_uQG|yVQpy!-U6pRB*Ox5q;hRKb3$dalS*C z>F6i@j;a`3pJY}-{4Ueb#g?*B^U}g}|2#uKlj!)6MgC?&b!8~s^!=McSf~T^E+Tl2 z)8s}M4V!(LvUy5tVddGkE9)JW?z}#8csIMt3JNL$W*@#yjGKpA&l&pUM{ve3vIAQY zA9aCmDr;LV7e}>rQ+)jLXnT`y(b9tE8^Y!p?_P-cM5{X$wc({!l>PT%N?}QNV6G0& z3vFMOHYEs*i}{G5%gj;x3Se2PeXu-?ZaL#5x5*lT9BY8pi&Mo*X4h^;_BXqKpc`i)#^}w_|&W72EQ~=@Erm{`^%9Tfvbg{&)8iv1!tX zBwfvs{kM}JIHVYfHSpz4P3?!gOAoLyG1!08;FreB z(yasNvxjqagS6zDvTz_=?Vn<q?&= zj?LWj(UgP$$hD$I5Yya%SVYoSkFnw)Fmx7C^-uysa{So#+Pq0N*S$h}%%lxw2CRS4 zmuzkLs8a_Y`FH!kflMf%zU+T<8vyh+3Kwo+8Nh; z8Z7(FM8oB1{RgUdt0Vi!(HIZD!kp8-^lVF(s)9EKD1#G9y)JZ_$#mv9AN7RZnv*iB zjH__Gy*kJI`h1uXrKpq)*VTWKt*#yF+86opyf|}=4*B+KXK^B`ta;Ad0DG3{DQ--H zgT46McTCeCwvwI&_@&6vWw#1<06kO!jkm3<=vJ3MLU}5LX(W{wrgCWl%%>ZvzRA)1 zRX}L;V14BTcxrvInZ8bTFF(1>LrRYgWj~lOZ%}4WNd4hkHO!)2Zq5Bf@<4y{EX#}^ zXdRo-fQ>_OeV8$5fe>s!EJEbP3wEsSqL2+UaKjUP!c*4`g!?2vvzydFZj73VIh)DU zM^70?Y858GrA9c$Ek{G#O#4207Iyos#m4(_&d(z6l>$8i;xlNH_EIGrI)6yeQ3fRE zi@T>5DbX6cQrc|5H>`_C`!@;)z+Q6Pz+PS&OaQ?vQZ58OX9~v=w5Uqw0pwamP}bBw zS9Lz^q?><}nwb~o7iF-S#5N=641!`CuwLGNh;n$! zFoX)PLVg+IQho}j&MV55xpl%*XzZq4^kO|ST~sUyh7r0a_DQoc>@2zJ8dIj3%X^7H zm-A|4jvYzdnoT*i>Z4el#n8v)A3LFR24BX&Q#TZOKg&~)&}K!Q=6y?_Qn$Y_KrwRM zdu^e)-ITE}r-@A`UvHsl`o>My9PQ<#=YCi&4I<`y-_C~Gr0Kx5=NlI5Yj4A)H_9Q*xtCc?aH9Wf8O(hB)s&P4uOL*51zU8}FmDBet$f&`vvlz!O^ zAzwr0(uDH@W=i7KHMQ0=v=S4x-bwHKRUZ`vQ@H6!uTXoKxSG1Ts_kOyxpduvPq-~q zC}b)$0LUv3KD&mzS?wG^VDLr}i&(?cAT^pExW6iQ+MY~?=><(mc>Uk?M=|CuW?|m@ zs?K}lm=TnYC4UdpQ%#?37&OtfTT4!BsGz%sU?6LZVD=4hB}Fg`cK-yy;B5%ad~Rly zgGCx@D{Z~vipHrHizh>ZTTGc?RJ7>UDt`De_u&Y6>b`VSWqGd^o4z$^!gD25MC%D? zk6b|-{*jNY5;o!FdIb>v$TrtA0HwRvofNUp3c1K(1n`SA>RP9M@LnK?i%)FJaw9ey zd6sq%7t$;w*)<7?qMB&gNHoaD7_d-Qg=5WRn~0@So@S+5hBA{*`5x#Pz|+s9NRP{o zS@cOoJc&m;kRC2vrJyII2yv&ZxW!r|voBR$ z{$C~5v>>clfh6izL&&c;=?nzEdK`8a2F8mf!lu|;T}1EENd>t>jrWn!$QfD4_0DAv8na;^u0o3XhUy zNKlmBa*WsKR71LngXTO_gY}!JXZje_U9-#GAf5@EH5A7FIsMV^w7f8;OD&M`_IF`>kyjS>0<@w9tsm^#PFkn=8SA{h^_ED~!Jk!n)m!|3-f zSBv9_AIA#le;8)ek0Cy&q>LT3KMK4#F7msymfBm5e<80UV|rt^w^6&Q2P$UHN1E{M9`&;ySV~{>kP-+7_)PKU9$e*9nce0J#zTt8K{2Sw|VTxefiMSXp> z4g|s{Bm_s{GNERrpiCz#9Jb^&70PYCtxTA)$LOS~2#Db-#UqGhm$Ze7L{lhvh(Qr9gq#4=?4vUE{!7y{Q zV;ZwUQUkL!l4L+z$X3X$SvoJb$;oSZ?|kEu_9S3i2>^a1&U1n2s-fwyf-`~L4ym`eKv`nvfx ztn+FnTwNzf#J|RfjbA@wAb7v2S-qZM_SF1*+j?HBZe)>IGTSIV;B`9fK{31TF|#7G z(y_8D#OD(XjA7B5b!