forked from rusefi/rusefi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_hpfp.cpp
executable file
·298 lines (241 loc) · 11 KB
/
test_hpfp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#include "pch.h"
#include "high_pressure_fuel_pump.h"
#include "fuel_computer.h"
using ::testing::_;
using ::testing::StrictMock;
TEST(HPFP, Lobe) {
EngineTestHelper eth(TEST_ENGINE);
engineConfiguration->hpfpCam = HPFP_CAM_NONE;
engineConfiguration->hpfpPeakPos = 123;
engineConfiguration->hpfpCamLobes = 3;
engine->triggerCentral.vvtPosition[0][0] = 20; // Bank 0
engine->triggerCentral.vvtPosition[0][1] = 40;
engine->triggerCentral.vvtPosition[1][0] = 60; // Bank 1
engine->triggerCentral.vvtPosition[1][1] = 80;
HpfpLobe lobe;
// Run through all five CAM modes
for (int cam = 0; cam < 5; cam++) {
static hpfp_cam_e map[5] = { HPFP_CAM_NONE, HPFP_CAM_IN1, HPFP_CAM_EX1,
HPFP_CAM_IN2, HPFP_CAM_EX2};
engineConfiguration->hpfpCam = map[cam];
// Run through several cycles of the engine to make sure we keep wrapping around
for (int i = 0; i < 4; i++) {
EXPECT_EQ(lobe.findNextLobe(), 240 + 123 + cam * 20);
EXPECT_EQ(lobe.findNextLobe(), 480 + 123 + cam * 20);
EXPECT_EQ(lobe.findNextLobe(), 0 + 123 + cam * 20);
}
}
// Can we change the number of lobes?
engineConfiguration->hpfpCam = HPFP_CAM_NONE;
engineConfiguration->hpfpCamLobes = 4;
EXPECT_EQ(lobe.findNextLobe(), 180 + 123);
EXPECT_EQ(lobe.findNextLobe(), 360 + 123);
EXPECT_EQ(lobe.findNextLobe(), 540 + 123);
EXPECT_EQ(lobe.findNextLobe(), 0 + 123);
// Can we change the peak position?
engineConfiguration->hpfpPeakPos = 95;
EXPECT_EQ(lobe.findNextLobe(), 180 + 95);
EXPECT_EQ(lobe.findNextLobe(), 360 + 95);
EXPECT_EQ(lobe.findNextLobe(), 540 + 95);
EXPECT_EQ(lobe.findNextLobe(), 0 + 95);
}
TEST(HPFP, InjectionReplacementFuel) {
EngineTestHelper eth(TEST_ENGINE);
engineConfiguration->specs.cylindersCount = 4;
engineConfiguration->hpfpCamLobes = 4;
engine->engineState.injectionMass[0] = 0.05 /* cc/cyl */ * fuelDensity;
engineConfiguration->hpfpPumpVolume = 0.2; // cc/lobe
HpfpQuantity math;
EXPECT_FLOAT_EQ(math.calcFuelPercent(1000), 25);
// What if we change the # of lobes?
engineConfiguration->hpfpCamLobes = 3;
EXPECT_FLOAT_EQ(math.calcFuelPercent(1000), 25 * 1.333333333f);
// More fuel!
engine->engineState.injectionMass[0] = 0.1 /* cc/cyl */ * fuelDensity;
EXPECT_FLOAT_EQ(math.calcFuelPercent(1000), 50 * 1.333333333f);
// More cylinders!
