-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathautorec.py
67 lines (52 loc) · 1.89 KB
/
autorec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from argparse import ArgumentParser
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_lightning.loggers import TensorBoardLogger
from lit_data import LitDataModule
from lit_model import LitModel
from ml100k import ML100KRatingMatrix
class AutoRec(nn.Module):
def __init__(self, embedding_dims, input_dim, dropout=0.05):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(input_dim, embedding_dims),
nn.Sigmoid(),
nn.Dropout(dropout)
)
self.decoder = nn.Linear(embedding_dims, input_dim)
for param in self.parameters():
nn.init.normal_(param, std=0.01)
def forward(self, x):
h = self.encoder(x)
y = self.decoder(h)
return y
class LitAutoRec(LitModel):
def get_loss(self, m_outputs, batch):
mask = (batch > 0).to(torch.float32)
m_outputs = m_outputs*mask
return F.mse_loss(m_outputs, batch)
def update_metric(self, m_outputs, batch):
mask = batch > 0
self.rmse.update(m_outputs[mask], batch[mask])
def forward(self, batch):
return self.model(batch)
def main(args):
data = LitDataModule(ML100KRatingMatrix(), batch_size=args.batch_size)
data.setup()
model = LitAutoRec(AutoRec,
lr=0.01,
input_dim=data.num_users,
embedding_dims=args.embedding_dims)
logger = TensorBoardLogger("lightning_logs", name=f"AutoRec_{args.embedding_dims}")
trainer = pl.Trainer.from_argparse_args(args, logger=logger)
trainer.fit(model, data)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--embedding_dims", type=int, default=500)
parser.add_argument("--batch_size", type=int, default=256)
pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
main(args)