%u-u!#26yg?(*3Zm9`?>K0uxhY19pM8r{{RV3*6$y_H?M`U% zm_B#c2ye02ReV^F@(pJz^*#Gz*ulMNg17YEm8_*w`;)@~@o%}`C%24658^)B&n4r( zYxkeK4*x^{zvy3-&|}%hi~u|hdI~xhX#74XOPH9NsG%ZLbcbgj{f#KPyxt3&J+or0eRE zejiN~?9fruO`bfy(esH^Xm|md^i$4V!$pP~{zwk8Y?$-Pbt8?7Pogl72=lwVd*htc zp0k*s_wB~cexjVMxkpE1&#dmN{7->;z}LF##%Gm9qMAxF5OoHkDBtV}Yj~m{+WXTh zBo%AJ#`z%oRAfjLbnfTjE3+4K^Hv6x#nTAF)DLB1CzsfmW2FaiiXAYpt%M8WRk@2) zB{-*9wUXJTrYosM)yw_v$E$tg3ij{h(x=zmUwcqrw`VoI@cg*B+q?e!2vVW{sbHN2 zc|3bT6-fgk8WBjr{b@FjoEnQ%u* z*mu{&YL95yXmn;}0}UuMY3{GF3*^&}RD5ZpbT z$HIt;>Byli2%u&?YTGUl*t9ODKi@(xFA(8mjws4mIHE#GeJzDEW}HV*k<1#$tLfHA ze&C{O=lpB~yfG+yYezzS4>fm}A$9S>i5TQ|D|&*(JW7nZysAN?)9d{?xn-C$js~h- z-@Q4r>??e$)zy&SD*W$Qpp!~X*7tv5!Ov}w|6#!&&Ht|iV!uFZ-HV zDq>a|cZ*XDz5`EOQpRXZL&{>^x1LUKIZWow~XHnu~mu%k#A<+l}Sm7gT{%WuACfd%aOhlCRk8s0o z_)s$|?G!Je<{00H>Zez~qk-2C@WTHa4gRvu_#b8PClCIjfx%B2IR8O|F&YpJpxf}o z9X=b5X&h+$NdtjDXmAy_-cm+PPe6mamx+ZzC9W*72C}rhZ3od{)>vK2d?OGcY|~=a zZ^N>f@f?k{yo`dgCVZ=7;Rq`_6@N7Sz_N@N2CRKF|L<2yS=*0zT<&p;0&N(Z%_ajkW8ciH7O$aUeFss8#L|w!-e8MllEIXTW1qnXFU}UdlM(!KL#QS z(*FcNf7fXO4gy#Qja@(*=Wpo&^cwo})$&u9{F+gJRZ6`Jbc-bD$$#vm|CJa)4p{$X zGh}FIXZ5?M+Hr-w76v^v5efjn`zt5tFFa5oK$-u1u$!Hu)&GY0Z6WgP5l6K_7(zsU z`h5KhDjV_Ng>W)AF>(Hv$W78!O5^yqu`wPkf_HR*scF!u0d|w^j0M%=y2n#s2i ze?|D!lkZ;$6kmTL{M#Vw@1|IPqWst1MgKxsSpSLgtFO^ti}9-+++P4Th_8NWia+`K zlN^8P-CqHJH7)xK&t2@E@jIzZU18Hd24(1pru3 zUj5Eu>Q{h&+8+HK01x$7fWIt}ent7G!Oh=Mtk8Z%`EAGhr)9|B0U$7b1^8Kv-=h4} zhT-oh?=gQx`EAer=d$qM0b)pg1^8Kv-=h3;rSR`4-DIx-|FLfPYi0g(8RqZV3n>4V z{a=eRzvlkuME38wb7}sT`_HMz@AS?;Cn~WNT*`6fK)T!e*v9RDg*!k From 6474489529c0b846a48286174796ab4b80acdc6d Mon Sep 17 00:00:00 2001 From: Fred Thomas Date: Mon, 22 Jan 2024 16:54:55 +0000 Subject: [PATCH 3/5] Collate outage sizes at given RPs across countries --- .../exposure/electricity_grid/disruption.smk | 67 ++++++++++++++++++- 1 file changed, 66 insertions(+), 1 deletion(-) diff --git a/workflow/rules/exposure/electricity_grid/disruption.smk b/workflow/rules/exposure/electricity_grid/disruption.smk index 92a0cf53..196dfe2a 100644 --- a/workflow/rules/exposure/electricity_grid/disruption.smk +++ b/workflow/rules/exposure/electricity_grid/disruption.smk @@ -259,7 +259,7 @@ rule plot_pop_affected_return_periods: ax.set_xscale("log") ax.set_xlabel("Return period [years]", labelpad=10) - ax.set_ylabel(f"Population affected", labelpad=10) + ax.set_ylabel(f"Population at risk of disconnection", labelpad=10) ax.grid(alpha=0.4, which="both") plt.subplots_adjust(right=0.8) @@ -312,6 +312,71 @@ snakemake -c1 -- results/power/by_storm_set/STORM-constant/pop_affected_RP_plots """ +def pop_affected_return_period_paths(wildcards) -> list[str]: + """ + Return a list of paths, one for each country. + """ + import json + + country_set_path = f"{wildcards.OUTPUT_DIR}/power/by_storm_set/{wildcards.STORM_SET}/countries_impacted.json" + with open(country_set_path, "r") as fp: + countries = json.load(fp) + + return expand( + rules.disruption_pop_affected_return_periods.output.return_periods_interpolated, + OUTPUT_DIR=wildcards.OUTPUT_DIR, + COUNTRY_ISO_A3=countries, + STORM_SET=wildcards.STORM_SET, + ) + + +rule disruption_pop_affected_return_period_map: + """ + Number of people at risk of disconnection by country, by return period. + """ + input: + return_period_data = pop_affected_return_period_paths, + admin_boundaries = "{OUTPUT_DIR}/input/admin-boundaries/admin-level-0.geoparquet", + params: + return_periods = config["return_period_years"] + output: + return_period_maps = directory("{OUTPUT_DIR}/power/by_storm_set/{STORM_SET}/disruption/pop_affected_RP/"), + run: + import geopandas as gpd + import pandas as pd + + countries = gpd.read_parquet(input.admin_boundaries) + countries = countries.rename(columns={"GID_0": "ISO_A3"}).set_index("ISO_A3") + + data_by_country = [] + for path in input.return_period_data: + iso_a3: str = path.split("/")[-4] + df = pd.read_parquet(path) + df["ISO_A3"] = iso_a3 + df = df.reset_index().set_index(["return_period_years", "threshold", "ISO_A3"]) + # threshold indicies are transformed into columns, long -> wide + df = df.unstack("threshold") + df.columns = df.columns.droplevel(0) + data_by_country.append(df) + + data = pd.concat(data_by_country) + + os.makedirs(output.return_period_maps) + for return_period in params.return_periods: + # select one return period -- table now has country rows and threshold columns + df = data.xs(return_period, level="return_period_years") + + # merge in geometry column, and name + gdf = gpd.GeoDataFrame(df.join(countries)) + + gdf.to_parquet(os.path.join(output.return_period_maps, f"{return_period}.gpq")) + +""" +Test