engineConfiguration->specs.cylindersCount = 6;
EXPECT_FLOAT_EQ(math.calcFuelPercent(1000), 50 * 2.); // Ooops we maxed out
// Compensation testing
engineConfiguration->specs.cylindersCount =
engineConfiguration->hpfpCamLobes; // Make math easier
for (int i = 0; i < HPFP_COMPENSATION_SIZE; i++) {
// one bin every 1000 RPM
engineConfiguration->hpfpCompensationRpmBins[i] = std::min(i * 1000, 8000);
}
for (int i = 0; i < HPFP_COMPENSATION_SIZE; i++) {
// one bin every 0.05 cc/lobe
engineConfiguration->hpfpCompensationLoadBins[i] = std::min(i * 0.05, 60.);
}
engineConfiguration->hpfpCompensation[2][1] = -10;
EXPECT_FLOAT_EQ(math.calcFuelPercent(1000), 40); // -10, in cell
EXPECT_FLOAT_EQ(math.calcFuelPercent(1500), 45); // -5, half way
EXPECT_FLOAT_EQ(math.calcFuelPercent(2000), 50); // -0, in next cell
engineConfiguration->hpfpCompensation[2][1] = 20;
EXPECT_FLOAT_EQ(math.calcFuelPercent(1000), 70); // +20, in cell
EXPECT_FLOAT_EQ(math.calcFuelPercent(1500), 60); // +10, half way
EXPECT_FLOAT_EQ(math.calcFuelPercent(2000), 50); // +0, in next cell
// 25% more fuel (1.25*50=62.5 base), but half way between comp of 20 and 0 (so comp of 10)
engine->engineState.injectionMass[0] = 0.125 /* cc/cyl */ * fuelDensity;
EXPECT_FLOAT_EQ(math.calcFuelPercent(1000), 72.5); // +10 comp
EXPECT_FLOAT_EQ(math.calcFuelPercent(1500), 67.5); // +5, half way
EXPECT_FLOAT_EQ(math.calcFuelPercent(2000), 62.5); // +0 base
}
TEST(HPFP, PI) {
EngineTestHelper eth(TEST_ENGINE);
engineConfiguration->specs.cylindersCount = 4;
engineConfiguration->hpfpCamLobes = 4;
engine->engineState.injectionMass[0] = 0.05 /* cc/cyl */ * fuelDensity;
engineConfiguration->hpfpPumpVolume = 0.2; // cc/lobe
HpfpQuantity math;
for (int i = 0; i < HPFP_TARGET_SIZE; i++) {
// one bin every 1000 RPM
engineConfiguration->hpfpTargetRpmBins[i] = std::min(i * 1000, 8000);
}
for (int i = 0; i < HPFP_TARGET_SIZE; i++) {
// one bin every 20kPa
engineConfiguration->hpfpTargetLoadBins[i] = std::min(i * 20, 200);
}
for (int r = 0; r < HPFP_TARGET_SIZE; r++) {
for (int c = 0; c < HPFP_TARGET_SIZE; c++) {
engineConfiguration->hpfpTarget[r][c] = 1000 * r + 10 * c;
}
}
Sensor::setMockValue(SensorType::Map, 40);
Sensor::setMockValue(SensorType::FuelPressureHigh, 1000);
EXPECT_FLOAT_EQ(math.calcPI(1000, 120), -20); // Test integral clamp
EXPECT_FLOAT_EQ(math.m_I_sum_percent, -20); // and again
EXPECT_FLOAT_EQ(math.m_pressureTarget_kPa, 2010);
EXPECT_FLOAT_EQ(math.calcPI(1000, -40), 40); // Test integral clamp
EXPECT_FLOAT_EQ(math.m_I_sum_percent, 40); // and again
EXPECT_FLOAT_EQ(math.m_pressureTarget_kPa, 2010);
// Test pressure decay
math.calcPI(4000, 0);
EXPECT_FLOAT_EQ(math.m_pressureTarget_kPa, 2040);
math.calcPI(1000, 0);
EXPECT_FLOAT_EQ(math.m_pressureTarget_kPa, 2040);
engineConfiguration->hpfpTargetDecay = 1000;
math.calcPI(1000, 0);
EXPECT_FLOAT_EQ(math.m_pressureTarget_kPa, 2035); // 5ms of decay
// Proportional gain
math.reset(); // Reset for ease of testing
EXPECT_FLOAT_EQ(math.calcPI(1000, 0), 0); // Validate reset
EXPECT_FLOAT_EQ(math.m_pressureTarget_kPa, 2010);
engineConfiguration->hpfpPidP = 0.01;
EXPECT_FLOAT_EQ(math.calcPI(1000, 0), 10.10);
engineConfiguration->hpfpPidP = 0.02;
EXPECT_FLOAT_EQ(math.calcPI(1000, 0), 20.20);
// Integral gain
engineConfiguration->hpfpPidI = 0.001;
EXPECT_FLOAT_EQ(math.calcPI(1000, 0), 20.368334);
EXPECT_FLOAT_EQ(math.m_I_sum_percent, 0.168333333);
}
TEST(HPFP, Angle) {
EngineTestHelper eth(TEST_ENGINE);
engineConfiguration->specs.cylindersCount = 4;
engineConfiguration->hpfpCamLobes = 4;
engine->engineState.injectionMass[0] = 0.05 /* cc/cyl */ * fuelDensity;
engineConfiguration->hpfpPumpVolume = 0.2; // cc/lobe
HpfpQuantity math;
for (int i = 0; i < HPFP_TARGET_SIZE; i++) {
// one bin every 1000 RPM
engineConfiguration->hpfpTargetRpmBins[i] = std::min(i * 1000, 8000);
}
for (int i = 0; i < HPFP_TARGET_SIZE; i++) {
// one bin every 20kPa
engineConfiguration->hpfpTargetLoadBins[i] = std::min(i * 20, 200);
}
for (int r = 0; r < HPFP_TARGET_SIZE; r++) {
for (int c = 0; c < HPFP_TARGET_SIZE; c++) {
engineConfiguration->hpfpTarget[r][c] = 1000 * r + 10 * c;
}
}
for (int i = 0; i < HPFP_LOBE_PROFILE_SIZE; i++) {
engineConfiguration->hpfpLobeProfileQuantityBins[i] = 100. * i / (HPFP_LOBE_PROFILE_SIZE - 1);
engineConfiguration->hpfpLobeProfileAngle[i] = 150. * i / (HPFP_LOBE_PROFILE_SIZE - 1);
}
HpfpController model;
EXPECT_FLOAT_EQ(math.calcFuelPercent(1000), 25); // Double check baseline
EXPECT_FLOAT_EQ(math.calcPI(1000, 10), 0); // Validate no PI
EXPECT_NEAR(math.pumpAngleFuel(1000, &model), 37.5, 0.4); // Given the profile, should be 50% higher
engine->engineState.injectionMass[0] = 0.08 /* cc/cyl */ * fuelDensity;
EXPECT_FLOAT_EQ(math.calcFuelPercent(1000), 40); // Double check baseline
EXPECT_FLOAT_EQ(math.calcPI(1000, 10), 0); // Validate no PI
EXPECT_NEAR(math.pumpAngleFuel(1000, &model), 60, 0.4); // Given the profile, should be 50% higher
engineConfiguration->hpfpPidP = 0.01;
Sensor::setMockValue(SensorType::Map, 40);
Sensor::setMockValue(SensorType::FuelPressureHigh, 1000);
EXPECT_FLOAT_EQ(math.calcPI(1000, 10), 10.1);
EXPECT_NEAR(math.pumpAngleFuel(1000, &model), 50.1 * 1.5, 0.4); // Given the profile, should be 50% higher
}
TEST(HPFP, Schedule) {
EngineTestHelper eth(TEST_ENGINE);
engineConfiguration->specs.cylindersCount = 4;
engineConfiguration->hpfpCamLobes = 4;
engineConfiguration->hpfpPumpVolume = 0.2; // cc/lobe
for (int i = 0; i < HPFP_TARGET_SIZE; i++) {
// one bin every 1000 RPM
engineConfiguration->hpfpTargetRpmBins[i] = std::min(i * 1000, 8000);
}
for (int i = 0; i < HPFP_TARGET_SIZE; i++) {
// one bin every 20kPa
engineConfiguration->hpfpTargetLoadBins[i] = std::min(i * 20, 200);
}
for (int r = 0; r < HPFP_TARGET_SIZE; r++) {
for (int c = 0; c < HPFP_TARGET_SIZE; c++) {
engineConfiguration->hpfpTarget[r][c] = 1000 * r + 10 * c;
}
}
for (int i = 0; i < HPFP_LOBE_PROFILE_SIZE; i++) {
engineConfiguration->hpfpLobeProfileQuantityBins[i] = 100. * i / (HPFP_LOBE_PROFILE_SIZE - 1);
engineConfiguration->hpfpLobeProfileAngle[i] = 150. * i / (HPFP_LOBE_PROFILE_SIZE - 1);
}
auto & hpfp = *engine->module<HpfpController>();
StrictMock<MockExecutor> mockExec;
engine->executor.setMockExecutor(&mockExec);
engineConfiguration->hpfpActivationAngle = 30;
constexpr angle_t angle0 = 90;
constexpr angle_t angle1 = 270 - 37.6923065;
constexpr angle_t angle2 = angle1 + 30;
constexpr float tick_per_deg = USF2NT(1000000.)*60/360/1000;
constexpr efitick_t nt0 = tick_per_deg * angle0;
constexpr efitick_t nt1 = tick_per_deg * angle1;
constexpr efitick_t nt2 = tick_per_deg * angle2;
{
testing::InSequence is;
// First call to setRpmValue will cause a dummy call to fast periodic timer.
// Injection Mass will be 0 so expect a no-op.
EXPECT_CALL(mockExec, scheduleByTimestampNt(testing::NotNull(), &hpfp.m_event.scheduling, nt0, action_s(HpfpController::pinTurnOff, &hpfp)));
// Second call will be the start of a real pump event.
EXPECT_CALL(mockExec, scheduleByTimestampNt(testing::NotNull(), &hpfp.m_event.scheduling, nt1, action_s(HpfpController::pinTurnOn, &hpfp)));
// Third call will be off event
EXPECT_CALL(mockExec, scheduleByTimestampNt(testing::NotNull(), &hpfp.m_event.scheduling, nt2, action_s(HpfpController::pinTurnOff, &hpfp)));
}
EXPECT_CALL(mockExec, cancel(_)).Times(2);
// For HPFP to work, events need to be scheduled after the next tooth. This makes sure the
// peak pos occurs after the next tooth.
engineConfiguration->hpfpPeakPos = 90;
// This will call the fast callback routine
engine->rpmCalculator.setRpmValue(1000);
engine->engineState.injectionMass[0] = 0.05 /* cc/cyl */ * fuelDensity;
engineConfiguration->hpfpValvePin = Gpio::A2; // arbitrary
hpfp.onFastCallback();
// First event was scheduled by setRpmValue with 0 injection mass. So, it's off.
eth.assertTriggerEvent("h0", 0, &hpfp.m_event, (void*)&HpfpController::pinTurnOff, 270);
// Make the previous event happen, schedule the next.
engine->module<TriggerScheduler>()->scheduleEventsUntilNextTriggerTooth(
1000, tick_per_deg * 0, 180, 360);
// Mock executor doesn't run events, so we run it manually
HpfpController::pinTurnOff(&hpfp);
// Now we should have a regular on/off event.
eth.assertTriggerEvent("h1", 0, &hpfp.m_event, (void*)&HpfpController::pinTurnOn, 450 - 37.6923065f);
// Make it happen
engine->module<TriggerScheduler>()->scheduleEventsUntilNextTriggerTooth(
1000, tick_per_deg * 180, 360, 540);
// Since we have a mock scheduler, lets insert the correct timestamp in the scheduling
// struct.
hpfp.m_event.scheduling.momentX = nt1;
HpfpController::pinTurnOn(&hpfp);
// The off event goes directly to scheduleByAngle and is tested by the last EXPECT_CALL
// above.
}