-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdeepfm.py
92 lines (76 loc) · 2.73 KB
/
deepfm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from argparse import ArgumentParser
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_lightning.loggers import TensorBoardLogger
from torchmetrics import Accuracy
from fm import LitFM
from lit_data import LitDataModule
from lit_model import LitModel
from ctr import CTRDataset
def mlp_layer(in_dim, out_dim, dropout=0.0):
return [
nn.Linear(in_dim, out_dim),
nn.ReLU(),
nn.Dropout(dropout),
]
class DeepFM(nn.Module):
def __init__(self, feat_dims, embedding_dims,
mlp_dims=[30, 20, 10], dropout=0.1):
super().__init__()
num_inputs = int(sum(feat_dims))
self.embed_output_dim = len(feat_dims) * embedding_dims
self.embedding = nn.Embedding(num_inputs, embedding_dims)
self.proj = nn.Embedding(num_inputs, 1)
self.fc = nn.Linear(1, 1)
self.mlp = nn.Sequential(
*mlp_layer(self.embed_output_dim, mlp_dims[0], dropout),
*[layer for i in range(len(mlp_dims) - 1)
for layer in mlp_layer(mlp_dims[i], mlp_dims[i+1], dropout)],
nn.Linear(mlp_dims[-1], 1))
self.init_param()
def init_param(self):
for param in self.parameters():
try:
nn.init.xavier_normal_(param)
finally:
continue
def forward(self, x):
v = self.embedding(x)
# Factorization Machine
fm_interaction = 1/2*(v.sum(1)**2 - (v**2).sum(1)
).sum(-1, keepdims=True)
fm_proj = self.proj(x).sum(1)
fm_logit = self.fc(fm_proj + fm_interaction).flatten()
# MLP
mlp_logit = self.mlp(v.flatten(1)).flatten()
logit = fm_logit + mlp_logit
return torch.sigmoid(logit)
class LitDeepFM(LitFM):
def __init__(self, lr=0.002, **kwargs):
super(LitFM, self).__init__()
self.save_hyperparameters()
self.model = DeepFM(**kwargs)
self.lr = lr
self.train_acc = Accuracy()
self.test_acc = Accuracy()
def main(args):
data = LitDataModule(
CTRDataset(), batch_size=args.batch_size)
data.setup()
model = LitDeepFM(
feat_dims=data.dataset.feat_dims,
embedding_dims=args.embedding_dims)
logger = TensorBoardLogger(
"lightning_logs", name=f"DeepFM_{args.embedding_dims}")
trainer = pl.Trainer.from_argparse_args(args, logger=logger)
trainer.fit(model, data)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--embedding_dims", type=int, default=10)
parser.add_argument("--batch_size", type=int, default=1024)
pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
main(args)