with: +snakemake -c1 -- results/power/by_storm_set/STORM-constant/disruption/pop_affected_RP +""" + + def disruption_per_target_sample_files(wildcards) -> list[str]: """ Return a list of paths, one for each sample. From 7c645ac4cd4ef9a24bcd8be039ca21dfdad1c4e4 Mon Sep 17 00:00:00 2001 From: Fred Thomas Date: Mon, 22 Jan 2024 16:55:28 +0000 Subject: [PATCH 4/5] Retain per-sample winds N.B. The all sample (concatenated) wind file is not always required, so not always created. --- workflow/rules/exposure/wind_fields.smk | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/rules/exposure/wind_fields.smk b/workflow/rules/exposure/wind_fields.smk index dc3f9db7..f153fce3 100644 --- a/workflow/rules/exposure/wind_fields.smk +++ b/workflow/rules/exposure/wind_fields.smk @@ -218,7 +218,7 @@ rule estimate_wind_fields: output: # enable or disable plotting in the config file plot_dir=directory("{OUTPUT_DIR}/power/by_country/{COUNTRY_ISO_A3}/storms/{STORM_SET}/{SAMPLE}/plots/"), - wind_speeds=temp("{OUTPUT_DIR}/power/by_country/{COUNTRY_ISO_A3}/storms/{STORM_SET}/{SAMPLE}/max_wind_field.nc"), + wind_speeds="{OUTPUT_DIR}/power/by_country/{COUNTRY_ISO_A3}/storms/{STORM_SET}/{SAMPLE}/max_wind_field.nc", script: "../../scripts/intersect/estimate_wind_fields.py" From cf5dce1c056ab426bf241472a2125c642cb0f864 Mon Sep 17 00:00:00 2001 From: Fred Thomas Date: Mon, 22 Jan 2024 17:07:00 +0000 Subject: [PATCH 5/5] Update test config --- tests/config/config.yaml | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/tests/config/config.yaml b/tests/config/config.yaml index b5b6b4ab..ab1e53e6 100644 --- a/tests/config/config.yaml +++ b/tests/config/config.yaml @@ -96,6 +96,11 @@ wind_grid_resolution_deg: 0.1 # approx 11km latitude # Failure thresholds m/s. These values are the thresholds at which the network assets # are expected to fail based on available literature. transmission_windspeed_failure: [20., 35] +# when plotting, mark this threshold as the central value +best_estimate_windspeed_failure_threshold: 35 + +# return periods at which to report +return_period_years: [2, 5, 10, 20, 50, 100, 200, 500, 1000] # whether to plot maximum wind fields and storm track animations for each storm plot_wind: